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Abstract

Recent years have seen a growing interest in accelerating optimization algorithms
with machine-learned predictions. Sakaue and Oki (NeurIPS 2022) have developed
a general framework that warm-starts the L-convex function minimization method
with predictions, revealing the idea’s usefulness for various discrete optimization
problems. In this paper, we present a framework for using predictions to accelerate
M-convex function minimization, thus complementing previous research and extend-
ing the range of discrete optimization algorithms that can benefit from predictions.
Our framework is particularly effective for an important subclass called laminar
convex minimization, which appears in many operations research applications. Our
methods can improve time complexity bounds upon the best worst-case results by
using predictions and even have potential to go beyond a lower-bound result.

1 Introduction

Recent research on algorithms with predictions [29] has demonstrated that we can improve algorithms’
performance beyond the limitations of the worst-case analysis using predictions learned from past
data. In particular, a surge of interest has been given to research on using predictions to improve the
time complexity of algorithms, which we refer to as warm-starts with predictions for convenience.
Since Dinitz et al. [11]’s seminal work on speeding up the Hungarian method for weighted bipartite
matching with predictions, researchers have extended this idea to algorithms for various problems [7,
35, 10]. Sakaue and Oki [39] have found similarities between the idea and standard warm-starts in
continuous convex optimization and extended it to L-convex function minimization, a broad class
of discrete optimization problems studied in discrete convex analysis [31]. They thus have shown
that warm-starts with predictions can improve the time complexity of algorithms for various discrete
optimization problems, including weighted bipartite matching and weighted matroid intersection.

In this paper, we extend the idea of warm-starts with predictions to a new direction called M-convex
function minimization, another important problem class studied in discrete convex analysis. The M-
convexity is known to be in conjugate relation to the L-convexity. Hence, exploring the applicability
of warm-starts with predictions to M-convex function minimization is crucial to broaden further
the range of algorithms that can benefit from predictions, as is also mentioned in [39]. This paper
mainly discusses an important subclass of M-convex function minimization called laminar convex
minimization (Laminar), a large problem class widely studied in operations research (see references
in Section 1.2). To make it easy to imagine, we describe the most basic form (Box) of Laminar,

(Box) minimize
x∈Zn

n∑
i=1

fi(xi) subject to
n∑

i=1

xi = R, ℓi ≤ xi ≤ ui (i = 1, . . . , n), (1)

where f1, . . . , fn : R → R are univariate convex functions, R ∈ Z, ℓ1, . . . , ℓn ∈ Z ∪ {−∞}, and
u1, . . . , un ∈ Z ∪ {+∞}. Note that the variable x ∈ Zn is an integer vector, which is needed when,
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Table 1: Our results and the best worst-case bounds for General, Laminar, Nested, and Box, where
General refers to general M-convex function minimization discussed in Section 3.1. n is the number
of variables, R specifies the equality constraint as in (1), and m = |{Y ∈ F : |Y | ≥ 2 }| = O(n) is
the number of additional constraints needed to convert Box into Nested and Laminar (see Section 4).

PROBLEM OUR RESULTS WORST-CASE TIME COMPLEXITY

General O(nSFM+ n2EOf · ∥x∗ − x̂∥1) O
(
n2 log(L/n)min

{
n, n+log2(L/n)

logn

}
EOf

)
[43]

Laminar O(n∥x∗ − x̂∥1) O
(
n2 logn log mR

n

)
[18, 34]1

Nested O(n∥x∗ − x̂∥1) O(n logm logR) [46]
Box O(n+ logn · ∥x∗ − x̂∥1) O

(
n log R

n

)
[14, 19]

for example, considering allocating R indivisible resources to n entities. As detailed later, adding
some constraints and objectives to Box yields more general classes, Nested and Laminar, where the
level of generality increases in this order. Streamlining repetitive solving of such problems by using
predictions can provide substantial benefits of saving computation costs, as we often encounter those
problems in, e.g., resource allocation [22], equilibrium analysis [16], and portfolio management [8].

1.1 Our contribution

We give a framework for accelerating M-convex minimization with predictions building on previous
research [11, 39] (Section 3). We show that, given a vector x̂ ∈ Rn that predicts an optimal solution
x∗ ∈ Zn, the greedy algorithm (Algorithm 1) for M-convex function minimization finds an optimal
solution in O(Tinit + Tloc∥x∗ − x̂∥1) time, where Tinit and Tloc represent the time for converting x̂
into an initial feasible solution and for finding a locally steepest descent direction, respectively. Since
we can minimize ∥x∗− x̂∥1 provably and approximately given optimal solutions to past instances [11,
23], this framework can provide better time complexity bounds benefiting from predictions. We also
discuss how to apply our framework to general M-convex function minimization in Section 3.1.

Section 4 presents our main technical results. We apply our framework to Laminar, Nested, and
Box and obtain time complexity bounds shown in Table 1. Our time complexity bounds can improve
the existing worst-case bounds given accurate predictions. In particular, our O(n∥x∗ − x̂∥1)-time
bound for Laminar improves the existing O(n2 log n log mR

n )-time bound even if prediction error
∥x∗− x̂∥1 is as large as O(n). Our result for Nested is a corollary of that for Laminar and improves
the existing worst-case bound if ∥x∗ − x̂∥1 = O(1). In the case of Box, we can further reduce the
time complexity to O(n + log n · ∥x∗ − x̂∥1) by modifying the algorithm for Laminar. Notably,
our algorithm for Box runs in O(n) time if ∥x∗ − x̂∥1 = O(n/ log n), even though there exists an
Ω(n log log(R/n2))-time lower bound for Box [19]. As far as we know, this is the first result that
can go beyond the lower bound on the time complexity in the context of warm-starts with predictions.
Experiments in Section 5 confirm that using predictions can improve empirical computation costs.

Few studies in the literature have made explicit improvements upon the theoretically fastest algorithms,
even if predictions are accurate enough. The only exception is [7], whose shortest-path algorithm
with predictions can improve the best worst-case time complexity by a couple of log factors. By
contrast, our methods with accurate predictions can improve the best worst-case bounds by O(n) (up
to log factors) in the Laminar case and potentially go beyond the lower-bound result in the Box case.
Thus, our work not only extends the class of problems that we can efficiently solve using predictions
but also represents a crucial step toward revealing the full potential of warm-starts with predictions.
In this paper, we do not discuss the worst-case time complexity of our algorithms since we can upper
bound it by executing standard algorithms with worst-case guarantees in parallel, as discussed in [39].

