
1 A geometric interpretation of the forgetting bound in [Evr+22]1

To show this, from the previous section, FS(mT ) is at most the average distance from w⃗mT to2

P1, P2, . . . , PT , and w⃗mT is on PT . The iterates w⃗mT+1, w⃗mT+2, . . . , ⃗wmT+(T−1) pass through the3

rest of the planes, so the distance from w⃗mT to Pt is at most ∥w⃗mT − w⃗mT+t∥. The point will be4

that if ∥w⃗t∥2 does not decrease much from t = mT to t = (m+ 1)T , then w⃗t cannot move much5

along its path from t = mT to t = (m+ 1)T .6

Let dt := ∥w⃗t − w⃗t+1∥. Then ∥w⃗mT − w⃗mT+t∥ ≤ dmT + dmT+1 + · · ·+ dmT+t−1.7

As w⃗t+1 is a projection of w⃗t onto a subspace, d2t = ∥w⃗t∥2−∥w⃗t+1∥2, so ∥w⃗mT ∥2−
∥∥w⃗(m+1)T

∥∥2 =8

d2mT + d2mT+1 + · · ·+ d2(m+1)T−1.9

FS(mT )

∥w⃗mT−w⃗(m+1)T∥2 ≤
1
T

∑T−1
t=1 (

∑t
s=0 dmT+s)

2∑T−1
t=0 d2

mT+t

. While we could now optimize this quadratic10

form precisely, we opt for a simpler bound, deferring a more precise approach to section 311

:
(∑t

s=0 dmT+s

)2
= ∥(dmT+s)

t
s=1∥

2
L1 ≤ t ∥(dmT+s)

t
s=1∥

2
L2 (with equality when all dmT+s are12

equal).13

Our bound becomes14

1
T

∑T−1
t=1

(∑t
s=0 dmT+s

)2
∑T−1

t=0 d2mT+t

≤
1
T

∑T−1
t=1 t

∑t
s=0 d

2
mT+s∑T−1

t=0 d2mT+t

=
1
T

∑T
s=0

∑T−1
t=s td2mT+s∑T−1

t=0 d2mT+t

≤
1
T

∑T
s=0

∑T−1
t=0 td2mT+s∑T−1

t=0 d2mT+t

=
T − 1

2
.

2 A tighter normalization15

Suppose we did not normalize maxt ∥Xt∥ = 1. Then each loss would be scaled by ∥Xt∥. The16

argument in the previous section applies directly with an additional factor of 1
T

∑T
t=1 ∥Xt∥, so we17

can replace the normalizing of maxt ∥Xt∥ = 1 with
∑T

t=1
1
T ∥Xt∥ = 1 without affecting the results.18

3 Optimizing the quadratic form more precisely19

[Evr+22] observed that one could improve the bound on forgetting in terms of supA,u⃗

∥∥Am−1u⃗
∥∥2
2
−20

∥Amu⃗∥22 by a factor of 2 (compared to the bound above in terms of ∥Amu⃗∥22 −
∥∥Am+1u⃗

∥∥2
2

(with a21

different exponent) for the specific A, u⃗ = w⃗0 in our forgetting) by using that w⃗mT can be shown22

to be even closer to the latter half of the planes PT−1, PT−2, . . . by considering its distance to23

w⃗mT−1, w⃗mT−2, . . . and instead choosing A to be the update map shifted by half the iterates, and24

choosing u⃗ to be w⃗T
2

(up to a floor or ceiling). Applying a similar analysis gives the factor of 2.25

But it is possible to improve by more than a factor of 2 by computing the optimizer of the ratio of the26

quadratic forms: The relevant quantity to bound can now be expressed as v⃗TQv⃗
v⃗T v⃗

for a block matrix27

Q split along the middle, so it’s enough to optimize a single block which is half the length of the28

full matrix. This is optimized by computing the largest eigenvalue of Q, which can be computed by29

looking at the characteristic polynomial of its inverse to gain another factor of 2 (asymptotically).30

This analysis can be combined with removing the normalization of the Xt, in which case Q depends31

on ∥Xt∥ but the same procedure would work as long as you can compute the eigenvalues of Q.32
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4 Proof of Lemma 433

We start with the following simple fact that we will use below.34

Proposition 11. Let x, y ∈ C be such that {γx+ γy|γ ∈ C} consists of real multiples of some fixed35

complex number. Then |x| = |y| .36

Proof. If x+ y = 0 then we are done. Otherwise ix−iy
x+y ∈ R. So37

ix− iy

x+ y
=

−ix+ iy

x+ y
,

which rearranges to |x| = |y|.38

Now we present the proof of Lemma 4.39

Proof. For z⃗ ∈ C2 let ∇m,z⃗P denote the directional derivative of P as the mth coordinate is varied40

in the z⃗ direction. That is,41

∇m,z⃗P (v⃗0, . . . , v⃗k−1) := lim
t→0

1

t
(P (v⃗0, . . . , v⃗m + tz⃗, . . . , v⃗k−1)− P (v⃗0, . . . , v⃗k−1)) .

