
Appendix A: Neuron-wise Mask

A.1 Details of γ.

We aim to generate a gated version ml
t of a single-layer embedding elt to determine the neuron

selections. But it is hard to train the layer embedding with backpropagation as demonstrated in [44].
Thus, we follow [44] and apply an annealing strategy on γ, which is the scaling factor. Specifically, γ
is annealed during training, inducing a gradient flow and set γ = γmax. Eq. (3) is to approximate a
unit step function as the mask, with ml,i

t → {0, 1} when γ → ∞ while ml,i
t → 1/2 when γ → 0.

In the implementations, we start a training epoch with all units (i.e., neurons) being equally active,
which are progressively polarized within the epoch. Consequently, γ is annealed as follows,

γ =
1

γmax
+ (γmax −

1

γmax
)
b′ − 1

T − 1
, (11)

where T is the total number of batches in an epoch and b′ is the batch index. In this manner, we can
finally obtain the optimal masks for each task. As depicted in Fig. 1 (a), we can mask the unused
neurons and activate task-related neurons.

A.2 Details of η.

Intuitively, η ≥ 0 is to control the available capacity for each task. The higher the value of η, the
lower the number of neurons activated in the task. And there is no usage limit if η = 0. In other
words, the setting of η can be regarded as a compressibility constant that can affect the compression
rate of the learned network for a specific task. A large value of η leads to a more sparse network.

Appendix B: Data-free Mask

B.1 Details of Dirichlet Distribution.

As we mentioned in the main text, any output representation (i.e., Softmax space) can be sampled
from a Dirichlet distribution as its ingredients fall in the range of [0,1] and their sum is 1. Specifically,
the distribution to represent the (Softmax) outputs oc

t of c-th class can be modeled as Dir(Ct, β×αc),
where c ∈ {1, 2, · · · , Ct} is the class index regarding task t, αc ∈ RCt is the concentrate vector to
model c-th class, β is a scaling parameter [52, 51, 35], and any real value in αc is greater than 0.
Intuitively, αc over class c is to determine how concentrated the probability mass of a sample from a
Dirichlet is likely to be. For instance, the mass will be highly concentrated in only a few components,
while the rest of the mass will be almost zero. We notice that β in Dir(Ct, β × αc) is the scaling
factor that models the spread of the Dirichlet distribution. And the very low values for β would yield
the highly sparse softmax outputs. As such, our study follows [51] and set β in [1, 0.1] for each
dataset, which is capable of encouraging higher diversity of softmax outputs.

B.2 Details of Mt.

As we argued that there could exist interactive correlations between different classes in a single
task, it is hard to enforce the outputs of a given sample to follow the one-hot representation. Thus,
the constructed matrix Mt for task t is to indicate the class similarity. Specifically, we use the
task-specific head, e.g., W t that connects the final and the pre-final layers to generate a normalized
class similarity matrix Mt. As the head is to specify the final class of a given sample, each neuron in
the head corresponds to a class c, whereas the affiliated weights of each neuron can be regarded as the
template of the class c. For instance, each value M i,j

t in Mt reflecting the class similarity between
class i and j can be computed by:

M i,j
t =

W i
t

T
W j

t

||W i
t|||W

j
t ||

. (12)

As each value in ‘concentration’ parameter αc over class c is a positive real number, we likewise
perform a min-max normalization over each row of the class similarity matrix. As shown in Fig. 7,
we can find that the matrix can well show the interactive correlations between different classes in
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TinyImageNet dataset. For instance, as shown in Fig. 8, from a visualization point of view, the head
weights corresponding to class ‘C8’ are more similar to class ‘C9’, which can be clearly caught in the
similarity matrix.
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Figure 7: Confusion Matrix of the first task in TinyImageNet.

(a) C8 (b) C9

Figure 8: Visualization of head weights in TinyImageNet.

Appendix C: Experimental Setup

We describe our experimental setup in detail, including the datasets, evaluation protocols, and
implementations.

C.1 Datasets.

