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Abstract

ReParameterization (RP) Policy Gradient Methods (PGMs) have been widely
adopted for continuous control tasks in robotics and computer graphics. However,
recent studies have revealed that, when applied to long-term reinforcement learn-
ing problems, model-based RP PGMs may experience chaotic and non-smooth
optimization landscapes with exploding gradient variance, which leads to slow
convergence. This is in contrast to the conventional belief that reparameterization
methods have low gradient estimation variance in problems such as training deep
generative models. To comprehend this phenomenon, we conduct a theoretical
examination of model-based RP PGMs and search for solutions to the optimization
difficulties. Specifically, we analyze the convergence of the model-based RP PGMs
and pinpoint the smoothness of function approximators as a major factor that affects
the quality of gradient estimation. Based on our analysis, we propose a spectral
normalization method to mitigate the exploding variance issue caused by long
model unrolls. Our experimental results demonstrate that proper normalization
significantly reduces the gradient variance of model-based RP PGMs. As a result,
the performance of the proposed method is comparable or superior to other gradi-
ent estimators, such as the Likelihood Ratio (LR) gradient estimator. Our code is
available at https://github.com/agentification/RP_PGM.

1 Introduction

Reinforcement Learning (RL) has seen tremendous success in a variety of sequential decision-
making applications, such as strategy games [51, 59] and robotics [15, 61], by identifying actions
that maximize long-term accumulated rewards. As one of the most popular methodologies, the policy
gradient methods (PGM) [56, 31, 52] seek to search for the optimal policy by iteratively computing
and following a stochastic gradient direction with respect to the policy parameters. Therefore, the
quality of the stochastic gradient estimation is essential for the effectiveness of PGMs.

Two main categories have emerged in the realm of stochastic gradient estimation: (1) Likelihood Ratio
(LR) estimators, which perform zeroth-order estimation through the sampling of function evaluations
[64, 32, 31], and (2) ReParameterization (RP) gradient estimators, which harness the differentiability
of the function approximation [17, 48, 12, 53]. Despite the wide adoption of both LR and RP PGMs
in practice, the majority of the literature on the theoretical properties of PGMs focuses on LR PGMs.
The optimality and approximation error of LR PGMs have been heavily investigated under various
settings [3, 60, 7]. Conversely, the theoretical underpinnings of RP PGMs remain to be fully explored,
with a dearth of research on the quality of RP gradient estimators and the convergence of RP PGMs.

RP gradient estimators have established themselves as a reliable technique for training deep generative
models such as variational autoencoders [17]. From a stochastic optimization perspective, previous
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studies [48, 40] have shown that RP gradient methods enjoy small variance, which leads to better
convergence and performance. However, recent research [42, 37] has reported an opposite observation:
When applied to long-horizon reinforcement learning problems, model-based RP PGMs tend to
encounter chaotic optimization procedures and highly non-smooth optimization landscapes with
exploding gradient variance, causing slow convergence.

Such an intriguing phenomenon inspires us to delve deeper into the theoretical properties of RP
gradient estimators in search of a remedy for the issue of exploding gradient variance in model-based
RP PGMs. To this end, we present a unified theoretical framework for the examination of model-based
RP PGMs and establish their convergence results. Our analysis implies that the smoothness and
accuracy of the learned model are crucial determinants of the exploding variance of RP gradients: (1)
both the gradient variance and bias exhibit a polynomial dependence on the Lipschitz continuity of
the learned model and policy w.r.t. the input state, with degrees that increase linearly with the steps of
model value expansion, and (2) the bias also depends on the error of the estimated model and value.

Our findings suggest that imposing smoothness on the model and policy can greatly decrease the
variance of RP gradient estimators. To put this discovery into practice, we propose a spectral normal-
ization method to enforce the smoothness of the learned model and policy. It’s worth noting that this
method can enhance the algorithm’s efficiency without substantially compromising accuracy when
the underlying transition kernel is smooth. However, if the transition kernel is not smooth, enforcing
smoothness may lead to increased error in the learned model and introduce bias. In such cases, a
balance should be struck between model bias and gradient variance. Nonetheless, our empirical study
demonstrates that the reduced gradient variance when applying spectral normalization leads to a
significant performance boost, even with the cost of a higher bias. Furthermore, our results highlight
the potential of investigating model-based RP PGMs, as they demonstrate superiority over other
model-based and Likelihood Ratio (LR) gradient estimator alternatives.

2 Background

Reinforcement Learning. We consider learning to optimize an infinite-horizon γ-discounted Markov
Decision Process (MDP) over repeated episodes of interaction. We denote by S ⊆ Rds and A ⊆ Rda
the state and action space, respectively. When taking an action a ∈ A at a state s ∈ S, the agent
receives a reward r(s, a) and the MDP transits to a new state s′ according to s′ ∼ f(· | s, a).
We aim to find a policy π that maps a state to an action distribution to maximize the expected
cumulative reward. We denote by V π : S → R and Qπ : S × A → R the state value function and
the state-action value function associated with π, respectively, which are defined as follows,

Qπ(s, a) = (1− γ) · Eπ,f
[ ∞∑
i=0

γi · r(si, ai)
∣∣∣∣ s0 = s, a0 = a

]
, V π(s) = Ea∼π

[
Qπ(s, a)

]
.

Here s ∈ S , a ∈ A, and the expectation Eπ,f [ · ] is taken with respect to the dynamic induced by the
policy π and the transition probability f . We denote by ζ the initial state distribution. Under policy π,
the state and state-action visitation measure νπ(s) over S and σπ(s, a) over S ×A are defined as

νπ(s) = (1− γ) ·
∞∑
i=0

γi · P(si = s), σπ(s, a) = (1− γ) ·
∞∑
i=0

γi · P(si = s, ai = a),

where the summations are taken with respect to the trajectory induced by s0 ∼ ζ, ai ∼ π(· | si), and
si+1 ∼ f(· | si, ai). The objective J(π) of RL is defined as the expected policy value as follows,

J(π) = Es0∼ζ
[
V π(s0)

]
= E(s,a)∼σπ

[
r(s, a)

]
. (2.1)

Stochastic Gradient Estimation. The underlying problem of policy gradient, i.e., computing the
gradient of an expectation with respect to the parameters of the sampling distribution, takes the
form ∇θEp(x;θ)[y(x)]. To restore the RL objective, we can set p(x; θ) as the trajectory distribution
conditioned on the policy parameter θ and y(x) as the cumulative reward. In the sequel, we introduce
two commonly used gradient estimators.

Likelihood Ratio (LR) Gradient (Zeroth-Order): By leveraging the score function, LR gradients only
require samples of the function values. Since∇θ log p(x; θ) = ∇θp(x; θ)/p(x; θ), the LR gradient is

∇θEp(x;θ)
[
y(x)

]
= Ep(x;θ)

[
y(x)∇θ log p(x; θ)

]
. (2.2)
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ReParameterization (RP) Gradient (First-Order): RP gradient benefits from the structural characteris-
tics of the objective, i.e., how the overall objective is affected by the operations applied to the sources
of randomness as they pass through the measure and into the cost function [40]. From the simulation
property of continuous distribution, we have the following equivalent sampling processes:

x̂ ∼ p(x; θ) ⇐⇒ x̂ = g(ϵ̂, θ), ϵ̂ ∼ p(ϵ), (2.3)

which states that an alternative way to generate a sample x̂ from the distribution p(x; θ) is to sample
from a simpler base distribution p(ϵ) and transform this sample using a deterministic function
g(ϵ, θ). Derived from the law of the unconscious statistician (LOTUS) [21], i.e., Ep(x;θ)[y(x)] =
Ep(ϵ)[y(g(ϵ; θ))], the RP gradient can be formulated as∇θEp(x;θ)[y(x)] = Ep(ϵ)[∇θy(g(ϵ; θ))].

3 Analytic Reparameterization Gradient in Reinforcement Learning

In this section, we present two fundamental analytic forms of the RP gradient in RL. We first consider
the Policy-Value Gradient (PVG) method, which is model-free and can be expanded sequentially to
obtain the Analytic Policy Gradient (APG) method. Then we discuss potential obstacles that may
arise when developing practical algorithms.

We consider a policy πθ(s, ς) with noise ς in continuous action spaces. To ensure that the first-order
gradient through the value function is well-defined, we make the following continuity assumption.

Assumption 3.1 (Continuous MDP). We assume that f(s′ | s, a), πθ(s, ς)1, r(s, a), and ∇ar(s, a)
are continuous in all parameters and variables s, a, s′.

Policy-Value Gradient. The reparameterization PVG takes the following general form,

∇θJ(πθ) = Es∼ζ,ς∼p
[
∇θQπθ

(
s, πθ(s, ς)

)]
. (3.1)

In sequential decision-making, any immediate action could lead to changes in all future states and
rewards. Therefore, the value gradient ∇θQπθ possesses a recursive structure. Adapted from the
deterministic policy gradient theorem [52, 34] by considering stochasticity, we rewrite (3.1) as

∇θJ(πθ) = Es∼νπ,ς
[
∇θπθ(s, ς) · ∇aQπθ (s, a)

∣∣
a=πθ(s,ς)

]
.

Here,∇aQπθ can be estimated using a critic, which leads to model-free frameworks [25, 4]. Notably,
as a result of the recursive structure of ∇θQπθ , the expectation is taken over the state visitation νπ
instead of the initial distribution ζ.

By sequentially expanding PVG, we obtain the analytic representation of the policy gradient.

Analytic Policy Gradient. From the Bellman equation V πθ (s) = Eς [(1 − γ)r(s, πθ(s, ς)) +
γEξ∗ [V πθ (f(s, πθ(s, ς), ξ

∗))]], we obtain the following backward recursions:

∇θV πθ (s) = Eς
[
(1− γ)∇ar∇θπθ + γEξ∗

[
∇s′V πθ (s′)∇af∇θπθ +∇θV πθ (s′)

]]
, (3.2)

∇sV πθ (s) = Eς
[
(1− γ)(∇sr +∇ar∇sπθ) + γEξ∗

[
∇s′V πθ (s′)(∇sf +∇af∇sπθ)

]]
. (3.3)

See §A for detailed derivations of (3.2) and (3.3). Now we have the RP gradient backpropagated
through the transition path starting at s. By taking an expectation over the initial state distribution, we
obtain the Analytic Policy Gradient (APG)∇θJ(πθ) = Es∼ζ [∇θV πθ (s)].

There remain challenges when developing practical algorithms: (1) the above formulas require the
gradient information of the transition function f . In this work, however, we consider a common
RL setting where f is unknown and needs to be fitted by a model. It is thus natural to ask how the
properties of the model (e.g., prediction accuracy and model smoothness) affect the gradient estimation
and the convergence of the resulting algorithms, and (2) even if we have access to an accurate model,
unrolling it over full sequences faces practical difficulties. The memory and computational cost
scale linearly with the unroll length. Long chains of nonlinear mappings can also lead to exploding
or vanishing gradients and even worse, chaotic phenomenons [9] and difficulty in optimization
[43, 36, 58, 38]. These difficulties demand some form of truncation when performing RP PGMs.

