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Abstract

In image recovery problems, one seeks to infer an image from distorted, incomplete,
and/or noise-corrupted measurements. Such problems arise in magnetic resonance
imaging (MRI), computed tomography, deblurring, super-resolution, inpainting,
phase retrieval, image-to-image translation, and other applications. Given a training
set of signal/measurement pairs, we seek to do more than just produce one good
image estimate. Rather, we aim to rapidly and accurately sample from the posterior
distribution. To do this, we propose a regularized conditional Wasserstein GAN that
generates dozens of high-quality posterior samples per second. Our regularization
comprises an `1 penalty and an adaptively weighted standard-deviation reward.
Using quantitative evaluation metrics like conditional Fréchet inception distance,
we demonstrate that our method produces state-of-the-art posterior samples in both
multicoil MRI and large-scale inpainting applications. The code for our model can
be found here: https://github.com/matt-bendel/rcGAN.

1 Introduction

We consider image recovery, where one observes measurements y = M(x) of the true image x that
may be masked, distorted, and/or corrupted x with noise, and the goal is to infer x from y. This
includes linear inverse problems arising in, e.g., deblurring, super-resolution, inpainting, colorization,
computed tomography (CT), and magnetic resonance imaging (MRI), where y = Ax + w with
known linear operator A and noise w. But it also includes non-linear inverse problems like those
arising in phase-retrieval and dequantization, as well as image-to-image translation problems. In all
cases, it is impossible to perfectly infer x from y.

Image recovery is often posed as finding the single “best” recovery bx, which is known as a point
estimate of x [1]. But point estimation is problematic due to the perception-distortion tradeoff [2],
which establishes a fundamental tradeoff between distortion (defined as some distance between bx
and x) and perceptual quality (defined as some distance between bx and the set of clean images).
For example, the minimum mean-squared error (MMSE) recovery bxmmse is optimal in terms of `2
distortion, but can be unrealistically smooth. Although one could instead compute an approximation
of the maximum a posteriori (MAP) estimate [3] or minimize some combination of perceptual and
distortion losses, it’s unclear which combination would be most appropriate.

Another major limitation with point estimation is that it’s unclear how certain one can be about
the recovered bx. For example, with deep-learning-based recovery, it’s possible to hallucinate a
nice-looking bx, but is it correct? Quantifying the uncertainty in bx is especially important in medical
applications such as MRI, where a diagnosis must be made based on the measurements y. Rather
than simply reporting our best guess of whether a pathology is present or absent based on bx, we
might want to report the probability that the pathology is present (given all available data).
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Yet another problem with point estimation is that the estimated bx could pose issues with fairness
[4]. For example, say we are inpainting a face within an image. With a racially heterogeneous prior
distribution, bxmmse (being the posterior mean) will be biased towards the most predominant race. The
same will be true of many other point estimates bx.

To address the aforementioned limitations of point estimation, we focus on generating samples from
the posterior distribution px|y(·|y), which represents the complete state-of-knowledge about x given
the measurements y. The posterior correctly fuses prior knowledge with measurement knowledge,
thereby alleviating any concerns about fairness (assuming the data used to represent the prior is
fairly chosen [4]). Furthermore, the posterior directly facilitates uncertainty quantification via, e.g.,
pixel-wise standard deviations or pathology detection probabilities (see Appendix A). Also, if it was
important to report a single “good” recovery, then posterior sampling leads to an easy navigation of
the perception-distortion tradeoff. For example, averaging P � 1 posterior samples gives a close
approximation to the less-distorted-but-oversmooth bxmmse with large P and sharp-but-more-distorted
bx with small P . Additionally, posterior sampling unlocks other important capabilities such as adaptive
acquisition [5] and counterfactual diagnosis [6].

Concretely, given a training dataset of image/measurement pairs {(xt,yt)}Tt=1, our goal is to learn a
generating function G✓ that, for a new y, maps random code vectors z ⇠ N (0, I) to posterior sam-
ples bx = G✓(z,y) ⇠ px|y(·|y). There exist several well-known approaches to this task, with recent
literature focusing on conditional generative adversarial networks (cGANs) [7, 8, 9, 10], conditional
variational autoencoders (cVAEs) [11, 12, 13], conditional normalizing flows (cNFs) [14, 15, 16],
and score/diffusion/Langevin-based generative models [17, 18, 19, 20, 21]. Despite it being a long-
standing problem, posterior image sampling remains challenging. Although score/diffusion/Langevin
approaches have dominated the recent literature due to advances in accuracy and diversity, their
sample-generation speeds remain orders-of-magnitude behind those of cGANs, cVAEs, and cNFs.

