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Abstract

Machine learning tasks may admit multiple competing models that achieve similar
performance yet produce arbitrary outputs for individual samples—a phenomenon
known as predictive multiplicity. We demonstrate that fairness interventions in
machine learning optimized solely for group fairness and accuracy can exacerbate
predictive multiplicity. Consequently, state-of-the-art fairness interventions can
mask high predictive multiplicity behind favorable group fairness and accuracy
metrics. We argue that a third axis of “arbitrariness” should be considered when
deploying models to aid decision-making in applications of individual-level impact.
To address this challenge, we propose an ensemble algorithm applicable to any
fairness intervention that provably ensures more consistent predictions.

1 Introduction

Non-arbitrariness is an important facet of non-discriminatory decision-making. Substantial arbi-
trariness exists in the training and selection of machine learning (ML) models. By simply varying
hyperparameters of the training process (e.g., random seeds in model training), we can produce
models with arbitrary outputs on individual input samples [9, 13, 26, 35]. The phenomenon where
distinct models exhibit similar accuracy but arbitrary individual predictions is called predictive
multiplicity1 [35]. The arbitrary variation of outputs due to unjustified choices made during training
can disparately impact individual samples, i.e., predictive multiplicity is not equally distributed
across inputs of a model. When deployed in high-stakes domains (e.g., medicine, education, resume
screening), the arbitrariness in the ML pipeline may target and cause systemic harm to specific
individuals by excluding them from favorable outcomes [7, 15, 40].

Popular fairness metrics in the ML literature do not explicitly capture non-arbitrariness. A widely
recognized notion of non-discrimination is group fairness. Group fairness is quantified in terms of,
for example, statistical parity [18], equal opportunity, equalized odds [23], and variations such as
multi-accuracy [30] and multi-calibration [24]. Broadly speaking, methods that control for group
fairness aim to guarantee comparable performance of a model across population groups in the data.
The pursuit of group fairness has led to hundreds of fairness interventions that seek to control for
performance disparities while preserving accuracy [25].

The central question we tackle in this paper is: Do models corrected for group fairness exhibit less
arbitrariness in their outputs? We answer this question in the negative. We demonstrate that state-
of-the-art fairness interventions may improve group fairness metrics at the expense of exacerbating
arbitrariness. The harm is silent: the increase in arbitrariness is masked by favorable group fairness
and accuracy metrics. Our results show that arbitrariness lies beyond the fairness-accuracy frontier:
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Figure 1: Accuracy-fairness frontier does not reveal arbitrariness in competing models. Left: Fairness-
Accuracy frontier of baseline and fair models corrected by 5 fairness interventions; point clouds generated by
different random seed choices. Middle: The cumulative distribution functions (CDF) of per-sample score std.
across classifiers at different intervention levels (see Definition 3). For each sample, std. is measured across
competing scores produced by classifiers initialized with different random seeds. A wider CDF indicates more
disparity of the impact of arbitrariness on different individuals. Right: The distribution of score std. relative
to the thresholded baseline model. Removing samples that receive very low score std. both from thresholded
baseline and fair classifiers, the largest group (blue area) in this violin plot are those individuals for which std.
increases from 0 to a large positive value (median around 0.15). Hence, significant arbitrariness is introduced by
the fairness intervention, in addition to and separate from the effects of thresholding the baseline.

predictive multiplicity should be accounted for in addition to usual group-fairness and accuracy
metrics during model development.

Figure 1 illustrates how fairness interventions can increase predictive multiplicity. Here, state-of-
the-art fairness interventions are applied4 to a baseline random forest classifier to ensure group
fairness (mean equalized odds [23], see Definition 6) in a student performance binary prediction task.
We produce multiple baseline classifiers by varying the random seed used to initialize the training
algorithm. Each baseline classifier achieves comparable accuracy and fairness violation. They also
mostly agree in their predictions: for each input sample, the standard deviation of output scores
across classifiers is small (see Definition 3). After applying a fairness intervention to each randomly
initialized baseline classifier, we consistently reduce group fairness violations at a small accuracy cost,
as expected. However, predictive multiplicity changes significantly post-intervention: for roughly half
of the students, predictions are consistent across seeds, whereas for 20% of the students, predictions
are comparable to a coin flip. For the latter group, the classifier output depends on the choice of a
random seed instead of any specific input feature. The increase in predictive multiplicity is masked
by the fairness-accuracy curve, does not impact all samples equally, and is consistent across datasets
and learning tasks.

At first, the increase in predictive multiplicity may seem counter-intuitive: adding fairness constraints
to a learning task should reduce the solution space, leading to less disagreement across similarly-
performing classifiers relative to an unconstrained baseline. We demonstrate that, in general, this
is not the case. For a given hypothesis class, the non-convex nature of group fairness constraints
can in fact increase the number of feasible classifiers at a given fairness and accuracy level. We
show that this phenomenon occurs even in the simple case where the hypothesis space is comprised
of threshold classifiers over one-dimensional input features, and the optimal baseline classifier is
unique. To address this challenge, we demonstrate – both theoretically and through experiments –
that ensembling classifiers is an effective strategy to counteract this multiplicity increase.

The main contributions of this work include5:

1. We demonstrate that the usual “fairness-accuracy” curves can systematically mask an
increase of predictive multiplicity. Notably, applying state-of-the-art fairness interventions
can incur higher arbitrariness in the ML pipeline.

2. We show that multiplicity can be arbitrarily high even if group fairness and accuracy are
controlled, when we do not have perfect classifiers. Hence, fairness interventions optimized
solely for fairness and accuracy cannot, in general, control predictive multiplicity. We also
provide examples of why fairness constraints may exacerbate arbitrariness.

4See Section 5 for a detailed description of the experiment and dataset.
5Proofs and additional experiments are included in the Appendices.
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3. We propose an ensemble algorithm that reduces multiplicity while maintaining fairness
and accuracy. We derive convergence rate results to show that the probability of models
disagreeing drops exponentially as more models are added to the ensemble.

4. We demonstrate the multiplicity phenomena and benchmark our ensemble method through
comprehensive experiments using state-of-the-art fairness interventions across real-world
datasets.

1.1 Related Works

Multiplicity, its implications, and promises. Recent works have investigated various factors that
give rise to multiplicity. D’Amour et al. [17] studied how under-specification presents challenges to
the credibility of modern machine learning algorithms. More precisely, under-specified optimization
problems in machine learning admit a plethora of models that all attain similar performance, and
which model to deploy in practice may ultimately depend on arbitrary choices of the randomization
made during training procedure [3]. The arbitrariness of the model could potentially harm the
reproducibility of model predictions [5], and hence the credibility of the conclusion made thereof.

Creel and Hellman [15] thoroughly explored the notion of arbitrariness in machine learning and
discuss how high-multiplicity predictions can lead to systematized discrimination in society through
“algorithmic leviathans.” Multiplicity in prediction and classification can also have beneficial effects.
Black et al. [7], Semenova et al. [39], and Fisher et al. [20] view multiplicity of equally-performing
models as an opportunity to optimize for additional criteria such as generalizability, interpretability,
and fairness. Coston et al. [14] develop a framework to search over the models in the Rashomon
set for a better operation point on the accuracy-fairness frontier. However, they do not discuss the
potential predictive multiplicity cost of existing fairness interventions nor propose algorithms to
reduce this cost.