A direct computation shows42

∇m,z⃗P (v⃗0, . . . , v⃗k−1) =

(
⟨v⃗m−1, z⃗⟩
⟨v⃗m−1, v⃗m⟩

+
⟨z⃗, v⃗m+1⟩
⟨v⃗m, v⃗m+1⟩

)
P (v⃗0, . . . , v⃗k−1).

Here, and throughout the rest of the argument, indices are treated mod k. The denominators above43

are nonzero unless P (v⃗0, . . . , v⃗k−1) = 0. It will become clear that 0 is not an outermost boundary44

point of Γk for k ≥ 3, so we may ignore this case.45

Each v⃗⊥m, along with its scalar multiples, lies in the tangent space of the unit sphere at v⃗m. So if46

(v⃗0, . . . , v⃗k−1) is a boundary point, then the directional derivatives ∇m,γv⃗⊥
m

must all be parallel as m47

varies over {1, . . . , k} and γ varies over the unit circle. Hence for any fixed m,48 {
γ

〈
v⃗m−1, v⃗

⊥
m

〉
⟨v⃗m−1, v⃗m⟩

+ γ

〈
v⃗⊥m, v⃗m+1

〉
⟨v⃗m, v⃗m+1⟩

∣∣∣∣γ ∈ C

}
consists of real multiples of some fixed complex number. By Proposition 11 along with the49

Pythagorean theorem,50

1− |⟨v⃗m−1, v⃗m⟩|2

|⟨v⃗m−1, v⃗m⟩|2
=

∣∣∣∣∣
〈
v⃗m−1, v⃗

⊥
m

〉
⟨v⃗m−1, v⃗m⟩

∣∣∣∣∣
2

=

∣∣∣∣∣
〈
v⃗⊥m, v⃗m+1

〉
⟨v⃗m, v⃗m+1⟩

∣∣∣∣∣
2

=
1− |⟨v⃗m, v⃗m+1⟩|2

|⟨v⃗m, v⃗m+1⟩|2
,

so |⟨v⃗m−1, v⃗m⟩| = |⟨v⃗m, v⃗m+1⟩| for all m.51

Scaling each v⃗m by a complex number ϕm with unit norm does not change the value of P . However52

this scales the inner products ⟨v⃗m−1, v⃗m⟩ by ϕm−1ϕm. By choosing appropriate ϕm’s, we can make53

ϕm−1ϕm ⟨v⃗m−1, v⃗m⟩ constant in m. To see this, identify a unit complex number with its argument,54

so that multiplication corresponds to addition mod 2π and conjugation corresponds to negation. The55

vectors e⃗0 − e⃗1, e⃗1 − e⃗2, . . . , e⃗k−1 − e⃗0 ∈ Rk span the set of vectors whose coordinates sum to 0. So56

choosing the ϕm appropriately allows us to make57

{ϕm−1ϕm ⟨v⃗m−1, v⃗m⟩}km=1

any list of complex numbers of norm α with product P (v⃗0, . . . , v⃗k−1). In particular they can all be58

made equal.59

Thus any boundary point is achieved by a sequence (v⃗0, . . . , v⃗k−1) with ⟨v⃗m, v⃗m+1⟩ = α for a single60

α ∈ C, so for the remainder of this proof, we assume (v⃗0, . . . , v⃗k−1) is a critical point with this61

property.62

Set63

βm =
〈
v⃗m, v⃗⊥m+1

〉
= −⟨v⃗⊥m, v⃗m+1⟩,
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so64
α

P (v⃗0, . . . , v⃗k−1)
∇m,v⃗⊥

m
P (v⃗0, . . . , v⃗k−1) = (βm−1 − βm).

Again using that the derivatives are parallel at a critical point,65

(β0 − β1), (β1 − β2), . . . , (βk−1 − β0) ∈ {λz|λ ∈ R} =: ℓz

for some z ∈ C of unit norm. By the Pythagorean theorem, |βm|2 = 1− α2, so all βm’s have the66

same norm. This implies that either (i) βm−1 and −βm are reflections about ℓz , or (ii) βm−1 = βm.67

If (ii) holds for some m, then68

α

P (v⃗0, . . . , v⃗k−1)
∇m,iv⃗⊥

m
P (v⃗0, . . . , v⃗k−1) = (iβm−1 + iβm) = 2iβm−1.