1Due to the simulation property of continuous distributions in (2.3), we interchangeably write a ∼ πθ(· | s)
with a = πθ(s, ς) and s′ ∼ f(· | s, a) with s′ = f(s, a, ξ∗), where ξ∗ is sampled from an unknown distribution.
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4 Model-Based RP Policy Gradient Methods

Through the application of Model Value Expansion (MVE) for model truncation, this section unveils
two RP policy gradient frameworks constructed upon MVE.

4.1 h-Step Model Value Expansion

To handle the difficulties inherent in full unrolls, many algorithms employ direct truncation, where the
long sequence is broken down into short sub-sequences and backpropagation is applied accordingly,
e.g., Truncated BPTT [63]. However, such an approach over-prioritizes short-term dependencies,
which leads to biased gradient estimates.

In model-based RL (MBRL), one viable solution is to adopt the h-step Model Value Expansion [16],
which decomposes the value estimation V̂ π(s) into the rewards gleaned from the learned model and
a residual estimated by a critic function Q̂ω , that is,

V̂ πθ (s) = (1− γ) ·

(
h−1∑
i=0

γi · r(ŝi, âi) + γh · Q̂ω(ŝh, âh)

)
,

where ŝ0 = s, âi = πθ(ŝi, ς), and ŝi+1 = f̂ψ(ŝi, âi, ξ). Here, the noise variables ς and ξ can be
sampled from the fixed distributions or inferred from the real samples, which we now discuss.

4.2 Model-Based RP Gradient Estimation

Utilizing the pathwise gradient with respect to θ, we present the following two frameworks.

Model Derivatives on Predictions (DP). A straightforward way to compute the first-order gradient
is to link the reward, model, policy, and critic together and backpropagate through them. Specifically,
the differentiation is carried out on the trajectories simulated by the model f̂ψ, which serves as a
tool for both the prediction of states and the evaluation of derivatives. The corresponding RP-DP
estimator of gradient∇θJ(πθ) is denoted as ∇̂DP

θ J(πθ), which takes the form of

∇̂DP
θ J(πθ) =

1

N

N∑
n=1

∇θ
(h−1∑
i=0

γi · r(ŝi,n, âi,n) + γh · Q̂ω(ŝh,n, âh,n)
)
, (4.1)

where ŝ0,n ∼ µπθ
, âi,n = πθ(ŝi,n, ςn), and ŝi+1,n = f̂ψ(ŝi,n, âi,n, ξn) with noises ςn ∼ p(ς) and

ξn ∼ p(ξ). Here, µπθ
is the distribution where the initial states of the simulated trajectories are

sampled. In Section 5, we study a general form of µπθ
that is a mixture of the initial state distribution

ζ and the state visitation νπθ
.

Various algorithms can be instantiated from (4.1) with different choices of h. When h = 0, the
framework reduces to model-free policy gradients, such as RP(0) [4] and the variants of DDPG [34],
e.g., SAC [23]. When h → ∞, the resulting algorithm is BPTT [22, 13, 6] where only the model
is learned. Recent model-based approaches, such as MAAC [12] and related algorithms [42, 4, 33],
require a carefully selected h.

Model Derivatives on Real Samples (DR). An alternative approach is to use the learned differentiable
model solely for the calculation of derivatives, with the aid of Monte-Carlo estimates obtained from
real samples. By replacing ∇af,∇sf in (3.2)-(3.3) with ∇af̂ψ,∇af̂ψ and setting the termination
of backpropagation at the h-th step as ∇̂V πθ (ŝh,n) = ∇V̂ω(ŝh,n), we are able to derive a dynamic
representation of ∇̂θV πθ , which we defer to §A. The corresponding RP-DR gradient estimator is

∇̂DR
θ J(πθ) =

1

N

N∑
n=1

∇̂θV πθ (ŝ0,n), (4.2)

where ŝ0,n ∼ µπθ
. Equation (4.2) can be specified as (A.9), which is in the same format as (4.1),

but with the noise variables ςn, ξn inferred from the real data sample (si, ai, si+1) via the relation
ai = πθ(si, ςn) and si+1 = f̂ψ(si, ai, ξn) (see §A for details). Algorithms such as SVG [25] and its
variants [1, 5] are examples of this RP-DR method.
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4.3 Algorithmic Framework

The pseudocode of model-based RP PGMs is presented in Algorithm 1, where three update procedures
are performed iteratively. In other words, the policy, model, and critic are updated at each iteration
t ∈ [T ], generating sequences of {πθt}t∈[T+1], {f̂ψt

}t∈[T ], and {Q̂ωt
}t∈[T ], respectively.

Algorithm 1 Model-Based Reparameterization Policy Gradient
Input: Number of iterations T , learning rate η, batch size N , empty dataset D
1: for iteration t ∈ [T ] do
2: Update the model parameter ψt by MSE or MLE
3: Update the critic parameter ωt by performing Temporal Difference
4: Sample states from µπt

and estimate ∇̂θJ(πθt) = ∇̂DP
θ J(πθt) (4.1) or ∇̂DR

θ J(πθt) (4.2)
5: Update the policy parameter θt by θt+1 ← θt + η · ∇̂θJ(πθt)
6: Execute πθt+1

and save data to D to obtain Dt+1

7: end for

Policy Update. The update rule for the policy parameter θ ∈ Θ with learning rate η is as follows,

θt+1 ← θt + η · ∇̂θJ(πθt), (4.3)

where ∇̂θJ(πθt) can be specified as ∇̂DP
θ J(πθt) or ∇̂DR

θ J(πθt).

Model Update. By predicting the mean of transition with minimized mean squared error
(MSE) or fitting a probabilistic model with maximum likelihood estimation (MLE), e.g., ψt =

argmaxψ∈Ψ EDt [log f̂ψ(si+1|si, ai)], canonical MBRL methods learn forward models that predict
how the system evolves when an action is taken at a state.

However, accurate state predictions do not imply accurate RP gradient estimation. Thus, we define
ϵf (t) to denote the model (gradient) error at iteration t:

ϵf (t) = max
i∈[h]

EP(si,ai),P(ŝi,âi)

[∥∥∥∥ ∂si
∂si−1

− ∂ŝi
∂ŝi−1

∥∥∥∥
2

+

∥∥∥∥ ∂si
∂ai−1

− ∂ŝi
∂âi−1

∥∥∥∥
2

]
, (4.4)

where P(si, ai) is the true state-action distribution at the i-th timestep by following s0 ∼ νπθt
, aj ∼

πθt(· | sj), sj+1 ∼ f(· | sj , aj), with policy and transition noise sampled from a fixed distribution.
Similarly, P(ŝi, âi) is the model rollout distribution at the i-th timestep by following ŝ0 ∼ νπθt

,
âj ∼ πθt(· | ŝj), ŝj+1 ∼ f̂ψt

(· | ŝj , âj), where the noise is sampled when we use RP-DP gradient
estimator and is inferred from real samples when we use RP-DR gradient estimator (in this case
P(ŝi, âi) = P(si, ai)).
In MBRL, it is common to learn a state-predictive model that can make multi-step predictions.
However, this presents a challenge in reconciling the discrepancy between minimizing state prediction
error and the gradient error of the model. Although it is natural to consider regularizing the models’
directional derivatives to be consistent with the samples [33], we contend that the use of state-
predictive models does not cripple our analysis of gradient bias based on ϵf : For learned models that
extrapolate beyond the visited regions, the gradient error can still be bounded via finite difference. In
other words, ϵf can be expressed as the mean squared training error with an additional measure of
the model class complexity to capture its generalizability. This same argument can also be applied to
the case of learning a critic through temporal difference.

Critic Update. For any policy π, its value function Qπ satisfies the Bellman equation, which has
a unique solution. In other words, Q = T πQ if and only if Q = Qπ. The Bellman operator T π is
defined for any (s, a) ∈ S ×A as

T πQ(s, a) = Eπ,f
[
(1− γ) · r(s, a) + γ ·Q(s′, a′)

]
.

We aim to approximate the state-action value function Qπ with a critic Q̂ω. Due to the solution
uniqueness of the Bellman equation, it can be achieved by minimizing the mean-squared Bellman
error ωt = argminω∈Ω EDt

[(Q̂ω(s, a)− T πQ̂ω(s, a))2] via Temporal Difference (TD) [55, 10]. We
define the critic error at the t-th iteration as follows,

ϵv(t) = α2 · EP(sh,ah),P(ŝh,âh)

[∥∥∥∥∂Qπθt

∂s
− ∂Q̂ωt

∂ŝ

∥∥∥∥
2

+

∥∥∥∥∂Qπθt

∂a
− ∂Q̂ωt

∂â

∥∥∥∥
2

]
, (4.5)
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where α = (1 − γ)/γh and P(sh, ah), P(ŝh, âh) are distributions at timestep h with the same
definition as in (4.4). The inclusion of α2 ensures that the critic error remains in alignment with the
single-step model error ϵf : (1) the critic estimates the tail terms that occur after h steps in the model
expansion, therefore the step-average critic error should be inversely proportional to the tail discount
summation

∑∞
i=h γ

i = 1/α, and (2) the quadratic form shares similarities with the canonical MBRL
analysis – the cumulative error of the model trajectories scales linearly with the single-step prediction
error and quadratically with the considered horizon (i.e., tail after the h-th step). This is because the
cumulative error is linear in the considered horizon and the maximum state discrepancy, which is
linear in the single-step error and, again, the horizon [28].

5 Main Results

In what follows, we present our main theoretical results, whose detailed proofs are deferred to §B.
Specifically, we analyze the convergence of model-based RP PGMs and, more importantly, study
the correlation between the convergence rate, gradient bias, variance, smoothness of the model, and
approximation error. Based on our theory, we propose various algorithmic designs for MB RP PGMs.

To begin with, we impose a common regularity condition on the policy functions following previous
works [68, 46, 69, 3]. The assumption below essentially ensures the smoothness of the objective
J(πθ), which is required by most existing analyses of policy gradient methods [60, 6, 2].

Assumption 5.1 (Lipschitz and Bounded Score Function). We assume that the score function of
policy πθ is Lipschitz continuous and has bounded norm ∀(s, a) ∈ S ×A, that is,∥∥ log πθ1(a | s)− log πθ2(a | s)

∥∥
2
≤ L1 · ∥θ1 − θ2∥2,

∥∥ log πθ(a | s)∥∥2 ≤ Bθ.
We characterize the convergence of RP PGMs by first providing the following proposition.

Proposition 5.2 (Convergence to Stationary Point). We define the gradient bias bt and variance vt as

bt =
∥∥∇θJ(πθt)− E

[
∇̂θJ(πθt)

]∥∥
2
, vt = E

[∥∥∇̂θJ(πθt)− E
[
∇̂θJ(πθt)

]∥∥2
2

]
.

Suppose the absolute value of the reward r(s, a) is bounded by |r(s, a)| ≤ rm for (s, a) ∈ S × A.
Let δ = sup ∥θ∥2, L = rm ·L1/(1− γ)2 +(1+ γ) · rm ·B2

θ/(1− γ)3, and c = (η−Lη2)−1. It then
holds for T ≥ 4L2 that

min
t∈[T ]

E
[∥∥∇θJ(πθt)∥∥22] ≤ 4c

T
· E
[
J(πθT )− J(πθ1)

]
+

4

T

(T−1∑
t=0

c(2δ · bt +
η

2
· vt) + b2t + vt

)
.