The work most similar to ours is [13]. Cooper et al. [13] consider the problem of predictive multiplicity
as a result of using different splits of the training data. Therein, they quantify predictive multiplicity by
prediction variance, and they propose a bagging strategy [8] to combine models. Our work considers
a different problem where predictive multiplicity is exacerbated by group-fairness interventions. Our
work is also different from Cooper et al. [13] as we fix the dataset when training models and consider
multiplicity due to randomness used during training. In this sense, our ensemble algorithm is actually
a voting ensemble [41] (see Section 4); see also ensembling and reconciliation strategies proposed by
Black et al. [6] and Roth et al. [38] that aim to create more consistent predictions among competing
models. To the best of the authors’ knowledge, we are the first to measure and report the arbitrariness
cost of fairness interventions.

Hidden costs of randomized algorithms. Recent works [21, 31, 32] examine the potential detri-
mental consequences of randomization in the ML pipeline. In their empirical study, Ganesh et al.[21]
observe that group fairness metrics exhibit high variance across models at different training epochs
of Stochastic Gradient Descent (SGD). The authors point out that random data reshuffling in SGD
makes empirical evaluation of fairness (on a test set) unreliable, and they attribute this phenomenon
to the volatility of predictions in minority groups. Importantly, they do not incorporate fairness
interventions in their experiments. In contrast, we apply fairness interventions to baseline models.
Specifically, we examine the variance in predictions among models with similar fairness and accuracy
performances. In addition to the observations made by Ganesh et al., our theoretically-grounded
study reveals the different paths that lead to group-fairness, i.e., that arbitrariness can be an unwanted
byproduct of imposing fairness constraints. Krco et al. [31] empirically study if fairness interventions
reduce bias equally across groups, and examine whether affected groups overlap across different
fairness interventions. In contrast, our work examines the multiplicity cost of group fairness and its
tension with individual-level prediction consistency, rather than the fairness cost of randomness in
the ML pipeline. Another work on the hidden cost of randomized algorithms is given by Kulynych
et al. [32], who report that well-known differentially-private training mechanisms can exacerbate
predictive multiplicity.

In an early work [34], Lipton et al. indirectly points to the potential arbitrary decision on individuals
as a result of imposing group fairness constraints. They give an illustrative example using synthetic
hiring data to show that a fair model resorts to using irrelevant attribute (hair length) to make hiring
decision in order to achieve near-equal hiring rate for men and women.
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2 Problem Formulation and Related Works

We explain the setup and relevant definitions in this section.

Prediction tasks. We consider a binary classification setting with training examples being triplets
(X, S, Y ) with joint distribution PX,S,Y . Here, X is an Rd-valued feature vector, S is a discrete
random variable supported on [K] ≜ {1, · · · ,K} representing K (potentially overlapping) group
memberships, and Y is a binary (i.e., {0, 1}-valued) random variable denoting class membership.6
We consider probabilistic classifiers in a hypothesis space H, where each h ∈ H is a mapping
h : Rd → [0, 1]. Each value of a classifier h(x) aims to approximate PY |X=x(1). The predicted
labels ŷ can be obtained by thresholding the scores, e.g., ŷ = 1{h(x) ≥ 0.5}, where 1{ · } is the
indicator function. Finally, we denote by ∆c the probability simplex over c dimensions.

Randomized training procedures and the Rashomon set. We assume access to the following:

1. a training dataset of n i.i.d samples D ≜ {(xi, si, yi)}ni=1 drawn from PX,S,Y ;
2. a randomized training procedure T ; and
3. an induced distribution T (D) on the hypothesis class of predictors H.

We denote a sampled classifier by h ∼ T (D), which can be sampled, for example, using different
random seeds at the beginning of the execution of procedure T on D. For concreteness, the above
data may for example correspond to the following practical setting.
Example 1. The dataset D can be comprised of resumes of individuals applying for a job, and the
training procedure T is an algorithm to predict whether to extend an interview opportunity for an
applicant. For example, T can be a neural network with unspecified hyperparameters (e.g., random
seed that needs to be chosen at the outset); alternatively, T can be the same pre-trained neural network
composed with a fairness intervention method. The classifiers considered will be the last layer of the
neural network (or the classifier after fairness enhancement), which will belong to a hypothesis class
H determined by the chosen neural network architecture. By varying the random seed, say, m times,
we would obtain independent classifiers, denoted by h1, · · · , hm

i.i.d.∼ T (D). ♦

We are interested in detecting whether competing classifiers (i.e., deployed for, and performing
similarly in the same prediction task) have conflicting predictions non-uniformly across individuals.
Next, we define the set of competing models obtained from the randomized training procedure T .

For a loss function ℓ : [0, 1] × {0, 1} → R+, finite dataset D ⊂ Rd × [K] × {0, 1}, and clas-
sifier h : Rd → [0, 1], we let the empirical loss incurred by h on D be denoted by ℓ(h;D) ≜
|D|−1

∑
(x,s,y)∈D ℓ(h(x), y). The (empirical) Rashomon set (ϵ-level set) of competing models is

defined as the set of models with loss lower than ϵ [26], i.e., R(H,D, ϵ) ≜ {h ∈ H : ℓ(h;D) ≤ ϵ}.
We extend the definition of the Rashomon set to take into consideration the effect of the randomized
algorithm T , as follows.
Definition 1 (Empirical Rashomon Set of Randomized Training Procedure). Fix a finite dataset D,
a hypothesis class H, and a randomized training procedure T inducing the distribution T (D) on
H. Given a loss function ℓ : [0, 1]× {0, 1} → R+ and a parameter ϵ > 0, we define the empirical
Rashomon set with m models induced by T as the collection of m classifiers independently sampled
from T (D) and having empirical loss less than ϵ:

R̂m(T ,D, ϵ) ≜
{
h1, · · · , hm ∈ H : h1, · · · , hm

i.i.d.∼ T (D) and ℓ(hj ;D) ≤ ϵ ∀j ∈ [m]
}
. (1)

Here, ϵ is an approximation parameter that determines the size of the set. The set R̂m(T ,D, ϵ) can be
viewed as an approximation of the Rashomon set of “good” models [9, 35, 40], and indeed we have
the inclusion R̂m(T ,D, ϵ) ⊂ R(H,D, ϵ) where H = supp(T (D)). Note that the set R̂m(T ,D, ϵ)
is itself random even for a fixed dataset D, where the source of randomness is coming from the
distribution T (D). In the sequel, we omit the arguments of R̂m(T ,D, ϵ) when they are clearly
implied from context.

6We note that our setup can be readily extended to multi-class prediction.
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There are various metrics to quantify predictive multiplicity across models in R̂m by either consider-
ing their output scores [40] or thresholded predictions [35]. e focus on two metrics: 1) ambiguity
for evaluating the predictive multiplicity of thresholded predictions, and 2) cumulative distribution
function (CDF) of standard deviation (std.) of output scores when model outputs are in the interval
[0, 1] (interpreted as the probability of the positive class). Those two metrics are defined as follows.
Definition 2 (Ambiguity [35]). Fix a dataset D = {(xi, si, yi)}i∈[n] ⊂ Rd × [K] × {0, 1} and a
finite set of models R ⊂ H. Let f(r) ≜ 1{r ≥ 0.5} be the thresholding function. The ambiguity of
a dataset over the set of models R is the proportion of points in the dataset that can be assigned a
conflicting prediction by a competing classifier within R:

α (D,R) ≜
1

|D|
∑
i∈[n]

max
h,h′∈R

1 {f(h(xi)) ̸= f(h′(xi))} . (2)

To define the CDF of std. of scores, we first delineate what we mean by empirical std. of scores.
Definition 3 (Std. of Scores). Fix a finite set of models R = {hj}j∈[m] ⊂ H. The empirical standard
deviation (std.) of scores for a sample x ∈ Rd relative to R is defined by

s(x,R) ≜

√√√√ 1

m− 1

∑
j∈[m]

(hj(x)− µ̄x)2, (3)

where µ̄x ≜ 1
m

∑
j∈[m] hj(x) denotes the empirical mean (over R) of the scores.