So as long as the β’s are nonzero, 2iβm−1 must be a real multiple of z (because69
α

P (v⃗0,...,v⃗k−1)
∇m,v⃗⊥

m
P (v⃗0, . . . , v⃗k−1) = (βm−1 − βm) all lie on ℓz). This means that z is per-70

pendicular to βm−1. When βm−1 = βm this implies that −βm is the reflection of βm−1 over ℓz . So71

condition (i) continues to hold in this case (and it holds trivially if the β’s are 0).72

Thus we may assume that (i) holds for all m. Then βm is the image of βm−1 under a reflection about73

ℓz composed with a reflection about the imaginary axis. The composition of these reflections is a74

rotation about the origin, and hence corresponds to multiplication by some unit norm ω ∈ C. Thus75

βm = ωmβ0 for all m, and also β0 = βk = ωkβ0. So either ω is a (not necessarily primitive) kth76

root of unity or β0 = . . . = βk−1 = 0. Either way, one can write βm = ωmβ0 where ω is a kth root77

of unity.78

5 Any (possibly inconsistent) cyclic sequence of T tasks converges to a cycle of79

length T80

Recall that the direction of an affine subspace is the vector space spanned by any two vectors in that81

subspace.82

The claim is equivalent to the following by setting w to be wi+kT and cycling P1, . . . , PT so that83

Pi%T+1 comes first. (Or alternatively, by setting w = w0 and using that the claim is preserved under84

applying any affine map.)85

Proposition 12. Let P1, P2, . . . , PT be a sequence of affine subspaces of Rd, and let w⃗ ∈ Rd.86

Let M : Rd → Rd be the affine map given by the composition of orthogonal projections onto87

P1, P2, . . . , PT in that order. Then w⃗,Mw⃗,M2w⃗ . . . converges to a fixed point of M , either linearly88

or after a finite number of iterations.89

Proof. We first show that the restriction of M to the affine hull A of w⃗,Mw⃗,M2w⃗ . . . is a strict90

contraction.91

Indeed, the only projections that do not decrease ||Mk+1w⃗ −Mkw⃗|| are those onto affine subspaces92

whose direction contains Mk+1w⃗−Mkw⃗, but any sequence of such projections sends Mkw⃗ to points93

in the affine subspace orthogonal to A through Mkw⃗, so it is not possible that all the projections94

Pi, Pi+1, . . . are parallel to this vector or else it would be impossible for their composition to send95

Mkw⃗ to Mk+1w⃗).96

Next, the sequence w⃗,Mw⃗,M2w⃗ are the partial sums of w⃗+(Mw⃗−w⃗)+M(Mw⃗−w⃗)+M2(Mw⃗−97

w⃗) + . . . and ∥Mk(Mw⃗ − w⃗)∥ is at most ∥(Mw⃗ − w⃗)∥ times the operator norm of the linear part98

of M ↾A to the power k. This operator norm is strictly less than 1, as it’s a strict contraction, so the99

series converges linearly or faster.100

To get the lower bound, apply the same argument to the eventual affine hull (the intersection of all101

affine hulls of subsequences obtained by ignoring a prefix), on which M must act invertibly. If it’s102

only one point, then it must have converged after a finite number of steps; Otherwise, the invertibility103

of M implies that the smallest singular value is positive.104
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We remark that this convergence implies that the forgetting converges to some positive value along105

each subsequence wi, wi+T , wi+2T , . . . , but it doesn’t necessary converge for the whole sequence:106

Consider three lines bounding a right triangle. The cycle will include both the right-angle vertex and107

a point on the hypotenuse, and the forgetting at the point on the hypotenuse is strictly larger than the108

forgetting at the vertex.109

Proposition 13. Using the notation of the previous proposition, let w∗,1 and w∗,2 be fixed points110

of M . Then w∗,2 − w∗,1 is contained in the direction of each Pi. In other words, letting D be the111

intersections of the directions for the Pi, the fixed points are w∗,1 +D.112

In particular, if P :=
⋂

i Pi ̸= ∅, then all fixed points of M are in P .113

Proof. ∥M(w∗,2 − w∗,1)∥ = ∥w∗,2 − w∗,1∥, but all projections that do not decrease ∥w∗,2 − w∗,1∥114

contain w∗,2 − w∗,1 in their direction.115

In particular, if P ̸= ∅, then any point w∗ ∈ P is a fixed point, so all fixed points of P can be116

expressed as w∗ + d where d is in the direction of all the Pi, so w∗ + d ∈ P .117

6 Proof of Lemma 8118

The following lemma gives a bound that depends on k
m , from which Lemma 8 will follow.119

Lemma 14. Define S : [0, 1
2 ] → [ 14 ,∞) by S(t) := cot(πt)

2π(1−2t) (which is strictly monotonically120

decreasing). Then121

sup
z∈Γk

|zm(1− z)| ≤


k
m

(
e−

m
k ((1−S−1(m

k ))S−1(m
k ))(2π2)2 sin(πS−1( k

m )) + ok→∞(1)

)
m ≤ 4k

k
m

(
2e−

k
m

π2

2 + ok→∞(1)

)
m > 4k

.

where the little-o terms are uniform in m.122

Proof. We parameterize the boundary of Γk+1 by ((1− t) + te
2πi
k )k as t ranges from 0 to 1; By the123

maximum principle, supz∈Γk+1
|(1− z)zm| is attained for some value of t.124

The first factor 1− z becomes125

lim
k→∞

∣∣∣1− ((1− t) + te
2πi
k )k

∣∣∣ = ∣∣∣∣1− lim
k→∞

((1− t) + te
2πi
k )k

∣∣∣∣
=

∣∣∣∣1− lim
k→∞

(e
2πit
k )k

∣∣∣∣
=
∣∣1− e2πit

∣∣
= 2|sin(πt)|

uniformly in t.126
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The second factor zm becomes127 ∣∣∣(((1− t) + te
2πi
k )k)m