1.2 Related work

Algorithms with predictions [29], improving algorithms’ performance by using predictions learned
from past data, is a promising subfield in beyond the worst-case analysis of algorithms [38]. While
this idea initially gained attention to improve competitive ratios of online algorithms [36, 2, 28, 1],

1While the worst-case analysis in [18, 34] focuses on separable objective functions, we can extend it to more
general Laminar in (2) by introducing additional variables at the slight cost of setting m = Θ(n).
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recent years have seen a surge of interest in improving algorithms’ running time [11, 7, 39, 35, 10]. A
comprehensive list of papers on algorithms with predictions is available at [27]. The most relevant to
our work is [39], in which predictions are used to accelerate L-/L♮-convex function minimization, a
large problem class including weighted bipartite matching and weighted matroid intersection. On the
other hand, warm-starts with predictions remain to be studied for M-convex function minimization,2
another essential class that is in conjugate relation to L-convex function minimization in discrete
convex analysis [31]. Although our basic idea for utilizing predictions is analogous to the previous
approach [11, 39], our algorithmic techniques to obtain the time complexity bounds in Table 1 for the
specific M-convex function minimization problems are entirely different (see Section 4).

M-convex function minimization includes many important nonlinear integer programming problems,
including Laminar, Nested, and Box, which have been extensively studied in the context of resource
allocation [22]. A survey of recent results is given in [41]. Table 1 summarizes the worst-case time
complexity bounds relevant to ours. Besides, faster algorithms for those problems under additional
assumptions have been studied. For example, Schoot Uiterkamp et al. [41] showed that, if an objective
function is a sum of f(xi+bi) (i = 1, . . . , n) for some identical convex function f and bi ∈ Z, we can
solve Box, Nested, and Laminar with existing algorithms that run in O(n) [4, 21], O(n logm) [46],
and O(n2) [30] time, respectively. Hochbaum [19] gave an O(n log n log R

n )-time algorithm for
Laminar with separable objective functions and no lower bound constraints.3 Even in those special
cases, our results in Table 1 are comparable or better given that prediction errors ∥x∗ − x̂∥1 are small
enough. There also exist empirically fast algorithms [42, 47], whose time complexity bounds are
generally worse than the best results. Other problem classes with network and submodular constraints
have also been studied [20, 30]. Extending our framework to those classes is left for future work.

Resource allocation with continuous variables has also been well-studied. One may think we can
immediately obtain faster algorithms for discrete problems by accelerating continuous optimization
algorithms for relaxed problems with predictions and using obtained solutions as warm-starts. How-
ever, this is not true since there generally exists an O(n) gap in the ℓ1-norm between real and integer
optimal solutions [30, Example 2.9], implying that we cannot always obtain faster algorithms for
solving a discrete problem even if an optimal solution to its continuous relaxation is available for free.

2 Preliminaries

Let N := {1, . . . , n} be a finite ground set of size n. For i ∈ N , let ei be the ith standard vector,
i.e., all zero but the ith entry set to one. For any x ∈ RN and X ⊆ N , let x(X) =

∑
i∈X xi. Let

⌊·⌉ denote (element-wise) rounding to a closest integer. For a function f : ZN → R ∪ {+∞} on
the integer lattice ZN , its effective domain is defined as dom f := {x ∈ ZN : f(x) < +∞}. A
function f is called proper if dom f ̸= ∅. For Q ⊆ RN , its indicator function δQ : RN → {0,+∞}
is defined by δQ(x) := 0 if x ∈ Q and +∞ otherwise.

2.1 M-convexity and greedy algorithm for M-convex function minimization

We briefly explain M-convex functions and sets; see [31, Sections 4 and 6] for details. We say a proper
function f : ZN → R∪{+∞} is M-convex if for every x, y ∈ dom f and i ∈ { i′ ∈ N : xi′ > yi′ },
there exists j ∈ { j′ ∈ N : xj′ < yj′ } such that f(x) + f(y) ≥ f(x− ei + ej) + f(y + ei − ej).
A non-empty set Q ⊆ ZN is said to be M-convex if its indicator function δQ : ZN → {0,+∞}
is M-convex. Conversely, if f is an M-convex function, dom f is an M-convex set. An M-convex
set always lies in a hyperplane defined by {x ∈ RN : x(N) = R } for some R ∈ Z. It is worth
mentioning that the M-convexity is built upon the well-known basis exchange property of matroids,
and the base polytope of a matroid is the convex hull of an M-convex set.

The main subject of this paper is M-convex function minimization, minx∈ZN f(x), where f : ZN →
R ∪ {+∞} is an M-convex function. Note that dom f ⊆ ZN represents the feasible region of the
problem. For convenience of analysis, we assume the following basic condition.
Assumption 2.1. An M-convex function f : ZN → R ∪ {+∞} always has a unique minimizer x∗.

2Similar to the L-/L♮-convex case, we can deal with M♮-convex functions by considering corresponding
M-convex functions with one additional variable. See [31, Section 6.1] for details.

3An O(n logn)-time algorithm for Laminar (and Nested) with quadratic objective functions was also
proposed in [20], but later it turned out incorrect, as pointed out in [30].
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This uniqueness assumption is common in previous research [39, 10] (and is also needed in [11, 7,
35], although not stated explicitly). In the case of Laminar, it is satisfied for generic, strictly convex
objective functions. Even if not, there are natural tie-breaking rules, e.g., choosing the minimizer that
attains the lexicographic minimum among all minimizers closest to the origin; we can implement this
by adding ϵ∥x∥22 +

∑n
i=1 ϵ

i+1|xi| for sufficiently small ϵ ∈ (0, 1) to f , preserving its M-convexity.
This is in contrast to the L-convex case, where arbitrarily many minimizers always exist (see [40]).

Algorithm 1 Greedy algorithm

1: x← x◦

2: while not converged :
3: Find i, j ∈ N that minimize f(x− ei + ej)
4: if f(x) ≤ f(x− ei + ej) :
5: return x
6: x← x− ei + ej

We can solve M-convex function minimiza-
tion by a simple greedy algorithm shown
in Algorithm 1, which iteratively finds a
locally steepest direction, −ei + ej , and
proceeds along it. If this update does not
improve the objective value, the current so-
lution is ensured to be the minimizer x∗ =
argmin f due to the M-convexity [31, The-
orem 6.26]. The number of iterations de-
pends on the ℓ1-distance to x∗ as follows.

Proposition 2.2 ([44, Corollary 4.2]). Algorithm 1 terminates exactly in ∥x∗ − x◦∥1/2 iterations.

