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Figure 1: HOH is a markerless 3D multimodal dataset on human-human handovers with 136 objects
and 20 participant pairs, 40 accounting for role-reversal. We show 3D point clouds of the upper body,
giver (pink) and receiver (yellow) hands, and objects (colorized) fused from 4 Kinects from various
time points of handover and across various participant pairs and objects. The dataset demonstrates
diversity of object geometry, participant posture, interaction approaches, and grasp types. Shown are
right-seated givers. The dataset also consists of left-seated givers.

Abstract

We present the HOH (Human-Object-Human) Handover Dataset, a large object
count dataset with 136 objects, to accelerate data-driven research on handover
studies, human-robot handover implementation, and artificial intelligence (AI) on
handover parameter estimation from 2D and 3D data of two-person interactions.
HOH contains multi-view RGB and depth data, skeletons, fused point clouds,
grasp type and handedness labels, object, giver hand, and receiver hand 2D and 3D
segmentations, giver and receiver comfort ratings, and paired object metadata and
aligned 3D models for 2,720 handover interactions spanning 136 objects and 20
giver-receiver pairs—40 with role-reversal—organized from 40 participants. We
also show experimental results of neural networks trained using HOH to perform
grasp, orientation, and trajectory prediction. As the only fully markerless handover
capture dataset, HOH represents natural human-human handover interactions,
overcoming challenges with markered datasets that require specific suiting for
body tracking, and lack high-resolution hand tracking. To date, HOH is the largest
handover dataset in terms of object count, participant count, pairs with role reversal
accounted for, and total interactions captured.
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1 Introduction

Human-human handover of objects is a complex process that has been highly studied due to its
role in enabling fluent human-robot interaction (HRI) in collaborative operations. Researchers have
investigated a wide range of parameters underlying handover, including physical factors such as
grip force [40, 16, 20, 19, 31], interpersonal distance [4, 27], object orientation [14, 15], object
mass [27], hand movements [48, 46], and reaction times [23], as well as cognitive parameters
such as giver/receiver intent communication [38], gaze variation and joint attention for shared
goals [50, 42, 55], movement adaptation [28], and affordance preferences [18]. The study of these
parameters has given rise to a plethora of work in data-driven human-robot handover interactions [44,
36, 30], and has shown potential for learning-based prediction of handover parameters such as
receiver grasp [54]. Given the often non-verbal aspects of handover and its dependence on inter-
personal coordination for shared goal success [33], there is a strong interest within the cognitive
science community [33] to understand “What Does a Handover Tell” [6], e.g., sensitivity of motion
kinematics to social intention [5], potential individuality of short-range handover trajectories [6], and
inter-person coordination. The study of handover also has a societal benefit, of providing robots that
engage in patient-centric caregiving and productivity-aware collaboration.

The large-scale propagation of human-human handover research has been hindered by two challenges.
The first challenge is that, so far, human-human handover studies have used small object counts,
typically 2-5, a few with 10-20 [15, 13, 35], and to-date no more than 30 [54]. Given the vast
diversity of objects likely to be interacted with by robots in consumer spaces—tools, kitchen utensils,
containers, toys, fruit, bathroom items, office supplies, and electronic items to name a few, conclusions
on physical and cognitive parameters in small object count studies cannot be generalized to objects in
the wild, without fully studying the impact of variation in object properties such as size, shape, mass,
functionality, and presence of protrusions or affordances.

The second challenge is that publicly available datasets [15, 13, 31, 35], apart from being few and
using small object counts, use marker-based motion capture (mocap) with only a single marker on
the wrist and 1-5 markers on the object. Markered body mocap suffers from known limitations such
as use of form-fitting suits that prevents clothing diversity, and lack of high-resolution hand geometry
and object structure that prevents analysis of spatial affordance during grasp and object transfer [18]
to enable safe human-robot handover. Attempts have been made to use public datasets to develop
human-inspired robotic controllers [36, 21, 30], demonstrating their value. However, the constrained
markered setup and small object count hinder their use in studying parameters of natural handover or
use in developing learning algorithms for robotics that rely on large data with high degree of diversity.

We contribute HOH (Human-Object-Human), the first markerless, high object count human-human
handover dataset that is publicly available. HOH contains 2,720 interactions performed by 40
participants organized in 20 role-reversing giver-receiver pairs covering a total of 136 objects—116
store-bought and 20 3D printed—spanning 17 form/function categories and 8 everyday use classes.
We adopt a markerless approach to capture natural real-world motions and clothing. We use a multi-
camera setup of 4 30FPS Kinect RGB-D sensors and 4 60FPS FLIR Point Grey cameras to perform
360◦ allocentric (non-body-mounted) capture of human-human handover. We record post-handover
giver and receiver perceptions of comfort. We provide the following contributions in HOH.

1. Kinect depth video for 2,720 handovers from 20 participant pairs, and Kinect and Point Grey color
video for 2,448 handovers from 18 pairs who consented to identifiable color (IC) data release.

2. Manual ground truth (GT) annotations of key events on first giver grasp on object, object transfer,
and last receiver contact, giver hand, object, and receiver hand masks assisted by Segment
Anything Model (SAM) [32], and giver and receiver handedness and grasp type at object transfer
using the taxonomy of Cini et al. [18].

3. Processed data in the form of full 360◦ point clouds (color mapped for IC pairs), OpenPose [12]
skeletons, tracked hand and object masks, and color-mapped hand and object point clouds over
from first to last key event frame in all 2,720 interactions.