∣∣∣ = ∣∣∣(1− t) + te
2πi
k

∣∣∣km
=

(
((1− t) + t cos(

2π

k
))2 + (t sin(

2π

k
))2
) km

2

=

(
(1− t)2 + 2(1− t)t cos(

2π

k
) + t2

) km
2

=

(
((1− t) + t)2 − 2(1− t)t(1− cos(

2π

k
))

) km
2

=

(
1− 2(1− t)t(1− cos(

2π

k
))

) km
2

=

(
1− 2(1− t)t(

(
2π
k

)2
2

+O(k−4)))

) km
2

=

1− 1(
k2

(2(1−t)t)(2π2+O(k−2))

)
 km

2

=


1− 1(

k2

(2(1−t)t)(2π2+O(k−2))

)
 k2

(2(1−t)t)(2π2+O(k−2))


m
2k (2(1−t)t)(2π2+O(k−2))

where the O(k−2) term is −k2(cos( 2πk )− 1 +
( 2π

k )
2

2 ) in all occurrences.128

Letting α := m
k , this is129 (

e−1 − ok→∞(1)
)α((1−t)t)(2π2+O(k−2))

.

Furthermore,
(
1− 2(1− t)t(1− cos( 2πk ))

) k
2 is increasing in k for k sufficient large k.130

(indeed, the derivative of its log with respect to k is
2πm·(1−t)t sin( 2π

k )
(1−2(1−t)t·(1−cos( 2π

k )))k
+131

m ln(1−2(1−t)t·(1−cos( 2π
k )))

2 which is positive for large k (the first addend is positive and the second132

is negative for large k; The limit of the ratio is -2 uniformly in t ∈ [0, 1
2 ] as k → ∞ so the first term133

is larger than the second.)) So the limit is from below. That is, the second factor is134 (
e−((1−t)t)(2π2) − ok→∞(1)

)α
where the little-o is positive.135

Putting the two factors together, letting q(z) = zmk(1− zk),136

|q(1−t+te
2πi
k )| =

(
e−((1−t)t)(2π2) − ok→∞(1)

)α
2|sin(πt)| =

(
e−((1−t)t)(2π2) − ok→∞(1)

)α
2 sin(πt)

uniformly on t ∈ [0, 1]. As the little-o is positive, the limit as k → ∞ is also uniform in m.137

For any fixed α, the maximum is attained either at an endpoint or where the derivative with respect to138

t is 0. By symmetry about 1
2 , it suffices to bound this for t ∈ [0, 1

2 ].139

The derivative is140

2πe−α((1−t)t)(2π2)(cos(πt)− 2πα(1− 2t) sin(πt)),

which, for t ∈ (0, 1
2 ), has the same sign as141

cot(πt)

2π(1− 2t)
− α.
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As cot(πt)
2π(1−2t) is decreasing in t (its derivative has the same sign as 2πt+sin(2πt)−π, so letting s = 2πt,142

this is s+sin(s)−π which is increasing in s), e−α((1−t)t)(2π2)2 sin(πt) is increasing in t from 0 until143
cot(πt)

2π(1−2t) = α, and after this it is decreasing in t. In particular, if there is no t such that cot(πt)
2π(1−2t) = α144

(or equivalently, α < min[0, 12 ]
cot(πt)

2π(1−2t) =
1
4 ), then argmaxt e

−α((1−t)t)(2π2)2 sin(πt) = 1
2 .145

The bound from the main paper follows:146

Lemma 8.

sup
z∈Γk

|zm(1− z)| ≤ k

m

(
4

eπ2
+ ok,m→∞(1)

)
.

Proof. If m ≤ 4k then the maximum of the limit as k,m → ∞ with α fixed is attained at a point147

where m
k = α = cot(πt)

2π(1−2t) . Plugging this in gives148

lim
k→∞,m=αk

|q(1− t+ te
2πi
k )|m

k
= e−

cot(πt)
2π(1−2t)

((1−t)t)(2π2)2 sin(πt)
cot(πt)

2π(1− 2t)
,

which is bounded by149

1

eπ
≤ e−

cot(πt)
2π(1−2t)

((1−t)t)(2π2)2 sin(πt)
cot(πt)

2π(1− 2t)
≤ 1

2e
π2

8

,

where equality is attained for the first inequality at t = 0 (which corresponds to α = ∞) and for the150

second at t = 1
2 (which corresponds to α = 1

4 ).151

If k > m
4 then the maximum is attained at t = 1

2 , giving the value k
m

(
2e−

k
m

π2

2

)
.152

7 Reducing to ω = 1 via quaternions153

We rewrite the arguments that reduce our problem to solving the equation when ω = 1 (possibly154

replacing k with 2k) purely in terms of quaternions.155

For k odd, then for any solution to156

1 = (α+ βωk−1j)(α+ βωk−2j) . . . (α+ βω0j),

it holds that157

1 = ((αζk) + (βζk)(ζ
−2
k ω)kj)((αζk) + (βζk)(ζ

−2
k ω)k−1j) . . . ((αζk) + (βζk)(ζ

−2
k ω)0j).