Proposition 5.2 illustrates the interdependence between the convergence and the variance, bias of the
gradient estimators. In order for model-based RP PGMs to converge, it is imperative to maintain both
the variance and bias at sublinear growth rates. Prior to examining the upper bound of bt and vt, we
make the following Lipschitz assumption, which has been implemented in a plethora of preceding
studies [46, 12, 33].

Assumption 5.3 (Lipschitz Continuity). We assume that r(s, a) and f(s, a, ξ∗) are Lr and Lf
Lipschitz continuous, respectively. Formally, for any s1, s2 ∈ S, a1, a2 ∈ A, and ξ∗,∣∣r(s1, a1)− r(s2, a2)∣∣ ≤ Lr · ∥∥(s1 − s2, a1 − a2)∥∥2,∥∥f(s1, a1, ξ∗)− f(s2, a2, ξ∗)∥∥2 ≤ Lf · ∥∥(s1 − s2, a1 − a2)∥∥2.
Let L̃g = max{Lg, 1}, where Lg is the Lipschitz of function g. We have the following result for
gradient variance.

Proposition 5.4 (Gradient Variance). Under Assumption 5.3, for any t ∈ [T ], the gradient variance
of the estimator ∇̂θJ(πθ), which can be specified as ∇̂DP

θ J(πθ) or ∇̂DR
θ J(πθ), can be bounded by

vt = O

(
h4
(
1− γh

1− γ

)2

L̃4h
f̂
L̃4h
π /N + γ2hh4L̃4h

f̂
L̃4h
π /N

)
,

where Lf̂ = supψ∈Ψ,s1,s2∈S,a1,a2∈A ∥f̂ψ(s1, a1, ξ) − f̂ψ(s2, a2, ξ)∥2/∥(s1 − s2, a1 − a2)∥2 and
Lπ = supθ∈Θ,s1,s2∈S,ς ∥πθ(s1, ς)− πθ(s2, ς)∥2/∥s1 − s2∥2.
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We observe that the variance upper bound exhibits a polynomial dependence on the Lipschitz
continuity of the model and policy, where the degrees are linear in the model unroll length. This
makes sense intuitively, as the transition can be highly chaotic when Lf̂ > 1 and Lπ > 1. This can
result in diverging trajectories and variable gradient directions during training, leading to significant
variance in the gradients.

Remark 5.5. Model-based RP PGMs with non-smooth models and policies can suffer from large
variance and highly non-smooth loss landscapes, which can lead to slow convergence or failure
during training even in simple toy examples [42, 37, 53]. Proposition 5.4 suggests that one can add
smoothness regularization to avoid exploding gradient variance. See our discussion at the end of this
section for more details.

Model-based RP PGMs possess unique advantages by utilizing proxy models for variance reduction.
By enforcing the smoothness of the model, the gradient variance is reduced without a burden when the
underlying transition is smooth. However, in cases of non-smooth dynamics, doing so may introduce
additional bias due to increased model estimation error. This necessitates a trade-off between the
model error and gradient variance. Nevertheless, our empirical study demonstrates that smoothness
regularization improves performance in robotic locomotion tasks, despite the cost of increased bias.

Next, we study the gradient bias. We consider the case where the state distribution µπ , which is used
for estimating the RP gradient, is a mixture of the initial distribution ζ of the MDP and the state
visitation νπ. In other words, we consider µπ = β · νπ + (1− β) · ζ, where β ∈ [0, 1]. This form is
of particular interest as it encompasses various state sampling schemes that can be employed, such as
when h = 0 and h → ∞: When not utilizing a model, such as in SVG(0) [25, 4] and DDPG [34],
states are sampled from νπ; while when unrolling the model over full sequences, as in BPTT, states
are sampled from the initial distribution.

Given that the effects of policy actions extend to all future states and rewards, unless we know the
exact policy value function, its gradient ∇θQπθ cannot be simply represented by quantities in any
finite timescale. Hence, the differentiation of the critic function does not align with the true value
gradient that has recursive structures. To tackle this issue, we provide the gradient bias bound that is
based on the measure of discrepancy between the initial distribution ζ and the state visitation νπ .

Proposition 5.6 (Gradient Bias). We denote κ = supπ Eνπ [(dζ/dνπ(s))2]1/2, where dζ/dνπ is the
Radon-Nikodym derivative of ζ with respect to νπ . Let κ′ = β + κ · (1− β). Under Assumption 5.3,
for any t ∈ [T ], the gradient bias is bounded by

bt = O
(
κκ′h2(1− γh)L̃h

f̂
L̃hf L̃

2h
π ϵf,t/(1− γ) + κ′hγ3hL̃h

f̂
L̃hπϵv,t/(1− γ)2

)
,

where ϵf,t and ϵv,t are the shorthand notations of ϵf (t) defined in (4.4) and ϵv(t) in (4.5), respectively.

The analysis above yields the identification of an optimal model expansion step h∗ that achieves the
best convergence rate, whose form is presented by the following proposition.

Proposition 5.7 (Optimal Model Expansion Step). Given Lf ≤ 1, if we regularize the model and
policy so that Lf̂ ≤ 1 and Lπ ≤ 1, then when γ ≈ 1, the optimal model expansion step h∗ at
iteration t that minimizes the convergence rate upper bound satisfies h∗ = max{h′∗, 0}, where
h′∗ = O(ϵv,t/((1 − γ)(ϵf,t + ϵv,t))) scales linearly with ϵv,t/(ϵf,t + ϵv,t) and the effective task
horizon 1/(1− γ).

In Proposition 5.7, the Lipschitz condition of the underlying dynamics, i.e., Lf ≤ 1, ensures the
stability of the system. This can be seen in the linear system example, where the transitions are
determined by the eigenspectrum of the family of transformations, leading to exponential divergence
of trajectories w.r.t. the largest eigenvalue. In cases where this condition is not met in practical
control systems, finding the best model unroll length may require trial and error. Fortunately, we have
observed through experimentation that enforcing smoothness offers a much wider range of unrolling
lengths that still provide satisfactory results.

Remark 5.8. As the error scale ϵv,t/(ϵf,t + ϵv,t) increases, so too does the value of h∗. This finding
can inform the practical algorithms to rely more on the model by performing longer unrolls when the
model error ϵf,t is small, while avoiding long unrolls when the critic error ϵv,t is small.
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A Spectral Normalization Method. To ensure a smooth transition and faster convergence, we
propose using a Spectral Normalization (SN) [39] model-based RP PGM that applies SN to
all layers of the deep model network and policy network. While other techniques, such as ad-
versarial regularization [50], exist, we focus primarily on SN as it directly regulates the Lips-
chitz constant of the function. Specifically, the Lipschitz constant Lg of a function g satisfies
Lg = supx σmax(∇g(x)), where σmax(W ) denotes the largest singular value of the matrixW , defined
as σmax(W ) = max∥x∥2≤1 ∥Wx∥2. For neural network f with linear layers g(x) = Wix and 1-
Lipschitz activation (e.g., ReLU and leaky ReLU), we have Lg = σmax(Wi) and Lf̂ ≤

∏
i σmax(Wi).

By normalizing the spectral norm ofWi withW SN
i =Wi/σmax(Wi), SN guarantees that the Lipschitz

of f is upper-bounded by 1.

Finally, we characterize the algorithm convergence rate.

Corollary 5.9 (Convergence Rate). Let ε(T ) =
∑T−1
t=0 bt. We have for T ≥ 4L2 that

min
t∈[T ]

E
[∥∥∇θJ(πθt)∥∥22] ≤ 16δ · ε(T )/

√
T + 4ε2(T )/T +O

(
1/
√
T
)
.

The convergence rate can be further clarified by determining how quickly the errors of model and
critic approach zero, i.e.,

∑T−1
t=0 ϵf (t)+ϵv(t). Such results can be accomplished by conducting a more

fine-grained investigation of the model and critic function classes, such as utilizing overparameterized
neural nets with width scaling with T to bound the training error, as done in [10, 35], and incorporating
complexity measures of the model and critic function classes to bound ϵf (t) and ϵv(t). Their forms,
however, are beyond the scope of this paper.

6 Related Work

Policy Gradient Methods. Within the RL field, the LR estimator is the basis of most policy gradient
algorithms, e.g., REINFORCE [64] and actor-critic methods [56, 31, 30, 14]. Recent works [3, 60,
7, 35] have shown the global convergence of LR policy gradient under certain conditions, while
less attention has been focused on RP PGMs. Remarkably, the analysis in [33] is based on the
strong assumptions on the chained gradient and ignores the impact of value approximation, which
oversimplifies the problem by reducing the h-step model value expansion to single-step model unrolls.
Besides, [12] only focused on the gradient bias while still neglecting the necessary visitation analysis.
Despite the utilization in our method of Spectral Normalization on the learned model to control the
gradient variance, SN has also been applied in deep RL to value functions in order to enable deeper
neural nets [8] or regulate the value-aware model error [72].

Differentiable Simulation. This paper delves into the model-based setting [11, 28, 29, 70, 24], where
a learned model is employed to train a control policy. Recent approaches [41, 53, 54, 67] based on
differentiable simulators [18, 27] assume that gradients of simulation outcomes w.r.t. actions are
explicitly given. To deal with the discontinuities and empirical bias phenomenon in the differentiable
simulation caused by contact dynamics, previous works proposed smoothing the gradient adaptively
with a contact-aware central-path parameter [71], using penalty-based contact formulations [20, 66]
or adopting randomized smoothing for hard-contact dynamics [53, 54]. However, these are not in
direct comparison to our analysis, which relies on model function approximators.

7 Experiments

7.1 Evaluation of Reparameterization Policy Gradient Methods

To gain a deeper understanding and support the theoretical findings, we evaluate several algorithms
originating from our RP PGM framework and compare them with various baselines in Figure 1.
Specifically, RP-DP-SN is the proposed SN-based algorithm; RP-DP, as described in (4.1), is imple-
mented as MAAC [12] with entropy regularization [4]; RP-DR, as described in (4.2), is implemented
as SVG [25]; the model-free RP(0) is described in §4.2. Details and discussions are deferred to §C.

The results indicate that RP-DP consistently outperforms or matches the performance of existing
methods such as MBPO [28] and LR PGMs, including REINFORCE [56], NPG [31], ACKTR [65],
and PPO [49]. This highlights the significance and potential of model-based RP PGMs. Due to space
limitations, we refer the readers to §C.5 for larger versions of the figures in the experiment section.
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Figure 1: Comparisons between RP PGMs (the green labels) and MF/MB baselines (the black labels)
in the MuJoCo [57] tasks.

7.2 Gradient Variance and Loss Landscape
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Figure 2: Gradient variance of the vanilla RP-
DP explodes while adding spectral normaliza-
tion solves this issue.

Our prior investigations have revealed that vanilla MB
RP PGMs tend to have highly non-smooth landscapes
due to the significant increase in gradient variance.
We now conduct experiments to validate this phe-
nomenon in practice. In Figure 2, we plot the mean
gradient variance of the vanilla RP-DP algorithm dur-
ing training. To visualize the loss landscapes, we plot
in Figure 3 the negative value estimate along two
directions that are randomly selected in the policy
parameter space of a training policy.

(a) RP-DP
h = 3.

(b) RP-DP
h = 15.

(c) RP-DP-SN
h = 15.

Figure 3: The loss surface of hopper.