4. Information on the object used in each interaction, including mass, class, category, and 3D model.
5. Object 3D model GT alignments to frames ranging from the first key event to the last key event,

providing GT 6DOF object pose.
6. Analysis of object, trajectory, and grasp properties.
7. Experimental results of neural networks trained to predict giver grasp and transfer orientation

using object point clouds, and receiver grasp and trajectories using object and giver data.
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Intended Use Cases. The dataset facilitates studies on human-human handover interaction with a
broad range of objects to inform cognitive psychology and human-robot handover research. The
dataset enables investigation of parameters such as giver and receiver kinematics, object motions,
giver/receiver hand and upper body coordination for shared goal accomplishment, grasp type, multi-
person handedness, and key event timing. Investigations can include per-parameter statistical analyses,
cross-parameter relationships, and relationships with respect to factors such as object geometry,
participant demographics, and subjective ratings of comfort. The benefit of 3D markerless capture
for HRI is to develop learning-based algorithms that inform robotic manipulators connected with
RGB-D sensors on estimating where to grasp to enable safe human-robot handover using point
clouds backprojected from RGD-D data. Robot givers can learn from the behavior of human givers
where to preferentially hold objects, how to move during giving, and how to orient the object at the
transfer point when handing the object to a receiver. Robot receivers can use the behavior of human
receivers to learn where to grasp objects handed to them by a giver, and what trajectory to navigate
in space to remain safe. By containing full upper-body capture and associated skeleton estimation,
the dataset enables the study of relationships such as hand and body articulation, and head pose and
eye gaze at various key points of the handover. These analyses are motivated by prior human-robot
handover implementations [28, 36, 30, 42, 55, 48, 46] and cognitive studies [5, 6] based upon similar
human-human handover studies on smaller object sets. Study of simultaneous giver and receiver
comfort perceptions is expected to enable understanding of alignment between the giver and receiver,
facilitating study of inter-person coordination important to shared goal accomplishment [34].

2 Related Work

Human-Human Handover Datasets. To the best of our knowledge, 4 publicly available human-
human handover datasets exist at this time [13, 15, 31, 35]. As discussed in Section 1, they are
hindered by the limited object quantity, and low-resolution data and unnatural interaction setting due
to use of markered mocap. Khanna et al. [31] focus on grip force measurement, and use a single
unweighted and weighted force-sensor instrumented baton to gather mocap data. Their data prevents
understanding handover dependence on object geometry. Carfi et al. [13] and Kshirsagar et al. [35]
provide RGB-D data from 1 and 2 views respectively. The Kinect FOV makes fewer than 4 views
insufficient for full 360◦ coverage, e.g., to capture hand-object surfaces occluded from the camera
view. Though Chan et al. [15] provide raw color data from their Vicon cameras, they use 8 views,
lack depth data, use a wider-out setup, and have participants wear black body suits. The low view
count, lack of texture, and high distance is unlikely to yield success in using multi-view stereo for 3D
reconstruction. Their color data is in a proprietary Vicon format requiring a license purchase.

We have identified two more multi-object dataset collections [18, 54] that are not publicly available.
Cini et al. [18] perform grasp taxonomy analysis by recording mocap using IR reflectors on the hand
dorsum and object, with one video per interaction. Their data suffers from similar concerns as the
public datasets. Ye et al. [54] acquire mocap using 6 magnetic markers per hand (5 at fingertips and
one at wrist) and 3 optical markers per object, as well as RGB-D video using 5 30FPS allocentric
cameras. They provide deep networks to hand-object pose estimation and giver-conditioned receiver
pose prediction. The 5-fingertip capture provides higher detail than other datasets, however, knuckle
articulation is absent. Though the RGB-D cameras can provide dense detail, the magnetic sensor
cables occlude the hand dorsum. The RGB-D views lack face and upper body data, important to
analyze gaze [42, 21] and arm extension. To ensure comprehensive natural grasp and structure capture,
we use a markerless allocentric setup with 360◦ coverage of the upper body of both participants.

We summarize key properties of multi-object datasets in comparison to HOH in Table 1. HOH is the
largest multi-object dataset in terms of object counts, participants recruited, pairs with role-reversal
(RR) accounted for (matching the non-public H2O dataset), and number of cameras (matching the
count in Chan et al. [15]). Our object count at 136 is 6.8× the count of Chan et al., the public dataset
with the next largest count. 10 participant pairs (20 with RR) in HOH interact with 68 objects and
the other 10 pairs (20 with RR) interact with a separate set of 68 objects, resulting in multi-pair
interactions for the same object set with 3.4× the object count in Chan et al. HOH is the only dataset
with simultaneous giver and receiver comfort ratings.

Hand-Object Datasets. In consisting of grasp-based hand-object interactions, human-human
handover shares features with the large body of recent work in hand-object interaction, focused
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Table 1: Comparison of HOH (last column) versus prior multi-object human-human handover
datasets. RR = role reversal, i.e., giver becomes receiver and vice versa, and is only applicable
for some datasets. SB = Single-blind (⋆experimenter is one participant), DB = Double-blind (both
participants are recruited). †from Vicon X2D. **Obtained by placing markers on object, rather than
by model alignment.

Cini [18] Chan [15] Carfi [13] Kshirsagar [35] H2O [54] HOH
SB DB Biman. Uniman. (Ours)