For k even, the original proof could be translated directly into quaternions, but we find the following158

slightly modified version cleaner: For any solution to159

1 = (α+ βωk−1j)(α+ βωk−2j) . . . (α+ βω0j),

it holds that160

((αζ2k)+(βζ2k)(ζ
−2
2k ω)kj)((αζ2k)+(βζ2k)(ζ

−2
2k ω)k−1j) . . . ((αζ2k)+(βζ2k)(ζ

−2
2k ω)0j) = ζk2k = ±1.

Therefore the square of the left hand side is 1.161

The whole problem has a simple expression in terms of quaternions: letting C(a+bi+cj+dk) = a+bi162

be the complex part and H(a+ bi+ cj + dk) = c+ di be the “quaternionic part”, the desired range163

is the same as the range of
∏k−1

m=0 Cpm subject to the constraint
∏k−1

m=0 pm = 1. (An equivalent164

definition is C(p) = p+ipi
2 .)165

Indeed, the inner product ⟨p, q⟩ where p, q ∈ H is Cq−1p, so letting our sequence of vectors be166

p0, p0p1, p0p1p2, . . . , p0p1 . . . pk for pm ∈ H gives the claim.167

The constraint that all inner products are equal becomes the constraint that Cpm is the same for all m.168
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7.1 The range of P includes the interior169

To show that the range of P : (C2)k → C includes the interior, we inductively (in k) give a geometric170

description of the range. For clarity, we let Pk denote the version of P with domain (C2)k.171

The range of P1 is {1}.172

For any k ∈ Z≥0, any point in the range of Pk+1 can be obtained by picking a number p ∈ Γk, taking a173

sequence (a0, b0), (a1, b1), . . . , (ak−1, bk−1) ∈ C2 with Pk((a0, b0), (a1, b1), . . . , (ak−1, bk−1)) =174

p, and adding a point (ak, bk) to the end of the sequence.175

Fix any sequence (a0, b0), (a1, b1), . . . , (ak−1, bk−1) ∈ C2. The set of possible ratios176

Pk+1((am,bm)km=0)

Pk((am,bm)k−1
m=0)

= ⟨(ak−1,bk−1),(ak,bk)⟩⟨(ak,bk),(a0,b0)⟩
⟨(ak−1,bk−1),(a0,b0)⟩ depends only on ⟨(a0, b0), (ak−1, bk−1)⟩.177

This range is the union of circles centered at each point in [0, 1], where the radii vary like an ellipse,178

as a rescaled version of R(x) = l
√
1− x2, and the center gives the new squared inner product with179

(a0, b0).180

By using a unitary transformation sending (a2, b2) to (1, 0), every such point can be expressed in 2181

ways (up to multiplicity). These two coordinates form the new squared inner product magnitudes.182

To show that this set is contractible, we show that its intersection with any line with fixed real part is183

contractible and show that applying the contraction to each intersection gives a line segment. More184

generally, we use the following lemma and corollary:185

Lemma 15. Let {fi}i∈I≤0
, {fj}j∈I≥0

be families of (not necessarily continuous) partial functions186

Rn → R where fi ≥ 0, fj ≤ 0. Assume these families are connected under the norm ∥f − g∥ =187

supx∈Rn |f0(x)− g0(x)| where h0 denotes the extension of the partial function h to all of Rn by 0.188

Let D≤0 =
⋃

i∈I≤0
D(fi), D≥0 =

⋃
j∈I≥0

D(fj) where D(f) denotes the domain of definition of f ,189

and let D = D≤0 ∪D≥0.190

Define f≤0,sup : D≤0 → R by f≤0,sup(x) := sup i∈I≤0

x∈D(fi)

f(x) and f≥0,inf : D′
≥0 → R by191

f≥0,inf(x) := inf j∈I≥0

x∈D(fj)

f(x).192

Then the (closed) region bounded by Γ(f≤0,sup) ∪ Γ(f≥0,inf(x)) where Γ(f) denotes the graph of f193

in Rn+1 (which may have multiple components) can be expressed as194

D×{0}∪

 ⋂
i∈I≤0

{(x, y) : x ∈ D(fi), fi(x) ≤ y ≤ 0}

∪

 ⋂
j∈I≥0

{(x, y) : x ∈ D(fj), 0 ≤ y ≤ fj(x)}

 .

Let X =
(⋃

i∈I≤0
Γ(fi)

)
∪ ()

⋃
j∈I≥0

Γ(fj)195

If f≤0,sup and f≥0,inf(x) are continuous, then X deformation retracts to196

G :=

 ⋃
x∈D≤0

sup{fi(x) : i ∈ I≤0}

 ∪

 ⋃
x∈D≥0

inf{fj(x) : j ∈ I≥0}

 .