We choose to focus on cGANs, which are typically regarded as generating samples of high quality
but low diversity. Our proposed cGAN tackles the lack-of-diversity issue using a novel regularization
that consists of supervised-`1 loss plus an adaptively weighted standard-deviation (SD) reward. This
is not a heuristic choice; we prove that our regularization enforces consistency with the true posterior
mean and covariance under certain conditions.

Experimentally, we demonstrate our regularized cGAN on accelerated MRI and large-scale face
completion/inpainting. We consider these applications for three main reasons. First, uncertainty
quantification in MRI, and fairness in face-generation, are both of paramount importance. Second,
posterior-sampling has been well studied for both applications, and fine-tuned cGANs [9] and
score/Langevin-based approaches [19, 20] are readily available. Third, the linear operator “A”
manifests very differently in these two applications,1 which illustrates the versatility of our approach.
To quantify performance, we focus on conditional Fréchet inception distance (CFID) [22], which is
a principled way to quantify the difference between two high-dimensional posterior distributions,
although we also report other metrics. Our results show the proposed regularized cGAN (rcGAN)
outperforming existing cGANs [8, 23, 9] and the score/diffusion/Langevin approaches from [19] and
[20] in all tested metrics, while generating samples ⇠ 104 times faster than [19, 20].

2 Problem formulation and background

We build on the Wasserstein cGAN framework from [8]. The goal is to design a generator network
G✓ : Z ⇥ Y ! X such that, for fixed y, the random variable bx = G✓(z,y) induced by z ⇠ pz has
a distribution that best matches the posterior px|y(·|y) in Wasserstein-1 distance. Here, X , Y , and Z
denote the sets of x, y, and z, respectively, and z is drawn independently of y.

The Wasserstein-1 distance can be expressed as

W1(px|y(·,y), pbx|y(·,y)) = sup
D2L1

Ex|y{D(x,y)}� Ebx|y{D(bx,y)}, (1)

where L1 denotes functions that are 1-Lipschitz with respect to their first argument and D : X ⇥Y !
R is a “critic” or “discriminator” that tries to distinguish between true x and generated bx given y.

1In MRI, the forward operator acts locally in the frequency domain but globally in the pixel domain, while in
inpainting, the operator acts locally in the pixel domain but globally in the frequency domain.
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Since we want the method to work for typical values of y, we define a loss by taking an expectation
of (1) over y ⇠ py. Since the expectation commutes with the supremum in (1), we have [8]

Ey{W1(px|y(·,y), pbx|y(·,y))} = sup
D2L1

Ex,y{D(x,y)}� Ebx,y{D(bx,y)} (2)

= sup
D2L1

Ex,z,y{D(x,y)�D(G✓(z,y),y)}. (3)

In practice, D is implemented by a neural network D� with parameters �, and (✓,�) are trained by
alternately minimizing

Ladv(✓,�) , Ex,z,y{D�(x,y)�D�(G✓(z,y),y)} (4)
with respect to ✓ and minimizing �Ladv(✓,�) + Lgp(�) with respect to �, where Lgp(�) is a
gradient penalty that is used to encourage D� 2 L1 [24]. Furthemore, the expectation over x and y
in (4) is replaced in practice by a sample average over the training examples {(xt,yt)}Tt=1.

One of the main challenges with the cGAN framework in image recovery problems is that, for
each measurement example yt, there is only a single image example xt. Thus, with the previously
described training methodology, there is no incentive for the generator to produce diverse samples
G(z,y)|z⇠pz for a fixed y. This can lead to the generator learning to ignore the code vector z, which
causes a form of “mode collapse.”

Although issues with stability and mode collapse are also present in unconditional GANs (uGANs)
or discretely conditioned cGANs [25], the causes are fundamentally different than in continuously
conditioned cGANs like ours. With continuously conditioned cGANs, there is only one example of a
valid xt for each given yt, whereas with uGANs there are many xt and with discretely conditioned
cGANs there are many xt for each conditioning class. As a result, most strategies that are used to
combat mode-collapse in uGANs [26, 27, 28] are not well suited to cGANs. For example, mini-batch
discrimination strategies like MBSD [29], where the discriminator aims to distinguish a mini-batch
of true samples {xt} from a mini-batch of generated samples {bxt}, don’t work with cGANs because
the posterior statistics are very different than the prior statistics.