Further, to understand the std. of scores of the population, we consider the empirical cumulative
distribution function of the std. of the scores, defined as follows.
Definition 4 (Quantiles of std. of Scores). Fix a dataset D = {(xi, si, yi)}i∈[n] ⊂ Rd× [K]×{0, 1}
and a finite set of models R ⊂ H. We define the empirical cumulative distribution function of the std.
of the scores by (where s(x,R) is the empirical std. as in Definition 3)

F̂D,R(t) ≜
1

|D|
∑
i∈[n]

1 {s(xi,R) ≤ t} . (4)

Example 2. Consider a resume screening task where the algorithm decides whether to extend an
interview opportunity. If F̂D,R(0.5) = 90%, then for 10% of the individuals in the dataset, the
predictions produced by the competing models are arbitrary and conflicting: regardless of the mean
scores, with an std. of at least 0.5, there would exist models with scores falling above and below the
one-half threshold, so the thresholded output can be both 0 (no interview) and 1 (offer interview). ♦

A note on related metrics. An alternative measurement of score variation is Viable Prediction
Range as defined in [40], which measures the difference in max and min scores among competing
models on each individual. For thresholded scores, the original definition of Ambiguity [35] considers
the proportion of a flip in prediction with respect to a baseline model (from empirical risk minimization
with fixed hyperparameters and randomness). Since we consider randomized training procedures
with no clear baseline model, the definition for ambiguity above is a variation of the original.

Group fairness. We consider three group fairness definitions for classification tasks—statistical
parity (SP), equalized odds (EO), and overall accuracy equality (OAE) [11, 18, 23, 37]. OAE and
Mean Equalized Odds (MEO) are defined below as they are used in the next sections, and we refer
the reader to Appendix D for the remaining definitions.

Definition 5 (Overall Accuracy Equality, OAE). Let Ŷ be the predicted label obtained, e.g., from
thresholding the scores of a classifier h : Rd → [0, 1]. The predictor Ŷ satisfies overall accuracy
equality (OAE) if its accuracy is independent of the group attribute: for all groups s, s′ ∈ [K],

Pr(Ŷ = Y | S = s) = Pr(Ŷ = Y | S = s′). (5)

For binary classification, SP boils down to requiring the average predictions to be equal across groups,
while EO requires true positive rates (TPR) and false positive rates (FPR) to be calibrated. In this
paper, we consider mean equalized odds (MEO): the average of absolute difference in FPR and TPR
for binary groups S ∈ {0, 1}. We consider binary group since this is the setup for most fairness
intervention methods.
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Definition 6 (Mean Equalized Odds, MEO [4, 23]). Let Ŷ be the predicted label, S ∈ {0, 1} denotes
binary group membership. Mean Equalized Odds is the average odds difference for binary groups:

MEO ≜
1

2
(|TPRS=0 − TPRS=1|+|FPRS=0 − FPRS=1|) , (6)

where TPRS=s ≜ Pr(Ŷ = 1 | Y = 1, S = s) and FPRS=s ≜ Pr(Ŷ = 1 | Y = 0, S = s).

To examine whether current fairness intervention methods lead to an exacerbation of multiplicity, we
survey state-of-the-art intervention methods, including Reductions [1], Fair Projection [2], Reject
Options [29], and EqOdds [23]. We offer a brief discussion of their mechanism in Appendix D.

3 Orthogonality of Fairness and Arbitrariness

We discuss next why arbitrariness is a third axis not captured by fairness and accuracy. Models with
similar fairness and accuracy metrics can differ significantly in predictions. Moreover, a set of fair and
approximately accurate models can attain maximal predictive multiplicity. We also explore through
an example one fundamental reason why adding fairness constraints can lead to more arbitrariness.
Example 3 (Ambiguity ̸= OAE). Overall Accuracy Equality (OAE, Definition 5) does not capture
the ambiguity of model outputs (Definition 2). Consider two hypothetical models that are fair/unfair
and exhibit high/low predictive multiplicity in Figure 2. Here, in each panel, the rectangle represents
the input feature space and the shaded regions represent the error region of each model.

In the top left panel, both Model 1 and 2 have equal accuracy for both groups, since the proportion of
the error regions (red stripes and pink shade) for both groups are the same. Hence, both models are
considered group-fair in terms of OAE. However, the error regions of the two models are disjoint.
Since ambiguity is measured by the percentage of the samples that receive conflicting predictions
from either models, samples from the union of the two error regions contribute to ambiguity. Hence,
Model 1 and 2 bear high predictive multiplicity despite being group-fair.

In the lower right panel, Model 1 and 2 attain low fairness and low predictive multiplicity. Both
models have higher accuracy for Group 2 than Group 1, so they are both unfair. The error regions
completely overlap, which means that the two models are making the same error—ambiguity is 0. ♦

Fair Unfair

High Predictive 
Multiplicity

Low Predictive 
Multiplicity

Group
1

Positive 
Label
Y = 1

Negative 
Label
Y = 0

Group
2

Group
1

Positive 
Label
Y = 1

Negative 
Label
Y = 0

Group
2

Positive 
Label
Y = 1

Group
1

Negative 
Label
Y = 0

Group
2

Negative 
Label
Y = 0

Group
1

Positive 
Label
Y = 1

Group
2

Model 1’s
Error Region

Model 2’s
Error Region

Figure 2: Illustration on two models being fair/unfair
and exhibit high/low predictive multiplicity through the
models’ error regions in each of the 4 cases. The met-
rics for fairness and predictive multiplicity are Overall
Accuracy Equality (Definition 5) and ambiguity (Defini-
tion 2), respectively.

The schematic diagram in Figure 2 shows that
predictive multiplicity is not captured by OAE.
Indeed, ambiguity of a collection of models is
a global property (i.e., verified at the collection
level), whereas OAE is a local property (i.e., ver-
ified at the classifier level). Hence, one should
not a priori expect that a set of competing mod-
els each satisfying OAE would necessarily com-
prise a Rashomon set with favorable ambiguity.

We prove the orthogonality of OAE and Sta-
tistical Parity (SP) from ambiguity formally in
the proposition below, where we show that it is
possible to construct classifiers with very strin-
gent accuracy and perfect fairness constraint,
albeit with maximal ambiguity. We determine
the Rashomon set using the 0-1 loss:

ℓ0-1(h;D) =
1

|D|
∑

(xi,si,yi)∈D

1 {ŷi ̸= yi} ,

where ŷi ∈ {0, 1} is the class membership of xi predicted by h. We prove the following orthogonality
in Appendix A.
Proposition 3.1 (Orthogonality of OAE/SP and Ambiguity). Fix any empirical loss value 0 < ϵ ≤ 1

2

and any number of models m > 1
ϵ . Then, for some finite dataset D ⊂ Rd × [K]× {0, 1}, there is a

realization of the empirical Rashomon set R̂m = {hj}j∈[m] satisfying the following simultaneously:
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Figure 3: Data distribution of a population with two groups used in Example 2 (Left). In Right, without
the Mean EO constraint (6) (green line), there is a unique optimal classifier (with threshold 0) that attains the
smallest probability of error (blue line). Adding the Mean EO constraint enlarges the set of optimal threshold
classifiers to two classifiers (red and blue dots) with indistinguishable accuracy and fairness levels (Right) but
different decision regions. We illustrate the decision regions of each classifier as red and blue arrows on the Left.

1. Each hj has 0-1 loss upper bounded by ℓ0-1(hj ;D) ≤ ϵ;

2. Each hj satisfies OAE perfectly, or each hj satisfies SP perfectly;

3. The collection R̂m has the worst ambiguity, i.e., α(D, R̂m) = 100%.

Remark 1. For OAE, such Rashomon set R̂m exists for any dataset D satisfying the two conditions:

1. with nk denoted the number of samples in D belonging to group k ∈ [K], the greatest
common divisor of the nk is at least (m− 1)/(mϵ− 1).

