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A Implementation Details

A.1 Architecture

We implement DäRF with K-planes [4] as the base model. It represents a radiance field using tri-
planes with three multi-resolutions for each plane: 128, 256, and 512 in both height and width, and
32 in feature depth. This approach also incorporates small MLP decoders and a two-stage proposal
sampler. It should be noted that our framework is not restricted to the K-planes baseline, but can be
incorporated into any NeRF backbone models [9, 10, 8]. In our experiments, we implemented our
framework on top of the K-planes hybrid version codebase due to its quality, reasonable optimization
speed, and model size. For the monocular depth estimation (MDE) module, we choose the pre-trained
DPT [12] as our base MDE model due to its powerful generalization ability in a zero-shot setting.
Trained on very large datasets, DPT demonstrates impressive prediction quality and generalizes well
to novel scenes. However, any MDE model can be utilized within our framework [19, 13, 12].

A.2 Training details

We use the Adam optimizer [6] and a cosine annealing with warm-up scheduler for NeRF optimization.
The learning rate is set to 1 · 10−2, and we perform 512 warm-up steps. For MDE adaptation, we also
employ the Adam optimizer [6] with a learning rate of 1 · 10−5. NeRF optimization is performed
with a pixel batch size of 4,096, totaling 20K iterations. For Lseen, we render a 64× 64 patch, while
for Lunseen, we render a 128× 128 patch with a stride of 3.

For the loss functions, we set the coefficients of Lseen, LMDE, and Lreg as 0.01, 0.01, and 0.1,
respectively. During the warm-up stage of 5,000 steps, the coefficient of Lunseen is initially set to 0
and then increased to 0.01 after 5,000 warm-up steps. For the first 1,000 steps, we employ the ranking
loss [19] with a coefficient of 0.1, in addition to Lseen. All experiments were conducted using a single
NVIDIA GeForce RTX 3090. The training process takes approximately 3 hours.

A.3 Training loss details

In the following, we describe a least-square alignment [18] used in loss functions for MDE prior
distillation in detail. As described in the main paper, we use a scale-shift invariant loss [13] with
patch-wise adjustment for depth consistency as follows:

L =
∑
Ii∈S

∑
p∈P

∥(wiD
∗
i (p) + qi)− D̄i(p)∥, (1)

where wi and qi are scale and shift values that align D∗
i (p) to the absolute locations of D̄i(p). In

this loss function, to calculate wi and qi, we following least-squares criterion [13]:

(wi, qi) = arg min
wi,qi

∑
p∈P

∥(wiD
∗
i (p) + qi)− D̄i(p)∥ (2)
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In other words, we can rewrite the above scheme as a closed problem. Let hi = [wi, qi]
T and

D⃗i(p) = [D∗
i (p), 1]

T , then we can modify our problem as

hopt
i = argmin

hi

∑
p∈P

(D⃗i(p)
Thi − D̄i(p))

2, (3)

which can be solved as follows:

hopt
i = (

∑
p∈P

D⃗i(p)D⃗i(p)
T )−1(

∑
p∈P

D⃗i(p)D̄i(p)) (4)

A.4 Baseline implementations

We directly use quantitative results reported in prior literature [16] for the comparison of Nerfing-
MVS [17], DS-NeRF [3] and DDP-NeRF [14]. As the setting [16] requires out-of-domain priors, it
should be noted that the results for DDP-NeRF are with out-of-domain priors. The results of DDP-
NeRF with in-domain priors are 20.96, 0.737, and 0.236 for PSNR, SSIM, and LPIPS, respectively.
However, we were unable to evaluate DDP-NeRF in the extreme settings of ScanNet and Tanks and
Temples, as reliable COLMAP 3D points could not be obtained.

We utilized the authors’ provided official implementations of RegNeRF [11] and K-planes [4],
training one model for each scene using two different scenarios on the ScanNet [2] and Tanks and
Temples [7] datasets. However, since there is no official code available for SCADE [16], we are
unable to provide performance comparisons for this method.

2



B Datasets and Metrics

B.1 Datasets

ScanNet [2]. We adhere to the few-shot protocol provided by DDP-NeRF [14] in our experimental
setup. We noticed that the split contained major overlaps across the train and test sets, which makes
the task easier compared to realistic few-shot settings where images exhibit minimal overlap. For
this reason, we construct an extreme few-shot scenario, using only half of the training images while
maintaining the same test set.