To combat mode collapse in cGANs, Adler & Öktem [8] proposed to use a three-input discriminator
Dadler

� : X ⇥ X ⇥ Y ! R and replace Ladv from (4) with the loss

Ladler
adv (✓,�) , Ex,z1,z2,y

�
1
2D

adler
� (x, G✓(z1,y),y) +

1
2D

adler
� (G✓(z2,y),x,y)

�Dadler
� (G✓(z1,y), G✓(z2,y),y)

 
, (5)

which rewards variation between the first and second inputs to Dadler
� . They then proved that

minimizing Ladler
adv in place of Ladv does not compromise the Wasserstein cGAN objective, i.e.,

argmin✓ Ladler
adv (✓,�) = argmin✓ Ladv(✓,�). As we show in Section 4, this approach does prevent

complete mode collapse, but it leaves much room for improvement.

3 Proposed method

3.1 Proposed regularization: supervised-`1 plus SD reward

We now propose a novel cGAN regularization framework. To train the generator, we propose to solve
argmin✓{�advLadv(✓,�) + L1,SD,Ptrain(✓,�SD)} (6)

with appropriately chosen �adv,�SD > 0 and Ptrain � 2, where the regularizer

L1,SD,Ptrain(✓,�SD) , L1,Ptrain(✓)� �SDLSD,Ptrain(✓) (7)
is constructed from the Ptrain-sample supervised-`1 loss and standard-deviation (SD) reward terms

L1,Ptrain(✓) , Ex,z1,...,zP,y

�
kx� bx(Ptrain)

k1
 

(8)

LSD,Ptrain(✓) ,
q

⇡
2Ptrain(Ptrain�1)

PPtrain

i=1 Ez1,...,zP,y

�
kbxi � bx(Ptrain)

k1
 
, (9)

and where {bxi} denote the generated samples and bx(P ) their P -sample average:

bxi , G✓(zi,y), bx(P ) , 1
P

PP
i=1 bxi. (10)

The use of supervised-`1 loss and SD reward in (7) is not heuristic. As shown in Proposition 3.1, it
encourages the samples {bxi} to match the true posterior in both mean and covariance.
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Figure 1: The contours show the regularizer value versus ✓=[µ,�]> for four different regularizers:
(a) supervised-`1 plus SD reward with �SD=�N

SD at Ptrain=2, (b) supervised-`1 plus SD reward with
�SD=�N

SD at Ptrain=8, (c) supervised-`2 at Ptrain=8, and (d) supervised-`2 plus variance reward at
Ptrain=8. The red star shows the true posterior parameters [µ0,�0]>.

Proposition 3.1. Suppose Ptrain � 2 and ✓ has complete control over the y-conditional mean and
covariance of bxi. Then the parameters ✓⇤ = argmin✓ L1,SD,Ptrain(✓,�

N
SD) with

�N
SD ,

q
2

⇡Ptrain(Ptrain+1) (11)

yield generated statistics
Ezi|y{bxi(✓⇤)|y} = Ex|y{x|y} = bxmmse (12a)

Covzi|y{bxi(✓⇤)|y} = Covx|y{x|y} (12b)
when the elements of bxi and x are independent Gaussian conditioned on y. Thus, minimizing
L1,SD,Ptrain encourages the y-conditional mean and covariance of bxi to match those of the true x.

See Appendix B for a proof. In imaging applications, bxi and x may not be independent Gaussian
conditioned on y, and so the value of �SD in (11) may not be appropriate. Thus we propose a method
to automatically tune �SD in Section 3.2.

Figure 1 shows a toy example with parameters ✓ = [µ,�]>, generator G✓(z, y) = µ + �z, and
z ⇠ N (0, 1), giving generated posterior pbx|y(x|y) = N (x;µ,�2). Assuming the true px|y(x|y) =
N (x;µ0,�2

0), Figs. 1(a)-(b) show that, by minimizing the proposed L1,SD,Ptrain(✓,�
N
SD) regularization

over ✓ = [µ,�]> for any Ptrain � 2, we recover the true ✓0 = [µ0,�0]>. They also show that the
cost function steepens as Ptrain decreases, with agrees with our empirical finding that Ptrain = 2 tends
to work best in practice.

We note that regularizing a cGAN with supervised-`1 loss alone is not new; see, e.g., [7]. In fact, the
use of supervised-`1 loss is often preferred over `2 in image recovery because it results in sharper,
more visually pleasing results [30]. But regularizing a cGAN using supervised-`1 loss alone can push
the generator towards mode collapse, for reasons described below. For example, in [7], `1-induced
mode collapse led the authors to use dropout to induce generator variation, instead of random zi.