2. if (x, s, y), (x, s′, y′) ∈ D share the same feature vector x, then y = y′ too.

The requirement that the nk share a large enough common divisor is used in the proof to guarantee
perfect OAE. One could relax this requirement at the cost of nonzero OAE violation.

Proposition 3.1 implies that there exists a dataset and competing models for which all samples
receive conflicting predictions. Specifically, we can construct a large enough set of competing models
(m > 1

ϵ ) such that 100% of the samples in the dataset can receive conflicting predictions from this
set of perfectly fair models with respect to OAE.

In the next example, we demonstrate that, counter-intuitively, adding a fairness constraint can enlarge
the set of optimal models, thereby increasing predictive multiplicity. This points to a fundamental
reason why adding fairness constraints can lead to more arbitrariness in model decisions.
Example 4 (Arbitrariness of Threshold Classifiers with Fairness Constraint). Given a data distribution
of a population with two groups (Figure 3 Left), consider the task of selecting a threshold classifier
that predicts the true label. Without fairness considerations, the optimal threshold is 0 – i.e., assigning
positive predictions to samples with x > 0 and negative predictions to x ≤ 0 minimizes the
probability of error (Figure 3 Right). This optimal model is unique. Adding a fairness constraint that
requires Mean EO ≤ 0.1, the previously optimal classifier at 0 (with Mean EO = 0.15, Right) does
not meet the fairness criteria. Searching over the threshold classifiers that minimize the probability
of error while satisfying Mean EO constraint yields two equally optimal models (red and blue dots
Right) with distinct decision regions (red and blue arrows Left). Even in this simple hypothesis
class, the addition of fairness constraints yields multiple models with indistinguishable fairness and
accuracy but with distinct decision regions. The arbitrary selection between these points can lead to
arbitrary outputs to points near the boundary. ♦

4 Ensemble Algorithm for Arbitrariness Reduction

To tackle the potential arbitrariness cost of fairness intervention algorithms, we present a disparity-
reduction mechanism through ensembling. We provide theoretical guarantees and numerical bench-
marks to demonstrate that this method significantly reduces the predictive multiplicity of fair and
accurate models.

In a nutshell, given competing models h1, · · · , hm, we argue that the disparity in their score assign-
ment can be reduced by considering a convex combination of them, defined as follows.
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Definition 7 (Ensemble Classifier). Given m classifiers {h1, · · · , hm : Rd → [0, 1]} and a vector
λ ∈ ∆m, we define the λ-ensembling of the hj to be the convex combination hens,λ ≜

∑
j∈[m] λjhj .

4.1 Concentration of Ensembled Scores

We prove in the following result that any two different ensembling methods agree for fixed individuals
with high probability. Recall that we fix a dataset D and a set of competing models T (D) coming
from a stochastic training algorithm T (see Section 2). All proofs are provided in Appendix B.

Theorem 4.1 (Concentration of Ensembles’ Scores). Let h1, . . . , hm; h̃1, . . . , h̃m
iid∼ T (D) be

2m models drawn from T (D), and hens,λ, h̃ens,γ be the ensembled models (constructed with
{h1, . . . , hm} and {h̃1, . . . , h̃m} respectively) for λ,γ ∈ ∆m (see Definition 7) satisfying
∥λ∥22, ∥γ∥22≤ c/m for an absolute constant c. For every x ∈ Rd and ν ≥ 0, we have the
exponentially-decaying (in m) bound

P
(∣∣∣hens,λ(x)− h̃ens,γ(x)

∣∣∣ ≥ ν
)
≤ 4e−ν2m/(2c). (7)

In particular, for any validation set Dvalid. ⊂ Rd of size |Dvalid.|= n, we have the uniform bound

P
(∣∣∣hens,λ(x)− h̃ens,γ(x)

∣∣∣ < ν for all x ∈ Dvalid.

)
> 1− 4ne−ν2m/(2c). (8)

4.2 Concentration of Predictions Under Ensembling

The above theorem implies that we can have a dataset of size that is exponential in the number
of accessible competing models and still obtain similar scoring for any two ensembled models
(uniformly across the dataset).

In practice, one cares more about the agreement of the final prediction of the classifiers. The following
result extends Theorem 4.1 to the concentration of thresholded classifiers. For this, we need to define
the notion of confident classifiers.
Definition 8 (Confident Classifier). Fix a probability measure PX over Rd and constants δ, θ ∈ [0, 1].
We say that a classifier h : Rd → [0, 1] is (PX , δ, θ)-confident if P

(∣∣h(X)− 1
2

∣∣ < δ
)
< θ.

In other words, h is a confident classifier if it is “more sure” of its predictions. We observe in
experiments that models corrected by fairness interventions have scores concentrated around 0 and 1.

Using confident classifiers, we are able to extend Theorem 4.1 to thresholded ensembles, as follows.

Theorem 4.2. Let hens,λ, h̃ens,γ be as in Theorem 4.1, and assume that both ensembled classifiers
are (PX , δ, θ)-confident in the sense of Definition 8. Let f(t) ≜ 1{t ≥ 0.5} be the thresholding
function. For any set Dvalid. ⊂ Rd of size |Dvalid.|= n, we may guarantee the probability of agreement
in the predictions for all samples under the two ensembles to be at least

P
(
f(hens,λ(x)) = f(h̃ens,γ(x)) for every x ∈ Dvalid.

)
≥ 1−

(
4e−2δ2m/c + 2θ

)
n. (9)

We note that in the fairness-intervention setting, the set Dvalid. in the above theorem would be chosen
as the subset of samples having the same group attribute. Thus, the size n0 of Dvalid. would be
significantly smaller than the total size of the dataset, and the parameter θ then can be required to be
moderately small.
Remark 2. In Appendix C, we discuss how to optimize the ensembling parameters λ. In the next
section, we will stick to the uniform ensembling: hens,λ = 1

m

∑
j∈[m] hj , i.e., λ = 1

m1. This
simple uniform ensemble suffices to illustrate the main goal of this paper: that arbitrariness can be a
by-product of fairness intervention methods, and ensembling can mitigate this unwanted effect.

5 Experimental Results

We present empirical results to show that arbitrariness is masked by favorable group-fairness and
accuracy metrics for multiple fairness intervention methods, baseline models, and datasets 7. We also
demonstrate the effectiveness of the ensemble in reducing the predictive multiplicity of fair models.

7Code can be found at https://github.com/Carol-Long/Fairness_and_Arbitrariness
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Figure 4: Quantile plot on high-fairness bin for various fairness interventions v.s. baseline on ENEM. Left:
Fairness-Accuracy frontier. Right: Fair models produce larger score std. at top percentiles compared to the
baseline model (horizontal axis computed via (6)). (REJECTION and LEVERAGING output thresholded scores
directly.)

Setup and Metrics. We consider three baseline classifiers (BASE): random forest (RF), gradient
boosting (GBM), and logistic regression (LR), implemented by Scikit-learn [36]. By varying the
random seed, we obtain 10 baseline models with comparable performance. Then, we apply various
state-of-the-art fairness methods (details in Appendix D) on the baseline models to get competing fair
models.

On the test set, we compute mean accuracy, Mean EO (Definition 6), and predictive multiplicity
levels on competing models before and after fairness interventions. We use ambiguity (Definition 2)
and score standard deviations (Definition 3) as metrics for predictive multiplicity.