The original datasets used are summarized in Table 4. In detail, we conducted the results on four
variants, including PMNIST, RMNIST, CIFAR-100, and TinyImageNet. PMNIST and RMNIST
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are two variants of the original MNIST dataset † containing a large number of 28×28 monochrome
images of handwritten digits. In addition, PMNIST and RMNIST are widely used in incremental
learning, where each task of the former is transformed by a fixed and different permutation of pixels,
while each task of the latter is rotated by a different angle between 0 to 360 degrees. CIFAR-100 is a
CIFAR object recognition dataset with 100 classes. We follow [54] and randomly divide CIFAR-100
into 20 tasks, where each task contains 5 different classes and their examples. TinyImageNet †

contains 100,000 64×64 colored images in 200 classes. We split twenty 10-way classification tasks
from the original TinyImageNet for task incremental learning. For fairness, we randomly sample a
subset of the original dataset and also make the testing set the same as the training set following [44].
For PMNIST and RMNIST, we assign each task 60000 images for training and 10000 images for
testing to make the task more difficult. For CIFAR-100 and TinyImageNet, we follow the original
dataset settings and use 500 train images and 100, 50 testing images for each class respectively.

Table 4: The statistics of four benchmark datasets.
Dataset Train Test Classes
MNIST [56] 60,000 10,000 10
CIFAR-100 [55] 50,000 10,000 100
TinyImageNet [19] 100,000 10,000 200

C.2 Evaluation Metrics.

To fairly show the model performance and the ability of knowledge transfer (including back and
forward knowledge transfer), we use three metrics, i.e., ACC, BWT, and Trans. ACC is a common
metric to evaluate the performance of incremental learning. After all tasks are continually well learned,
we calculate the average accuracy of all tasks, where the accuracy of each task, denoted by accT,t,
is obtained by testing its corresponding test data. To measure backward knowledge transfer, BWT
can show the impact of new learning tasks on the accuracy performance of old tasks. Furthermore,
BWT> 0 indicates the learning of new tasks has a positive impact on old task performance, BWT< 0
indicates that the learning of the new task has a negative knowledge transfer on the old task. When
BWT is a large negative value, we say that the CL model confronts a Catastrophic Forgetting problem.
If BWT= 0, we say the CL model has no forgetting issue. To measure whether learned knowledge
in old tasks facilitates the learning of new tasks, we use Trans to uncover the ability of forward
knowledge transfer. Specifically, we treat each task training as a single task learning and compare its
accuracy performance with the task performance in the incremental learning context. More formally,
these three metrics are defined as follows:

Average Accuracy: ACC =
1

T

T∑
t=1

accT,t; (13)

Backward Transfer: BWT =
1

T − 1

T−1∑
t=1

accT,t − acct,t; (14)

Forward Transfer: Trans =
1

T

T∑
t=1

accT,t −acct. (15)

Herein, acct is the task t’s accuracy performance in a single task learning manner and acct,t is the
accuracy of task t on the corresponding test data after it is well trained in the CL context.

C.3 Implementations.

Hyperparameter Settings. We implemented our DSN in Python using Pytorch library and all the
experiments ran on a single NIVDIA GTX Titan X GPU. We trained all methods, including our DSN,
with SGD optimizer. We set the hidden size of GRU to 100; the coefficient of η in Eq. (8) is 0.75; the
initial learning rate on four datasets is set to 0.05; the temperature value τ is set to 20; the number

†http://yann.lecun.com/exdb/mnist/
†https://www.kaggle.com/c/tiny-imagenet
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of impressions is set to 1000; and we set γmax to 200. In the Dirichlet distribution, we set β in [1,
0.1] for each dataset. To optimize the random noisy image, we employ the Adam optimizer with a
learning rate of 0.01, while the maximum number of iterations is set to 1500; and the numbers of
training epochs for the task network on PMNIST, RMNIST, CIFAR-100, and TinyImageNet are 30,
30, 50, and 50, respectively.

