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Abstract

We provide theoretical bounds on the forgetting quantity in the continual learning
setting for linear tasks, where each round of learning corresponds to projecting
onto a linear subspace. For a cyclic task ordering on T tasks repeated m times each,
we prove the best known upper bound of O(T 2/m) on the forgetting. Notably, our
bound holds uniformly over all choices of tasks and is independent of the ambient
dimension. Our main technical contribution is a characterization of the union of
all numerical ranges of products of T (real or complex) projections as a sinusoidal
spiral, which may be of independent interest.

1 Introduction

While machine learning often focuses on learning from a static dataset, one is often interested in
acquiring data on the fly and adapting to the present context. This is known throughout the literature
as “continual learning” or “lifelong learning” [Wan+23; CL18; Par+19; TM95].

One challenge of continual learning is “catastrophic forgetting” [Had+20; VT19; Kem+18]: A model
may learn useful information in context A but then lose much of this knowledge when adapting to
context B. If context A is not representative of future contexts, then this is a correct adjustment for
distribution shift. However, if contexts similar to A arise repeatedly, this may be undesirable..

Building on prior work, we aim to better understand the catastrophic forgetting phenomenon when
faced with a series of linear regression problems that are revisited in cyclic order.

In machine learning, many data sets display cyclic or periodic patterns. These patterns often arise
from factors such as the “day of the week effect” [QR22] observed in financial or search engine data
[Yan+22]. Additionally, the methods of cyclic alternating projections by Von Neumann [Von49] and
Halperin [Hal62] are well-studied methods for solving linear systems [Kar37]. Equivalently, one can
think of this as studying residual bounds for cyclic block Kaczmarz-type algorithms. Our work can
be thought of as studying the worst-case forgetting of these popular methods. [Evr+22] mentions
this perspective, but leaves open the problem of obtaining tight convergence bounds. In particular,
the dimension dependence on the ambient data in the bounds of [Evr+22] could be problematic
since high-dimensional data is so ubiquitous in machine learning. In contrast, our new bound for the
worst-case forgetting does not scale at all with the dimension of the ambient data.
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1.1 Problem Setup

The learning algorithm we consider fits a linear map to a set of data points of the form (x⃗, y) with
x⃗ ∈ Rd, y ∈ R.

Our data is split into “tasks”, which are lists of elements from our dataset (with repeats allowed).
These tasks are fed to our learning algorithm one at a time. Our algorithm updates its prediction after
being given each task.

We assemble the rt inputs of the tth task into a matrix Xt ∈ Rrt,d, where each row is an input vector
x⃗T , and their corresponding outputs into a column vector y⃗t ∈ Rrt . We aim to to find a column
vector w⃗ ∈ Rd such that Xtw⃗ = y⃗t for all t.

The learning algorithm we consider applies a block Kaczmarz update at each step. Explicitly, we
initialize w⃗0 ∈ Rd anywhere, and for t ∈ Z≥1 we set w⃗t to be the projection of w⃗t−1 onto the
solution space Pt for the tth regression problem. That is,

w⃗t+1 = w⃗t +X+
t+1(y⃗t+1 −Xt+1w⃗t)

where + denotes the Moore-Penrose pseudoinverse.

Geometrically, the set of vectors w⃗ ∈ Rd such that the map Rd → R : x⃗ 7→ x⃗T w⃗ agrees with all the
data in task t is an affine subspace Pt. This algorithm obtains wt+1 by projecting wt onto Pt+1. The
set of vectors in Rd satisfying all tasks is P :=

⋂
t Pt. The algorithm never leaves the maximal affine

hyperplane through w⃗0 perpendicular to P , so if the wt converge to a solution then it converges to
the solution closest to w0..

It is well-known that running gradient descent to interpolation with quadratic loss on task t starting
from wt produces wt+1.

Typically, projecting onto the solution space for task t moves w⃗i−1 off the solution space for task
t − 1. We wish to understand the amount of information “forgotten” over the course of training.
Following [Evr+22], we define the forgetting for a sequence of tasks and initialization S at iteration
n as

FS(n) :=
1

n

n∑
t=1

∥Xtw⃗n − y⃗t∥2 .

That is, FS(n) is the average loss of wn on all previous tasks (including task n), where each task is
weighted equally regardless of how many data points it has. As mentioned in the introduction, large
forgetting is not always undesirable, but “forgetting” in humans is not always undesirable either, so
the name “forgetting” not imply an inappropriately negative connotation.