A deformation retract is given by linearly decreasing the magnitude of the last coordinate.197

Proof. The first claim factors over Rn, so it suffices to prove this claim when D is a single point, in198

which case it is trivial.199

For the second claim, by the connectedness of each family, their images on a single value of x are200

connected with constant sign, so the proposed deformation retract is well-defined. By the continuity201

of f≤0,sup and f≥0,inf , the proposed deformation retract is continuous.202

We leave finding the correct generalization when f≤0,sup and f≥0,inf(x) are discontinuous to the203

interested reader.204
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Corollary 16. Let D ⊂ Rn ⊂ Rn+1 be closed, where the embedding sends the last coordinate to 0.205

Let R : D → R≥0.206

Let X =
⋃

x∈D SR(x)(x) where Sr(x) denotes the sphere of radius r centered at x.207

Letting Pn+1 : Rn+1 → Rn be the projection sending the last coordinate to 0, define Gmin :208

Pn+1(X) → R≥0 by Gmin (x) := min{y ∈ R≥0 : (x, y) ∈ X}, where the minimum exists because209

D is closed. Similarly define Gmax : Pn+1(X) → R≥0 be defined by Gmax (x) := max{y ∈ R≥0 :210

(x, y) ∈ X}. Then:211

1. X =
⋃

x∈Pn+1(X){(x, y) : Gmin (x) ≤ |y| ≤ Gmax (x)}.212

2. X deformation retracts to
⋃

x∈Pn+1(X){(x, y) : Gmin (x) = |y|}.213

3. The region bounded by this surface,
⋃

x∈Pn+1(X){(x, y) : Gmin (x) < |y|}, is214 ⋂
x∈D BR(x)(x),215

In particular, if R(x) is ever 0, then X deformation retracts to Pn+1(X).216

In this case, if D is convex, then X is contractible.217

Proof. Because D is closed, X = X . Then the lemma gives the 3 enumerated items.218

For what remains, it suffices to find a deformation retract from X to D. It is given by sending219

every point in X \D in the direction towards the nearest point in D, which is unique because D is220

convex.221

One can generalize to higher dimensional spheres (in which case the dimension of the codomain also222

increases) by working on each copy of Rn+1 containing Rn independently. A similar generalization223

applies to the lemma.224

In our case, we can find the range by doing a calculation on each vertical line. Alternatively, if the225

radius at t is given by R(t) a (not necessarily strict) superset of the boundary is the union of the circles226

at each endpoint plus the curve parameterized by (t, 0) + R(t)(−R′(t),±
√
1−R′(t)2) where t227

ranges over the line segment (this curve parameterizes, for each t in the interior of the interval where228

|R′(t)| < 1, the unique point accessible from that point and not any nearby points. If |R′(t)| > 1,229

then no such points exist.).230

This range forms an ellipse x2

l2+1 + y2

l2 = 1 with foci at (0, 0) and (1, 0) by working one vertical line231

at a time.232

The condition that all consecutive inner products are equal corresponds to the condition that the233

extremal points all come from the same point twice in each step of the geometric construction.234

One gets another constraint because any two ellipses constructed in the above way passing235

through a specified point have different directions of tangency at that point, so the inner products236

⟨(am, bm), (am+2, bm+2)⟩ must also be equal in magnitude.237

8 Optimizing sequences for P are coplanar238

Proposition 17. Any sequence of unit vectors v0, v1, . . . , vk−1 ∈ Cn with P (v0, v1, . . . , vk−1) ∈ Γk239

must be coplanar (i.e., lie on a complex plane).240

Proof. We may assume k ≥ 3, because any 2 vectors are coplanar.241

We prove the contrapositive: If v0, v1, v2, . . . , vk−1 are not coplanar, then P (v0, v1, v2, . . . , vk−1) is242

in the interior of Γk.243

As Γk is radial and ∂Γk is continuous (as a function of the complex argument), it suffices to show244

that there exists a sequence of k vectors whose image under P has the same argument but a larger245

magnitude.246

As 0 is in the interior of Γk, we may assume none of the vi are 0.247
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Assume without loss of generality that v0, v1, v2 are not coplanar. Let v′1 denote the projection of v1248

onto the plane spanned by v0, v2. Then249

P (v0,
v′
1

∥v′
1∥
, v2, . . . , vk1

P (v0, v1, v2, . . . , vk−1))
=

1

∥v′1∥
∈ R>1.

250

9 Products of projections with numerical range intersecting ∂Γk251

As shown in the proof of Theorem 5, any sequence of unit vectors v0, v1, . . . , vk−1 ∈ H realizing252

P (v0, . . . , vk−1) ∈ ∂Γk must be obtainable from a sequence of the form v0, v0u, v0u
2, . . . , v0u

k−1253

(where u is a quaternionic kth root of unity) by multiplying each vector by a complex unit.254

The interpretation in the sense of projections is that, if v0 realizes ∂Γk, then the sequence of255

projections must send v0 to the sequence of vectors formed by projecting onto v0u, v0u
2, . . . in that256

order (multiplying by a complex unit does not change the line we project onto at each step). Up to a257

unitary transformation, we may take v0 = 1.258

Writing u = a+ bi with a, b ∈ C, by direct computation, the sequence of projections is259

1, au, a2u2, . . . .