# Interactions 1,734 1,200 799 288 240 120 1,200 2,720
# Objects 17 20 3 7 10 5 30 136
# Participants 34 20 18 18 24 24 15 40
# Pairs 17 10 18⋆ 9 12 12 40 20
# Pairs with RR 17 10 36⋆ 18 24 24 40 40
# Cameras 1 8 1 1 2 2 5 8
Markerless? × × × × × × × ✓
Ratings? × × ✓ × × × × ✓
Color? ✓ ✓† ✓ ✓ ✓ ✓ ✓ ✓
Depth? × × × × ✓ ✓ ✓ ✓
Point Clouds? × × × × × × × ✓
3D Object Model? × × × × × × ✓ ✓
6DOF Object Pose? × ✓** × × ✓** ✓** ✓** ✓
Public? ✓ ✓ ✓ ✓ ✓ ✓ × ✓

on, e.g., AI-driven hand and object pose estimation in the presence of hand-object occlusions, and
even locations for safe robotic grasp in human-to-robot handover [17]. Much recent work has
been invested in the collection of single-person hand-object interaction datasets [56, 9, 51, 17,
8, 29, 39, 25, 37, 26, 49, 22]. AI algorithms and research findings from single-person hand-object
interaction datasets, even when bimanual, cannot be directly transferred to handover interactions
involving two different people. Inter-participant differences introduce variations in hand geometry
and appearance. Spatial kinematics vary across the two types of interactions. Handovers may cover
larger translations during reach and transfer, making egocentric setups [37, 39] infeasible due to the
constrained view field. Single-person bimanual interactions involve mirrored right and left hands.
The preponderance of right-handed individuals means that handovers with unimanual interactions are
likely to be dominated by non-mirrored right-right hand interactions at the giver-to-receiver object
transfer phase. These concerns justify the need for a distinct handover dataset such as HOH, in which
over 75% of interactions occur using non-mirrored hands. Several interactions in HOH have 3+ hands,
e.g., unimanual giver grasp to bimanual receiver grasp. HOH exceeds all but the egocentric-only
HOI4D dataset [39] in object count. Though Assembly101, with 101 objects, approaches HOH,
Assembly101 lacks paired and aligned 3D scans.

3 HOH Dataset

3.1 Dataset Design Philosophy

Motivated by the goal of 360◦ capture of natural handover, we used a markerless allocentric capture
approach and recorded giver-to-receiver handover in a seated pose to minimize fatigue. Seated
handover interactions are common in social settings, e.g., at a coffee shop or in a collaborative work
environments.We employ the standardized nomenclature of Kopnarski et al. [33] who define handover
as consisting of four phases, reach and grasp, where the giver applies enough grip force for object
hold, transport where the object is moved to reach the shared transfer point, object transfer during
which the object is handed over from giver to receiver, and end of handover, during which the receiver
acquires full object possession and “uses the object in line with their intention” [33]. In our study,
end of handover involves placing the object on the table.

Some prior studies inform participants to consider intended use, or specifically request bimanual
or unimanual grasp [35], or giver/receiver consideration [15]. We provide no prompting regarding
interaction, except that the giver maintain grasp during transport. Our goal of unprompted interaction
was to acquire natural giver reach and grasp, similar to the natural condition of Chan et al. [15],
to enable analysis of grasp type and hand combinations in open-ended handover, and to avoid
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Figure 2: Left: Synchronized color and depth data collected in HOH from 4 viewpoints for a handover
interaction, with OpenPose skeletons show in in Kinect color images. Center: Object 3D model used
in interaction. Right: Color-mapped 3D point cloud with segmented giver, object, and receiver.

Table 2: HOH Dataset Summary. GT = Ground Truth Annotation, Pre = pre-GT processing, post
= post-GT processing to propagate annotations. ⋆Currently all skeleton estimation, color-mapping,
segmentation, GT, and post-processing has been conducted for Kinect images.

Modality Modality Description Interactions Count

Pr
e

Kinect Color 4-viewpoint 30FPS RGB Video, 1920x1080 2,448 1.4M
Kinect Depth 4-viewpoint 30FPS Depth Video 2,720 1.6M
FLIR Point Grey Color 4-viewpoint 60FPS RGB Video 2,448 2.8M
Skeletons⋆ Estimated using OpenPose [12] in Kinect color images 2,720 1.6M
Fused Point Clouds Fused from depth images using multi-camera calibration 2,720 250K
Fused Color Point Clouds⋆ Colorized using Kinect color images 2,448 240K
Full Color Segmentation Masks⋆ Extracted using SAM [32] 2,720

G
T
⋆

Key Event Annotations Frames for first giver-object contact (G), giver/receiver grasp at
transfer (T), and last receiver-object contact (R)

2,720 8,160

Giver Hand / Receiver Hand / Manually isolated from SAM segmentation for giver hand from G 2,720 8,513 / 8,879 /
Object Segmentation Masks and T, object from all G, T, R, and receiver hand from T 21,224

and R, done for as many viewpoints where entity is visible

Po
st
⋆

Tracked Giver Hand / Receiver Tracked using Track Anything from G to R 2,720 710K / 780K
Hand / Object Masks 2,720 1M
Giver Hand / Receiver Hand / Segmented from fused point clouds using tracked masks 2,720 240K / 260K
Object Point Clouds 2,720 290K
3D Model & 6DOF Object Pose Aligned using iterative closest point (ICP) [7] from 3D model to

G, G to G+1, G+1 to G+2, · · · R-2 to R-1, and R-1 to R.
2,720 290K

compromising data diversity, a concern for learning-based algorithms. Given the unstructured nature
of the interaction, a giver could be inconsiderate of the receiver’s comfort, or in thinking of the
receiver could compromise their own comfort. We obtained a 7-point Likert scale rating after each
interaction to gauge giver and receiver comfort.

Our data is captured in a 1.7m × 1.7m × 2.0m green-screened T-slot frame rig using 4 Azure Kinect
RGB-D sensors and 4 FLIR Point Grey BlackFly S high-speed color cameras, as shown by the images
in Figure 2. The supplementary covers the setup, computing, connection, and networking setup
and details to conduct simultaneous multi-sensor capture, spatial geometric camera calibration, and
post-capture synchronization via an overhead light. In 160 of the 2,720 interactions (4 per pair), we
requested the participants to wear blue gloves with the intention of acquiring high-fidelity tracking
using color-segmentation. The Segment Anything Model (SAM) [32] now facilitates tasks such as
background-region removal, and foreground extraction as performed for this dataset. However, we
collected HOH data prior to SAM, when reliable off-the-shelf easy-to-use segmentation tools were
unavailable. We opted for a close-confined setup over spread-out to acquire color and depth data at
the highest resolution feasible using Kinects and Point Grey cameras.