Datasets. We report predictive multiplicity and benchmark the ensemble method on three datasets –
two datasets in the education domain: the high-school longitudinal study (HSLS) dataset [27, 28] and
the ENEM dataset [16] (see Alghamdi et al. [2] Appendix B.1), and the UCI Adult dataset[33] which
is based on the US census income data. The ENEM dataset contains Brazilian college entrance exam
scores along with student demographic information and socio-economic questionnaire answers (e.g.
if they own a computer). After pre-processing, the dataset contains 1.4 million samples with 139
features. Race is used as the group attribute S, and Humanities exam score is used as the label Y .
Scores are quantized into two classes for binary classification. The race feature S is binarized into
White and Asian (S = 1) and others (S = 0). The experiments are run with a smaller version of the
dataset with 50k samples. Complete experimental results can be found in Appendix E.

Results that Reveal Arbitrariness. We juxtapose the fairness-accuracy frontier and metrics for
predictive ambiguity to reveal arbitrariness masked by favorable group-fairness and accuracy metrics
in Figure 1 and 4. Starting with 10 baseline classifiers by varying the random seed used to initialize the
training algorithm, we apply the fair interventions REDUCTION [1], REJECTION [29], LEVERAGING
[12] to obtain point clouds of models with comparable fairness and accuracy metrics. In Figure 4, we
take models that achieve very favorable accuracy and MEO metrics (in blue rectangle in Left) and
plot the std. of scores to illustrate predictive multiplicity Right. Group fairness violations are greatly
reduced (from 0.28 in baseline to 0.04 in fair models) at a small accuracy cost (from 67% in baseline
to 66% in fair models). However, there is higher arbitrariness.

Compared to baseline (red curve), fair models corrected by REDUCTION and ROC produce lower
score arbitrariness for the bottom 50% but much higher arbitrariness for the top 50% of samples;
importantly, the induced arbitrariness becomes highly nonuniform across different individuals after
applying the two fairness intervention. We observe that LEVERAGING produce models that agree on
90% of the samples, thereby not inducing concerns of arbitrariness.

Remarkably, arbitrariness does not vary significantly among models with different fairness levels.
We consider two sets of models trained with high and low fairness constraints using REDUCTION in
Figure 1.

Results on the Effectiveness of Ensembling. We pair our proofs in Section 4 with experiments that
demonstrate the concentration of scores of ensembled models. In Figure 5 Left, taking the competing
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ENEM HSLS

Ave EO violation of 
Ensemble: 0.06

Ave EO violation of 
Ensemble: 0.04

Figure 5: Standard deviation of ensembled models trained on ENEM and HSLS with baseline random forest
classifiers. We fix the high-fairness bin and vary the number of models m in each ensemble. As we increase the
number of ensembles, score std. (on 10 ensembles) drops and meets the score std. of 10 baseline RFC when
m = 30 on ENEM and m = 17 on HSLS. (Mean EO is computed using (6).

models in the high-fairness bins corrected with REDUCTION that achieve an Mean EO violation of
0.04 but very high score std. for half of the samples (blue rectangle in Figure 4), we ensemble the
models with increasing number of models per ensemble (m) ranging from 1 to 30. For each m, we
measure std. of scores in 10 such ensembles. The top percentile std. of the ensembled fair models
drops to baseline with 30 models. Similar convergence occur on the HSLS dataset. Importantly, the
ensembled models are still fair, the Mean EO violations of the ensembled models remain low.

6 Final Remarks

We demonstrate in this paper that arbitrariness is a facet of responsible machine learning that is
orthogonal to existing fairness-accuracy analyses. Specifically, fairness-vs-accuracy frontiers are
insufficient for detecting arbitrariness in the predictions of group-fair models: two models can have
the same fairness-accuracy curve while at the same time giving widely different predictions for subsets
of individuals. We demonstrate this undesirable phenomenon both theoretically and experimentally
on state-of-the-art fairness intervention methods. Furthermore, towards mitigating this arbitrariness
issue, we propose an ensemble algorithm, where a convex combination of several competing models
is used for decision-making instead of any of the constituent models. We prove that the scores of the
ensemble classifier concentrate, and that the ensuing predictions can be made to concentrate under
mild assumptions. Importantly, we exhibit via real-world experiments that our proposed ensemble
algorithm can reduce arbitrariness while maintaining fairness and accuracy.

Limitations. The proposed framework for estimating the predictive multiplicity of fairness inter-
ventions requires re-training multiple times, limiting its applicability to large models. We consider
model variation due to randomness used during training. In practice, competing models may exist
due to inherent uncertainty (i.e., a non-zero confidence interval) when evaluating model performance
on a finite test set. In this regard, models with comparable average performance can be produced
by searching over this Rashomon set even if training is deterministic (e.g., equivalent to solving a
convex optimization problem).

Future directions. An interesting future direction is to explore the multiplicity cost of fairness
interventions in such deterministic settings. Furthermore, our ensembling strategy may not guarantee
that the ensemble classifier ensures fairness constraints due to the non-convex nature of such con-
straints. Though we empirically observe that fairness constraints are indeed satisfied by the ensemble
model, proving such guarantees theoretically would be valuable.

Societal impacts. While fairness intervention algorithms can effectively reduce the disparate impact
among population groups, they can induce predictive multiplicity in individual samples. The increase
in predictive multiplicity does not impact all individuals equally. If predictive multiplicity caused
by fairness interventions is not accounted for, some individuals will bear the brunt of arbitrary
decision-making—their predictions could be arbitrary upon re-training the classifier using different
random initializations, leading to another level of disparate treatment to certain population groups.
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Appendix

The appendix is divided into the following five parts. Appendix A: proof of the orthogonality of
OAE and SP from ambiguity (Proposition 3.1); Appendix B: proofs from Section 4; Appendix C:
discussion on optimizing ensemble parameters; Appendix D: additional discussions on group fairness
and fairness interventions; and Appendix E: additional experiments and details on the experimental
setup.

A Proof of Proposition 3.1: Orthogonality of OAE and SP from Ambiguity

We divide the proof into two cases according to the group-fairness metric considered (OAE or SP).

A.1 Proof for the OAE Metric

Let D ⊂ Rd × [K]× {0, 1} be a dataset satisfying the two conditions listed in Remark 1, namely,

1. with nk denoting the number of samples in D belonging to group k ∈ [K], the greatest
common divisor of the nk is at least (m− 1)/(mϵ− 1).

2. if (x, s, y), (x, s′, y′) ∈ D share the same feature vector x, then y = y′ too.

Consider the partition along group membership D =
⋃

k∈[K] Dk, so we may write Dk =

{(xk,i, k, yk,i)}i∈[nk] for each k ∈ [K], where nk ≜ |Dk|. By assumption on the nk, we have

g ≜ gcd (n1, · · · , nK) ≥ m− 1

mϵ− 1
. (10)

Now, let θ ≜ ⌊ϵg⌋/g, and note that we obtain the integers µk ≜ θ · nk for k ∈ [K], because g divides
each nk by definition of the gcd. Let λ ≜

⌈
1−ϵ
θ

⌉
. Using ⌊t⌋ > t− 1, we note that

1− ϵ

θ
+ 1 <

1− ϵ

ϵ− 1
g

+ 1 ≤ m, (11)

where the last inequality follows by assumption on g being large enough (10). Thus, taking the
ceiling of both sides above, we obtain λ + 1 ≤ m. Hence, it suffices to prove that there are λ + 1
classifiers R = {hj}j∈[λ+1] satisfying the claim in the proposition (i.e., with λ+ 1 replacing m).

It is straightforward to check that λµk ≤ nk for each k. We divide each Dk into λ sets of size µk

each, and collect the remainder into a separate subset. Thus, for each k ∈ [K], consider any partition
Dk =

⋃
j∈[λ+1] D

j
k where |Dj

k|= µk for each j ∈ [λ] and |Dλ+1
k |= nk − λµk.