A similar iterative method is used in the L-convex case [39], whose number of iterations depends on
the ℓ∞-distance and a steepest direction is found by some combinatorial optimization algorithm (e.g.,
the Hopcroft–Karp algorithm in the bipartite-matching case). On the other hand, in the M-convex case,
computing a steepest direction is typically cheap (as we only need to find two elements i, j ∈ N ),
while the number of iterations depends on the ℓ1-distance, which can occupy a larger fraction of the
total time complexity than the ℓ∞-distance. Hence, reducing the number of iterations with predictions
can be more effective in the M-convex case. Section 3 presents a framework for this purpose.

Similar methods to Algorithm 1 are also studied in submodular function maximization [25]. Indeed,
M-convex function minimization captures a non-trivial subclass of submodular function maximization
that the greedy algorithm can solve (see [31, Note 6.21]), while it is NP-hard in general [32, 13]

3 Warm-start-with-prediction framework M-convex function minimization

We present a framework for warm-starting the greedy algorithm for M-convex function minimization
with predictions. Although it resembles those of previous studies [11, 39], it is worth stating explicitly
how the time complexity depends on prediction errors for M-convex function minimization.

We consider the following three phases as in previous studies: (i) obtaining an initial feasible solution
x◦ ∈ ZN from a prediction x̂ ∈ RN , (ii) solving a new instance by warm-starting an algorithm with
x◦, and (iii) learning predictions x̂. The following theorem gives a time complexity bound for (i) and
(ii), implying that we can quickly solve a new instance if a given prediction x̂ is accurate.

Theorem 3.1. Let f : ZN → R ∪ {+∞} be an M-convex function that has a unique minimizer
x∗ = argmin f and x̂ ∈ RN be a possibly infeasible prediction. Suppose that Algorithm 1 starts from
an initial feasible solution satisfying x◦ ∈ argmin{ ∥x− ⌊x̂⌉∥1 : x ∈ dom f }. Then, Algorithm 1
terminates in O(∥x∗− x̂∥1) iterations. Thus, if we can compute x◦ in Tinit time and find i, j ∈ N that
minimize f(x− ei + ej) in Step 3 in Tloc time, the total time complexity is O(Tinit +Tloc∥x∗− x̂∥1).

Proof. Due to Proposition 2.2, the number of iterations is bounded by ∥x∗−x◦∥1/2. Thus, it suffices
to prove ∥x∗ − x◦∥1 = O(∥x∗ − x̂∥1). By using the triangle inequality, we obtain ∥x∗ − x◦∥1 ≤
∥x∗−x̂∥1+∥x̂−⌊x̂⌉∥1+∥⌊x̂⌉−x◦∥1. We below show that the right-hand side is O(∥x∗−x̂∥1). The
second term is bounded as ∥x̂− ⌊x̂⌉∥1 ≤ ∥x̂− x∗∥1 since x∗ ∈ ZN . As for the third term, we have
∥⌊x̂⌉−x◦∥1 ≤ ∥⌊x̂⌉−x∗∥1 since x◦ ∈ dom f is a feasible point closest to ⌊x̂⌉ and x∗ ∈ dom f , and
the right-hand side, ∥⌊x̂⌉ − x∗∥1, is further bounded as ∥⌊x̂⌉ − x∗∥1 ≤ ∥⌊x̂⌉ − x̂∥1 + ∥x̂− x∗∥1 ≤
2∥x̂−x∗∥1 due to the previous bound on the second term. Thus, ∥x∗−x◦∥1 ≤ 4∥x̂−x∗∥1 holds.

Note that we round x̂ to a closest integer point ⌊x̂⌉ before projecting it onto dom f , while rounding
comes after projection in the L-/L♮-convex case [39]. This subtle difference is critical since rounding
after projection may result in an infeasible integer point that is far from the minimizer x∗ by O(n) in
the ℓ1-norm. To avoid this, we swap the order of the operations and modify the analysis accordingly.
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Let us turn to phase (iii), learning predictions. This phase can be done in the same way as previous
studies [11, 23]. In particular, we can learn predictions in an online fashion with the standard online
subgradient descent method (OSD) as in [23], which works as follows in our case. Let V ⊆ RN be a
convex set that we expect to contain an optimal prediction. For any sequence of M-convex functions
f1, . . . , fT , we regard Lt(x̂) := ∥x∗

t − x̂∥1 for t = 1, . . . , T as loss functions, where x∗
t is the

minimizer of ft. Fixing x̂1 ∈ V arbitrarily, for t = 1, . . . , T , OSD iteratively computes a subgradient
zt ∈ ∂Lt(x̂t) and set x̂t+1 = argminx̂∈V ∥x̂t − ηzt − x̂∥2, where η > 0 is the step size. OSD
returns predictions x̂1, . . . , x̂T that enjoy a regret bound (see, e.g., [33]), and a sample complexity
bound follows from online-to-batch conversion [5, 9]. Formally, the following proposition guarantees
that we can provably learn predictions to decrease the time complexity bound in Theorem 3.1.
Proposition 3.2 ([23]). Let ft : ZN → R ∪ {+∞} for t = 1, . . . , T be a sequence of M-convex
functions, each of which has a unique minimizer x∗

t = argmin ft, and V ⊆ RN be a closed convex
set whose ℓ2-diameter is D. Then, OSD with η = D/

√
nT returns x̂1, . . . , x̂T ∈ V that satisfy

T∑
t=1

∥x∗
t − x̂t∥1 ≤ min

x̂∗∈V

T∑
t=1

∥x∗
t − x̂∗∥1 +O(D

√
nT ).

Furthermore, for any distribution D over M-convex functions f : ZN → R ∪ {+∞}, each of which

has a unique minimizer x∗
f = argmin f , δ ∈ (0, 1], and ε > 0, given T = Ω

((
D
ε

)2
n log 1

δ

)
i.i.d.

draws, f1, . . . , fT , from D, we can compute x̂ ∈ V that satisfies

E
f∼D
∥x∗

f − x̂∥1 ≤ min
x̂∗∈V

E
f∼D
∥x∗

f − x̂∗∥1 + ε

with a probability of at least 1− δ via online-to-batch conversion (i.e., we apply OSD to ∥x∗
ft
− ·∥1

for t = 1, . . . , T and average the outputs).

The convex set V should be designed based on prior knowledge of upcoming instances. For example,
previous studies [11, 39] set V = [−C,+C]

N for some C > 0, which is expected to contain optimal
solutions of all possible instances; then D = 2C

√
n holds. In our case, we sometimes know that the

total amount of resources is fixed, i.e., x(N) = R, and that every xi is always non-negative. Then,
we may set V = {x ∈ [0, R]N : x(N) = R }, whose ℓ2-diameter is D = R

√
2.