3.2 Dataset Collection

Dataset-in-a-Nutshell. HOH contains multimodal data on handover interactions from a total of 20
participant pairs, or 40 pairs with giver-receiver role-reversal (RR), interacting with a total of 136
objects while seated in our multi-camera capture space. 10 pairs interact with 68 and the other 10
pairs with the remaining 68. Table 2 provides a summary of HOH data. We pair HOH interactions
with a 136-object dataset containing 3D models and metadata.
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Figure 3: Left: Objects used in HOH. Center: GT annotation of key events, and SAM and GT-aided
tracks of giver hand (purple), object (yellow), and receiver hand (red) segments. Right: 6DOF pose
estimation via ICP-alignment of 3D model (red) to frames.

Object Dataset. HOH’s diverse 136-object dataset, shown in Figure 3, spans 8 everyday use
classes—toys (14), mugs (11), food and drink items (13), cooking utensils (25), tools (15), office
items (11), household items (27), and 3D printed items (20). Objects are organized into 17 categories
based on aspect ratio and functionality, with 8 objects per category. 15 categories span 3 aspect
ratio (or form) bins—1:1-2:1, 2:1-3:1, and >3:1—and 5 bins that describe whether the object has (H)
or lacks (NH) a handle, has (F) or lacks (NF) an end used for a function such as cutting, drinking,
peeling, or screwing, and is found in a vertical (V) or horizontal (Z) standard orientation. The 5 bins
are NFNHZ, NFNHV, FNHZ, FNHV, and FHV. Category 16 consists of 1:1 aspect ratio objects in
FHZ, and category 17 consists of objects outside categories 1 to 16. We found that FHZ objects with
a larger aspect ratio are uncommon. Each pair of participants interacted with 4 objects per category to
cover their allocated 68 objects while ensuring full category spanning. The supplementary provides
details on object preparation and acquisition.

Participant Recruitment. We recruited 40 participants from the local university population, through
message posting on online collaborative work spaces, after receiving approval from the university’s
Institutional Review Board (IRB). Participants were not compensated for providing data. The
research did not involve contract work or crowd-sourcing. We had 34 male and 6 female participants,
organized into 6 female/male pairs, and 14 male/male pairs. No two pairs had the same participant.
2 participants declined to share their age. Ages of remaining participants ranged from 19 to 51,
with mean of 24.8±7.4. Height ranged from 1.55m to 1.96m with mean of 1.8m±0.1m. 38 of
our participants reported writing right-handed, only 1 reported being a left-handed writer, and 1
reported being ambidextrous. 2 participants have not given consent for sharing identifiable color (IC)
information. For safety, at this time, we exclude all color frames for all their interactions in public
release, i.e., color data from 2 pairs, even if some color frames do not identify their face.

Experiment Procedure. Participants were informed through the Informed Consent form that the
experiment was minimal risk, participation was voluntary, participants could wear masks for COVID-
19 safety and must consent to mask wearing if their partner wished it, no identifiers would be
collected, and participants could request that IC images be publicly inaccessible. Participants filled
a demographics questionnaire, were assigned a random 5-digit ID, and were introduced to their
partner. Participants were assigned giver and receiver roles. Upon sitting at the setup, the participants
performed handovers with 68 objects randomly ordered. Participants wore gloves for a random
set of 4 handovers. The experimenter placed the object at tabletop center in a random orientation.
Apart from committing to grasp and receiver placing object on the table, participants were free to
perform interactions as they wished. Both participants filled out post-handover 7-point Likert rating
on comfort using a clipboard. Participants then reversed roles, and re-performed handovers with the
same 68 objects in a different order. In all but two cases, participants returned to the same seats,
resulting in 22 and 18 RR pairs with left- and right-seated givers respectively.

Data Pre-Processing. We processed recorded camera data to obtain time-synchronized color and
depth images discussed in Table 2 over all views, ensuring that dropped frames are accounted for if
any. We backprojected the depth pixels into 3D using the depth image intensity values. We use the
transformations between the depth cameras to the reference camera 0 to fuse backprojected pixels
into a single point cloud per frame number oriented in camera 0. We used depth-to-color transforms
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Figure 4: Dataset Analysis: (a) histograms of object properties, (b) t-SNE for object models,
(c) Overall (dark) and per-pair (light) mean trajectory plots with start points marked using spheres,
(d) t-SNE of trajectories for HOH compared to Carfi et al. [13], (e) histogram of grasp types per Cini
et al. [18],(f) histogram of grasp ratings, and (g) log histogram of handedness counts at transfer.

to color-map the fused point clouds. We ran OpenPose [12] and SAM over all Kinect color images to
acquire upper body skeletons and complete image segmentation masks.

GT Annotation and Verification. As shown in Figure 3, we manually annotated three frames—G, T,
and R—marking key events. G contains first giver contact marking the grab portion of reach and grab,
T contains simultaneous giver and receiver grasp marking the middle region of object transfer, and R
contains last receiver contact on the object marking the end of handover. We marked SAM masks for
three entities —giver hand, object, and receiver hand—in G and T for giver, G, T, and R for object,
and T and R for receiver. Masks were marked when present and multiple masks per entity are fused
into a single mask. We verified and corrected all SAM masks. We checked all OpenPose skeletons
and found that only 4.6% had either missing or inaccurate joints. We store OpenPose confidence
values. We labeled handedness and grasp type using the 28-class grasp taxonomy of Cini et al. [18].

Post-Processing. We used Track Anything [53] to track annotator-segmented SAM masks from
frames G to R. We backprojected tracked masks via the camera calibration to generate giver, object,
and receiver point clouds. We denoised full, giver, object, and receiver point clouds to remove outliers,
and use median filtering based on the top k nearest neighbors per point to smooth the colorization,
with k being 10. We save both pre- and post-cleaned point clouds.