Next, we define the classifiers based on the partitions of the Dk. For each j ∈ [λ + 1], define the
classifier hj over D as follows. Fix (x, k, y) ∈ D. We set the value hj(x) to be

hj(x) ≜

{
1− y if (x, k, y) ∈ Dj

k,

y otherwise.
(12)

Note that this makes hj well-defined by the second property assumed on D at the beginning of this
proof. We show that the set R = {hj}j∈[λ+1] satisfies the desired properties in the proposition.

Accuracy. First, we show that each hj incurs a 0-1 loss less than ϵ. Indeed, we have that, for each
j ∈ [λ],

ℓ(hj ;D) =
1

n

∑
k∈[K]

|Dj
k|=

1

n

∑
k∈[K]

µk = θ, (13)

whereas the error for the last classifier is

ℓ(hλ+1;D) =
1

n

∑
k∈[K]

|Dλ+1
k |= 1

n

∑
k∈[K]

nk − λµk = 1− λθ. (14)

Thus, it suffices to check that θ, 1−λθ ≤ ϵ. Recall that we set θ = ⌊ϵg⌋/g, hence θ ≤ ϵ is immediate.
Further, as we take λ =

⌈
1−ϵ
θ

⌉
≥ 1−ϵ

θ , the inequality 1− λθ ≤ ϵ follows immediately too. Hence,
we have that ℓ(hj ;D) ≤ ϵ for all j ∈ [λ+ 1].
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Fairness. Next, we check that each hj satisfies Overall Accuracy Equality (OAE) perfectly. Let Ŷj

be the prediction of the classifier hj , so PŶj |X=x(1) = hj(x). Then, for j ∈ [λ] the predictions of
the j-th classifier satisfy

Pr
(
Ŷj ̸= Y | S = k

)
=

|Dj
k|

nk
=

µk

nk
= θ for every group k ∈ [K], (15)

and similarly the last classifier satisfies

Pr
(
Ŷλ+1 ̸= Y | S = k

)
=

|Dλ+1
k |
nk

=
nk − λµk

nk
= 1− λθ for every group k ∈ [K]. (16)

Hence, the hj , for j ∈ [λ+ 1], all satisfy OAE perfectly.

Ambiguity. Finally, we show that the set R = {hj}j∈[λ+1] exhibits full ambiguity. Note that
we have a partition D =

⋃
(k,j)∈[K]×[λ+1] D

j
k. Fix a sample (x, s, y) ∈ D and consider the index

(k, j) ∈ [K] × [λ + 1] of the unique part including it in the partition, i.e., (x, s, y) ∈ Dj
k. By

construction of R, we have that hj(x) = 1− y (so Ŷj = 1− y) but hj′(x) = y (so Ŷj′ = y) for any
j′ ̸= j. In other words, for every fixed sample in D, there is a pair of classifiers in R assigning it
conflicting predictions. Thus, the ambiguity is α(D,R) = 100%.

A.2 Proof for the SP Metric

Consider now the SP group-fairness constraint instead. In this case, we define we construct
the following alternative dataset D ⊂ Rd × [K] × {0, 1}. Let t ≜ ⌈1/ϵ⌉ ≥ 2. For each
(k, y) ∈ [K] × {0, 1}, fix any dataset Dk,y = {(xk,y,i, k, y)}i∈[t] ⊂ Rd × {k} × {y}, let
D ≜

⋃
(k,y)∈[K]×{0,1} Dk,y ⊂ Rd × [K] × {0, 1}, and assume that if xk,y,i = xk′,y′,i′ then

y = y′. Denote n ≜ |D|= 2Kt.

For each (k, y) ∈ [K]× {0, 1}, let σk,y be a permutation on [t], i.e., {σk,y(j)}j∈[t] = [t]. Define the
set of classifiers R = {hj}j∈[t] on D as follows. For each j ∈ [t] and each (k, y, i) ∈ [K]×{0, 1}×
[t], we set

hj(xk,y,i) ≜

{
1− y if i = σk,y(j),

y otherwise.
(17)

We show that the set R = {hj}j∈[t] satisfies the desired properties in the proposition.

Accuracy. Consider first the 0-1 loss incurred by the hj . We have that, for each j ∈ [t],

ℓ(hj ;D) =
1

n

∑
(k,y,i)∈[K]×{0,1}×[t]

1{i = σk,y(j)} =
1

n

∑
(k,y)∈[K]×{0,1}

1 =
2K

2Kt
=

1

t
. (18)

Therefore, ℓ(hj ;D) = 1/t = 1/⌈1/ϵ⌉ ≤ ϵ. In other words, R is a realization of the ϵ-level empirical
Rashomon set of size t.

Fairness. Next, we check that each hj satisfies SP perfectly. In other words, we check that hj

assigns to the class y = 1 the same percentage of samples across the groups k ∈ [K]. Indeed, this
is true as we are switching the class memberships of exactly one sample from each of the Dk,y. In
particular, hj assigns the class membership 1 to exactly 1 + (|Dk,1|−1) = |Dk,1|= t samples out of
the total |Dk,0 ∪ Dk,1|= 2t samples belonging group k. As the ratio t/(2t) = 1/2 is independent of
the group k, we obtain the desired result that hj satisfies SP.

Ambiguity. Finally, we check that the set R = {hj}j∈[t] suffers from 100% ambiguity. Fix a
sample (xk,y,i, k, y) ∈ D, and we will show that there are two classifiers in R assigning conflicting
predictions to it. Indeed, let j = σ−1

k,y(i) and let j′ ∈ [t] \ {j} be any other index. Then, hj(xk,y,i) =

1 − y, whereas hj′(xk,y,i) = y. Therefore, the sample (xk,y,i, k, y) contributes to the overall
ambiguity α(D,R). As this is true for all samples in D, we conclude that α(D,R) = 100%, as
desired. This completes the proof of the proposition.
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B Proofs of Section 4

B.1 Proof of Theorem 4.1

We assume that ∥λ∥22, ∥γ∥22≤ c/m for an absolute constant c, e.g., we have c = 1 for the uniform
ensembling λ = (1/m, · · · , 1/m) as then ∥λ∥22= 1/m. Fix x, and denote the mean of the classifiers
µx = Eh∼T (D)[h(x)]. The mapping (h1, · · · , hm) 7→ hens,λ satisfies the bounded-difference
condition in the McDiarmid inequality. Indeed, changing hi can change hens,λ by at most λi.
Furthermore, hens,λ(x) has the mean

E
[
hens,λ(x)

]
=
∑
i∈[m]

λiE[hi(x)] = µx

∑
i∈[m]

λi = µx. (19)

Hence, by Mcdiarmid’s inequality, we have the bound

P
(∣∣hens,λ(x)− µx

∣∣ ≥ ν
)
≤ 2 exp

(
−2ν2∑
i∈[m] λ

2
i

)
≤ 2 exp

(
−2ν2m

c

)
. (20)

The same inequality holds for γ in place of λ:

P
(∣∣∣h̃ens,γ(x)− µx

∣∣∣ ≥ ν
)
≤ 2 exp

(
−2ν2m

c

)
. (21)

Therefore, we obtain the bound

1− P
(∣∣∣hens,λ(x)− h̃ens,γ(x)

∣∣∣ ≥ ν
)
= P

(∣∣∣hens,λ(x)− µx + µx − h̃ens,γ(x)
∣∣∣ < ν

)
(22)

≥ P
(∣∣hens,λ(x)− µx

∣∣+ ∣∣∣h̃ens,γ(x)− µx

∣∣∣ < ν
)

(23)

≥ P
(∣∣hens,λ(x)− µx

∣∣ < ν

2
∩
∣∣∣h̃ens,γ(x)− µx

∣∣∣ < ν

2

)
(24)

= 1− P
(∣∣hens,λ(x)− µx

∣∣ ≥ ν

2
∪
∣∣∣h̃ens,γ(x)− µx

∣∣∣ ≥ ν

2

)
(25)

≥ 1− 4 exp

(
−ν2m

2c

)
, (26)

where the first inequality comes from triangle inequality, the following from probability of subset
of events (P(A) ≥ P(B) if A ⊇ B), the equality from taking complement, and the last line from
applying McDiarmid’s inequality along with the union bound.