In this work, we focus on cyclic task orderings. That is, we have T tasks (X1, y⃗1), . . . , (XT , y⃗T ) we
visit cyclically, i.e., Xt = Xt mod T+1 and y⃗t = y⃗t mod T+1 for all t. Then the sequence of iterates
converges to a cycle of length T in the sense that, for any t ∈ Z≥0, wt, wt+T , wt+2T , . . . converges,
either linearly or after a finite number of iterations; We justify this in the supplementary material.

In particular, if there is at least one simultaneous solution to all tasks, then the limit must be a solution;
We justify a generalization of this in the supplmentary material, so we get linear convergence to a
solution which implies linear convergence of forgetting.

However, this does not guarantee that, for any collection of T tasks in m cycles, the forgetting can
be bounded above by O(c−m) for some constant c, even after normalizing the tasks in the way we
describe later: The choice of tasks that give the largest forgetting for one value of m may not be the
tasks that give the largest forgetting for another value of m. Here we ask whether we can obtain a
worst-case bound on FS(mT ) that only depends on the number of tasks T and the number of cycles
m.

We focus on bounding the forgetting after a whole number of cycles; The forgetting in the middle of
a cycle is a weighted average of the losses at each task, and therefore can be treated in the same way
as getting a bound without normalizing the tasks. For a quick bound, the weights are close to 1, so
we may rescale the tasks to get all coefficients to be 1 or less without increasing our bound much.
The forgetting for T tasks after m cycles is

1

mT

mT∑
t=1

∥Xtw⃗mT − y⃗t∥2 =
1

T

T∑
t=1

∥Xtw⃗mT − y⃗t∥2 . (1)
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as each of the T tasks is visited equally often.

This can be made arbitrarily large by scaling the data points, so we describe normalizations in the
next section. Given these normalizations, [Evr+22] showed that such a worst-case bound is possible,
but the bounds they provided are not tight. Here, we improve on the forgetting bounds from [Evr+22]
and, as a byproduct, show the union of the numerical ranges of all products of T orthogonal (real or
complex) projections forms a sinusoidal spiral.

1.1.1 Normalizations

Following [Evr+22], we restrict to the setting where P is nonempty (i.e., the union of all tasks
is consistent with a single linear function) and let w⃗∗ ∈ P . So every data point (x⃗, y) satisfies
x⃗T w⃗∗ = y, and the planes Pi we project onto all pass through w⃗∗.

Unlike [Evr+22], we translate the setup so w∗ = 0. This modifies each data point (x⃗, y) by setting
y = 0 but preserving x⃗. This translates the Pi to pass through 0, so they are subspaces, and Pi is the
kernel of Xi, and the loss of task t at w⃗ is now ∥Xtw⃗∥2, turning forgetting into.

FS(n) =
1

n

n∑
t=1

∥Xtw⃗∥2 =
1

n

∥∥∥∥∥
(

n

×
t=1

Xt

)
(w⃗)

∥∥∥∥∥
2

where the product is the categorical product. Thus, for a fixed collection of tasks X1, X2, . . . , Xn,
abusing notation to let Pt denote the projection onto the plane Pt, the largest forgetting over all

initializations w⃗0 is

∥∥∥∥∥∥
 n×

t=1

Xt

(
n∏

t=1
Pt

)∥∥∥∥∥∥
2

n .

Rescaling w⃗0 rescales all iterates, and hence the forgetting, by the same amount. So we normalize
∥w⃗0∥ = 1. Similarly, rescaling all tasks Xt by the same scalar scales each term in the forgetting by
that factor, so we normalize so that maxt∥Xt∥ = 1.

As ∥w⃗t∥ decreases in t, this implies the loss of w⃗n at task t is ∥Xtw⃗n∥2 ≤ 1, and hence the forgetting
is at most 1.

In the cyclic setting, for fixed T and m, these normalizations make the domain of optimization (the
space of T -tuples of tasks with maxt∥Xt∥ ≤ 1 and initializations w⃗0 ∈ Sd−1) compact, so forgetting
attains a maximum, which is what we bound in this paper.

In the supplementary, we describe a tighter normalization that gives the same forgetting bounds.

1.2 Observations

In this section, we describe some observations that help us get our bound.

As noted in the previous section, using our normalization, there is a trivial bound on the forgetting of
1.