Hypernetwork Architecture: We explain the architecture details of task networks including MLPs
and CNNs. Note that our baselines also use the same architectures for a fair comparison.

• MLP for PMNIST and RMNIST: We follow [44] and start with 784-2000-2000-10 neurons with
RELU activation.

• CNN for CIFAR-100 and TinyImageNet: We also follow [44] and extend a modified version of
AlexNet for the first task. In more detail, it has three convolutional layers with 64, 128, and 256
filters, with 4×4, 3×3, and 2×2 kernel sizes, respectively, and plus two fully-connected layers of
2048 neurons each. Also, we use rectified linear units as activation and utilize a 2×2 max-pooling
operation after three convolutional layers.

Codes of Baselines: We have used 10 representative methods for comparison with DSN. SGD is
the simplest method and we implemented it by ourselves. For the remaining baselines, we extend
their publicly available source codes to conduct the experiments. The url’s for the source codes are
listed in Table 5.

Table 5: The public source codes of baselines.
Method Source
EWC [3] https://github.com/joansj/hat/tree/master/src/approaches
IMM variants [25] https://github.com/joansj/hat/tree/master/src/approaches
PGN [9] https://github.com/joansj/hat/tree/master/src/approaches
DEN [36] https://github.com/jaehong31/DEN
RCL [21] https://github.com/xujinfan/Reinforced-Continual-Learning
HAT [44] https://github.com/joansj/hat
SupSup [22] https://github.com/RAIVNLab/supsup
WSN [19] https://github.com/ihaeyong/WSN

Codes of our DSN: We note that our source codes are submitted as part of the supplementary
material. Due to the limit of maximum file size, we provide the full experiment code for CIFAR100
and it can easily be extended to other datasets.

Table 6: The performance deviations on four datasets.

Model P-MNIST R-MNIST
ACC (%) BWT(%) Trans(%) ACC(%) BWT(%) Trans(%)

SGD 1.178 1.825 1.178 0.623 0.533 0.623
EWC 0.705 0.068 0.705 0.244 0.087 0.244
IMM-mean 0.860 0.117 0.860 0.620 0.215 0.620
IMM-mode 0.546 0.510 0.546 0.342 0.235 0.342
PGN 0.264 0.000 0.264 0.126 0.000 0.126
DEN 1.258 1.258 1.258 0.241 0.176 0.241
RCL 0.410 0.000 0.410 0.335 0.000 0.335
HAT 0.584 0.000 0.584 0.191 0.000 0.191
SupSup 0.254 0.000 0.254 0.282 0.000 0.282
WSN 0.374 0.000 0.374 0.273 0.000 0.273
DSN 0.212 0.018 0.212 0.113 0.024 0.113

Model CIFAR-100 TinyImageNet
ACC(%) BWT(%) Trans(%) ACC(%) BWT(%)

SGD 2.142 1.485 2.142 1.417 1.229 1.417
EWC 0.495 1.154 0.495 0.471 0.323 0.471
IMM-mean 0.693 0.864 0.693 0.981 0.735 0.981
IMM-mode 0.476 1.976 0.476 0.594 0.511 0.594
PGN 1.758 0.000 1.758 1.978 0.000 1.978
DEN 1.508 1.391 1.508 0.981 0.513 0.981
RCL 2.124 0.000 2.124 0.782 0.000 0.782
HAT 0.433 0.000 0.433 0.327 0.000 0.327
SupSup 0.412 0.000 0.412 0.318 0.000 0.318
WSN 0.459 0.000 0.459 0.325 0.000 0.325
DSN 0.334 0.025 0.334 0.247 0.017 0.247
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Appendix D: Additional Experimental Results

D.1 Performance Deviations.

As we have shuffled the tasks with 5 different seeds to alleviate the influence of task mixture in our
study, Table 6 reports the standard deviations of model performance on four datasets. We can observe
that the achievement of our proposed DSN is stable, which is similar to recent approaches such as
SupSup and WSN.

D.2 Analysis of The Number of Tasks.