Why not supervised-`2 regularization? One may wonder: Why regularize using supervised-`1
loss plus an SD reward in (7) and not a more conventional choice like supervised-`2 loss plus a
variance reward, or even supervised-`2 loss alone? We start by discussing the latter.

The use of supervised-`2 regularization in a cGAN can be found in [7]. In this case, to train the
generator, one would aim to solve argmin✓{Ladv(✓,�) + �L2(✓)} with some � > 0 and

L2(✓) , Ex,y

�
kx� Ez{G✓(z,y)}k22

 
. (13)

Ohayon et al. [23] revived this idea for the explicit purpose of fighting mode collapse. In practice,
however, the Ez term in (13) must be implemented by a finite-sample average, giving

L2,Ptrain(✓) , Ex,z1,...,zP,y

���x� 1
Ptrain

PPtrain

i=1 G✓(zi,y)
��2
2

 
(14)

for some Ptrain � 2. For example, Ohayon’s implementation [31] used Ptrain = 8. As we show in
Proposition 3.2, L2,Ptrain induces mode collapse rather than prevents it.
Proposition 3.2. Say Ptrain is finite and ✓ has complete control over the y-conditional mean and
covariance of bxi. Then the parameters ✓⇤ = argmin✓ L2,Ptrain(✓) yield generated statistics

Ezi|y{bxi(✓⇤)|y} = Ex|y{x|y} = bxmmse (15a)
Covzi|y{bxi(✓⇤)|y} = 0. (15b)

Thus, minimizing L2,Ptrain encourages mode collapse.
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�SD = 0 �SD = �N
SD �SD = 1.2�N

SD �SD = 1.4�N
SD �SD = 1.6�N

SD �SD = 1.8�N
SD

Number of averaged outputs, P , on a log scale

Figure 2: Example PSNR of bx(P ) versus P , the number of averaged outputs, for several training �SD

and MRI recovery at R = 4. Also shown is the theoretical behavior for true-posterior samples.

The proof (see Appendix C) follows from the bias-variance decomposition of (14), i.e.,

L2,Ptrain(✓)

= Ey

�
kbxmmse � Ezi|y{bxi(✓)|y}k22 + 1

Ptrain
tr[Covzi|y{bxi(✓)|y}] + Ex|y{kemmsek22|y}

 
, (16)

where emmse , x� xmmse is the MMSE error. Figure 1(c) shows that L2,Ptrain regularization causes
mode collapse in the toy example, and Section 4.2 shows that it causes mode collapse in MRI.

Why not supervised `2 plus a variance reward? To mitigate L2,Ptrain ’s incentive for mode-collapse,
the second term in (16) could be canceled using a variance reward, giving

L2,var,Ptrain(✓) , L2,Ptrain(✓)� 1
Ptrain

Lvar,Ptrain(✓) (17)

with Lvar,Ptrain(✓) , 1
Ptrain�1

PPtrain

i=1 Ez1,...,zP,y{kbxi(✓)� bx(P )(✓)k22}. (18)

since Appendix D shows that Lvar,Ptrain(✓) is an unbiased estimator of the posterior trace-covariance:

Lvar,Ptrain(✓) = Ey{tr[Covzi|y{bxi(✓)|y}]} for any Ptrain � 2. (19)

However, the resulting L2,var,Ptrain regularizer in (17) does not encourage the generated covariance
to match the true posterior covariance, unlike the proposed L1,SD,Ptrain regularizer in (7) (recall
Proposition 3.1). For the toy example, this behavior is visible in Fig. 1(d).

3.2 Auto-tuning of SD reward weight �SD

We now propose a method to auto-tune �SD in (7) for a given training dataset. Our approach is based
on the observation that larger values of �SD tend to yield samples bxi with more variation. But more
variation is not necessarily better; we want samples with the correct amount of variation. To assess
the correct amount of variation, we compare the expected `2 error of the P -sample average bx(P ) to
that of bx(1). When {bxi} are true-posterior samples, these errors follow a particular relationship, as
established by Proposition 3.3 below (see Appendix E for a proof).
Proposition 3.3. Say bxi ⇠ px|y(·|y) are independent samples of the true posterior and, for any
P � 1, their P -sample average is bx(P ) , 1

P

PP
i=1 bxi. Then

EP , E{kbx(P ) � xk22|y} = P+1
P Emmse, which implies E1

EP
= 2P

P+1 . (20)