Tanks and Temples [7]. To test the robustness of our method in challenging real-world outdoor
environments, we conduct further experiments on Tanks and Temples dataset, an real-world outdoor
dataset acquired under drastic lighting effects and reflectances. As no existing protocols exist for a
few-shot scenario for this dataset, we introduce a new split for the few-shot setting. We carefully
selected 5 object-centric scenes —truck, francis, family, lighthouse, and ignatius— with inward-
facing cameras. From each scene, we sample 10 training images that capture the overall geometry
of the whole scene. For testing, we use one-eighth of the dataset as a test set, consisting every 8th

repeating image from the entire image set. We run COLMAP [15] on all images to obtain camera
poses for NeRF training. However, for the lighthouse scene, which exhibits highly sensitive lighting
and specular effects dependent on view pose, we manually preprocess the parts that contain these
effects.

B.2 Evaluation metrics

To evaluate the quality of novel view synthesis, following previous works [9], we measure PSNR,
SSIM, and LPIPS. It is mentioned in K-planes that an implementation of SSIM from mip-NeRF [1]
results in lower values than standard scikit-image implementation. For a fair comparison per dataset,
we use the latter scikit-image SSIM implementation following the relevant prior work.

For the evaluation of the MDE module, we use 4 depth estimation metrics as follows:

• AbsRel: 1
|I|

∑
p∈I ∥D̄(p)−DGT(p)∥/DGT(p);

• SqRel: 1
|I|

∑
p∈I ∥D̄(p)−DGT(p)∥2/DGT(p);

• RMSE:
√

1
|I|

∑
p∈I ∥D̄(p)−DGT(p)∥2;

• RMSE log:
√

1
|I|

∑
p∈I ∥ log D̄(p)− logDGT∥2;

where p is a pixel in the image I and DGT is ground truth depth map. In addition, following [20],
we use single scaling factor s for each scene which is obtained by

s =
1

N

∑
Ii∈S

(median(DGT
i /D̄i)), (5)

rather than fit each frame to ground truth, to evaluate view consistency of MDE models. Here, S
denotes set of images from single scene.
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C Additional Analysis

C.1 Comparison of patch- and image-level scale-shift adjustment

We provide additional analysis and visualization results regarding the patch-wise scale and shift
adjustment. In Fig.1 and Fig.2, we present error maps showing the discrepancies between the
ground truth sensor depth and the predicted depth. Additionally, in Fig.3, we present qualitative
results of rendered color and depth using each fitting method. It is important to note that in the
image-level fitting scheme, a single set of scale and shift values is computed for an entire depth map.
Conversely, in our patch-level fitting method, scale and shift values are calculated individually for
each 80×80 patch within the depth map. The error map clearly demonstrates the significant reduction
in misalignment errors achieved by our patch-level fitting method compared to the image-level fitting
approach.

For the comparison of image-level and patch-level fitting provided in the Fig.2 and Tab.5 of the main
paper, we set the scale and shift as learnable parameters per image for image-level fitting and conduct
patch-wise scale-shift invariant loss for patch-level fitting. This comparison is conducted only with
Lseen given and results with patch-level fitting show better performance compared to image-level
fitting. The difference between the two methods is especially distinguished in rendered depth maps
of these two settings, in that patch-level fitting lets NeRF learn depth more accurately.
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Figure 1: Error map visualization of image-level and patch-wise scale and shift adjustment:
relative depth map in various viewpoints is fitted in two ways, image-level fitting (first row) and
patch-level fitting (second row).

(a) (b) (c)

Figure 2: 3D Visualization of the error map of MDE and NeRF: (a) monocular depth with
image-level adjustment, (b) monocular depth with patch-level adjustment, and (c) rendered depth by
NeRF trained with patch-level adjustment. Depth from the input image of the viewpoint stated as red
camera is adjusted in each ways and unprojected into 3D space. Error of each point cloud of a room
is visualized from the bird’s eye view. This is done with jet color coding, so that red color means
large error and blue color means small error. The proposed patch-wise adjustment helps to minimize
the errors caused by inconsistency in depth differences among objects.
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(a) Image-Level Ī (b) Image-Level D̄ (c) Patch-Level Ī (d) Patch-Level D̄ (e) Ground-truth

Figure 3: Comparison of patch- and image-level scale-shift adjustment. Rendered color and depth
from NeRF with (a-b) image-level scale and shift adjustment and (c-d) patch-level scale and shift
adjustment.