The data matrices Xt only affect the iterates w⃗i via their rowspan (i.e., the span of the data points in
the task), so we may replace Xi by any other data matrix with the same rowspan, or equivalently the
same kernel, without affecting the iterates subject to our normalization constraint. As ∥Xi∥ ≤ 1, it
is a contraction, so the norm of the image of any w⃗ is at most its distance to the kernel, and this is
realized when Xi is a projection away from its kernel. Therefore, the worst-case bound is not affected
by restricting Xi to be orthogonal projections with kernel Pi.

With this restriction, for any w⃗, ∥Xiw⃗∥ is the distance from w⃗ to Pi. Therefore, the forgetting can be
interpreted as the average distance to each Pi over all previous tasks (weighted equally).

1.3 Prior Work

Bounds on forgetting. [Evr+22] considered forgetting bounds both for random task orderings and
cyclic task orderings. However their bound for cyclic task orderings is not tight. After m cycles of T
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tasks, they show an upper bound of min
{

T 2
√
mT

, T 2d
2mT

}
on the forgetting, leaving a gap with their

lower bound of Ω( T 2

mT )

A key step of their proof is bounding ∥Amu⃗∥2 −
∥∥Am+1u⃗

∥∥2 where A is a product of T projections
and u is a unit vector. Their dimension-independent bound gives a T 2/

√
mT dependence on the

forgetting after m cycles. Their other bound improves the m dependence, but only uses that A is a
contraction. This forces a linear dependence on the dimension d, as this is possible if the supremum
is taken over all contractions. Indeed, for any m a multiple of d, one can have

∥Amu⃗∥2 −
∥∥Am+1u⃗

∥∥2 ≥ Ω(d/m)

by choosing A to be an operator that maps

e⃗1 7→ e⃗2 7→ . . . 7→ e⃗d 7→ (1− d

m
)e⃗1,

and taking u⃗ = e⃗1, where e⃗i denotes the ith standard unit vector.

[RZ23] bound
∥∥Amu⃗−Am+1u⃗

∥∥2 for A a product of projections. However they are primarily
interested in the asymptotics with respect to m. They supply two proofs which rely on either the
bound in [BS16] or in [Cro08], and hence do not avoid the exponential dependence in T .

[Lin+23] study forgetting from a different perspective. They assume Gaussian i.i.d. tasks ( called
features in their paper) at each iteration and explicitly compute the expected forgetting and general-
ization error. We analyze the worst-case forgetting without any assumptions on the distribution of
tasks, so our work is quite different from [Lin+23].

As mentioned in [Evr+22], the iterate wt can be equivalently obtained by running the (block)
Kaczmarz method [NT14] with the cyclic row selection rule for solving a consistent system yt =
Xtw,∀t ∈ [T ]. However, most id=MK]of the convergence analyses of Kaczmarz-type methods
[Elf80; NT14; SV09] bound the distance from the least-norm solution, whereas in our setting we
interested in the residual errors. Moreover such analyses depend on the condition number of the
system, so are unlikely to adapt to our setting, since our bounds hold for all choices of tasks (i.e.
blocks), with no condition number dependence.

Bounds on the numerical range. Lemma 5.1 in [Cro08] gives a bound on the numerical range of
any linear transformation A expressible as a product of T projections. This, combined with other
results in that same work, yields a bound on

∥∥Amu⃗−Am+1u⃗
∥∥2 . When combined with the results

of [Evr+22], the result is a bound of the form O(f(T )/m) on the forgetting. However, the function
f(T ) turns out to be exponential when applying the results of [Cro08] directly. This is due to Lemma
5.1 of [Cro08] being loose. There they show that the numerical range of A is contained in a region of
C with a boundary point at one where the tangent lines at 1 have exponential slope. In this paper, we
give the smallest region that is guaranteed to contain the numerical range of A given only T .

[BS16] also gives a bound on the numerical range of a product of projections. Specifically they
show that the numerical range is contained in a Stoltz domain with the angle at 1 depending on a
quantity called the Friedrich’s number of the (subspaces associated to the) projections. They then
combine their bound with that of [Cro08] to obtain somewhat tighter control over the numerical
range. However the Friedrich’s number for T subspaces can be made arbitrarily close to 1 so for our
purposes their bound will not yield better results than the bounds in [Cro08].