Experimentally we find that E1/EP grows with the SD reward weight �SD. (See Fig. 2.) Thus,
we propose to adjust �SD so that the observed SNR-gain ratio E1/EPval matches the correct ratio
(2Pval)/(Pval + 1) from (20), for some Pval � 2 that does not need to match Ptrain. (We use Pval = 8
in Section 4.) In particular, at each training epoch ⌧ , we approximate EPval and E1 as follows:

bEPval,⌧ , 1
V

PV
v=1 k

1
Pval

PPval

i=1 G✓⌧ (zi,v,yv)� xvk22 (21)
bE1,⌧ , 1

V

PV
v=1 kG✓⌧ (z1,v,yv)� xvk22, (22)

with validation set {(xv,yv)}Vv=1 and i.i.d. codes {zi,v}Pval
i=1. We update �SD using gradient descent:

�SD,⌧+1 = �SD,⌧ � µSD ·
�
[bE1,⌧/bEPval,⌧ ]dB � [2Pval/(Pval + 1)]dB

�
�N
SD for ⌧ = 0, 1, 2, . . . (23)

with �SD,0 = �N
SD, some µSD > 0, and [x]dB , 10 log10(x).
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4 Numerical experiments

4.1 Conditional Fréchet inception distance

As previously stated, our goal is to train a generator G✓ so that, for typical fixed values of y,
the generated distribution pbx|y(·|y) matches the true posterior px|y(·|y). It is essential to have a
quantitative metric for evaluating performance with respect to this goal. For example, it is not enough
that the generated samples are “accurate” in the sense of being close to the ground truth, nor is it
enough that they are “diverse” according to some heuristically chosen metric.

We quantify posterior-approximation quality using the conditional Fréchet inception distance (CFID)
[22], a computationally efficient approximation to the conditional Wasserstein distance

CWD , Ey{W2(px|y(·,y), pbx|y(·,y))}. (24)

In (24), W2(pa, pb) denotes the Wasserstein-2 distance between distributions pa and pb, defined as

W2(pa, pb) , min
pa,b2⇧(pa,pb)

Ea,b{ka� bk22}, (25)

where ⇧(pa, pb) ,
�
pa,b : pa =

R
pa,b db and pb =

R
pa,b da

 
denotes the set of joint distributions

pa,b with prescribed marginals pa and pb. Similar to how FID [32]—a popular uGAN metric—is
computed, CFID approximates CWD (24) as follows: i) the random vectors x, bx, and y are replaced
by low-dimensional embeddings x, bx, and y, generated by the convolutional layers of a deep network,
and ii) the embedding distributions px|y and pbx|y are approximated by multivariate Gaussians. More
details on CFID are given in Appendix F.

4.2 MRI experiments

We consider parallel MRI recovery, where the goal is to recover a complex-valued multicoil image x
from zero-filled measurements y (see Appendix G for details).

Data. For training data {xt}, we used the first 8 slices of all fastMRI [33] T2 brain training
volumes with at least 8 coils, cropping to 384⇥ 384 pixels and compressing to 8 virtual coils [34],
yielding 12 200 training images. Using the same procedure, 2 376 testing and 784 validation images
were obtained from the fastMRI T2 brain testing volumes. From the 2 376 testing images, 72 were
randomly selected to evaluate the Langevin technique [19] in order to limit its sample generation
to 6 days. To create the measurement yt, we transformed xt to the Fourier domain, sampled using
pseudo-random GRO patterns [35] at acceleration R = 4 and R = 8, and Fourier-transformed the
zero-filled k-space measurements back to the (complex, multicoil) image domain.

Architecture. We use a UNet [36] for our generator and a standard CNN for our generator, along
with data-consistency as in Appendix H. Architecture and training details are given in Appendix I.

Competitors. We compare our cGAN to the Adler and Öktem’s cGAN [8], Ohayon et al.’s
cGAN [23], Jalal et al.’s fastMRI Langevin approach [19], and Sriram et al.’s E2E-VarNet [37].
The cGAN from [8] uses generator loss �advLadler

adv (✓,�) and discriminator loss �Ladler
adv (✓,�) +

↵1Lgp(�) + ↵2Ldrift(�), while the cGAN from [23] uses generator loss �advLadv(✓,�) + L2,P (✓)
and discriminator loss �Ladv(✓,�)+↵1Lgp(�)+↵2Ldrift(�). Each used the value of �adv specified
in the original paper. All cGANs used the same generator and discriminator architectures, except that
[8] used extra discriminator input channels to facilitate the 3-input loss (5). For the fastMRI Langevin
approach [19], we did not modify the authors’ implementation in [38] except to use the GRO sampling
mask. For the E2E-VarNet [37], we use the same training procedure and hyperparameters outlined in
[19] except that we use the GRO sampling mask.