6DOF Object Pose. We provide GT object 6DOF pose by aligning the object 3D model to all frames
from G to R for all handover interactions. First, we conduct a frame-to-frame ICP [7] alignment
of the object point cloud to estimate inter-frame cloud-to-cloud transformations of the object point
cloud for all frames, linking all frames from G to R. Next, we conduct an automated alignment of
the 3D model to the object point cloud in the G frame. We sample a diverse range of orientations to
ensure exhaustive SO(3) coverage. We transform each 3D model using each orientation and fine-tune
the transformed model’s alignment to the object point cloud using ICP. We choose the 3D model
alignment with the smallest ICP distance. We use the inter-frame transformations to align the 3D
model to all frames from G to R. Example frames from the alignment are shown in Figure 3.

3.3 Dataset Analysis

Objects. Figure 4 provides a summary of multi-modal analysis of our dataset. Object histograms in
Figure 4(a) show that while our objects are skewed toward lower bounding box volume (BBV), mesh
volume (MV), and mass (medians of 9.73× 106mm3, 2.54× 106mm3, and 167g, and skewness of
2.83, 2.77, and 3.47 respectively), the bounding box diagonal is normally distributed with mean of
233.58mm±88.50mm, and 17 objects are over 0.5kg. The bounding box occupancy (MV-to-BBV
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ratio) is slightly skewed toward lower values (median 0.37, skewness 0.27) indicating that HOH
has high count of non-full objects, e.g., the spray bottle in Figure 2. The histogram of convexity,
computed as MV-to-convex-hull ratio [2], shows though our dataset tends toward convex objects
(median 0.67, skewness -0.51), 42 objects have a convexity < 0.5, i.e., embody concavities. The
spread of coefficients t-SNE plot of object geometry, in Figure 4(b), computed using 8,000 3D point
samples per 3D object model surface, confirms the object diversity in our dataset.

Trajectories. Figure 4(c) shows overall (dark) and per-pair (light) mean trajectories for giver hand,
object, and receiver hand. Means are obtained by resampling trajectories to have 100 samples, and
averaging within left-seated and right-seated givers. Trajectory means show transport and object
transfer phases for giver hand, inclination of object toward receiver indicative of giver intention
to participate in collaborative handover, giver retraction after transfer, and looped arc for receiver
toward end of handover. Left- and right-seated givers mirror each other. Spread of per-pair means
demonstrates trajectory diversity, echoing prior findings of individual dependence in handover
trajectory [6]. HOH trajectory diversity is confirmed by the t-SNE plot in Figure 4(d) where the
coefficients show a higher spread than the trajectories of Carfi et al. [13]. To ensure comparability
across HOH and Carfi trajectories, we align the trajectories within each entity and dataset using
Procrustes prior to t-SNE computation, since participants may be spatially displaced in the Carfi
dataset. We find trajectory lengths follow a normal distribution with giver, object, and receiver means
of 3.26s±0.97s, 3.60s±0.94s, and 3.49s±0.95s. Object trajectories are longer since the receiver may
react slightly later than the giver, while the giver may complete their motion before the receiver’s end
of handover.

Grasp. The distribution of grasp types in Figure 4(e) organized by the taxonomy in Cini et al. [18]
shows a majority of power grasps especially near C1, or larger diameter grasps apt for HOH object
sizes. High precision grasp counts are found for the giver, e.g., C6/C8 thumb-finger and C14 tripod
grasp, common for rod-like or handled-equipped items. For the receiver, we see high counts for C6,
F18 extension-type grasp on thin flat items, and F29 or stick grasp likely during receipt of objects
with protrusion affordances. The supplementary details taxonomy nomenclature. The comfort rating
histogram in Figure 4(f) indicates skew toward higher comfort levels (giver comfort skewness of
-1.23 with 16.21% over 4, receiver comfort skewness of -1.21 with 15.7% over 4). We observe a high
overall giver-receiver Pearson correlation of 0.38. As shown by the log histogram for handedness
in Figure 4(g), for unimanual grasps the giver and receiver use the same hand in 76.8% of the
interactions, and opposite hands in 20.4%. 76 interactions have bimanual grasp.

4 Experimental Results Showing Use Case

The primary use of our dataset is to drive AI research in HRI. Unfortunately, no off-the-shelf
algorithms exist to directly evaluate multi-person data such as HOH for robotic understanding of
handover parameters. The only approach for learning-driven grasp lacks public code and data [54]
and requires access to articulated hand pose, making it unusable with HOH. Full-fledged HOH-data-
driven robotic control is outside the scope of this paper (and in fact consists of components spanning
a wide range of future work). In this section, we create and evaluate deep neural networks to show
the benefit of HOH data for four tasks of relevance to the robotic manipulation pipeline: (1) Use
object point cloud to predict human giver grasp point cloud or o2gg, (2) Use object point cloud to
predict object orientation at transfer point or o2or, (3) Use object and giver point cloud to predict
human receiver grasp point cloud or g2rg, and (4) use human giver hand motion to predict receiver
motion trajectory or g2rt. o2gg and g2rg enable robotic givers to bias grasp near preferred human
giver grasp, and robot receivers to bias grasp away from / close to preferred human giver / receiver
grasp. o2or enables robot manipulators to present objects at transfer in human-preferred poses. g2rt
enables robot receiver motion planning in response to human giver motion.