We can observe that for vanilla RP policy gradient
algorithms, the gradient variance explodes in expo-
nential rate with respect to the model unroll length.
This results in a loss landscape that is highly non-
smooth for larger unrolling steps. This renders the im-
portance of smoothness regularization. Specifically,
incorporating Spectral Normalization (SN) [39] in
the model and policy neural nets leads to a marked reduction in mean gradient variance for all unroll
length settings, resulting in a much smoother loss surface compared to the vanilla implementation.

7.3 Benefit of Smoothness Regularization

In this section, we investigate the effect of smoothness regularization to support our claim: The
gradient variance has polynomial dependence on the Lipschitz continuity of the model and policy,
which is a contributing factor to training. Our results in Figure 4 show that SN-based RP PGMs
achieve equivalent or superior performance compared to the vanilla implementation. Importantly,
for longer model unrolls (e.g., 10 in walker2d and 15 in hopper), vanilla RP PGMs fail to produce
reliable performance. SN-based methods, on the other hand, significantly boost training.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

5000

6000

Re
tu

rn

walker2d h=3

Return w/ SN
Return w/o SN

0 2 4 6 8
Steps 1e5

0

1000

2000

3000

4000

5000

6000
walker2d h=8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e5

0

1000

2000

3000

4000

5000
walker2d h=10

0 1 2 3 4
Steps 1e5

0

1000

2000

3000

Re
tu

rn

hopper h=8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps 1e5

0

1000

2000

3000

hopper h=10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps 1e5

0

1000

2000

3000

hopper h=15

Figure 4: Performance of vanilla and SN-based MB RP PGMs with varying h. The vanilla method
only works with a small h and fails when h increases, while the SN-based method enables a larger h.
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Figure 5: Performance with different h.

Additionally, we explore different choices of model
unroll lengths and examine the impact of spectral
normalization, with results shown in Figure 5. We
find that by utilizing SN, the curse of chaos can be
mitigated, allowing for longer model unrolls. This is
crucial for practical algorithmic designs: The most
popular model-based RP PGMs such as [12, 4] often
rely on a carefully chosen (small) h (e.g., h = 3).
When the model is good enough, a small h may not
fully leverage the accurate gradient information. As evidence, approaches [67, 41] based on differen-
tiable simulators typically adopt longer unrolls compared to model-based approaches. Therefore, with
SN, more accurate multi-step predictions should enable more efficient learning without making the
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underlying optimization process harder. SN-based approaches also provide more robustness since the
return is insensitive to h and the variance of return is smaller compared to the vanilla implementation
when h is large.

Ablation on Variance. By plotting the gradient variance of RP-DP during training in Figure 6, we
can discern that for walker h = 10 and hopper h = 15, a key contributor to the failure of vanilla
RP-DP is the exploding gradient variances. On the contrary, the SN-based approach excels in training
performance as a result of the drastically reduced variance.
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Figure 6: Gradient variance of RP PGMs. The variance is significantly lower with SN when h is large.

Ablation on Bias. When the underlying MDP is itself contact-rich and has non-smooth or even
discontinuous dynamics, explicitly regularizing the Lipschitz of the transition model may lead to
large error ϵf and thus large gradient bias. Therefore, it is also important to study if SN causes such
a negative effect and if it does, how to trade off between the model bias and gradient variance. To
efficiently obtain an accurate first-order gradient (instead of via finite difference in MuJoCo), we
conduct ablation based on the differentiable simulator dFlex [26, 67], where Analytic Policy Gradient
(APG) described in Section 3 can be implemented.
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Figure 7: Performance and gradient bias in differentiable simulation. The third and last columns
are the full training curves of APG, which need 20 times more steps than RP-DP-SN to reach a
comparable return in the hopper task and fail in the half-cheetah task, respectively.

Figure 7 illustrates the crucial role SN plays in locomotion tasks. It is worth noting that the higher bias
of the SN method does not impede performance, but rather improves it, indicating that the primary
obstacle in training RP PGMs is the large variance in gradients. Therefore, even if the simulation
is differentiable, learning a smooth proxy model can be beneficial when the dynamics have bumps
or discontinuous jumps, which is usually the case in robotics systems, sharing similarities with the
gradient smoothing techniques [53, 54, 71] for APG.

8 Conclusion & Future Work

In this work, we study the convergence of model-based reparameterization policy gradient methods
and identify the determining factors that affect the quality of gradient estimation. Based on our theory,
we propose a spectral normalization (SN) method to mitigate the exploding gradient variance issue.
Our experimental results also support the proposed theory and method. Since SN-based RP PGMs
allow longer model unrolls without introducing additional optimization hardness, learning more
accurate multi-step models to fully leverage their gradient information should be a fruitful future
direction. It will also be interesting to explore different smoothness regularization designs and apply
them to a broader range of algorithms, such as using proxy models in differentiable simulation to
obtain smooth policy gradients, which we would like to leave as future work.
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A Recursive Expression of Analytic Policy Gradient

In what follows, we interchangeably write∇ax and dx/da as the gradient and denote by ∂x/∂a the
partial derivative.

Derivation of Analytic Policy Gradient. First of all, we provide the derivation of (3.2) and (3.3),
i.e., the backward recursions of the gradient in APG.

Following [25], we define the operator

∇iθ =
∑
j≥i

daj
dθ
· ∂

∂aj
+
∑
j>i

dsj
dθ
· ∂

∂sj
. (A.1)

We begin by expanding the total derivative operator by chain rule as
d

dθ
=
∑
i≥0

dai
dθ
· ∂
∂ai

+
∑
i>0

dsi
dθ
· ∂
∂si

=
da0
dθ
· ∂

∂a0
+

ds1
dθ
· ∂

∂s1
+
∑
i≥1

dai
dθ
· ∂
∂ai

+
∑
i>1

dsi
dθ
· ∂
∂si

. (A.2)

Here, the expansion holds when d/dθ operates on policies and models that are differentiable with
respect to all states si and actions ai.

Plugging (A.2) into (A.1), we obtain the following recursive formula for∇iθ,

∇iθ =
dai
dθ
· ∂
∂ai

+
dat
dθ
· dsi+1

dat
· ∂

∂si+1
+∇i+1

θ . (A.3)

By the Bellman equation, we have

V πθ (s) = Eς
[
(1− γ) · r(s, πθ(s, ς)) + γ · Eξ∗

[
V πθ

(
f
(
s, πθ(s, ς), ξ

∗))]]. (A.4)

Combining (A.3) and (A.4) gives

∇θV πθ (s) =
dV πθ (s)

dθ
=

d

dθ
Eς
[
(1− γ) · r(s, πθ(s, ς)) + γ · Eξ∗

[
V πθ

(
f
(
s, πθ(s, ς), ξ

∗))]]
= Eς

[
(1− γ) · ∂r

∂a
· da
dθ

+ γ · Eξ∗
[
da

dθ
· ∂s

′

∂a
· dV

πθ (s′)

ds′
+

dV πθ (s′)

dθ

]]
, (A.5)

which corresponds to (3.2).

For the dV π(s)/ds term on the right-hand side of (A.5), we have the following recursion,

∇sV πθ (s) =
dV πθ (s)

ds
=

d

ds
Eς
[
(1− γ) · r(s, πθ(s, ς)) + γ · Eξ∗

[
V πθ

(
f
(
s, πθ(s, ς), ξ

∗))]]
= Eς

[
(1− γ) ·

(
∂r

∂s
+
∂r

∂a
· ∂a
∂s

)
+ γ · Eξ∗

[
∂s′

∂s
· dV

πθ (s′)

ds′
+
∂s′

∂a
· ∂a
∂s
· dV

πθ (s′)

ds′

]]
,

(A.6)
which corresponds to (3.3).

Therefore, we complete the derivative of (3.2) and (3.3).

Derivation of RP-DR Policy Gradient. By the same arguments in (A.5) and (A.6) with ∇af (or
∂s′/∂a) and ∇sf (or ∂s′/∂s) replaced with∇af̂ψ and ∇sf̂ψ , we obtain

∇̂θV πθ (ŝi,n) = (1− γ)∇ar(ŝi,n, âi,n)∇θπθ(ŝi,n, ςn)

+ γ∇̂sV πθ (ŝi+1,n)∇af̂ψ(ŝi,n, âi,n, ξn)∇θπθ(ŝi,n, ςn) + γ∇̂θV πθ (ŝi+1,n),
(A.7)

∇̂sV πθ (ŝi,n) = (1− γ)
(
∇sr(ŝi,n, âi,n) +∇ar(ŝi,n, âi,n)∇sπθ(ŝi,n, ςn)

)
+ γ∇̂sV πθ (ŝi+1,n)

(
∇sf̂ψ(ŝi,n, âi,n, ξn) +∇af̂ψ(ŝi,n, âi,n, ξn)∇sπθ(ŝi,n, ςn)

)
,

(A.8)
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where the termination of backpropagation at the h-th step is ∇̂V πθ (ŝh,n) = ∇V̂ω(ŝh,n).
Combining (A.7) and (A.8), we obtain the RP-DR policy gradient estimator as follows,

∇̂DR
θ J(πθ) =

1

N

N∑
n=1

∇̂θV πθ (ŝ0,n) =
1

N

N∑
n=1

∇θ
(h−1∑
i=0

γir(ŝi,n, âi,n) + γhQ̂ω(ŝh,n, âh,n)

)
,

(A.9)

where ŝ0,n ∼ µπθ
, âi,n = πθ(ŝi,n, ςn), and ŝi+1,n = f̂ψ(ŝi,n, âi,n, ξn). Here, ςn and ξn are inferred

by solving ai = πθ(si, ςn) and si+1 = f̂ψ(si, ai, ξn), respectively, where (si, ai, si+1) is the real
data sample. For example, for a state si+1 sampled from a one-dimensional Gaussian transition
model si+1 ∼ N (ϕ(si, ai), σ

2), where the variance is σ and the mean ϕ(si, ai) is the output of some
function parameterized by ϕ, the noise ξn can be inferred as ξn = (si+1 − ϕ(si, ai))/σ.

B Proofs

B.1 Proof of Proposition 5.2

As a preparation before proving Proposition 5.2, we first present the following lemma stating that the
objective in (2.1) is Lipschitz smooth under Assumption 5.1.

Lemma B.1 (Smooth Objective, [69] Lemma 3.2). The objective J(πθ) is L-smooth in θ, such that
∥∇θJ(πθ1)−∇θJ(πθ2)∥2 ≤ L∥θ1 − θ2∥2, where

L =
rm · L1

(1− γ)2
+

(1 + γ) · rm ·B2
θ

(1− γ)3
.

Then we are ready to prove Proposition 5.2.

Proof of Proposition 5.2. See the proof of Theorem 4.2 in [71].

B.2 Proof of Proposition 5.4

Proof. Since the RP-DP gradient ∇̂θJ(πθ) = ∇̂DP
θ J(πθ) in (4.1) and the RP-DR gradient

∇̂θJ(πθ) = ∇̂DR
θ J(πθ) in (4.2) share the same state transition ŝi+1,n = f̂(ŝi,n, ξn), where re-

call that the only difference lies in the source of noise ξn, our subsequent analysis holds for both
RP-DP and RP-DR.