Testing. To evaluate performance, we converted the multicoil outputs bxi to complex-valued images
using SENSE-based coil combining [39] with ESPIRiT-estimated [40] coil sensitivity maps, as
described in Appendix G. Magnitude images were used to compute performance metrics.

Results. Table 1 shows CFID, FID, APSD , ( 1
NP

PP
i=1 kbx(P )� bxik2)1/2, and 4-sample generation

time at R 2 {4, 8}. (C)FID was computed using VGG-16 (not Inception-v3) to better align with
radiologists’ perceptions [41]. As previously described, the Langevin method was evaluated using
only 72 test images. Because CFID is biased at small sample sizes [22], we re-evaluated the other
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Table 1: Average MRI results at R 2 {4, 8}. CFID1, FID, and APSD used 72 test samples and
P =32, CFID2 used 2 376 test samples and P =8, and CFID3 used all 14 576 samples and P =1

R = 4 R = 8

Model CFID1# CFID2# CFID3# FID# APSD Time (4)# CFID1# CFID2# CFID3# FID# APSD Time (4)#
E2E-VarNet (Sriram et al. [37]) 7.47 6.99 6.61 8.84 0.0 310ms 7.82 6.81 6.31 8.40 0.0 316ms
Langevin (Jalal et al. [19]) 5.29 - - 6.12 5.9e-6 14 min 7.34 - - 14.32 7.6e-6 14 min
cGAN (Adler & Öktem [8]) 6.39 4.27 3.82 5.25 3.9e-6 217 ms 10.10 6.30 5.72 10.77 7.7e-6 217 ms
cGAN (Ohayon et al. [23]) 4.06 3.27 2.95 6.45 7.2e-8 217 ms 6.04 4.59 4.27 11.05 7.7e-7 217 ms
cGAN (Ours) 3.10 1.54 1.29 3.75 3.8e-6 217 ms 4.87 2.23 1.79 7.72 7.6e-6 217 ms

Table 2: Average PSNR, SSIM, LPIPS, and DISTS of bx(P ) versus P for R = 4 MRI

PSNR" SSIM"
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [37]) 39.93 - - - - - 0.9641 - - - - -
Langevin (Jalal et al. [19]) 36.04 37.02 37.65 37.99 38.17 38.27 0.8989 0.9138 0.9218 0.9260 0.9281 0.9292
cGAN (Adler & Öktem [8]) 35.63 36.64 37.24 37.56 37.73 37.82 0.9330 0.9445 0.9478 0.9480 0.9477 0.9473
cGAN (Ohayon et al. [23]) 39.44 39.46 39.46 39.47 39.47 39.47 0.9558 0.9546 0.9539 0.9535 0.9533 0.9532
cGAN (Ours) 36.96 38.14 38.84 39.24 39.44 39.55 0.9440 0.9526 0.9544 0.9542 0.9537 0.9533

LPIPS# DISTS#
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [37]) 0.0316 - - - - - 0.0859 - - - - -
Langevin (Jalal et al. [19]) 0.0545 0.0394 0.0336 0.0320 0.0317 0.0316 0.1116 0.0921 0.0828 0.0793 0.0781 0.0777
cGAN (Adler & Öktem [8]) 0.0285 0.0255 0.0273 0.0298 0.0316 0.0327 0.0972 0.0857 0.0878 0.0930 0.0967 0.0990
cGAN (Ohayon et al. [23]) 0.0245 0.0247 0.0248 0.0249 0.0249 0.0249 0.0767 0.0790 0.0801 0.0807 0.0810 0.0811
cGAN (Ours) 0.0175 0.0164 0.0188 0.0216 0.0235 0.0245 0.0546 0.0563 0.0667 0.0755 0.0809 0.0837

methods using all 2 376 test images, and again using all 14 576 training and test images. Table 1
shows that our approach gave significantly better CFID and FID than the competitors. Also, the
APSD of Ohayon et al.’s cGAN was an order-of-magnitude smaller than the others, indicating mode
collapse. The cGANs generated samples 3 800 times faster than the Langevin approach from [19].