Combining this with the result from the previous section that any sequence of vectors optimizing260

P must be coplanar, we get that if A = PkPk−1 . . . P1 is a project of k projections on Cd with261

W (A) ∩ Γk+1 ̸= ∅, then for any vector v0 ∈ Cd with v∗0Av0 ∈ ∂Γk, the vectors PiPi−1 . . . P1v0262

must all be coplanar, and furthermore there must exist a unitary transformation H → Cd such that263

the sequence of projections is the image of 1, au, a2u2, . . . .264

10 Real projections265

We can directly show that any product A of k real projections whose numerical contains a point in266

∂Γk must be decomposable into a direct sum U ⊕ V of subspaces, invariant under each projection,267

such that ∥Amu⃗∥2 −
∥∥Am+1u⃗

∥∥2 is small for all u⃗.268

Proposition 18. If Pk, . . . , P1 : Rn → Rn are orthogonal projections satisfying γ ∈ W (Pk . . . P1)269

for some γ ∈ ∂Γk, then there is an 4-dimensional subspace V ⊆ Rn invariant under each Pi such270

that γ ∈ W (Pk ↾V . . . P1 ↾V ).271

Proof. As we show in the supplementary material, if Pk, . . . , P1 : Cn → Cn are complex projections272

and v ∈ Cn such that γ = vTPk . . . P1v ∈ ∂Γk, then v, P1v, . . . , Pk . . . P1v must lie in a complex273

plane. Combining this with the above equality case gives that there must exist an isometry of complex274

vector spaces H → Cn such that the action of the projections on the image corresponds to an equality275

case.276

In particular, if P1, . . . , Pk are real projections, then the copy of R4 spanned by the real parts of277

the image of f is invariant under all Pt, and the numerical range of this restriction also intersects278

∂Γk.279

To get the orthogonal decomposition, the orthogonal complement of any subspace invariant under280

all projections is invariant under all projections. The reason is that this is true for each projection281

individually (i.e., for any orthogonal projection, the orthogonal complement of any invariant subspace282

is invariant).283

Taking the invariant subspace from the proposition, we get that there is an invariant subspace where284

the projections act as described in the previous section. But the norms of these vectors decay285

geometrically, and therefore cannot do asymptotically better than the lower bound given by [Evr+22],286

and furthermore any collection of projections that does better can be done without having numerical287

range of the product intersect ∂Γk by removing all orthogonal summands of this form.288
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11 Existence of real realizations289

Despite the previous section, one may independently wonder whether the bound on the numerical290

range can be improved by restricting to real projections, thus improving our forgetting bound. The291

answer is that it cannot: Real projections can have product with a numerical range including any292

point of ∂Γk.293

We will show that, for any unit quaternion u = α+ βj ∈ H (with α, β ∈ C), there exists a sequence294

of vectors un,ℜ,un,ℑ ∈ C4, such that:295

1. The unitary map of complex vector spaces Φ : H → C4 sending u0 = 1 7→ u0,ℜ + iu0,ℑ296

and u1 7→ u1,ℜ + iu1,ℑ sends un 7→ un,ℜ + iun,ℑ. (If β = 0 then Φ is not determined by297

the Φ(u0) and Φ(u1), but Φ(un) always is.)298

2. The real projection onto Span(un,ℜ,un,ℑ) (complexified to a map C4 → C4) sends299

Φ(αn−1un−1) to Φ(αnun) (equivalently, it sends the real (resp. imaginary) part to the300

real (resp. imaginary) part).301

The second condition is equivalent to saying that the real projection onto Span(un,ℜ,un,ℑ) sends302

Φ(un−1) to Φ(αun).303

Let304

u0,ℜ + iu0,ℑ =
1√
2


1
0
0
0

+ i

0
1
0
0




and305

α (u1,ℜ + iu1,ℑ) =
1√
2


 |α|2

0√
|α|2 − |α|4

0

+ i


0

|α|2
0√

|α|2 − |α|4


 .

As all powers of u are real linear combinations of 1 and u (via the recurrence relation u2 =306

−1 + (2ℜu)u, which holds for any unit quaternion), the first property above determines un,ℜ,un,ℑ.307

We next check that there exists a unitary map Φ is unitary. Indeed, all we need to check is that308

α = ⟨u0,ℜ + iu0,ℑ,u1,ℜ + iu1,ℑ⟩,

or equivalently309

|α|2 = αα = ⟨u0,ℜ + iu0,ℑ, α(u1,ℜ + iu1,ℑ)⟩
which is true.310

Finally, we check the second property. This is invariant under (real) rotations.311