To upper-bound the gradient variance vt = E[∥∇̂θJ(πθt) − E[∇̂θJ(πθt)]∥22], we characterize the
norm inside the outer expectation.

We start with the case where the sample size N = 1, which naturally generalizes to N > 1.
Specifically, we consider an arbitrary h-step trajectory obtained by unrolling the model under policy
πθt . We denote the pathwise gradient ∇̂θJ(πθt) of this trajectory as g′. Then we have

vt ≤ max
g′

∥∥∥g′ − E
[
∇̂θJ(πθt)

]∥∥∥2
2
=
∥∥∥g − E

[
∇̂θJ(πθt)

]∥∥∥2
2
=
∥∥∥E[g − ∇̂θJ(πθt)]∥∥∥2

2
,

where g is the pathwise gradient ∇̂θJ(πθt) of a fixed (but unknown) trajectory
(ŝ0,n, â0,n, ŝ1,n, â1,n, · · · ) such that the maximum is achieved.

Using the fact that ∥E[·]∥2 ≤ E[∥ · ∥2], we further obtain

vt ≤ E
[∥∥g − ∇̂θJ(πθt)∥∥2]2. (B.1)

Let x̂i,n = (ŝi,n, âi,n). By the triangular inequality, we have

E
[∥∥g − ∇̂θJ(πθt)∥∥2] ≤ h−1∑

i=0

γi · Exi

[∥∥∇θr(x̂i,n)−∇θr(xi)∥∥2]
+ γh · Exh

[∥∥∇Q̂(x̂h,n)∇θx̂h,n −∇Q̂(xh)∇θxh
∥∥
2

]
. (B.2)
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By the chain rule, we have for any i ≥ 1 that

dâi,n
dθ

=
∂âi,n
∂ŝi,n

· dŝi,n
dθ

+
∂âi,n
∂θ

, (B.3)

dŝi,n
dθ

=
∂ŝi,n
∂ŝi−1,n

· dŝi−1,n

dθ
+

∂ŝi,n
∂âi−1,n

· dâi−1,n

dθ
. (B.4)

Denote by Lθ = supθ∈Θ,s∈S,ς ∥∇θπθ(s, ς)∥2.

Plugging dâi−1,n/dθ in (B.3) into (B.4), we get∥∥∥∥dŝi,ndθ

∥∥∥∥
2

=

∥∥∥∥( ∂ŝi,n
∂ŝi−1,n

+
∂ŝi,n
∂âi−1,n

· ∂âi−1,n

∂ŝi−1,n

)
· dŝi−1,n

dθ
+

∂ŝi,n
∂âi−1,n

· ∂âi−1,n

∂θ

∥∥∥∥
2

≤ Lf̂ L̃π ·
∥∥∥∥dŝi−1,n

dθ

∥∥∥∥
2

+ Lf̂Lθ, (B.5)

where the inequality follows from Assumption 5.3 and the Cauchy-Schwarz inequality.

Recursively applying (B.5), we obtain for any i ≥ 1 that∥∥∥∥dŝi,ndθ

∥∥∥∥
2

≤ Lf̂Lθ ·
i−1∑
j=0

Lj
f̂
L̃jπ ≤ i · LθLi+1

f̂
L̃iπ, (B.6)

where the first inequality follows from the induction

zi = azi−1 + b = a · (azi−2 + b) + b = ai · z0 + b ·
i−1∑
j=0

aj . (B.7)

In (B.7), {zj}0≤j≤i is the real sequence satisfying zj = azj−1 + b. For dâi,n/dθ defined in (B.3),
we further have ∥∥∥∥dâi,ndθ

∥∥∥∥
2

≤ Lπ ·
∥∥∥∥dŝi,ndθ

∥∥∥∥
2

+ Lθ ≤ i · LθLi+1

f̂
L̃i+1
π + Lθ. (B.8)

Combining (B.6) and (B.8), we obtain∥∥∥∥dx̂i,ndθ

∥∥∥∥
2

=

∥∥∥∥dŝi,ndθ

∥∥∥∥
2

+

∥∥∥∥dâi,ndθ

∥∥∥∥
2

≤ 2i · LθLi+1

f̂
L̃i+1
π + Lθ︸ ︷︷ ︸

K̂(i)

. (B.9)

Therefore, we bound the second term on the right-hand side of (B.2) as follows,

Exh

[∥∥∇Q̂(x̂h,n)∇θx̂h,n −∇Q̂(xh)∇θxh
∥∥
2

]
≤ Exh

[∥∥∇Q̂(x̂h,n)∇θx̂h,n −∇Q̂(xh)∇θx̂h,n
∥∥
2

]
+ Exh

[∥∥∇Q̂(xh)∇θx̂h,n −∇Q̂(xh)∇θxh
∥∥
2

]
≤ 2LQ̂ · K̂(i) + LQ̂ ·

(
Esi
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
+ Eai

[∥∥∥∥dâi,ndθ
− dai

dθ

∥∥∥∥
2

])
, (B.10)

where the last inequality follows from the Cauchy-Schwartz inequality and Assumption 5.3, and
LQ̂ = supω∈Ω,s1,s2∈S,a1,a2∈A |Q̂ω(s1, a1)− Q̂ω(s2, a2)|/∥(s1 − s2, a1 − a2)∥2..

By the chain rule, we bound the first term on the right-hand side of (B.2) as follows,

Exi

[∥∥∇θr(x̂i,n)−∇θr(xi)∥∥2]
= Exi

[∥∥∇r(x̂i,n)∇θx̂i,n −∇r(xi)∇θxi∥∥2]
≤ Exi

[∥∥∇r(x̂i,n)∇θx̂i,n −∇r(x̂i,n)∇θxi∥∥2]+ E
[∥∥∇r(x̂i,n)∇θxi −∇r(xi)∇θxi∥∥2]

≤ Lr ·
(
Esi
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
+ Eai

[∥∥∥∥dâi,ndθ
− dai

dθ

∥∥∥∥
2

])
+ 2Lr · K̂(i). (B.11)
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Plugging (B.10) and (B.11) into (B.2) and (B.1), we obtain

vt ≤
[(
Lr ·

h−1∑
i=0

γi + γh · LQ̂

)
·
(
Esh
[∥∥∥∥dŝh,ndθ

− dsh
dθ

∥∥∥∥
2

]
+ Eah

[∥∥∥∥dâh,ndθ
− dah

dθ

∥∥∥∥
2

]
+ 2K̂(h)

)]2
= O

(
h4
(1− γh
1− γ

)2
L̃4h
f̂
L̃4h
π + γ2hh4L̃4h

f̂
L̃4h
π

)
, (B.12)

where the inequality follows from Lemma B.2 and by plugging the definition of K̂(i) in (B.9).

Note that the variance vt scales with the batch size N at the rate of 1/N . Since the analysis above is
established for N = 1, the bound of the gradient variance vt is established by dividing the right-hand
side of (B.12) by N , which concludes the proof of Proposition 5.4.

Lemma B.2. Denote e = supEs0 [∥dŝ0,n/dθ − ds0/dθ∥2], which is a constant that only depends
on the initial state distribution2. For any timestep i ≥ 1 and the corresponding state, action, we have
the following results,

Esi
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
≤ L̃i

f̂
L̃iπ

(
e+ 4i · L̃f̂ L̃π · K̂(i− 1) + 2i · L̃f̂Lθ

)
,

Eai
[∥∥∥∥dâi,ndθ

− dai
dθ

∥∥∥∥
2

]
≤ L̃i

f̂
L̃i+1
π

(
e+ 4i · L̃f̂ L̃π · K̂(i− 1) + 2i · L̃f̂Lθ

)
+ 2LπK̂(i) + 2Lθ.

Proof. Firstly, from (B.4), we obtain for any i ≥ 1 that

Esi
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
= E

[∥∥∥∥ ∂ŝi,n
∂ŝi−1,n

· dŝi−1,n

dθ
+

∂ŝi,n
∂âi−1,n

· dâi−1,n

dθ
− ∂si
∂si−1

· dsi−1

dθ
− ∂si
∂ai−1

· dai−1

dθ

∥∥∥∥
2

]
According to the triangle inequality, we further have

≤ E
[∥∥∥∥ ∂ŝi,n
∂ŝi−1,n

· dŝi−1,n

dθ
− ∂si
∂si−1

· dŝi−1,n

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂si
∂si−1

· dŝi−1,n

dθ
− ∂si
∂si−1

· dsi−1

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂ŝi,n
∂âi−1,n

· dâi−1,n

dθ
− ∂si
∂ai−1

· dâi−1,n

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂si
∂ai−1

· dâi−1,n

dθ
− ∂si
∂ai−1

· dai−1

dθ

∥∥∥∥
2

]
≤ 2Lf̂ ·

(∥∥∥∥dŝi−1,n

dθ

∥∥∥∥
2

+

∥∥∥∥dâi−1,n

dθ

∥∥∥∥
2

)
+ Lf̂ · Esi−1

[∥∥∥∥dŝi−1,n

dθ
− dsi−1

dθ

∥∥∥∥
2

]
+ Lf̂ · Eai−1

[∥∥∥∥dâi−1,n

dθ
− dai−1

dθ

∥∥∥∥
2

]
. (B.13)

Similarly, we have from (B.3) that

Eai
[∥∥∥∥dâi,ndθ

− dai
dθ

∥∥∥∥
2

]
= E

[∥∥∥∥∂âi,n∂ŝi,n
· dŝi,n

dθ
+
∂âi,n
∂θ
− ∂ai
∂si
· dsi
dθ
− ∂ai

∂θ

∥∥∥∥
2

]
≤ E

[∥∥∥∥∂âi,n∂ŝi,n
· dŝi,n

dθ
− ∂ai
∂si
· dŝi,n

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥∂ai∂si
· dŝi,n

dθ
− ∂ai
∂si
· dsi
dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥∂âi,n∂θ
− ∂ai

∂θ

∥∥∥∥
2

]
≤ 2Lπ · E

[∥∥∥∥dŝi,ndθ

∥∥∥∥]+ Lπ · E
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
+ 2Lθ. (B.14)

2We define e to account for the stochasticity of the initial state distribution. e = 0 when the initial state is
deterministic.
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Plugging (B.14) back to (B.13), we obtain

Esi
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
≲ 4Lf̂ L̃π ·

(∥∥∥∥dŝi−1,n

dθ

∥∥∥∥
2

+

∥∥∥∥dâi−1,n

dθ

∥∥∥∥
2

)
+ Lf̂ L̃π · Esi−1

[∥∥∥∥dŝi−1,n

dθ
− dsi−1

dθ

∥∥∥∥
2

]
+ 2Lf̂Lθ

≤ 4Lf̂ L̃π · K̂(i− 1) + Lf̂ L̃π · Esi−1

[∥∥∥∥dŝi−1,n

dθ
− dsi−1

dθ

∥∥∥∥
2

]
+ 2Lf̂Lθ,

where the last inequality follows from the definition of K̂ in (B.9).

Applying this recursion gives

Esi
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
≤ e
(
Lf̂ L̃π

)i
+
(
4Lf̂ L̃π · K̂(i− 1) + 2Lf̂Lθ

)
·
i−1∑
j=0

(
Lf̂ L̃π

)j
≤ L̃i

f̂
L̃iπ

(
e+ 4i · L̃f̂ L̃π · K̂(i− 1) + 2i · L̃f̂Lθ

)
,

where the first equality follows from (B.7).