In Fig. 9, we show the ultimately used capacity of two fully connected layers (denoted by FC1 and
FC2, respectively) under different settings of the number of tasks. Intuitively, as we increase the
number of tasks for each incremental learning, the capacity used increases accordingly. For instance,
incremental learning that contains 40 tasks uses more capacity than incremental learning that contains
20 tasks. However, in our experiment, we notice that the fact may break the rule occasionally (e.g.,
handling 50 tasks). A possible reason for this is that DSN may prefer to use previous neurons from
learned tasks. On the other hand, DSN could be capable of achieving the model compression as some
tasks could be similar. Moreover, as shown in Fig. 10, the extensive experiments show that DSN can
always achieve better performance than WSN and HAT as more tasks arrive.
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Figure 9: The finally used capacity when handling different number of tasks.
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Figure 10: The average performance under different task numbers.

As shown in Fig. 11, We herein perform incremental learning containing 100 tasks and visualize the
change in capacity usage during task learning. As the number of tasks increases, we can clearly find
that the capacity used grows rapidly when the task is learned incrementally early, and it starts to slow
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down as the number becomes larger. The more tasks we learn, the more knowledge the model gains,
and therefore, the easier it is for the model to use the previous knowledge to handle the newly arrived
tasks.
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Figure 11: The evolution of the used capacity as the number of tasks increases.

D.3 Analysis of The Number of Impressions.

As shown in Fig. 12, when the number of impressions escalates within a suitable threshold, the
details corresponding to a class are more preserved. However, when the number of impressions is
not controlled, the model suffers from overfitting, resulting in a slight degradation of the overall
performance. We note that the number of impressions will significantly affect both time resources
and restoration resources, whereas it is essential to make a trade-off between cost and gain.
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Figure 12: The effect of the number of impressions.

D.4 Case Study: The Visualization of Impressions.

As shown in Fig. 13, we randomly sample nine images regarding three different classes, and those
are generated by our DSN, respectively. We all know that a neural network recognizes the class of
an input (e.g., an image) by its latent features (in our case, they are called impressions). The inputs
from different classes show different representative features while the samples with the same class
are similar, which further indicates that these features/impressions can help our model recall the past
learned knowledge regarding different classes. While replaying the samples either sampling directly
from the original datasets or employing additional generative methods will result in many costs such
as maintaining large generative networks or incrementally picking the samples from the past tasks.
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Moreover, maintaining a large and incremental replay buffer will bring data privacy concerns or huge
memory costs, which violate the principle of real-world incremental learning context.

(a) Class-1.i (b) Class-1.ii (c) Class-1.iii

(d) Class-2.i (e) Class-2.ii (f) Class-2.iii

(g) Class-3.i (h) Class-3.ii (i) Class-3.iii

Figure 13: The generated impressions regarding three different classes in TinyImageNet.

D.5 Similarity Measurement.

In DSN, we use a neuron-wise mask to determine the subnetwork architecture of each arrived
task. Besides, due to the unavailability of old samples, we cannot measure task similarity using the
approach of [37], which relies on the distribution of data from previous tasks. In our solution, we
treat the subnetwork determined by the mask mechanism as knowledge rather than data. Since the
subnetworks all originate from the same hypernetwork, with the optimization of Eq.(8), we enforce
the new task to reuse more old neurons. Therefore, we measure whether two tasks are similar or not
by mask similarity, which is actually subnetwork structure similarity. As each mask corresponds to
the neuron in the task network, our DSN that operates mask measurement is vector-level while the
weight-based measurement is tensor-level. In a highly dimensional context, in addition to the network
scale, there is no doubt that weight-based similarity measurements and even similarity measurements
based on task data are affected by the input dimensions, while the mask measurement complexity is
only related to the task network scale.

We conduct experiments to examine the effect of our similarity measurement as shown in Table 7. By
following [47], we obtain the task similarity between two tasks using their real samples. We obtain
the mask similarity in our DSN. Fig. 1 shows the similarity results on PMNIST after training task 10.
We can observe that our mask similarity has a similar function to task similarity in [47]. However, as
we claimed before, we cannot use the task similarity directly due to the unavailability of old samples.
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Table 7: Similarity measurement using different mask mechanisms.