3.1 Time complexity bound for general M-convex function minimization

We here discuss how to apply the above framework to general M-convex function minimization. The
reader interested in the main results in Table 1 can skip this section and go to Section 4.

For an M-convex function f : ZN → R ∪ {+∞}, given access to f ’s value and dom f , we can
implement the greedy algorithm with warm-starts so that both Tinit and Tloc are polynomially bounded.
Suppose that evaluating f(x) for any x ∈ ZN takes EOf time. Then, we can find a steepest descent
direction at any x ∈ dom f in Tloc = O(n2EOf ) time by computing f(x−ei+ej) for all i, j ∈ N . As
for the computation of x◦, we need additional information to identify dom f (otherwise, finding any
feasible solution may require exponential time in the worst case). Since dom f is an M-convex set, we
build on a fundamental fact that any M-convex set can be written as the set of integer points in the base
polyhedron of an integer-valued submodular function [15, 31]. A set function ρ : 2N → R ∪ {+∞}
is called submodular if ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ) holds for X,Y ⊆ N , and its base
polyhedron is defined as B(ρ) := {x ∈ RN : x(X) ≤ ρ(X) (X ⊆ N), x(N) = ρ(N) }, where
ρ(∅) = 0 and ρ(N) < +∞ are assumed. Thus, dom f is expressed as dom f = B(ρ) ∩ ZN with an
integer-valued submodular function ρ : 2N → Z ∪ {+∞}. We assume that, for any x ∈ ZN , we can
minimize the submodular function ρ+ x, defined by (ρ+ x)(X) := ρ(X) + x(X) for X ⊆ N , in
SFM time. Then, we can obtain x◦ ∈ dom f from ⌊x̂⌉ ∈ ZN in Tinit = O(nSFM) time, as detailed
in Appendix A.1. Therefore, Theorem 3.1 implies the following bound on the total time complexity.
Theorem 3.3. Given a prediction x̂ ∈ RN , we can minimize f in O(nSFM+n2EOf ·∥x∗−x̂∥1) time.

The current fastest M-convex function minimization algorithms run in O
(
n3 log L

nEOf

)
and O

((
n3+

n2 log L
n

)(
log L

n/ log n
)
EOf

)
time [43], where L = max{ ∥x− y∥∞ : x, y ∈ dom f }. Thus, our

algorithm runs faster if ∥x∗ − x̂∥1 = o(n) and SFM = o(n2EOf ). We discuss concrete situations
where our approach is particularly effective in Appendix A.2.
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4 Laminar convex minimization

This section presents how to obtain the time complexity bounds in Table 1 by applying our framework
to laminar convex minimization (Laminar) and its subclasses, which are special cases of M-convex
function minimization (see [31, Section 6.3]). We first introduce the problem setting of Laminar.

A laminar F ⊆ 2N is a set family such that for any X,Y ∈ F , either X ⊆ Y , X ⊇ Y , or X∩Y = ∅
holds. For convenience, we suppose that F satisfies the following basic properties without loss of
generality: ∅ ∈ F , N ∈ F , and {i} ∈ F for every i ∈ N . Then, Laminar is formulated as follows:

minimize
x∈ZN

∑
Y ∈F

fY (x(Y )) subject to x(N) = R, ℓY ≤ x(Y ) ≤ uY (Y ∈ F \ {∅, N}), (2)

where each fY : R→ R (Y ∈ F ) is a univariate convex function that can be evaluated in O(1) time,
R ∈ Z, and ℓY ∈ Z ∪ {−∞} and uY ∈ Z ∪ {+∞} for Y ∈ F . We denote the objective function by
fsum(x) :=

∑
Y ∈F fY (x(Y )). We let f : ZN → R∪{+∞} be a function such that f(x) = fsum(x)

if x satisfies the constraints in (2) and f(x) = +∞ otherwise; then, f is M-convex and dom f ⊆ ZN

represents the feasible region of (2). Nested is a special case where fsum is written as
∑

i∈N fi(xi)
and {Y ∈ F : |Y | ≥ 2 } = {Y1, Y2, . . . , Ym} consists of nested subsets, i.e., Y1 ⊂ Y2 ⊂ · · · ⊂ Ym,
and Box is a special case of Nested without nested-subset constraints. Note that our framework in
Section 3 only requires the ground set N to be identical over instances. Therefore, we can use it even
when both objective functions and constraints change over instances.

It is well known that we can represent a laminarF ⊆ 2N by a tree TF = (V, E). The vertex set is V =
F \{∅}. For Y ∈ V \{N}, we call X ∈ V a parent of Y if X is the unique minimal set that properly
contains Y ; let p(Y ) ∈ V denote the parent of Y . We call Y ∈ V \ {N} a child of X if p(Y ) = X .
This parent–child relation defines the set of edges as E = { (X,Y ) : X,Y ∈ V, p(Y ) = X }. Note
that each {i} ∈ V corresponds to a leaf and that N ∈ V is the root. For simplicity, we below suppose
the tree TF = (V, E) to be binary without loss of generality. If a parent has more than two children,
we can recursively divide them into one and the others, which only doubles the number of vertices.
Figure 1 illustrates a tree TF of a laminar F = {∅, {1}, {2}, {3}, {1, 2}, {1, 2, 3}}.
Applications of Laminar include resource allocation [30], equilibrium analysis of network congestion
games [16], and inventory and portfolio management [8]. We below describe a simple example so that
the reader can better grasp the image of Laminar; we will also use it in the experiments in Section 5.

{1} {2}

{1,2,3}

{3}
𝑥! 𝑥" 𝑥#

{1,2}

I
II

Figure 1: Image of tree TF .
Each leaf {i} ∈ V (i = 1, 2, 3)
has variable xi. The lower part
shows example assignments.