As a consequence, we have from (B.14) that

Eai
[∥∥∥∥dâi,ndθ

− dai
dθ

∥∥∥∥
2

]
≤ L̃i

f̂
L̃i+1
π

(
e+ 4i · L̃f̂ L̃π · K̂(i− 1) + 2i · L̃f̂Lθ

)
+ 2LπK̂(i) + 2Lθ.

This concludes the proof.

B.3 Proof of Proposition 5.6

Proof. The analysis of gradient bias differs from that of gradient variance as it involves not only
the distribution of approximate states but also the recurrent dependencies of the true value on future
timesteps, which must be given extra attention.

In the following analysis, we will first apply similar techniques as those outlined in the previous
section to establish an upper bound on the decomposed reward terms in the gradient bias. Afterward,
we will address the distribution mismatch issue caused by the recursive structure of V πθ and the
non-recursive structure of the value approximation V̂ωt

.

Step 1: Bound the cumulative reward terms in the gradient bias.

To begin with, we decompose the bias of the reward gradient at timestep i ≥ 0 as follows,

E(si,ai)∼P(si,ai),(ŝi,n,âi,n)∼P(ŝi,âi)

[∥∥∥∥dr(x̂i,n)dθ
− dr(xi)

dθ

∥∥∥∥
2

]
= E

[∥∥∥∥ dr

dx̂i,n
· dx̂i,n

dθ
− dr

dxi
· dxi
dθ

∥∥∥∥
2

]
≤ E

[∥∥∥∥ dr

dx̂i,n
· dx̂i,n

dθ
− dr

dxi
· dx̂i,n

dθ

∥∥∥∥
2

+

∥∥∥∥ dr

dxi
· dx̂i,n

dθ
− dr

dxi
· dxi
dθ

∥∥∥∥
2

]
≤ 2Lr · K̂(i) + Lr ·

(
E
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥dâi,ndθ
− dai

dθ

∥∥∥∥
2

])
, (B.15)

where P(si, ai) and P(ŝi, âi) are defined in (4.4) with respect to s0 ∼ νπ , ŝ0 ∼ νπ .

We have from (B.3) that for any i ≥ 1,

E
[∥∥∥∥dâi,ndθ

− dai
dθ

∥∥∥∥
2

]
= E

[∥∥∥∥∂âi,n∂ŝi,n
· dŝi,n

dθ
+
∂âi,n
∂θ
− ∂ai
∂si
· dsi
dθ
− ∂ai

∂θ

∥∥∥∥
2

]
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By the triangle inequality and the Lipschitz assumption, it then follows that

≤ E
[∥∥∥∥∂âi,n∂ŝi,n

· dŝi,n
dθ
− ∂ai
∂si
· dŝi,n

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥∂ai∂si
· dŝi,n

dθ
− ∂ai
∂si
· dsi
dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥∂âi,n∂θ
− ∂ai

∂θ

∥∥∥∥
2

]
≤ 2Lπ · E

[∥∥∥∥dŝi,ndθ

∥∥∥∥
2

]
+ Lπ · E

[∥∥∥∥dŝi,ndθ
− dsi

dθ

∥∥∥∥
2

]
+ 2Lθ. (B.16)

Similarly, we have from (B.4) that for any i ≥ 1,

E
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
= E

[∥∥∥∥ ∂ŝi,n
∂ŝi−1,n

· dŝi−1,n

dθ
+

∂ŝi,n
∂âi−1,n

· dâi−1,n

dθ
− ∂si
∂si−1

· dsi−1

dθ
− ∂si
∂ai−1

· dai−1

dθ

∥∥∥∥
2

]
Applying the triangle inequality to extract the ϵf,t term defined in (4.4), we proceed by

≤ E
[∥∥∥∥ ∂ŝi,n
∂ŝi−1,n

· dŝi−1,n

dθ
− ∂si
∂si−1

· dŝi−1,n

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂si
∂si−1

· dŝi−1,n

dθ
− ∂si
∂si−1

· dsi−1

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂ŝi,n
∂âi−1,n

· dâi−1,n

dθ
− ∂si
∂ai−1

· dâi−1,n

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂si
∂ai−1

· dâi−1,n

dθ
− ∂si
∂ai−1

· dai−1

dθ

∥∥∥∥
2

]
≤ ϵf,t · E

[∥∥∥∥dŝi−1,n

dθ

∥∥∥∥
2

+

∥∥∥∥dâi−1,n

dθ

∥∥∥∥
2

]
+ Lf · E

[∥∥∥∥dŝi−1,n

dθ
− dsi−1

dθ

∥∥∥∥
2

]
+ Lf · E

[∥∥∥∥dâi−1,n

dθ
− dai−1

dθ

∥∥∥∥
2

]
≤ ϵf,t · K̂(i− 1) + Lf · E

[∥∥∥∥dŝi−1,n

dθ
− dsi−1

dθ

∥∥∥∥
2

]
+ Lf · E

[∥∥∥∥dâi−1,n

dθ
− dai−1

dθ

∥∥∥∥
2

]
, (B.17)

where the last inequality follows from the definition of K̂(i− 1) in (B.9).

Combining (B.16) and (B.17), we have

E
[∥∥∥∥dŝi,ndθ

− dsi
dθ

∥∥∥∥
2

]
≲ (ϵf,t + 2LfLπ) · K̂(i− 1) + Lf L̃π · E

[∥∥∥∥dŝi−1,n

dθ
− dsi−1

dθ

∥∥∥∥
2

]
+ 2LfLθ

=
(
(ϵf,t + 2LfLπ) · K̂(i− 1) + 2LfLθ

)
·
i−1∑
j=0

Ljf L̃
j
π

≤
(
(ϵf,t + 2LfLπ) · K̂(i− 1) + 2LfLθ

)
· i · L̃if L̃iπ, (B.18)

where the last inequality follows from (B.7) and the fact that s0, ŝ0,n are sampled from the same
initial distribution, and the equality holds by applying the recursion.

Plugging (B.18) into (B.16), we obtain

E
[∥∥∥∥dâi,ndθ

− dai
dθ

∥∥∥∥
2

]
≤
[
(ϵf,t + 2LfLπ) · K̂(i− 1) + 2LfLθ

]
· i · L̃if L̃i+1

π + 2LπK̂(i) + 2Lθ.

(B.19)

Step 2: Address the state distribution mismatch issue.

The next step is to address the distribution mismatch issue caused by the recursive structure of the
value function and the non-recursive structure of the value approximation, i.e., the critic.

We define σ1(s, a) = P(sh = s, ah = a) where s0 ∼ νπ, ai ∼ π(· | si), and si+1 ∼ f(· | si, ai).
In a similar way, we define σ̂1(s, a) = P(ŝh = s, âh = a) where ŝ0 ∼ νπ, âi ∼ π(· | ŝi), and
ŝi+1 ∼ f̂(· | ŝi, âi).
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Now we are ready to bound the gradient bias. From Lemma B.4, we know that

bt ≤ κκ′ · Es0∼νπ,ŝ0,n∼νπ
[∥∥∥∥∇θ h−1∑

i=0

γi · r(si, ai)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)
∥∥∥∥
2

]
+ κ′γh · E(sh,ah)∼σ1,(ŝh,n,âh,n)∼σ̂1

[∥∥∥∥∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
−∇θQ̂t(ŝh,n, âh,n)

∥∥∥∥
2

]
,

(B.20)

where recall that κ′ = β + κ · (1− β).
From Lemma B.5, we have for any policy πθ that the state-action value function is LQ-Lipschitz
continuous, which gives for any s ∈ S and a ∈ A that∥∥∥∥∂Qπθ

∂a

∥∥∥∥
2

≤ LQ,
∥∥∥∥∂Qπθ

∂s

∥∥∥∥
2

≤ LQ. (B.21)

The bias brought by the critic, i.e., the last term on the right-hand side of (B.20), can be further
bounded by

E(sh,ah)∼σ1,(ŝh,n,âh,n)∼σ̂1

[∥∥∥∥∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
−∇θQ̂t(ŝh,n, âh,n)

∥∥∥∥
2

]
= Eσ1,σ̂1

[∥∥∥∥∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
− ∂Q̂t
∂âh,n

· dâh,n
dθ

− ∂Q̂t
∂ŝh,n

· dŝh,n
dθ

∥∥∥∥
2

]
≤ Eσ1,σ̂1

[∥∥∥∥∂Qπθ

∂ah
· dah
dθ
− ∂Qπθ

∂ah
· dâh,n

dθ

∥∥∥∥
2

+

∥∥∥∥∂Qπθ

∂ah
· dâh,n

dθ
− ∂Q̂t
∂âh,n

· dâh,n
dθ

∥∥∥∥
2

+

∥∥∥∥∂Qπθ

∂sh
· dsh
dθ
− ∂Qπθ

∂sh
· dŝh,n

dθ

∥∥∥∥
2

+

∥∥∥∥∂Qπθ

∂sh
· dŝh,n

dθ
− ∂Q̂t
∂ŝh,n

· dŝh,n
dθ

∥∥∥∥
2

]
≤ LQ ·

(
Eσ1,σ̂1

[∥∥∥∥dahdθ
− dâh,n

dθ

∥∥∥∥
2

+

∥∥∥∥dshdθ
− dŝh,n

dθ

∥∥∥∥
2

])
+
( γh

1− γ

)2
K̂(h) · ϵv,t, (B.22)

where the equality follows from the chain rule and the fact that the critic Q̂t has a non-recursive
structure, the last inequality follows from (B.21), (B.9) and the definition of ϵv,t in (4.5).