C.2 Confidence modeling

(a) Input Image (b) Initial MDE (c) Conf. Mask (d) Masked MDE

Figure 4: Comparions on MDE depth map with and without confidence masking. the initial
MDE depth map predicted is filtered through mask from our confidence modeling.

In Fig. 4, we demonstrate the effectiveness of our confidence modeling which effectively eliminates
inaccurate information present in depth maps from both NeRF and the MDE network through
leveraging multi-view consistency of NeRF. MDE depth from the input image contains errors, which
can be filtered out by verifying consistency with depth from NeRF’s other viewpoint. Likewise, the
error of MDE depth from unseen viewpoint can be filtered through consistency check with MDE
depth from the seen viewpoint.

C.3 Ablation of MDE baselines

Table 1: Ablation study on MDE baseline.

Components PSNR↑ SSIM↑ LPIPS↓

DäRF with LeReS [19] 21.31 0.757 0.343
DäRF with MiDaS [13] 21.48 0.758 0.337
DäRF with DPT [12] 21.58 0.765 0.325

We conduct an ablation on the Monocular Depth Estimation (MDE) network to assess its impact on
our methodology. Considering the recent advancements [13, 12] in MDE models that shows strong
generalization power for depth estimation in unseen images, we replace our MDE network with
state-of-the-art models such as LeReS, MiDaS, and DPT. The results in Tab. 1 show that our method
shows consistent performance across different baselines.
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D Camera Visualization of proposed Few-shot setting
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Figure 5: Camera visualization of Tanks and Temples dataset. Green cameras mean all sets of
images provided, and red and blue cameras mean train and test sets. As shown here, red cameras, i.e.,
train set, are a very small fraction of the camera set with little overlapping. On the other hand, blue
cameras, i.e., test set, cover various locations, distributed in various positions of the scene.
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E Additional Qualitative Results

In this section, we show additional qualitative comparisons in Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10,
and Fig. 11 for ScanNet [2] dataset in two different settings and in Fig. 12, Fig. 13, Fig. 14, Fig. 15,
and Fig. 16 for Tanks and Temples [7] dataset.

(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 6: Qualitative results on Scan 0710 of ScanNet [2] with 9 - 10 input views.

(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 7: Qualitative results on Scan 0758 of ScanNet [2] with 9 - 10 input views.
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(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 8: Qualitative results on Scan 0781 of ScanNet [2] with 9 - 10 input views.

(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 9: Qualitative results on Scan 0710 of ScanNet [2] with 18 - 20 input views.
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(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 10: Qualitative results on Scan 0758 of ScanNet [2] with 18 - 20 input views.

(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 11: Qualitative results on Scan 0781 of ScanNet [2] with 18 - 20 input views.
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(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 12: Qualitative results on truck scene of Tanks and Temples [7] with 10 input views.
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(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 13: Qualitative results on francis scene of Tanks and Temples [7] with 10 input views.
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(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 14: Qualitative results on lighthouse scene of Tanks and Temples [7] with 10 input views.
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(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 15: Qualitative results on ignatius scene of Tanks and Temples [7] with 10 input views.
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(a) Baseline [4] (b) Baseline - Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 16: Qualitative results on family scene of Tanks and Temples [7] with 10 input views.

14



F Limitations and Future Works

While our method shows powerful performance quantitatively, its limitations can be noticed in its
qualitative results above, where it struggles to reconstruct the fine-grained details present in ground
truth images. Also, our usage of depth supervision from various viewpoints does not get rid of the
artifacts completely: some artifacts that cloud the space between objects and the camera, are reduced
yet still visible in rendering of unseen viewpoints.

These limitations may be attributed to fundamental limitations in the few-shot NeRF setting [5],
where fine-grained details are often occluded from one viewpoint to another due to an extreme lack of
input images, preventing faithful geometric reconstruction of details. Also, since the seen viewpoints
view a comparatively small portion of the entire scene, there inevitably occur artifacts in the unseen
viewpoint as some depths cannot be perfectly determined from given input information.

G Broader Impacts

Our work achieves robust optimization and rendering of NeRF under sparse view scenarios, drasti-
cally reducing the number of viewpoints required for NeRF and bringing NeRF closer to real-life
applications such as augmented reality, 3D reconstruction, and robotics. Our extension of few-shot
NeRF to a real-world setting with the usage of monocular depth estimation networks also would
enable NeRF optimization under various real-life lighting conditions and specular surfaces due to its
increased robustness and generalization power.
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