Finally, applying the union bound on Dvalid. with |Dvalid.|= n, we obtain the bound

P

( ⋂
x∈Dvalid.

∣∣∣hens,λ(x)− h̃ens,γ(x)
∣∣∣ < ν

)
= 1− P

( ⋃
x∈Dvalid.

∣∣∣hens,λ(x)− h̃ens,γ(x)
∣∣∣ ≥ ν

)
(27)

≥ 1− 4n exp

(
−ν2m

2c

)
, (28)

and the proof is complete.

B.2 Proof of Theorem 4.2

The main idea is as follows: first observe that for the ensembled labels to disagree on a sample (given
that the scores are bounded away from 1

2 with high probability), the two models need to produce
scores in the range [0, 1

2 − δ]∪ [ 12 + δ, 1]. This means that the scores need to deviate at least 2δ which
has an exponentially low probability given Theorem 4.1.

We will show that

P

( ⋃
x∈D0

f(hens,λ(x)) ̸= f(h̃ens,γ(x))

)
≤
(
4e−2δ2m/c + 2θ

)
n0. (29)
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Indeed, for each fixed x ∈ D0, we may reduce the failure probability to the case of separation of
scores:

P
(
f(hens,λ(x)) ̸= f(h̃ens,γ(x))

)
≤ P

((
hens,λ(x) ∈

[
0,

1

2
− δ

]
∩ h̃ens,γ(x) ∈

[
1

2
+ δ, 1

])
(30)

∪
(
h̃ens,γ(x) ∈

[
0,

1

2
− δ

]
∩ hens,λ(x) ∈

[
1

2
+ δ, 1

])
(31)

∪ hens,λ(x) ∈
[
1

2
− δ,

1

2
+ δ

]
(32)

∪ h̃ens,γ(x) ∈
[
1

2
− δ,

1

2
+ δ

])
(33)

≤ P
(∣∣∣hens,λ(x)− h̃ens,γ(x)

∣∣∣ ≥ 2δ
)
+ 2θ (34)

≤ 4 exp

(
−2δ2m

c

)
+ 2θ. (35)

Finally, applying the union bound, we obtain that

P

( ⋂
x∈D0

f(hens,λ(x)) = f(h̃ens,γ(x))

)
= 1− P

( ⋃
x∈D0

f(hens,λ(x)) ̸= f(h̃ens,γ(x))

)
(36)

≥ 1−
(
4e−2δ2m/c + 2θ

)
n0, (37)

and the proof is complete.

C Discussion on optimizing ensemble parameters

We have taken the weights λ ∈ ∆m which determines the ensembled model hens,λ to be fixed. We
explain here how λ can be optimized according to a given cost. Specifically, given a loss function
ℓ : [0, 1]× {0, 1} → R+, we can search for the optimal λ ∈ ∆m that minimizes the total cost

Lens(λ) ≜ E
[
ℓ(hens,λ(X), Y

)
]. (38)

For the above optimization problem, we think of the constituent models h1, · · · , hm as being fixed
and the randomness is from that of (X,Y ).

However, in practice, we have access to only samples (xi, yi) ∼ PX,Y . Thus, we consider minimizing
the regularized sample mean (for fixed β > 0)

L̂ens(λ) ≜
1

n

∑
i∈[n]

ℓ
(
hens,λ(xi), yi

)
+

β√
n
∥λ∥22. (39)

The 2-norm regularization is added to facilitate proving convergence. This convergence result can
be obtained via known results from statistical learning theory, e.g., using Theorem 13.2 in [22].
Specifically, consider the following two restrictions:

• Consider only λ ∈ ∆m satisfying ∥λ∥2≤ α for a prescribed α. Note that we may take
α = 1 to encapsulate the whole probability simplex. However, we may choose λ to be a
slight modification of the uniform ensembling, in which case we would have α of order
1/
√
m.

• Assume that the function λ 7→ ℓ(hens,λ(x), y) is convex and A-Lipschitz for each fixed
(x, y).

In this case, choosing β = A/α and denoting the optimizers

λ(n) ≜argmin
∥λ∥2≤α

L̂ens(λ), (40)
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we can bound the utility of these minimizers by

P
(
Lens(λ

(n)) ≤ inf
∥λ∥2≤α

Lens(λ) +
βα2

√
n

·
(
1 +

1

δ
+

8

δ
√
n

))
≥ 1− δ (41)

for any δ ∈ (0, 1).

D Additional discussion on group fairness and fairness interventions

In addition to OAE (Definition 5), two other important fairness criteria are Statistical Parity [18] and
Equalized Odds [23].

Definition 9 (SP). Pr(Ŷ = 1|S = s) = Pr(Ŷ = 1|S = s′) for all groups s, s′ ∈ [K] .

Definition 10 (EO). Pr(Ŷ = 1|S = s, Y = b) = Pr(Ŷ = 1|S = s′, Y = y) for all groups
s, s′ ∈ [K], and binary labels y ∈ {0, 1}.

Essentially, SP requires the predicted label Ŷ ≜ argmaxh(X) to be independent of the group
membership S [19]. In comparison, EO conditions on both group and the true label [23]. EO
improves upon SP in the sense that it does not rule out the perfect classifiers whenever the true label
Y is correlated with the group membership S [1]. In practice, we quantify EO violation by measuring
Mean EO as in Equation 6 (for two groups) and, more generally, in Equation 42 below (beyond two
groups). Similarly, we can measure SP violation as in Equation 43.

MEAN EO ≜ max
s,s′∈[K]

1

2
(|TPRS=s − TPRS=s′ |+|FPRS=s − FPRS=s′ |) . (42)

SP VIOLATION ≜ max
s,s′∈[K]

1

2

(
|Pr(Ŷ = 1|S = s)− Pr(Ŷ = 1|S = s′)|

)
. (43)

Next, we offer a brief discussion of various intervention mechanisms used in this paper. The fairness
interventions can be categorized into two categories: in-processing and post-processing. In-processing
mechanisms incorporate fairness constraints during training. It usually add the fairness constraint to
the loss function and outputs a fair classifier. Post-processing mechanisms treat the model as a black
box and update its predictions to achieve the desirable fairness constraints [10].

REDUCTION [1], short for exponentiated gradient reduction, is an in-processing technique that reduces
fair classification to a sequence of cost-sensitive classification problems, and yields a randomized
classifier with the lowest empirical error subject to the desired constraints. This technique achieves
fairness with a minimal decrease in accuracy, but it is computationally expensive since it requires
re-training multiple models.

REJECT OPTION CLASSIFIER [29] is a postprocessing technique that achieves fairness constraints by
modifying outcomes of samples in a confidence band of the decision boundary with the highest un-
certainty. It gives favorable outcomes to unprivileged groups and unfavorable outcomes to privileged
groups. It outputs a thresholded prediction rather than a probability over the binary labels.

EQODDS [23] is a post-processing technique that formulates empirical risk minimization with fairness
constraint as a linear program and modifies predictions according to the derived probabilities to
achieve equalized odds.