Plugging (B.15) and (B.22) into (B.20), we obtain

bt ≤ κκ′ · h ·
(
Lr ·

(
Eσ1,σ̂1

[∥∥∥∥dŝh,ndθ
− dsh

dθ

∥∥∥∥
2

]
+ Eσ1,σ̂1

[∥∥∥∥dâh,ndθ
− dah

dθ

∥∥∥∥
2

])
+ 2Lr · K̂(h)

)
+ κ′γh ·

(
LQ ·

(
Eσ1,σ̂1

[∥∥∥∥dŝh,ndθ
− dsh

dθ

∥∥∥∥
2

]
+ Eσ1,σ̂1

[∥∥∥∥dâh,ndθ
− dah

dθ

∥∥∥∥
2

])
+ K̂(h) ·

( γh

1− γ

)2
ϵv,t

)
,

(B.23)

Plugging (B.18), (B.19), and (B.9) into the (B.23), we conclude the proof by obtaining

bt = O
(
κκ′h2

1− γh

1− γ
L̃h
f̂
L̃hf L̃

2h
π ϵf,t + κ′hγh

( γh

1− γ

)2
L̃h
f̂
L̃hπϵv,t

)
. (B.24)

Lemma B.3. The expected value gradient over the state distribution P(sh) can be represented by

Esh∼P(sh)
[
∇θV πθ (sh)

]
= E(s,a)∼σ1

[
∂Qπθ

∂a
· da
dθ

+
∂Qπθ

∂s
· ds
dθ

]
,

where P(sh) is the state distribution at timestep hwhen s0 ∼ ζ , ai ∼ π(· | si), and si+1 ∼ f(· | si, ai).
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Proof. At state sh, the value gradient can be rewritten as

∇θV πθ (sh) = ∇θE
[
r(sh, ah) + γ ·

∫
S
f
(
sh+1|sh, ah

)
· V π(sh+1)dsh+1

]
= ∇θE

[
r(sh, ah)

]
+ γ · E

[
∇θ
∫
S
f
(
sh+1|sh, ah

)
· V π(sh+1)dsh+1

]
= E

[
∂rh
∂ah
· dah
dθ

+
∂rh
∂sh
· dsh
dθ

+ γ

∫
S

(
∇θf

(
sh+1|sh, ah

)
· V π(sh+1) + f

(
sh+1|sh, ah

)
· ∇θV π(sh+1)

)
dsh+1

]
= E

[
∂rh
∂ah
· dah
dθ

+
∂rh
∂sh
· dsh
dθ

+ γ

∫
S

(
∇af(sh+1|sh, a) ·

dah
dθ
· V π(sh+1)

+∇sf(sh+1|sh, ah) ·
dsh
dθ
· V π(sh+1) + f

(
sh+1|sh, ah

)
· ∇θV π(sh+1)

)
dsh+1

]
,

(B.25)

where the first equation follows from the Bellman equation and the last two equations hold due to
the chain rule. Here, it is worth noting that when h ≥ 1, both ah and sh have dependencies on all
previous timesteps. For any h ≥ 1, we have from the chain rule that ∇θr(sh, ah) = ∂rh/∂ah ·
dah/dθ+ ∂rh/∂sh · dsh/dθ. This differs from the case when h = 0, e.g., in the deterministic policy
gradient theorem [52], where we can simply write∇θr(sh, ah) = ∂rh/∂ah · ∂ah/∂θ.

Rearranging terms in (B.25) gives

∇θV πθ (sh) = E
[
∇a
(
r(sh, ah) + γ

∫
S
f(sh+1|sh, ah) · V π(sh+1)dsh+1

)
· dah
dθ

+∇s
(
r(sh, ah) + γ

∫
S
f(sh+1|sh, ah) · V π(sh+1)dsh+1

)
· dsh
dθ

+ γ

∫
S
f
(
sh+1|sh, ah

)
· ∇θV π(sh+1)dsh+1

]
= E

[
∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ

+ γ

∫
S
f
(
sh+1|sh, ah

)
· ∇θV π(sh+1)dsh+1

]
,

(B.26)

where the last equation holds sinceQπθ (sh, ah) = r(sh, ah)+γ
∫
S f(sh+1|sh, ah)·V π(sh+1)dsh+1.

By recursively applying (B.26), we obtain

∇θV πθ (sh) = E
[∫

S

∞∑
i=h

γi−h · f
(
si+1|si, ai

)
·
(∂Qπθ

∂ai
· dai
dθ

+
∂Qπθ

∂si
· dsi
dθ

)
dsi+1

]
. (B.27)

Let σ2(s, a) = (1 − γ) ·
∑∞
i=h γ

i−h · P(si = s, ai = a), where s0 ∼ ζ, ai ∼ π(· | si), and
si+1 ∼ f(· | si, ai). By definition we have

σ(s, a) = (1− γ) ·
h−1∑
i=0

γi · P(si = s, ai = a) + γh · σ1(s, a)

= (1− γ) ·
h−1∑
i=0

γi · P(si = s, ai = a) + γh · σ2(s, a).

Therefore we have the equivalence σ1(s, a) = σ2(s, a).

By taking the expectation over sh in (B.27), we have the stated result, i.e.,

Esh∼P(sh)
[
∇θV πθ (sh)

]
= E(s,a)∼σ2

[
∂Qπθ

∂a
· da
dθ

+
∂Qπθ

∂s
· ds
dθ

]
= E(s,a)∼σ1

[
∂Qπθ

∂a
· da
dθ

+
∂Qπθ

∂s
· ds
dθ

]
.
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Lemma B.4. Recall that the state distribution µπ where ŝ0,n is sampled from is of the form µπ(s) =
β · νπ(s) + (1− β) · ζ(s). The gradient bias bt at any iteration t satisfies

bt ≤ κ
(
β + κ · (1− β)

)
· Es0∼νπ,ŝ0,n∼νπ

[∥∥∥∥∇θ h−1∑
i=0

γi · r(si, ai)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)
∥∥∥∥
2

]
+
(
β + κ · (1− β)

)
γh·

E(sh,ah)∼σ1,(ŝh,n,âh,n)∼σ̂1

[∥∥∥∥∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
−∇θQ̂t(ŝh,n, âh,n)

∥∥∥∥
2

]
.

Proof. To begin, we decompose the gradient bias by

bt =
∥∥∥∇θJ(πθt)− E

[
∇̂θJ(πθt)

]∥∥∥
2

=
∥∥∥E[∇θJ(πθt)− ∇̂θJ(πθt)]∥∥∥

2
(B.28)

=

∥∥∥∥Es0∼ζ,ŝ0,n∼µπ

[
∇θ

h−1∑
i=0

γi · r(si, ai) + γh · ∇θV πθ (sh)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)

− γh · ∇θV̂t(ŝh,n)
]∥∥∥∥

2

,

where we note that s0 and ŝ0,n are sampled from ζ and µπ following the definition of the RL objective
and the form of gradient estimator, respectively.

For µπ(s) = β · νπ(s) + (1− β) · ζ(s), let Z be the random variable satisfying P(Z = 0) = β and
P(Z = 1) = 1− β, i.e., the event Z = 0 and Z = 1 corresponds to that the state s is sampled from
νπ and ζ, respectively. For any random variable Y , following the law of total expectation, we know
that

Eµπ [Y ] = E[E[Y |Z]] = E[Y |Z = 0]P(Z = 0) + E[Y |Z = 1]P(Z = 1)

= βE[Y |Z = 0] + (1− β)E[Y |Z = 1]

= βEνπ [Y ] + (1− β)Eζ [Y ]. (B.29)

Therefore, we have from (B.28) that

bt ≤ Eŝ0,n∼µπ

[∥∥∥∥Es0∼ζ[∇θ h−1∑
i=0

γi · r(si, ai) + γh · ∇θV πθ (sh)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)

− γh · ∇θV̂t(ŝh,n)
]∥∥∥∥

2

]
≤ βEŝ0,n∼νπ

[∥∥∥∥Es0∼ζ[∇θ h−1∑
i=0

γi · r(si, ai) + γh · ∇θV πθ (sh)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)

− γh · ∇θV̂t(ŝh,n)
]∥∥∥∥

2

]
+ (1− β)Eŝ0,n∼ζ

[∥∥∥∥Es0∼ζ[∇θ h−1∑
i=0

γi · r(si, ai) + γh · ∇θV πθ (sh)

−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)− γh · ∇θV̂t(ŝh,n)
]∥∥∥∥

2

]
, (B.30)

where the first inequality holds since ∥E[·]∥2 ≤ E[∥ · ∥2] and the second inequality holds due to
(B.29).
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Using the result from Lemma B.3, we know that

Es0∼ζ
[
∇θ

h−1∑
i=0

γi · r(si, ai) + γh · ∇θV πθ (sh)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)− γh · ∇θV̂t(ŝh,n)
]

= Es0∼ζ
[
∇θ

h−1∑
i=0

γi · r(si, ai)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)
]

︸ ︷︷ ︸
Br

+ γhE(sh,ah)∼σ1

[
∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
−∇θV̂t(ŝh,n)

]
︸ ︷︷ ︸

Bv

.

Here, the shorthand notation Br denotes the bias introduced by the h-step model expansion and Bv
denotes the bias introduced by using a critic for tail estimation. Then we may rewrite (B.30) as

bt ≤ β · Eŝ0,n∼νπ
[∥∥Br +Bv

∥∥
2

]
+ (1− β) · Eŝ0,n∼ζ

[∥∥Br +Bv
∥∥
2

]
≤
(
β · Eŝ0,n∼νπ

[∥∥Br∥∥2]+ (1− β) · Eŝ0,n∼ζ
[∥∥Br∥∥2])

+
(
β · Eŝ0,n∼νπ

[∥∥Bv∥∥2]+ (1− β) · Eŝ0,n∼ζ
[∥∥Bv∥∥2]). (B.31)

For the first term on the right-hand side of (B.31), we have

β · Eŝ0,n∼νπ
[∥∥Br∥∥2]+ (1− β) · Eŝ0,n∼ζ

[∥∥Br∥∥2]
= β · Eŝ0,n∼νπ

[∥∥∥∥Es0∼ζ[∇θ h−1∑
i=0

γi · r(si, ai)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)
]∥∥∥∥

2

]
+ (1− β)·

Eŝ0,n∼νπ
[∥∥∥∥Es0∼ζ[∇θ h−1∑

i=0

γi · r(si, ai)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)
]∥∥∥∥

2

]
·
{
Eνπ

[( dζ

dνπ
(s)
)2]}1/2

≤
(
β + κ · (1− β)

)
· Eŝ0,n∼νπ

[∥∥∥∥Es0∼ζ[∇θ h−1∑
i=0

γi · r(si, ai)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)
]∥∥∥∥

2

]

≤ κ
(
β + κ · (1− β)

)
· Es0∼νπ,ŝ0,n∼νπ

[∥∥∥∥∇θ h−1∑
i=0

γi · r(si, ai)−∇θ
h−1∑
i=0

γi · r(ŝi,n, âi,n)
∥∥∥∥
2

]
,

(B.32)

where the first and second inequalities follow from the definition of κ in Proposition 5.6.

Similarly, for the second term on the right-hand side of (B.31), we have

β · Eŝ0,n∼νπ
[∥∥Bv∥∥2]+ (1− β) · Eŝ0,n∼ζ

[∥∥Bv∥∥2]
= β · Eŝ0,n∼νπ

[
γh ·

∥∥∥∥E(sh,ah)∼σ1

[
∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
−∇θV̂t(ŝh,n)

]∥∥∥∥
2

]
+ (1− β) · Eŝ0,n∼ζ

[
γh ·

∥∥∥∥E(sh,ah)∼σ1

[
∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
−∇θV̂t(ŝh,n)

]∥∥∥∥
2

]
≤
(
β + κ · (1− β)

)
γh · E(sh,ah)∼σ1,ŝ0,n∼νπ

[∥∥∥∥∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
−∇θV̂t(ŝh,n)

∥∥∥∥
2

]
=
(
β + κ · (1− β)

)
γh·

E(sh,ah)∼σ1,(ŝh,n,âh,n)∼σ̂1

[∥∥∥∥∂Qπθ

∂ah
· dah
dθ

+
∂Qπθ

∂sh
· dsh
dθ
−∇θQ̂t(ŝh,n, âh,n)

∥∥∥∥
2

]
. (B.33)

Plugging (B.32) and (B.33) into (B.31) completes the proof.
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Lemma B.5 (Lipschitz Value Function [47] Theorem 1). Under Assumption 5.3, for γLf (1+Lπ) <
1, then the state-action value function is LQ-Lipschitz continuous, such that for any policy πθ, state
s1, s2 ∈ S and action a1, a2 ∈ A,

∣∣Qπθ (s1, a1)−Qπθ (s2, a2)
∣∣ ≤ LQ · ∥∥(s1 − s2, a1 − a2)∥∥2, and

LQ = Lr/(1− γLf (1 + Lπ)).