Example: staff assignment. We consider assigning R staff mem-
bers to n tasks, which form the ground set N . Each task is associated
with a higher-level task. For example, if staff members have com-
pleted tasks 1, 2 ∈ N , they are assigned to a new task Y = {1, 2},
which may involve integrating the outputs of the individual tasks.
The dependencies among all tasks, including higher-level ones, can
be expressed by a laminar F ⊆ 2N . Each task Y ∈ F is supposed
to be done by at least ℓY (≥ 1) and at most uY (≤ R) members. An
employer aims to assign staff members in an attempt to minimize
the total perceived workload. For instance, if task i ∈ N requires
ci > 0 amount of work and xi staff members are assigned to it, each
of them may perceive a workload of fi(xi) = ci/xi. Similarly, the
perceived workload of task Y = {1, 2} is fY (x(Y )) = cY /x(Y ).
The problem of assigning R staff members to n tasks to minimize the
total perceived workload, summed over all tasks in F , is formulated
as in (2). Figure 1 illustrates two example assignments, I and II. Here, people assigned to {1} and {2}
must do more tasks than those assigned to {3}, and hence assignment I naturally leads to a smaller
total perceived workload than II. We can also use any convex function fY on [ℓY , uY ] to model other
objective functions. Making it faster to solve such problems with predictions enables us to manage
massive allocations daily or more frequently.

Our main technical contribution is to obtain the following time complexity bound for Laminar via
Theorem 3.1, which also applies to Nested since it is a special case of Laminar.
Theorem 4.1. For Laminar, given a prediction x̂ ∈ RN , we can obtain an initial feasible solution
x◦ ∈ argmin{ ∥x− ⌊x̂⌉∥1 : x ∈ dom f } in Tinit = O(n) time and find a steepest descent direction
in Step 3 of Algorithm 1 in Tloc = O(n) time. Thus, we can solve Laminar in O(n∥x∗ − x̂∥1) time.
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We prove Theorem 4.1 by describing how to obtain an initial feasible solution and find a steepest
descent direction in Sections 4.1 and 4.2, respectively. In Section 4.3, we further reduce the time
complexity bound for Box. The algorithmic techniques we use below are not so complicated and can
be implemented efficiently, suggesting the practicality of our warm-start-with-prediction framework.

4.1 Obtaining initial feasible solution via fast convex min-sum convolution

We show how to compute x◦ ∈ dom f in Tinit = O(n) time. Given prediction x̂ ∈ RN , we first
compute ⌊x̂⌉ ∈ ZN in O(n) time and then solve the following special case of Laminar to obtain x◦:

minimize
x∈ZN

∑
i∈N

|xi − ⌊x̂i⌉| subject to x(N) = R, ℓY ≤ x(Y ) ≤ uY (Y ∈ F \ {∅, N}). (3)

Note that it suffices to find an integer optimal solution to the continuous relaxation of (3) since all the
input parameters are integers. Thus, we below discuss how to solve the continuous relaxation of (3).

−1 +1

𝑏

𝑢

ℓ

𝑔∗

ℓ 𝑏 𝑢

−1 +1
𝑔

Conjugate

Figure 2: Conjugate
relation of g and g∗.

Solving (3) naively may be as costly as solving the original Laminar instance.
Fortunately, however, we can solve it much faster using the special structure
of the ℓ1-norm objective function. The method we describe below is based
on the fast convex min-sum convolution [45], which immediately provides
an O(n log2 n)-time algorithm for solving (3). We simplify it and eliminate
the logarithmic factors by using the fact that the objective function has only
two kinds of slopes, ±1.

We suppose that each non-leaf vertex Y ∈ V in TF = (V, E) has a variable
xY ∈ R, in addition to the original variables xi for leaves {i} ∈ V . We
consider assigning a univariate function g : R→ R∪{+∞} of the following
form to each vertex in V:

g(x) = |x− b|+ δ[ℓ,u](x), (4)

where ℓ, b, u ∈ Z∪{±∞} and ℓ ≤ b ≤ u. Note that if g is given by (4) up to an additive constant, its
convex conjugate g∗(p) = sup{ ⟨p, x⟩ − g(x) : x ∈ R } is a piecewise-linear function whose slope
is ℓ if p ≤ −1, b if −1 ≤ p ≤ +1, and u if p ≥ +1 (where ℓ = b and/or b = u can occur). Figure 2
illustrates this conjugate relation. We below construct such functions in a bottom-up manner on TF .

First, we assign function gi(xi) = |xi−⌊x̂i⌉|+δ[ℓi,ui](xi) to each leaf {i} ∈ V , which represents the
ith term of the objective function and the constraint on xi in (3). Next, given two functions gX(xX) =
|xX − bX |+ δ[ℓX ,uX ](xX) and gY (xY ) = |xY − bY |+ δ[ℓY ,uY ](xY ) of X,Y ∈ V with an identical
parent X ∪ Y ∈ V , we construct the parent’s function as gX∪Y = (gX □ gY )+ δ[ℓX∪Y ,uX∪Y ], where
(gX □ gY )(xX∪Y ) := min{ gX(xX) + gY (xY ) : xX + xY = xX∪Y } is the infimal convolution.
We can confirm that gX∪Y also takes the form of (4) as follows. Since gX and gY are of the form (4),
g∗X and g∗Y have the same breakpoints,±1 (see Figure 2). Furthermore, since gX □gY = (g∗X +g∗Y )

∗

holds (e.g., [37, Theorem 16.4]), gX □ gY takes the form of (4) with ℓ = ℓX + ℓY , b = bX + bY , and
u = uX + uY . Finally, adding δ[ℓX∪Y ,uX∪Y ] preserves the form of (4). We can compute resulting
ℓ, b, and u values of gX∪Y in O(1) time, and hence we can obtain gY for all Y ∈ V in a bottom-up
manner in O(n) time. By construction, for each Y ∈ V , gY (xY ) indicates the minimum objective
value corresponding to the subtree, (VY , EY ), rooted at Y when xY is given. That is, we have

gY (xY ) = min
{∑

i∈Y |xi − ⌊x̂i⌉| : x(Y ) = xY , ℓY ′ ≤ x(Y ′) ≤ uY ′ (Y ′ ∈ VY \ {Y })
}

up to constants ignored when constructing gY , where gY (xY ) = +∞ if the feasible region is empty.
Thus, gN (R) corresponds to the minimum value of (3), and our goal is to find integer values xY for
Y ∈ V that attain the minimum value when xN = R ∈ Z is fixed.