Arrived Task Mask Similarity(%) Task Similarity(%)
Task 1 46.39 45.92
Task 2 53.26 49.32
Task 3 57.49 54.43
Task 4 63.94 59.68
Task 5 69.42 66.05
Task 6 72.06 75.69
Task 7 73.41 72.21
Task 8 74.75 78.79
Task 9 78.39 80.15

D.6 Transfer Knowledge to Multiple Old Tasks.

We provided experiments that DSN can transfer to more old tasks. According to Table 8, we can
observe that transferring new knowledge to multiple old tasks can result in significant time costs (as
well as memory costs) that outweigh the benefits. Thus, we only make backward knowledge transfer
to the most similar task.

Table 8: The performance results on DNS for knowledge transfer to multiple old tasks.

Dataset Multiple Old Tasks Accuracy(%) BWT(%) Elapsed Time

PMNIST No 98.24 0.01 2.43h
Yes 98.28 0.03 4.75h

RMNIST No 97.73 0.01 2.18h
Yes 97.88 0.01 3.95h

CIFAR100 No 75.17 0.01 1.21h
Yes 75.34 0.01 10.92h

TinyImageNet No 46.56 0.01 1.54h
Yes 46.61 0.01 8.78h

D.7 Ablation Study.

In our forward knowledge transfer, the role of the neuron-wise mask is to select an optimal subnetwork
architecture for the newly coming task. That is to say, it will affect the new task learning. As for
data-free replay, it aims to produce impression crafts for backward knowledge transfer. Hence, this
component will significantly affect the accuracy improvements of old tasks. In other words, it is
directly related to backward knowledge transfer. We provided the ablation study in Table 9.

Table 9: An ablation study of DSN.

Dataset Neuron-wise Mask Data-free replay Accuracy(%)

PMNIST

No No 97.81
No Yes 97.99
Yes No 98.13
Yes Yes 98.24 DSN

RMNIST

No No 97.26
No Yes 97.42
Yes No 97.65
Yes Yes 97.73 DSN

CIFAR100

No No 73.95
No Yes 74.28
Yes No 74.81
Yes Yes 75.17 DSN

TinyImageNet

No No 45.90
No Yes 46.02
Yes No 46.41
Yes Yes 46.56 DSN

For the neuron-wise mask in the above table, if the choice is "NO", we use the weight-wise mask
instead. For Data-free replay, if the choice is "No", we block this module. The above results
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demonstrate that removing the neuron-wise mask is more sensitive to the model performance, which
also suggests that our neuron-wise mask is better than the weight-wise mask. Moreover, we find that
removing the data-free replay component also degrades the model performance, which demonstrates
that DSN enables knowledge transfer to the old tasks.

D.8 Capacity Analysis.

As Fig. 4 and Fig. 11 show, with the number of tasks increasing, the network does not reach its limit,
indicating that DSN effectively utilizes acquired knowledge to handle new tasks. Additionally, we
conduct additional experiments to evaluate whether a progressive network can improve accuracy.
We enable a random expansion of neurons when a new task arrives (i.e., the state of ‘fixed’ in the
following table is ‘No’). The results indicate that the model does not significantly benefit from
expansion. Besides, the expansion will lead to a substantial increase in parameters, as demonstrated
in Table 10.

Table 10: Comparison results regarding expansion capacity.

Dataset Fixed Accuracy(%) Layer1 Layer2 Layer3

PMNIST Yes 98.24 2000 2000 N/A
No 98.29 2273 2331 N/A

RMNIST Yes 97.73 2000 2000 N/A
No 97.75 2256 2385 N/A

CIFAR100 Yes 75.17 64 128 126
No 75.21 354 440 509

TinyImageNet Yes 46.56 64 128 256
No 46.58 391 345 576
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