Implementation. We adapt PoinTr for o2gg and g2rg and Informer for g2rt. We use PointNet [47]
with 2 dense layers to generate quaternion orientation for o2or. We obtain input point clouds for
o2gg and o2or from Gpre, and for g2rg from Tpre, where Gpre and Tpre are a few frames prior to
G and T, containing object only and object+giver hand respectively. Outputs for o2gg, g2rg, and
o2or consist of giver hand point cloud at G, receiver hand point cloud at T, and rotation from 6DOF
pose at T represented as a quaternion. We train two networks each for o2gg, o2or, and g2rg, one
that uses complete input point clouds enabling handover parameter analysis with 360◦ access to
geometry through, e.g., multi-view fusion, and one that uses partial input point clouds, emulating
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Table 3: Metrics for experimental results.
Complete Partial

Task Metric GT Best to Object GT Best to Object
o2gg CD 0.483±0.187 0.135±0.078 0.135±0.052 0.277±0.188
o2or MEAE 0.851±0.253 0.365±0.153 0.843±0.227 0.411±0.136
g2rg CD 0.539±0.648 0.147±0.182 0.206±0.121 0.288±0.275
g2rt MAE 0.160±0.070 0.107±0.037 N/A N/A

Task Metric Complete Partial
o2gg %OLGO 17.39%±10.37% 58.12%±19.46%
g2rg %OLRG 1.44%±4.73% 1.13%±3.87%
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Figure 5: Visualization of outputs from o2gg, g2rg, and o2or. Insets for o2or show input point
cloud. Camera angle shown for partial clouds.

single-viewpoint RGB-D sensors. We generate partial data by rendering each scene from 6 randomly
generated viewpoints per scene. We pre-register all GT input and output point clouds for the complete
networks to the Gpre frame, in order to assess pre-movement parameter estimation. Partial point
clouds are left in the rendered viewpoint and object orientation at the appropriate handover timepoint
to emulate real time behavior. Since the proposed g2rt focuses on point trajectories rather than
objects, we use the trajectory centroids from Section 3.3 to train a single version of g2rt. We
manually pre-transform GT to set the origin at the table center, xz-plane as ground, and right-seated
givers aligned with left-seated.

Training. We randomly divide the 8 objects in each form/function bin into sets A, B, and C with
3, 3, and 2 objects per bin or 51, 51, and 34 total objects to be used in train only, test only, and
train+test respectively. The training set uses random 75% of data from sets A and C. The test set
uses the remaining 25% of data from set C, and 100% from set B. For g2rt, given the potential for
time-varying person movement to be a behavior signature, we keep train and test participant pairs
mutually exclusive. We use data from 11 pairs (22 with RR) in the training set, and the remaining
9 (18 with RR) in the test set. Hyperparameter choices and computing details are included in the
supplementary.

Evaluation Metrics. We provide GT evaluation metrics, particularly Chamfer Distance (CD) for
o2gg and g2rg, mean Euler angle error (MEAE) for o2or, and mean absolute error (MAE) for
g2rt. As plausible parameters may not correspond to GT, we report best GT metrics to all test object
instances (accounting for symmetry), to increase the chance of finding similar parameters. We report
percentage overlap of giver hand with object (%OLGO) for o2gg and receiver hand with giver hand
(%OLRG) for g2rg to gauge affordances for robot givers and receivers for safe handover.

Results. Table 3 shows the results of the evaluation metrics. Figures 5 shows qualitative results
of predictions for o2gg, g2rg, o2or, and g2rt, the latter two contextualized within the handover
providing the source input. Additional results are provided in the supplementary. When predictions
diverge from GT, they correspond to plausible outputs, e.g., though the actual giver grasp for the grill
brush at the bottom left of Figure 5 for o2gg is on the handle, the predicted grasp is on the brush.
Variability receiver hand orientation is observed for g2rg. For o2or, we notice that the alignment
of the predicted object when deviating substantially from GT, corresponds to a plausible extension
direction during transfer. Outputs of g2rt show that, even without object structure, simple trajectory
prediction enables the receiver to meet the giver trajectory near the shared space. From Table 3, we
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Figure 6: Visualization of outputs from g2rt for various pairs and objects.

notice that the mean best-to-object metrics show a drop compared to the GT, indicating that a more
likely candidate for each parameter is found in the dataset, and demonstrating the dataset’s diversity
in representation of handover. %OLGO in Table 3, indicates affordance availability, especially using
complete data. %OLRG demonstrates that giver-receiver overlap is negligible, showing ability of
g2rg to predict away from giver hand and enabling its use for robot receiver grasp biasing.

5 Discussion

Future Work. The experimental results presented in Section 4 provide a starting point for algorithm
development in HRI using HOH. The diverse, multimodal, and richly annotated data in HOH greatly
opens the scope for large-scale AI algorithms in HRI. Algorithms can be developed to leverage
comfort ratings to rank grasp, pose, and path prediction outputs, conduct realtime object-dependent
robotic giver motion prediction and proactive generation of robotic receipt motion by giver motion
forecasting, and enhance the robotics pipeline with object segmentation and tracking algorithms in the
presence of multi-person occlusions due to handover. Transfer position estimation can be conducted
by using upper body point clouds and/or skeletons to establish spatial relationships. The analysis
in Section 3.3 provides an overall view of HOH. A large scope exists for future studies involving
detailed analyses of alignment between giver and receiver comfort, trajectory velocity and timing,
and coordination, with respect to grasp type, object categories, and participant pairs.

Limitations. HOH lacks grip force due to the use of instrumentation-free setup. Currently, grip force
is collected using heavily-designed batons [40, 16, 19, 30] that constrain grasp type, are difficult to
control for weight, and lack geometric diversity. The scope remains to instrument everyday objects
with reliable minimally-invasive grip force units. Our participants occupy a narrow range over age
and ability. We recognize the challenges in recruiting participants such as children, older adults,
and individuals with different abilities, health and social concerns toward mutual interactions with
unfamiliar partners, and potential cognitive barriers toward providing informed consent. Future
collections can benefit from best practices on population-specific recruitment [41, 11, 3]. Though
HOH has 6DOF object pose, it currently lacks GT hand pose annotation. Full manual annotation
of hand pose in markerless data in the presence of occlusions and motion is a daunting task. Future
work includes adapting HOnnotate [25] to operate with multi-person hand interactions.