Given gY constructed as above, we can compute desired xY values in a top-down manner as follows.
Let X ∪ Y ∈ V be a non-leaf vertex with two children X and Y . Once xX∪Y ∈ dom gX∪Y is fixed,
we can regard min{ gX(xX) + gY (xY ) : xX + xY = xX∪Y } (= gX∪Y (xX∪Y )) as univariate
convex piecewise-linear minimization with variable xX ∈ R (since xY = xX∪Y − xX ), which we
can solve in O(1) time. Moreover, since xX∪Y and all the parameters of gX and gY are integers, we
can find an integral minimizer xX ∈ Z (and xY = xX∪Y − xX ∈ Z). Starting from xN = R ∈ Z,
we thus compute xY values for Y ∈ V in a top-down manner, which takes O(n) time. The resulting
xi value for each leaf {i} ∈ V gives the ith element of a desired initial feasible solution x◦ ∈ dom f .
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4.2 Finding steepest descent direction via dynamic programming

We present a dynamic programming (DP) algorithm to find a steepest descent direction in Tloc = O(n)
time. Our algorithm is an extension of that used in [30]. The original algorithm finds i that minimizes
f(x− ei + ej) for a fixed j in O(n) time. We below extend it to find a pair of (i, j) in O(n) time.

Let x ∈ dom f be a current solution before executing Step 3 in Algorithm 1. We define a directed
edge set, Ax, on the vertex set V as follows:

Ax = { (p(Y ), Y ) : Y ∈ V \ {N}, x(Y ) < uY } ∪ { (Y, p(Y )) : Y ∈ V \ {N}, x(Y ) > ℓY }.

Note that x− ei + ej is feasible if and only if (V, Ax) has a directed path from {i} ∈ V to {j} ∈ V .
We then assign an edge weight wX,Y to each (X,Y ) ∈ Ax defined as

wX,Y =

{
fY (x(Y ) + 1)− fY (x(Y )) if X = p(Y ),

fX(x(X)− 1)− fX(x(X)) if Y = p(X).

By the convexity of fY , we have wp(Y ),Y ≥ wY,p(Y ), i.e., there is no negative cycle. If x− ei + ej
is feasible, fsum(x − ei + ej) − fsum(x) is equal to the length of a shortest path from {i} to {j}
with respect to the edge weights wX,Y (see [30, Section 3.3]). Therefore, finding a steepest descent
direction,−ei+ ej , reduces to the problem of finding a shortest leaf-to-leaf path in this (bidirectional)
tree Tx := (V, Ax). Constructing this tree takes O(n) time.

We present a DP algorithm for finding a shortest leaf-to-leaf path. For Y ∈ V , we denote by Tx(Y )
the subtree of Tx rooted at Y . Let LY↑ be the length of a shortest path from a leaf to Y in Tx(Y ), LY↓
the length of a shortest path from Y to a leaf in Tx(Y ), and LY△ the length of a shortest path between
any leaves in Tx(Y ). Clearly, LY↑ = LY↓ = LY△ = 0 holds if Y is a leaf in Tx. For a non-leaf vertex
Y ∈ V , let C(Y ) denote the set of children of Y in Tx. We have the following recursive formulas:

LY↑ = min
X∈C(Y ):
(X,Y )∈Ax

{
LX↑ + wX,Y

}
, LY↓ = min

X∈C(Y ):
(Y,X)∈Ax

{
LX↓ + wY,X

}
, LY△ = min

{
LY↑ + LY↓ , min

X∈C(Y )
LX△

}
,

where we regard the minimum on an empty set as +∞. Note that, if shortest leaf-to-Y and Y -to-leaf
paths in Tx(Y ) are not edge-disjoint, there must be a leaf-to-leaf simple path in Tx(Y ) whose length
is no more than LY↑ + LY↓ since no negative cycle exists. According to these recursive formulas, we
can compute LY↑ , L

Y
↓ , and LY△ for all Y ∈ V in O(n) time by the bottom-up DP on Tx. Then, LN△

is the length of a desired shortest leaf-to-leaf path, and its leaves {i}, {j} ∈ V can be obtained by
backtracking the DP table in O(n) time. Thus, we can find a desired direction −ei + ej in O(n) time.

4.3 Faster steepest descent direction finding for box-constrained case

We focus on Box (1) and present a faster method to find a steepest descent direction, which takes only
Tloc = O(log n) time after an O(n)-time pre-processing. Note that we can obtain an initial feasible
solution with the same method as in Section 4.1; hence Tinit = O(n) also holds in the Box case.
Theorem 4.2. For Box, given a prediction x̂ ∈ RN , after an O(n)-time pre-processing (that can
be included in Tinit = O(n)), we can find a steepest descent direction in Step 3 of Algorithm 1 in
Tloc = O(log n) time. Thus, we can solve Box in O(n+ log n · ∥x∗ − x̂∥1) time.

Proof. In the Box case, f(x−ei+ej)−f(x) = fi(xi−1)−fi(xi)+fj(xj+1)−fj(xj) holds if x
and x−ei+ej are feasible. Furthermore, we only need to care about the box constraints, ℓi ≤ xi ≤ ui

for i = 1, . . . , n (since x(N) = R is always satisfied due to the update rule). Therefore, by keeping
∆−

k := fk(xk−1)−fk(xk)+δ[ℓk+1,uk](xk) and ∆+
k := fk(xk+1)−fk(xk)+δ[ℓk,uk−1](xk) values

for k = 1, . . . , n with two min-heaps, respectively, we can efficiently find i ∈ argmin{∆−
k }nk=1

and j ∈ argmin{∆+
k }nk=1; then, −ei + ej is a steepest descent direction. More precisely, at the

beginning of Algorithm 1, we construct the two heaps that maintain ∆−
k and ∆+

k values, respectively,
and two arrays that keep track of the location of each element in the heaps; this pre-processing takes
O(n) time. Then, in each iteration of Algorithm 1, we can find a steepest descent direction −ei + ej ,
update ∆−

i , ∆+
i , ∆−

j , and ∆+
j values (by the so-called increase-/decrease-key operations), and update

the heaps and arrays in Tloc = O(log n) time. Thus, Theorem 3.1 implies the time complexity.
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Figure 3: The number of iterations of the greedy algorithm initialized with Learn, Relax, and Cold.
The curve and error band show the mean and standard deviation of 10 independent runs, respectively.

5 Experiments

We complement our theoretical results with experiments. We used MacBook Air with Apple M2
chip, 24GB of memory, and macOS Ventura 13.2.1. We implemented algorithms in Python 3.9.12
with libraries such as NumPy 1.23.2. We used Gurobi 10.0.1 [17] for a baseline method explained
later. The source code is available at https://github.com/ssakaue/alps-m-convex-code.