Definition 19. Two unit vectors 1,u ∈ C4 are compatible with respect to α ∈ C if both of the312

following hold:313

• The complex projection of 1 onto u is αu, and is a real projection314

• The complex projection of αu onto u2 is α2u2, and is a real projection.315

Two vectors being compatible means that 1,u,u2 (with the last defined by the recurrence relation)316

doesn’t violate the second condition (though u3, . . . might).317

The property of two vectors being compatible is invariant under rotations of R4 and multiplication by318

any complex unit (where both vectors must be multiplied by the same complex unit).319

As before, in the second condition we may replace αu with u, u2 with any complex multiple of u2,320

and α2u2 with αu2.321

Write 1 = αu+V, so322

ℜV,ℑV ⊥ ℜu,ℑu
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(not respectively: All four pairs are orthogonal. Indeed, because the complex projection of 1 onto αu323

is a real projection, the real and imaginary parts of V must be orthogonal to the plane spanned by324

ℜu,ℑu.) Then325

u2 = −1+ 2ℜαu = (2ℜα− α)u−V = αu−V
326

αu2 = |α|2u− αV.

So the second condition in the definition of compatibility is equivalent to the complex projection of u327

onto |α|2u− αV being |α|2u− αV and being a real projection.328

So the condition is that there is a real projection sending ℜu to |α|2ℜu − ℜ(αV) and ℑu to329

|α|2ℑu−ℑ(αV).330

As ℜV,ℑV ⊥ ℜu,ℑu, there exists such a real projection if and only if both of the following hold:331

• ℜ(αV) ⊥ ℑ(αV), or equivalently ℜV ⊥ ℑV. This is true by construction.332

• |ℜ(αV)|2 = 1− |α|2|ℜu|2 and |ℑ(αV)|2 = 1− |α|2|ℑu|2 .333

(Indeed, being of the right length means there exists a real projection sending ℜu to ℜ(αu2);334

Conditional on this, the possible projections of ℑu are the sphere with a diameter formed by335

its projection onto the projection of ℜu (which is 0 because everything is perpendicular) and its336

projection onto the orthogonal complement of ℜu.)337

A sequence of vectors works if and only if all consecutive pairs except the last two are compatible338

with α. For this, we need the real and imaginary components of everything to be orthogonal, but we339

multiply by α each time so the only way being orthogonal like this is preserved is if α is purely real340

or purely imaginary (which only corresponds to a nontrivial point on the boundary if k = 2) or if341

∥ℜu∥ = ∥ℑu∥. The latter case uniquely determines the projections.342

The constructed realization also shows that the asymptotic supremum of
∥∥Am −Am+1

∥∥ is the same343

for real projections as for complex projections.344

As an aside, this also implies that this can’t be obtained using projections onto subspaces of codi-345

mension 1, because the real and imaginary parts of the un have to be orthogonal, and that can’t be346

preserved under taking a projection onto a subspace of codimension 1 unless one of the vectors is in347

the subspace.348

12 Remark on the task dependency on forgetting349

One might also be interested in exploring the question of how task dependency affects forgetting350

in general. One way to capture the task dependency is through the Friedrichs number or its like351

as they govern the geometric decay rate of residual errors and forgetting for a fixed set of tasks.352

Specifically, if you consider any sequence of T number of fixed tasks, their Friedrichs angle (for353

T = 2) and its extension, the Friedrichs number (for T > 2), are always less than 1 [AS16; BS16].354

This causes the residual error to converge geometrically [BS16]. As a result, the rate of forgetting355

also converges geometrically, and not inversely proportional to the number of iterations, as suggested356

by our bounds or by Evrons’ [Evr+22] for worst-case scenarios. We refer readers interested in such357

results to [BS16].358

13 Forgetting vs. Regret359

In our context (assuming consistent tasks), one could define the regret for a sequence of tasks S at360

iteration n as361

RS(n) :=
1

n

n∑
t=1

∥Xtwt − yt∥2 ,

in contrast to the forgetting which was defined as362

FS(n) :=
1

n

n∑
t=1

∥Xtwn − yt∥2 .
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While superficially similar, analyzing regret is quite different (and much simpler) than analyzing363

forgetting in our setting. Indeed the regret over the first k iterations is simply the sum of squares of364

the update distances. By iterating the Pythagorean Theorem, one can see365

n∑
t=1

∥Xtwt − yt∥2 = ∥wn∥2 +
n∑

t=1

∥wt − wt−1∥2 = ∥wn − w0∥2 ≤ 4 ∥w0∥2

since wt − wt−1 is orthogonal to wt for t ≥ 1. This means RS(n) ≤ O(1/n), which is tight even if366

convergence occurs after a single iteration. (Meaning that w1 satisfies all constraints.)367

12


	A geometric interpretation of the forgetting bound in evron2022catastrophic
	A tighter normalization
	Optimizing the quadratic form more precisely
	Proof of Lemma 4
	Any (possibly inconsistent) cyclic sequence of T tasks converges to a cycle of length T
	Proof of Lemma 8
	Reducing to omega=1 via quaternions
	The range of P includes the interior

	Optimizing sequences for P are coplanar
	Products of projections with numerical range intersecting dGammak
	Real projections
	Existence of real realizations
	Remark on the task dependency on forgetting
	Forgetting vs. Regret