Societal Impacts. HOH provides the societal benefit of informing social robots on how to perform
safe handover, important toward the development and enhancement of trust and collaborative goal
accomplishment [24, 45]. Social robots aware of object-dependent handover improve fluidity of
post-handover operations involving multi-object use such as assembly and activities of daily living.
Improved trustworthy social robots, engaging in safe handover of objects have the potential to fill
current shortages of in-home aides for older adults [1] and individuals with disabilities, expected to
be of special concern in the light of a declining caregiving workforce [43] and increased demand [10].
Joint attention on shared objects, a component of handover, has been shown to encourage social
closeness [52]. Long-term impact of human-robot bonding on older adult isolation or childhood
development remains understudied. Social robots developed without coupling short-range focused
data such as ours with studies on longer-range attachment behavior are likely to introduce negative
societal consequences. If a robot on which an individual has developed a dependence malfunctions
or has to be discontinued, it may introduce anxiety and regression of collaborative goals within the
individual, akin to the loss of a loved one. We share full details of our setup, capture, computing, and
code in supplementary to promote continued wider-scale data collections for societally-aware HRI.

10



Acknowledgments

This work was funded by National Science Foundation grant IIS-2023998. We thank Mingjun Li
and Nikolas Lamb for insightful discussions on algorithm development and sensor calibration. We
also thank Priyo Ranjan Kundu Prosun, Thomas Dubay, Ben Molloy, Irfan Yaqoob, Numan Zafar,
Jyothinadh Minnekanti, Sichao Li, Houchao Gan, Xinchao Song, Kun Han, Alaina Tulskie, Holly
Rossmann, Rosalina Delwiche, Cameron Hood, Odin Kohler, Alexander Cohen, Christian Soucy,
and Gianna Voce for assistance with data collection and data annotation.

References
[1] AARP. Nationwide Caregiver Shortage Felt By Older Adults. https://www.aarp.org/caregiving/basics/info-

2022/in-home-caregiver-shortage.html, Nov 2022.

[2] Marco Attene, Michela Mortara, Michela Spagnuolo, and Bianca Falcidieno. Hierarchical convex approxi-
mation of 3d shapes for fast region selection. In Computer graphics forum, volume 27, pages 1323–1332.
Wiley Online Library, 2008.

[3] Jennifer R Banas, Susan Magasi, Kim The, and David E Victorson. Recruiting and retaining people
with disabilities for qualitative health research: Challenges and solutions. Qualitative Health Research,
29(7):1056–1064, 2019.

[4] Patrizia Basili, Markus Huber, Thomas Brandt, Sandra Hirche, and Stefan Glasauer. Investigating human-
human approach and hand-over. In Human centered robot systems, pages 151–160. Springer, Berlin,
Germany, 2009.

[5] Cristina Becchio, Luisa Sartori, Maria Bulgheroni, and Umberto Castiello. The case of dr. jekyll and mr.
hyde: a kinematic study on social intention. Consciousness and cognition, 17(3):557–564, 2008.

[6] Holger H Bekemeier, Jonathan W Maycock, and Helge J Ritter. What does a hand-over tell?—individuality
of short motion sequences. Biomimetics, 4(3):55, 2019.

[7] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control
paradigms and data structures, volume 1611, pages 586–606, Bellingham, WA, 1992. SPIE.

[8] Bharat Lal Bhatnagar, Xianghui Xie, Ilya A Petrov, Cristian Sminchisescu, Christian Theobalt, and Gerard
Pons-Moll. Behave: Dataset and method for tracking human object interactions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15935–15946, 2022.

[9] Samarth Brahmbhatt, Chengcheng Tang, Christopher D Twigg, Charles C Kemp, and James Hays. Con-
tactpose: A dataset of grasps with object contact and hand pose. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16, pages 361–378.
Springer, 2020.

[10] U.S. Department of Labor Bureau of Labor Statistics. Home health and personal care aides. In Occupational
Outlook Handbook, 2022.

[11] Alan Campbell. For their own good: Recruiting children for research. Childhood, 15(1):30–49, 2008.

[12] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose: realtime multi-
person 2d pose estimation using part affinity fields. IEEE transactions on pattern analysis and machine
intelligence, 43(1):172–186, 2021.

[13] Alessandro Carfì, Francesco Foglino, Barbara Bruno, and Fulvio Mastrogiovanni. A multi-sensor dataset
of human-human handover. Data in brief, 22:109–117, 2019.

[14] Wesley Chan, Matthew KXJ Pan, Elizabeth A Croft, and Masayuki Inaba. Characterization of handover
orientations used by humans for efficient robot to human handovers. In IROS, pages 1–6, NJ, 2015. IEEE.

[15] Wesley P Chan, Matthew KXJ Pan, Elizabeth A Croft, and Masayuki Inaba. An affordance and distance
minimization based method for computing object orientations for robot human handovers. IJSR, 12:143–
162, 2020.

[16] Wesley P Chan, Chris AC Parker, HF Van der Loos, and Elizabeth A Croft. Grip forces and load forces in
handovers: implications for designing human-robot handover controllers. In HRI, pages 9–16, NJ, 2012.
IEEE.

[17] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S Narang,
Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al. Dexycb: A benchmark for capturing hand grasping of
objects. In CVPR, pages 9044–9053, 2021.

[18] F Cini, V Ortenzi, P Corke, and MJSR Controzzi. On the choice of grasp type and location when handing
over an object. Science Robotics, 4(27), 2019.