5.1 Staff assignment

We consider Laminar instances of the staff-assignment setting described in Section 4. Suppose that
we have R = 12800 staff members and n = 128 tasks. Let TF = (V, E) be a complete binary tree
with n leaves. Define an objective function and inequality constraints as fsum(x) =

∑
Y ∈V cY /x(Y )

and ℓY ≤ x(Y ) ≤ R for Y ∈ F \ {∅, N}, respectively, with cY and ℓY values defined as follows.
We set cY = max{

∑
i∈Y i + σua, 1}, where ua follows the standard normal distribution and σ

controls the noise strength. We let ℓY = min{2h + ub, R/2n−h}, where h ∈ {0, 1, . . . , log n} is the
height of Y in TF (a leaf Y has h = 0) and ub is drawn uniformly at random from {0, 1, . . . , 50};
the minimum with R/2n−h is taken to ensure that the feasible region is non-empty. We thus create
a dataset of T = 100 random instances for each σ ∈ {1, 5, 10, 20}. We generate 10 such random
datasets independently to calculate the mean and standard deviation of the results. The T instances
arrive one by one and we learn predictions from optimal solutions to past instances online. By design
of cY , the ith entry of an optimal solution tends to be larger as i increases, which is unknown in
advance and should be reflected on predictions x̂ by learning from optimal solutions to past instances.

We learn predictions x̂t ∈ RN for t = 1, . . . , T by using OSD on V = {x ∈ [0, R]N : x(N) = R }
with a step size of 0.01

√
R/n, where the projection onto V is implemented with a technique in [3].

We use the all-one vector multiplied by R/n as an initial prediction, x̂0 ∈ V , and set the tth prediction,
x̂t, to the average of past t outputs, based on online-to-batch conversion. We denote this method
by “Learn.” We also use two baseline methods, “Cold” and “Relax”, which obtain initial feasible
solutions of the greedy algorithm as follows. Cold always uses x̂0 as an initial feasible solution.
Relax is a variant of the continuous relaxation approach [30], the fastest method for Laminar with
quadratic objectives. Given a new instance, Relax first solves its continuous relaxation (using Gurobi),
where the objective function is replaced with its quadratic approximation at x̂0, and then converts
the obtained solution into an initial feasible solution, as with our method. Note that Relax requires
information on newly arrived instances, unlike Learn and Cold. Thus, Relax naturally produces good
initial feasible solutions while incurring the overhead of solving new relaxed problems. We compare
those initialization methods in terms of the number of iterations of the greedy algorithm.

Figure 3 compares Learn, Relax, and Cold for each noise strength σ. Learn always outperforms Cold,
and it does even Relax if σ ≤ 10, suggesting that under moderate noise levels, learning predictions
from past optimal solutions can accelerate the greedy algorithm more effectively than solving the
relaxed problem of a new instance. The advantage of Learn decreases as σ increases, as expected.

5.2 Resource allocation

We also present experiments using Nested instances of [47, Section 6.3], which include three types of
problems, denoted by F, CRASH, and FUEL. The objective functions of F, CRASH, and FUEL are written
as

∑n
i=1 fi(xi) where fi(xi) = x4

i /4 + pixi, fi(xi) = ki + pi/xi, and fi(xi) = pi · ci(ci/xi)
3,

respectively, with some input parameters pi, ki, ci. F is a synthetic problem of optimizing the
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Figure 4: The number of iterations of the greedy algorithm initialized with Learn, Relax, and Cold.
The curve and error band show the mean and standard deviation of 10 independent runs, respectively.

fourth-order polynomial, while CRASH and FUEL come from real-world project crashing and ship
speed optimization, as noted in [46]. We create Nested instances with n = 100 for F, CRASH, and
FUEL based on the procedure of [47]. We then generate T = 100 instances by perturbing parameters
defining constraints and objectives with Gaussian noises multiplied by σ = 0.1, 1.0, 10.0, which
controls the noise strength. As with the previous experiments, we measure the number of iterations of
the greedy algorithm initialized by Cold, Relax, and Learn over the 100 instances. Regarding Learn,
we set OSD’s step size in the same manner as the previous experiments, and each element of an initial
prediction x̂0 is set to ⌊R/n⌋ or ⌊R/n⌋+ 1 at random so that x̂0(N) = R holds.

Figure 4 shows the results. Similar to the previous synthetic setting, Learn attains fewer iterations
than Relax and Cold for CRASH and FUEL with moderate noise strengths (σ = 0.1, 1.0). As for
F, Relax performs extremely well and surpasses Learn, probably because the synthetic fourth-
order polynomial objective is easy to handle with the continuous-relaxation method used in Relax.
Nevertheless, it is significant that Learn can surpass Relax for CRASH and FUEL, which come from
real-world applications, under moderate noises.

6 Conclusion and limitations

We have extended the idea of warm-starts with predictions to M-convex function minimization. By
combining our framework with algorithmic techniques, we have obtained specific time complexity
bounds for Laminar, Nested, and Box. Those bounds can be better than the current best worst-case
bounds given accurate predictions, which we can provably learn from past data. Experiments have
confirmed that using predictions reduces the number of iterations of the greedy algorithm.

Since our focus is on improving theoretical guarantees with predictions, further study of practical
aspects is left for future work. While we have used the standard OSD for learning predictions, we
expect that more sophisticated learning methods can further improve the empirical performance. Also,
extending the framework to other problem classes is an exciting future direction. A technical open
problem is eliminating Assumption 2.1, although it hardly matters in practice. We expect the idea
of [40] for the L-/L♮-convex case is helpful, but it seems more complicated in the M-convex case.
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A Missing details in Section 3.1

A.1 Projection onto base polyhedra via submodular function minimization

We prove Theorem 3.3 by presenting how to project the rounded point ⌊x̂⌉ ∈ ZN of a prediction
x̂ ∈ RN onto the effective domain dom f of a general M-convex function f : ZN → R ∪ {+∞}.
Recall that we have access to the submodular function ρ : 2N → Z∪{+∞}with dom f = B(ρ)∩ZN

and that we can minimize ρ+ x in time SFM for any x ∈ ZV . Without loss of generality, we assume
⌊x̂⌉ to be all zeros, denoted by 0; otherwise, we can replace ρ with ρ − ⌊x̂⌉ since B(ρ − ⌊x̂⌉) =
{x− ⌊x̂⌉ : x ∈ B(ρ) } holds (the translation of a base polyhedron [15]). We below discuss how to
compute the ℓ1-projection, x◦ ∈ argmin{ ∥x∥1 : x ∈ B(ρ) }.
For x ∈ B(ρ), we have ∥x∥1 = x(N)−2x−(N) = ρ(N)−2x−(N), where x− := (min{xi, 0})i∈N .
Thus, it holds that argmin{ ∥x∥1 : x ∈ B(ρ) } = argmax{x−(N) : x ∈ B(ρ) }. The min-max
theorem of submodular function minimization [12, 31, 15] claims that the minimum value of ρ(X)
over X ⊆ N coincides with the maximum value of x−(N) over x ∈ B(ρ), and there exists an
integral dual optimal solution if ρ is integer-valued. Therefore, we can project ⌊x̂⌉ = 0 onto dom f
by computing an integral optimal dual solution to submodular function minimization of ρ. However,
no existing submodular function minimization algorithm directly returns an integral optimal dual
solution, even if the objective function is integer-valued. Hence, we present a procedure to obtain an
integral optimal dual solution that calls a submodular function minimization algorithm O(n) times.