FAIR PROJECTION [2] is a post-processing technique that can accommodate fairness constraints in
a setting with multiple labels and multiple groups. The fair model is obtained from ‘projecting’ a
pre-trained (and potentially unfair) classifier onto the set of models that satisfy target group-fairness
requirements.

E Additional experiments and details on the experimental setup

Our proposed methodology can be summarized in the pipeline in Figure 6.
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Figure 6: Flow chart of experimental procedure.

E.1 Data

The HSLS dataset [27, 28] is an education dataset collected from 23,000+ students across high
schools in the USA. Features of the dataset contain extensive information on students’ demographic
information, their parents’ income and education level, schools’ information, and students’ academic
performances across years. We apply the pre-processing techniques adopted by Alghamdi et al.
[2], with the number of samples reduced to 14,509. For the binary classification task with fairness
constraints, the group attribute chosen is RACE ∈ {WHITE, NON-WHITE} and the prediction label is
students 9th-Grade GRADEBIN ∈ {0, 1}, binarized according to whether a student’s grade is higher
or lower than the median.

The ENEM dataset [16] is a Brazilian high school national exam dataset introduced by Alghamdi et al.
[2]. It has 138 features containing students’ demographic information, socio-economic questionnaire
answers (e.g., parents’ education level and if they own a computer), and students’ exam scores.
Adopting the preprocessing technique in Alghamdi et al. [2], we sample 50K samples without
replacement from the processed ENEM Year 2020 data. Identical to HSLS, the group attribute
chosen is RACE ∈ {WHITE, NON-WHITE} and the prediction label is students Grade binarized into
GRADEBIN ∈ {0, 1} according to whether a student’s grade is higher or lower than the median.

For the widely known Adult dataset [33], also known as "Census Income" dataset, we choose the
group attribute as SEX ∈ {MALE, FEMALE} and predicted label to be INCOME ∈ {0, 1}, where
income bin denotes whether a person’s income is higher or lower than 50K/yr.

E.2 Competing Baseline Models

We use the Scikit-learn implementation of logistic regression, gradient boosting, and random forest
as baseline models. For logistic regression and gradient boosting, the default hyperparameter is used;
for random forest, we set the number of trees and minimum number of samples per leaf to 10 to
prevent over-fitting. To get 10 competing models for each hypothesis class, we use 10 random seeds
(specifically 33–42).

In practice, the competing models, i.e., h ∈ R̂m can be obtained using different methodologies, such
as sampling and adversarial weight perturbation [26, 40]. We suggest one method for sampling. First,
split the data into training, validation, and test dataset. We train a set of models by changing the
randomized procedures in the training process, e.g., using different initializations, different cuts for
cross-validation, data shuffling, etc. In this paper, we change the random seed feed into the baseline
models to obtain competing models. We use the validation set to measure ϵ corresponding to this
empirical Rashomon Set.

E.3 Competing Fair Models

For EQODDS, REJECTION, and REDUCTION, we use the functions EQODDSPOSTPROCESSING,
REJECTOPTIONCLASSIFICATION, and EXPONENTIATEDGRADIENTREDUCTION from AIF360
toolkits [4]. For LEVERAGING and FAIR PROJECTION, we use the codes provided in the correspond-
ing Github repositories of Chzhen et al. [12] and Alghamdi et al. [2].
Remark 3. We observe in practice that fairness classifiers are more confident and have scores that
are thresholded-like (Figure 7 Left). From the similarity in the shape of the thresholded baseline
curve and the fair models’ curves (Figure 7 Right), thresholding-like behavior of some interventions
may explain some—but certainly not all (see Figure 1 Right)—increase in score std dev and the
ensuing arbitrariness. Recall from the violin plot in Figure 1 that the largest group (blue area) are
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Figure 7: Left: We plot the score distribution of the REDUCTION approach as an example. The
scores concentrate around 0 and 1, while scores of the baseline classifier are normally distributed.
Right: Given this thresholded-like scores of fair classifiers, we include thresholed baseline in the
quantile plot of score std.. The thresholded Baseline curve largely overlaps with Rejection curve with
MEO 0.26 since they have the same MEO level.

Figure 8: Left: Accuracy-fairness curves of baseline random forest models v.s. fair models on the ENEM
dataset. Right: Quantiles of per-sample score std. across high/low fairness models and baseline.

those individuals for which std. increases from 0 to a large positive value (median around > 0.15).
Hence, the blue area shows that significant arbitrariness is introduced by the fairness intervention, in
addition to and separate from the effects of thresholding the baseline.

E.4 Complete Experimental Plots

In order to evaluate the predictive multiplicity of models with similar accuracy and fairness levels,
we divide the accuracy-fairness frontier plots into 8x8 grids and put models in the corresponding bins.
To compare the arbitrariness of models satisfying high/low fairness constraints, we select bins in two
different MEO ranges and bins with baseline models. Then, we compute the standard deviation of
scores of models corrected by REDUCTION in the three bins (high fairness/low fairness/baseline)
and plot the quantile curves. We use PANDAS package’s quantile function with its default linear
interpolation method.

Across three baseline model classes (random forest, gradient boosting, and logistic regression), fair
models exhibit higher score arbitrariness. Especially at top quantiles, all fair models have standard
deviations in scores going up to 0.5. This means that for the individuals at the top percentile, the
model prediction can flip if another random seed is used in model training.

Furthermore, we evaluate the predictive multiplicity of models corrected by different fairness interven-
tion methods. Across datasets, all fairness intervention methods exhibit maximal standard deviation
of scores of 0.5 at top quantiles for random forest baseline methods. LEVERAGING [12] exhibit score
arbitrariness comparable to that of baseline for GBM and Logistic Regression methods. REJECTION
and LEVERAGING output thresholded scores directly, while REDUCTION outputs probabilities (with
most scores close to 0 or 1).
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Figure 9: Left: Accuracy-fairness curves of baseline gradient boosting models (GBM) v.s. fair models on the
ENEM dataset. Right: Quantiles of per-sample score std. across high/low fairness models and baseline.

Figure 10: Left: Accuracy-fairness curves of baseline logistic regression models v.s. fair models on the ENEM
dataset. Right: Quantiles of per-sample score std. across high/low fairness models and baseline.

Figure 11: Left: Accuracy-fairness curves of baseline random forest models v.s. fair models on the HSLS
dataset. Right: Quantiles of per-sample score std. across high/low fairness models and baseline.

Figure 12: Left: Accuracy-fairness curves of baseline gradient boosting models (GBM) v.s. fair models on the
HSLS dataset. Right: Quantiles of per-sample score std. across high/low fairness models and baseline.
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Figure 13: Left: Accuracy-fairness curves of baseline logistic regression models v.s. fair models on the HSLS
dataset. Right: Quantiles of per-sample score std. across high/low fairness models and baseline.

Figure 14: Left: Accuracy-fairness curves of baseline random forest models v.s. fair models on the Adult
dataset. Right: Quantiles of per-sample score std. across high/low fairness models and baseline.

Figure 15: Left: Accuracy-fairness curves of baseline gradient boosting models (GBM) v.s. fair models on the
Adult dataset. Right: Quantiles of per-sample score std. across high/low fairness models and baseline.
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ENEM (Random Forest) ENEM (GBM)

ENEM (Logistic Regression)

Figure 16: Quantile plot on models in high-fairness bin for various fairness interventions v.s. baseline models
on ENEM. Fair models produce larger score std. at top percentiles compared to the baseline model.

HSLS (Random Forest) HSLS (GBM)

HSLS (Logistic Regression)

Figure 17: Quantile plot on models in high-fairness bin for various fairness interventions v.s. baseline models
on HSLS. Fair models produce larger score std. at top percentiles compared to the baseline model.
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