11



[19] Marco Controzzi, Harmeet Singh, Francesca Cini, Torquato Cecchini, Alan Wing, and Christian Cipriani.
Humans adjust their grip force when passing an object according to the observed speed of the partner’s
reaching out movement. Experimental brain research, 236(12):3363–3377, 2018.

[20] Falko R Döhring, Hermann Müller, and Michael Joch. Grip-force modulation in human-to-human object
handovers: effects of sensory and kinematic manipulations. Scientific Reports, 10(1):22381, 2020.

[21] Tair Faibish, Alap Kshirsagar, Guy Hoffman, and Yael Edan. Human preferences for robot eye gaze in
human-to-robot handovers. IJSR, pages 1–18, 2022.

[22] Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed Kocabas, Manuel Kaufmann, Michael J Black,
and Otmar Hilliges. Arctic: A dataset for dexterous bimanual hand-object manipulation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12943–12954, 2023.

[23] Stefan Glasauer, Markus Huber, Patrizia Basili, Alois Knoll, and Thomas Brandt. Interacting in time and
space: Investigating human-human and human-robot joint action. In RO-MAN, pages 252–257, NJ, 2010.
IEEE.

[24] Adriana Hamacher, Nadia Bianchi-Berthouze, Anthony G Pipe, and Kerstin Eder. Believing in bert: Using
expressive communication to enhance trust and counteract operational error in physical human-robot
interaction. In 2016 25th IEEE international symposium on robot and human interactive communication
(RO-MAN), pages 493–500. IEEE, 2016.

[25] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vincent Lepetit. Honnotate: A method for 3d
annotation of hand and object poses. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3196–3206, 2020.

[26] Shreyas Hampali, Sayan Deb Sarkar, Mahdi Rad, and Vincent Lepetit. Keypoint transformer: Solving joint
identification in challenging hands and object interactions for accurate 3d pose estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11090–11100, 2022.

[27] Clint Hansen, Paula Arambel, Khalil Ben Mansour, Véronique Perdereau, and Frédéric Marin. Human–
human handover tasks and how distance and object mass matter. Perceptual and motor skills, 124(1):182–
199, 2017.

[28] Chien-Ming Huang, Maya Cakmak, and Bilge Mutlu. Adaptive coordination strategies for human-robot
handovers. In RSS, volume 11, pages 1–10, Rome, Italy, 2015. RSS.

[29] Yinghao Huang, Omid Taheri, Michael J Black, and Dimitrios Tzionas. Intercap: Joint markerless 3d
tracking of humans and objects in interaction. In Pattern Recognition: 44th DAGM German Conference,
DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings, pages 281–299. Springer,
2022.

[30] Parag Khanna, Mårten Björkman, and Christian Smith. Human inspired grip-release technique for robot-
human handovers. In 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids),
pages 694–701. IEEE, 2022.

[31] Parag Khanna, Mårten Björkman, and Christian Smith. A multimodal data set of human handovers with
design implications for human-robot handovers. arXiv preprint arXiv:2304.02154, 2023.

[32] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything.
arXiv:2304.02643, 2023.

[33] Lena Kopnarski, Julian Rudisch, and Claudia Voelcker-Rehage. A systematic review of handover actions
in human dyads. Frontiers in Psychology, 14:1147296–1147296, 2023.

[34] Attila J Kovacs, Yiyu Wang, and Deanna M Kennedy. Accessing interpersonal and intrapersonal coordina-
tion dynamics. Experimental Brain Research, 238:17–27, 2020.

[35] Alap Kshirsagar, Raphael Fortuna, Zhiming Xie, and Guy Hoffman. Dataset of bimanual human-to-human
object handovers. Data in Brief, page 109277, 2023.

[36] Alap Kshirsagar, Hadas Kress-Gazit, and Guy Hoffman. Specifying and synthesizing human-robot
handovers. In IROS, pages 5930–5936, NJ, 2019. IEEE.

[37] Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and Marc Pollefeys. H2o: Two hands manipulating
objects for first person interaction recognition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10138–10148, 2021.

[38] Min Kyung Lee, Jodi Forlizzi, Sara Kiesler, Maya Cakmak, and Siddhartha Srinivasa. Predictability or
adaptivity?: Designing robot handoffs modeled from trained dogs and people. In HRI, pages 179–180, NJ,
2011. IEEE.

[39] Yunze Liu, Yun Liu, Che Jiang, Z Fu, K Lyu, W Wan, H Shen, B Liang, He Wang, and Li Yi Hoi4d. A 4d
egocentric dataset for category-level human-object interaction. In IEEE/CVF Conf. Comput. Vis. Pattern
Recog.(CVPR), 2022b, volume 1, 2022.

12



[40] Andrea H Mason and Christine L MacKenzie. Grip forces when passing an object to a partner. Experimental
brain research, 163(2):173–187, 2005.

[41] Lona Mody, Douglas K Miller, Joanne M McGloin, Marcie Freeman, Edward R Marcantonio, Jay
Magaziner, and Stephanie Studenski. Recruitment and retention of older adults in aging research: (see
editorial comments by dr. stephanie studenski, pp 2351–2352). Journal of the American Geriatrics Society,
56(12):2340–2348, 2008.

[42] AJung Moon, Daniel M Troniak, Brian Gleeson, Matthew KXJ Pan, Minhua Zheng, Benjamin A Blumer,
Karon MacLean, and Elizabeth A Croft. Meet me where i’m gazing: how shared attention gaze affects
human-robot handover timing. In HRI, pages 334–341, NJ, 2014. IEEE.

[43] NCSBN. NCSBN Research Projects Significant Nursing Workforce Shortages and Cri-
sis. https://www.ncsbn.org/news/ncsbn-research-projects-significant-nursing-workforce-shortages-and-
crisis, Apr 2023.

[44] Valerio Ortenzi, Akansel Cosgun, Tommaso Pardi, Wesley P Chan, Elizabeth Croft, and Dana Kulić.
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