B.4 Proof of Proposition 5.7

Proof. When γ ≈ 1, we have

1− γh

1− γ
=

h−1∑
i=0

γi ≈ h, γh

1− γ
=

1

1− γ
− 1− γh

1− γ
≈ 1

1− γ
− h.

We denote by H = 1/(1− γ) =
∑∞
i=0 γ

i the effective task horizon.

To find the optimal unroll length h∗ that minimizes the upper bound of the convergence, we define
g(h) as follows,

g(h) = c · (2δ · b′t +
η

2
· v′2t ) + b′2t + v′2t .

Here, v′2t and b′t are the leading terms in the variance, bias bound (i.e., (B.12) and (B.24)) when
Lf , Lf̂ , and Lπ are less than or equal to 1. Formally, v′t = h3 and b′t = h3ϵf,t + h(H − h)2ϵv,t.
We consider the terms that are only dependent on h, H , ϵf,t, and ϵv,t to simplify the analysis and
determine the order of h∗.

Our first problem is to find the optimal model unroll h′∗ that minimizes g(h). We notice that g(h)
increases monotonically with respect to b′t and v′t when they are non-negative. This further simplifies
the problem to find

h′∗ = argmin
h

b′t + c′v′t = argmin
h

h3(ϵf,t + c′) + h(H − h)2ϵv,t︸ ︷︷ ︸
g1(h)

, (B.34)

where c′ is some constant that does not affect the order of h′∗.

By taking the derivative of the right-hand side of (B.34) with respect to h and setting it to zero, we
obtain

∂

∂h
g1(h) = 3h2 · (ϵf,t + c′) + (3h2 − 4Hh+H2) · ϵv,t = 0. (B.35)

Solve the above quadratic equation with respect to h, we have the two non-negative roots h′∗1 and h′∗2
as follows,

h′∗1 =
4Hϵv,t +

√
(4Hϵv,t)2 − 12c1ϵv,tH2

6c1
, h′∗2 =

4Hϵv,t −
√
(4Hϵv,t)2 − 12c1ϵv,tH2

6c1
,

where we define c1 = ϵf,t + ϵv,t + c′.

Now we study the resulting two cases. If (4Hϵv,t)2 − 12c1ϵv,tH
2 ≥ 0, we have

h′∗ = h′∗1 = O
(
ϵv,t/(ϵf,t + ϵv,t) ·H

)
.

We can verify that h′∗1 is indeed the minimum by calculating the second-order derivative at h′∗1 as
follows,

∂2g1(h
′∗
1 )

∂h2
=

4Hϵv,t +
√
(4Hϵv,t)2 − 4c1 ·H2

6c1
∗ 6(ϵf,t + ϵv,t + c′)− 4Hϵv,t

=
√
(4Hϵv,t)2 − 4c1 ·H2 > 0.

The other case is (4Hϵv,t)
2 − 12c1ϵv,tH

2 < 0. When this happens, (B.35) does not have a real
solution h′∗ and we set h∗ to 0. This concludes the proof of Proposition 5.7.
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B.5 Proof of Corollary 5.9

Proof. We let the learning rate η = 1/
√
T . Then for T ≥ 4L2, we have c = (η − Lη2)−1 ≤ 2

√
T

and Lη ≤ 1/2. By setting N = O(
√
T ), we obtain

min
t∈[T ]

E
[∥∥∇θJ(πθt)∥∥22] ≤ 4

T
·
(T−1∑
t=0

c · (2δ · bt +
η

2
· vt) + b2t + vt

)
+

4c

T
· E
[
J(πθT )− J(πθ1)

]
≤ 4

T

(T−1∑
t=0

4
√
Tδ · bt + b2t + 2vt

)
+

8√
T
· E
[
J(πθT )− J(πθ1)

]
≤ 4

T

(T−1∑
t=0

4
√
Tδ · bt + b2t

)
+O

(
1/
√
T
)

≤ 16δ√
T
ε(T ) +

4

T
ε2(T ) +O

(
1/
√
T
)
.

This concludes the proof.

C Experimental Details

C.1 Implementations and Comparisons with More RL Baselines

For the model-based baseline Model-Based Policy Optimization (MBPO) [28], we use the imple-
mentation in the Mbrl-lib [45]. For all other model-free baselines, we use the implementations in
Tianshou [62] that have state-of-the-art results.

We observe that the RP-DP has competitive performance in all the evaluation tasks compared to the
popular baselines, suggesting the importance of studying model-based RP PGMs. In experiments, we
implement RP-DR as the on-policy SVG(1) [25]. We observe that the training can be unstable when
using the off-policy SVG implementation, which requires a carefully chosen policy update rate as
well as a proper size of the experience replay buffer. This is because when the learning rate is large,
the magnitude of the inferred policy noise (from the previous data samples in the experience replay)
can be huge. Implementing an on-policy version of RP-DR can avoid such an issue, following [25].
This, however, can degrade the performance of RP-DR compared to the off-policy RP-DP algorithm
in several tasks. We conjecture that implementing the off-policy version of RP-DR can boost its
performance, which requires techniques to stabilize training and we leave it as future work. For
RP-DP, we implement it as Model-Augmented Actor-Critic (MAAC) [12] with entropy regularization
[23], as suggested by [4]. RP(0) represents setting h = 0 in the RP PGM formulas [4], which is a
model-free algorithm that is a stochastic counterpart of deterministic policy gradients.

For model-free baselines, we compare with Likelihood Ratio (LR) policy gradient methods (c.f.
(2.2)), including REINFORCE [56], Natural Policy Gradient (NPG) [31], Advantage Actor Critic
(A2C), Actor Critic using Kronecker-Factored Trust Region (ACKTR) [65], and Proximal Policy
Optimization (PPO) [49]. We also evaluate algorithms that are built upon DDPG [34], including Soft
Actor-Critic (SAC) [23] and Twin Delayed Deep Deterministic policy gradient (TD3) [19].

C.2 Implementation of Spectral Normalization

In experiments, we use Multilayer Perceptrons (MLPs) for the critic, policy, and model. Besides, we
adopt Gaussian dynamical models and policies as the source of stochasticity. To test the benefit of
smooth function approximations in model-based RP policy gradient algorithms, spectral normalization
is applied to all layers of the policy MLP and all except the final layers of the model MLP. The
number of layers for the policy and the dynamics model is 4 and 5, respectively.

Our code is based on PyTorch [44], which has an out-of-the-shelf implementation of spectral normal-
ization. Thus, applying SN to the MLP is pretty simple and no additional lines of code are needed.
Specifically, we only need to import and apply SN to each layer:

from t o r c h . nn . u t i l s . p a r a m e t r i z a t i o n s i m p o r t s p e c t r a l _ n o r m
l a y e r = [ s p e c t r a l _ n o r m ( nn . L i n e a r ( in_dim , h idden_dim ) ) , nn . ReLU ( ) ]
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C.3 Ablation on Spectral Normalization

In this section, we conduct ablation studies on the spectral normalization applied to model-based RP
PGMs. Specifically, we aim to answer the following two questions: (1) What are the effects of SN
when applied to different NN components of model-based RP PGMs? (2) Does SN improve other
MBRL algorithms by smoothing the models?

What are the effects of SN when applied to different NN components of model-based RP PGMs?
We study the following NN components that spectral normalization is applied to: both the model and
the policy (default setting as suggested by our theory); only the model; only the policy; no SN is
applied (vanilla setting). The results are shown in Figure 8.
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Figure 8: Ablation on the effects of spectral normalization when applied to different NN components
of model-based RP PGMs.

We observe in Fig. 8 that for both the hopper and the walker2d tasks, applying SN to the model and
policy simultaneously achieves the best performance, which supports our theoretical results. Besides,
learning a smooth transition kernel by applying SN to the neural network model only is slightly better
than only applying SN to the policy. At the same time, the vanilla implementation of model-based RP
PGM fails to give acceptable results.

Does SN improve other MBRL algorithms by smoothing the models? We have established that
smoothness regularization, such as SN, in model-based RP PGMs can reduce the gradient variance and
improve their convergence and performance. However, it is not necessarily the case for other model-
based RL methods. In this part, we investigate whether SN can improve previous MBRL algorithms
due to a smoothed model. Specifically, we evaluate MBPO [28], a popular MBRL algorithm when SN
is added to different numbers of layers in the model neural network. The results are shown in Figure
9. We observe that SN has a negative influence when applied, which is in contrast to our findings that
SN is beneficial to RP PGMs.
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Figure 9: Ablation on the effect of SN in other MBRL algorithms. Spectral normalization has
a negative effect when applied to MBPO, indicating that SN by smoothing the model, does not
necessarily lead to better gradient estimation or improve the performance for MBRL methods other
than model-based RP PGMs.
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C.4 Ablation on Different Model Learners

Our main theoretical results in Section 5 depend on the model error defined in (4.4), which, however,
cannot directly serve as the model training objective. For this reason, we evaluate different model
learners: single- and multi-step (h-step) state prediction models, as well as multi-step predictive
models integrated with the directional derivative error [33]. The results are reported in Figure 10. We
observe that enlarging the prediction steps benefits training. The algorithm also converges faster in
walker2d when considering derivative error, which approximately minimizes (4.4) and supports our
analysis. However, calculating the directional derivative error by searching k nearest points in the
buffer significantly increases the computational cost, for which reason we use h-step state predictive
models as default in experiments.
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Figure 10: Ablation on different model learners: single-step and multi-step state prediction models,
and multi-step state prediction models trained with an additional directional derivative error.

C.5 Figures in the Main Text in Larger Sizes

Here, we provide identical figures that are larger in size. Figure 11, 12, 13, 14 correspond to Figure 1,
4, 6, 7 in the main text, respectively.
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Figure 11: Comparisons between RP PGMs (the green labels) and MF/MB baselines (the black labels)
in the MuJoCo [57] tasks.
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Figure 12: Performance of vanilla and SN-based MB RP PGMs with varying h. The vanilla method
only works with a small h and fails when h increases, while the SN-based method enables a larger h.
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Figure 13: Gradient variance of RP PGMs. The variance is significantly lower with SN when h is
large.
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Figure 14: Performance and gradient bias in differentiable simulation. The last column is the full
training curves of APG, which need 20 times more steps than RP-DP-SN to reach a comparable
return in the hopper task and fail in the half-cheetah task, respectively.

29


	Introduction
	Background
	Analytic Reparameterization Gradient in Reinforcement Learning
	Model-Based RP Policy Gradient Methods
	h-Step Model Value Expansion
	Model-Based RP Gradient Estimation
	Algorithmic Framework

	Main Results
	Related Work
	Experiments
	Evaluation of Reparameterization Policy Gradient Methods
	Gradient Variance and Loss Landscape
	Benefit of Smoothness Regularization

	Conclusion & Future Work
	Recursive Expression of Analytic Policy Gradient
	Proofs
	Proof of Proposition 5.2
	Proof of Proposition 5.4
	Proof of Proposition 5.6
	Proof of Proposition 5.7
	Proof of Corollary 5.9

	Experimental Details
	Implementations and Comparisons with More RL Baselines
	Implementation of Spectral Normalization
	Ablation on Spectral Normalization
	Ablation on Different Model Learners
	Figures in the Main Text in Larger Sizes