Tables 2 and 3 show PSNR, SSIM, LPIPS [42], and DISTS [43] for the P -sample average bx(P )

at P 2 {1, 2, 4, 8, 16, 32} and R 2 {4, 8}, respectively. While the E2E-VarNet achieves the best
PSNR at R 2 {4, 8} and the best SSIM at R = 4, the proposed cGAN achieves the best LPIPS
and DISTS performances at R 2 {4, 8} when P = 2 and the best SSIM at R = 8 when P = 8.
The P dependence can be explained by the perception-distortion tradeoff [2]: as P increases, bx(P )

transitions from better perceptual quality to lower `2 distortion. PSNR favors P ! 1 (e.g., `2
optimality) while the other metrics favor particular combinations of perceptual quality and distortion.
The plots in Appendices K.1 and K.2 show zoomed-in versions of bx(P ) that visually demonstrate
the perception-distortion tradeoff at P 2 {1, 2, 4, 32}: smaller P yield sharper images with more
variability from the ground truth, while larger P yield smoother reconstructions.

Figure 3 shows zoomed versions of two posterior samples bxi, as well as bx(P ), at P = 32 and R = 8.
The posterior samples show meaningful variations for the proposed method, essentially no variation
for Ohayon et al.’s cGAN, and vertical or horizontal reconstruction artifacts for Adler & Öktem’s
cGAN and the Langevin method, respectively. The bx(P ) plots show that these artifacts are mostly
suppressed by sample averaging with large P .

Figure 4 shows examples of bx(P ), along with the corresponding pixel-wise absolute errors |bx(P ) � x|
and pixel-wise SD images ( 1

P

PP
i=1(bx(P ) � bxi)2)1/2, for P = 32 and R = 8. The absolute-error

image for the Langevin technique looks more diffuse than those of the other methods in the brain
region. The fact that it is brighter in the air region (i.e., near the edges) is a consequence of minor
differences in sensitivity-map estimation. The pixel-wise SD images show a lack of variability for
the E2E-VarNet, which does not generate posterior samples, as well as Ohayon et al.’s cGAN, due
to mode collapse. The Langevin pixel-wise SD images show localized hot-spots that appear to be
reconstruction artifacts.

Appendices K.1 and K.2 show other example MRI recoveries with zoomed pixel-wise SD images
at R = 4 and R = 8, respectively. Notably, Figures K.10 and K.11 show strong hallucinations for
Langevin recovery at R = 8, as highlighted by the red arrows.
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Table 3: Average PSNR, SSIM, LPIPS, and DISTS of bx(P ) versus P for R = 8 MRI

PSNR" SSIM"
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [37]) 36.49 - - - - - 0.9220 - - - - -
Langevin (Jalal et al. [19]) 32.17 32.83 33.45 33.74 33.83 33.90 0.8725 0.8919 0.9031 0.9091 0.9120 0.9137
cGAN (Adler & Öktem [8]) 31.31 32.31 32.92 33.26 33.42 33.51 0.8865 0.9045 0.9103 0.9111 0.9102 0.9095
cGAN (Ohayon et al. [23]) 34.89 34.90 34.90 34.90 34.91 34.92 0.9222 0.9217 0.9213 0.9211 0.9211 0.9210
cGAN (Ours) 32.32 33.67 34.53 35.01 35.27 35.42 0.9030 0.9199 0.9252 0.9257 0.9251 0.9246

LPIPS# DISTS#
Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

E2E-VarNet (Sriram et al. [37]) 0.0575 - - - - - 0.1253 - - - - -
Langevin (Jalal et al. [19]) 0.0769 0.0619 0.0579 0.0589 0.0611 0.0611 0.1341 0.1136 0.1086 0.1119 0.1175 0.1212
cGAN (Adler & Öktem [8]) 0.0698 0.0614 0.0623 0.0667 0.0704 0.0727 0.1407 0.1262 0.1252 0.1291 0.1334 0.1361
cGAN (Ohayon et al. [23]) 0.0532 0.0536 0.0539 0.0540 0.0534 0.0540 0.1128 0.1143 0.1151 0.1155 0.1157 0.1158
cGAN (Ours) 0.0418 0.0379 0.0421 0.0476 0.0516 0.0539 0.0906 0.0877 0.0965 0.1063 0.1135 0.1177

cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure 3: Example R = 8 MRI reconstructions. Arrows show meaningful variations across samples.

4.3 Inpainting experiments

In this section, our goal is to complete a large missing square in a face image.

Data. We used 256⇥ 256 CelebA-HQ face images [29] and a centered 128⇥ 128 missing square.
We randomly split the dataset, yielding 27 000 training, 2 000 validation, and 1 000 testing images.

Architecture. For our cGAN, we use the CoModGAN generator and discriminator from [9] with
our proposed L1,SD,Ptrain regularization. Unlike [9], we do not use MBSD [29] at the discriminator.