We first rewrite the dual problem max{x−(N) : x ∈ B(ρ) } as max{x(N) : x ∈ P(ρ), x ≤ 0 },
where ≤ means the element-wise comparison and

P(ρ) := {x ∈ RN : x(X) ≤ ρ(X) (X ⊆ N) }

is the submodular polyhedron of ρ. Note that if x̃ ∈ P(ρ) is an optimal solution to the rewritten
problem, any point x◦ ∈ B(ρ) with x◦ ≥ x̃ is an optimal solution to the original dual problem.
The maximizer set of the rewritten problem is the base polyhedron of a submodular function ρ0

defined by ρ0(X) := min{ ρ(Y ) : Y ⊆ X } for X ⊆ N [15, Section 3.1]. Thus, we can reduce
the evaluation of ρ0(X) for X ⊆ N to minimization of ρ + x with x ∈ ZN such that xi is 0
for i ∈ X and a sufficiently large constant for i ∈ N \ X . We can obtain an (extreme) point
x̃ ∈ B(ρ0) with the greedy algorithm on the submodular polyhedron P(ρ0); that is, we set x̃i =
ρ0({1, . . . , i}) − ρ0({1, . . . , i − 1}) for i ∈ N [15, Section 3.2]. Thus, we can compute x̃ in
O(nSFM) time. We then convert x̃ back into an optimal solution to the original dual problem by
computing a point x◦ ∈ B(ρ) with x◦ ≥ x̃. To this end, we again use (another form of) the greedy
algorithm: initializing x◦ as x̃, for i = 1 to n, we put x◦ ← x◦ + ĉ(x◦, ei)ei, where

ĉ(x◦, ei) := max{λ ∈ R : x◦ + λei ∈ P(ρ) } = min{ ρ(X)− x◦(X) : X ⊆ N, i ∈ X }

is the saturation capacity [15]. We can compute ĉ(x◦, ei) in time SFM in the same way as evaluation
of ρ0(X). Since x̃ and x◦ are integral, the resulting x◦ is the desired projection. To conclude, we can
compute a projection via O(n) calls to submodular function minimization, i.e., Tinit = O(nSFM).

A.2 Discussion on time complexity bounds for general M-convex function minimization

We discuss some scenarios where our algorithm given in Section 3.1 can be faster than general M-
convex function minimization algorithms. For a general M-convex function f : ZN → R ∪ {+∞},
our algorithm takes Tinit = O(nSFM) time for projection and Tloc = O(n2EOf ) time for finding a
steepest descent direction, which results in the total time complexity of O(Tinit + Tloc∥x∗ − x̂∥1) =
O(nSFM+n2EOf ·∥x∗−x̂∥1) as described in Theorem 3.3. Here, for a given x ∈ ZN , EOf and SFM
denote the time to evaluate f(x) and to minimize ρ+ x, respectively, where ρ : 2N → R ∪ {+∞} is
the submodular function representing dom f . The current fastest M-convex function minimization
algorithms run in O

(
n3 log L

nEOf

)
and O

((
n3 + n2 log L

n

)(
log L

n/ log n
)
EOf

)
time [43],4 where

L = max{ ∥x− y∥∞ : x, y ∈ dom f }. Therefore, our algorithm runs faster if ∥x∗ − x̂∥1 = o(n)
and SFM = o(n2EOf ) (or Tinit = o(n3EOf )). We below list some situations where Tinit =
o(n3EOf ) or SFM = o(n2EOf ) can occur.

4The algorithms in [43] require a feasible initial point x◦ ∈ dom f as input. If the finite- and integer-valued
submodular function ρ : 2N → Z representing dom f is given instead of x◦, we can obtain a point in dom f by
the greedy algorithm on P(ρ) that evaluate ρ’s value O(n) times [15].
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First, consider the case where dom f is fixed over all instances. In this situation, we can compute
x◦ ∈ argmin{ ∥x− ⌊x̂⌉∥1 : x ∈ dom f } from a prediction x̂ before a new actual instance of f is
revealed, which means that the projection can be included in the phase of computing a prediction x̂.
As a result, we can exclude the time for obtaining an initial solution from the time complexity bound
of Theorem 3.1, i.e., Tinit = 0.

The second scenario is the case where we can represent an objective M-convex function f as

f(x) =

{
h(x) (x ∈ B(ρ)),

+∞ (otherwise)
(5)

using an M-convex function h : ZN → R with domh = ZN and a submodular function ρ : 2N →
Z ∪ {+∞}. Although the function f in the form of (5) is not always M-convex (but M2-convex), it is
so in some special cases where, e.g., h is separable convex and/or ρ is modular (linear). Notably, the
separable convex case is widely studied in resource allocation [20, 30, 41]. In this case, evaluating
f(x) for a given x ∈ ZN involves the membership testing of x for B(ρ), which costs SFM time since
x ∈ B(ρ) is equivalent to x(N) = ρ(N) and minX⊆N (ρ− x)(X) ≥ 0. Thus, SFM ≤ EOf holds,
and hence we can assume SFM = o(n2EOf ). We, however, remark that algorithms specialized for
this case can run faster than the general M-convex function minimization algorithms (see, e.g., [41,
Section 4.5]), and hence ours is not necessarily the best choice. We omit detailed comparisons with
them since they involve more case-specific discussions.

The last scenario is the case where EOf is sufficiently larger than the time to evaluate ρ(X) for a
given X ⊆ N , denoted by EOρ. The fastest submodular function minimization algorithm runs in
SFM = O

(
n3 log2 n · EOρ + n4 logO(1) n

)
time [26]. Therefore, we have SFM = o(n2EOf ) if

EOf is asymptotically larger than n log2 n · EOρ + n2 logO(1) n. More efficient submodular function
minimization algorithms are available if ρ enjoys some special structures; for example, ρ is the rank
function of certain matroids. There also exists an empirically fast algorithm for submodular function
minimization [6, 24], although its time complexity is worse than that of [26].
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