Training/validation/testing. We use the same general training and testing procedure described
in Section 4.2, but with �adv = 5e-3, nbatch = 100, and 110 epochs of cGAN training. Running
PyTorch on a server with 4 Tesla A100 GPUs, each with 82 GB of memory, the cGAN training
takes approximately 2 days. FID was evaluated on 1 000 test images using P = 32 samples per
measurement. To avoid the bias that would result from evaluating CFID on only 1 000 images (see
Appendix J.1), CFID was evaluated on all 30 000 images with P = 1.

Competitors. We compare with the state-of-the-art CoModGAN [9] and Score-based SDE [20]
approaches. For CoModGAN, we use the PyTorch implementation from [44]. CoModGAN differs
from our cGAN only in its use of MBSD and lack of L1,SD,Ptrain regularization. For Song et al.’s SDE,
we use the authors’ implementation from [45] with their pretrained weights and the settings they
suggested for the 256⇥ 256 CelebA-HQ dataset.
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Truth E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)

Figure 4: Example R = 8 MRI reconstructions with P = 32. Row one: P -sample average bx(P ).
Row two: pixel-wise absolute error |bx(P ) �x|. Row three: pixel-wise SD ( 1

P

PP
i=1(bxi � bx(P ))2)1/2.

Table 4: Average results for inpainting: FID was computed from 1 000 test images with P =32, while
CFID was computed from all 30 000 images with P =1

Model CFID# FID# Time (128)#
Score-SDE (Song et al. [20]) 5.11 7.92 48 min
CoModGAN (Zhao et al. [9]) 5.29 8.50 217 ms
cGAN (ours) 4.69 7.45 217 ms

Results. Table 4 shows test CFID, FID, and 128-sample generation time. The table shows that our
approach gave the best CFID and FID, and that the cGANs generated samples 13 000 times faster
than the score-based method. Figure 5 shows an example of five generated samples for the three
methods under test. The samples are all quite good, although a few generated by CoModGAN and
the score-based technique have minor artifacts. Some samples generated by our technique show
almond-shaped eyes, demonstrating fairness. Additional examples are given in Appendix K.3.

5 Conclusion

We propose a novel regularization framework for image-recovery cGANs that consists of supervised-
`1 loss plus an appropriately weighted standard-deviation reward. For the case of an independent
Gaussian posterior, we proved that our regularization yields generated samples that agree with the
true-posterior samples in both mean and covariance. We also established limitations for alternatives
based on supervised-`2 regularization with or without a variance reward. For practical datasets, we
proposed a method to auto-tune our standard-deviation reward weight.

Experiments on parallel MRI and large-scale face inpainting showed our proposed method outper-
forming all cGAN and score-based competitors in CFID, which measures posterior-approximation
quality, as well as other metrics like FID, PSNR, SSIM, LPIPS, and DISTS. Furthermore, it generates
samples thousands of times faster than Langevin/score-based approaches.

In ongoing work, we are extending our approach so that it can be trained to handle a wide range of
recovery tasks, such as MRI with a generic acceleration and sampling mask [46], or inpainting with a
generic mask. We are also extending our approach to other applications, such as super-resolution,
deblurring, compressive sensing, denoising, and phase retrieval.
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Figure 5: Example of inpainting a 128⇥128 square on a 256⇥256 resolution CelebA-HQ image.

Limitations. We acknowledge several limitations of our work. First, while our current work focuses
on how to build a fast and accurate posterior sampler, it’s not yet clear how to best exploit the resulting
posterior samples in each given application. For example, in MRI, where the posterior distribution
has the potential to help assess uncertainty in image recovery, it’s still not quite clear how to best
convey uncertainty information to radiologists (e.g., they may not gain much from pixel-wise SD
images). More work is needed on this front. Second, we acknowledge that, because radiologists
are risk-averse, more studies are needed before they will feel comfortable incorporating generative
deep-learning-based methods into the clinical workflow. Third, we acknowledge that the visual
quality of our R = 8 MRI reconstructions falls below clinical standards. Fourth, some caution
is needed when interpreting our CFID, FID, and DISTS perceptual metrics because the VGG-16
backbone used to compute them was trained on ImageNet data. Although there is some evidence that
the resulting DISTS metric correlates well with radiologists’ perceptions [41], there is also evidence
that ImageNet-trained features may discard information that is diagnostically relevant in medical
imaging [47]. Thus our results need to be validated with a pathology-centric radiologist study before
they can be considered relevant to clinical practice.
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