1.4 Results

We give a nearly optimal bound on the forgetting for cyclic task orderings, removing the dimension
dependence of [Evr+22]and avoiding the exponential dependence on T that would arise from applying
results in [Cro07].
Theorem 1.

sup
S

FS(mT ) ≤ O

(
T 2

m

)
.

where S ranges over all (task, initialization) pairs where the tasks are given by matrices
X1, X2, . . . , XT with maxt ∥Xt∥ ≤ 1 and w⃗0 ∈ Rd with |w⃗0| = 1.
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To prove this, [Evr+22] show that, if A denotes the linear map given by one cycle, letting ∆m(u⃗) :=
∥Amu⃗∥ − ∥Am+1u⃗∥,

sup
S

FS(mT ) ≤ T − 1

2
· max
u⃗:∥u∥=1

∆m(u⃗) ≤ T − 1

2
∥Am(1−A)∥.

We provide a geometric interpretation of their proof in the supplementary material. [CP17] showed
that there exists a constant Q ≤ 1 +

√
2 such that

∥p(A)∥ ≤ Q sup
z∈W (A)

|p(z)|

for all polynomials p. Our approach is to determine
⋃

A W (A) where A ranges over all products
of k complex orthogonal projections. As this includes the class of products of k real orthogonal
projections, combining these inequalities gives our bound.

We will show in Section 3 that the problem of bounding the numerical range of the product of k − 1
complex orthogonal projections is equivalent to understanding the range of the product

P (v⃗0, . . . , v⃗k−1) := ⟨v⃗0, v⃗1⟩ ⟨v⃗1, v⃗2⟩ . . . ⟨v⃗k−2, v⃗k−1⟩ ⟨v⃗k−1, v⃗0⟩ , (2)

where the v⃗i range over complex vectors in Cd of norm 1. We give a complete description of the
range of P as the filled sinusoidal spiral

reiθ : cos(π/k)r−1/k ≥ cos(
θ − π

k
).

This shape has a simple geometric description. Let Pk be the convex hull of the kth roots of unity.
Then the sinusoidal spiral above is the image of Pk under the map z 7→ zk.

The main challenge in computing P ’s range Γk is in computing its boundary since a topological
argument (given in the supplementary material) shows that Γk is simply connected. To compute
the boundary, we first observe that it suffices to consider input vectors in C2. To see this, P maps a
sequence of vectors to the cyclic product of pairwise inner products, so if any of the input vectors is
not coplanar with its neighbors, then projecting it onto the plane spanned by its neighbors and scaling
it to have unit norm increases the magnitude of the corresponding factors. So it suffices to consider
the case when all vectors are coplanar, which is equivalent to considering input vectors in C2. In this
case, P is a smooth map from the (real) manifold (S1)n ⊂ Cn to the (real) manifold C, so any input
that gets sent to a boundary point of Γk has singular Jacobian. That is, the directional derivative in all
directions tangent to the domain must be parallel. It turns out that these algebraic conditions can be
manipulated to characterize all critical points and critical values of P , and the computation is made
simpler by using quaternions.

As a side effect of our proof, we also fully describe the tuples v⃗0, . . . , v⃗k−1) that map to boundary
points of the image of P and show that they naturally correspond (up to multiplying each v⃗t by a
complex unit ϕt) to certain quaternionic roots of unity.

Using this result we obtain the following bound on the increments between consecutive powers of A
when A is a product of projections. We believe this result may be independently useful.

Lemma 2. For any linear map A : Cn → Cn expressible as a product of k complex projections,

∥(I −A)Am∥ ≤ (C + ok,m→∞(1))
k

m
,

where C is an absolute constant which can be taken to be 0.4.

This lemma, with the inequality of [Evr+22], immediately implies Theorem 1.

In particular, for fixed T , we obtain an asymptotically optimal bound in terms of iteration count m,
independent of dimension. In contrast, the dimension-independent bound given in [Evr+22] was
sub-optimal by a factor of

√
m.

Finally, . So our results can be interpreted as giving a bound for this setting as well.
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variable name element of
a, b, z C
v⃗, w⃗ C2

p, q H
.

Figure 1: The boundaries of Γm for m = 22, 23, . . . , 27.

1.5 Notation for proof

We use C and H to denote the complex numbers and the quaternions. While the previous sections
considered real vector spaces, our proof works by obtaining a bound over all complex projections.
So for sections 2 and 3, all vector spaces will be over C. In these sections, we use the following
guidelines for variable names:

Our complex inner products are always conjugate linear in the first argument, so ⟨v⃗, w⃗⟩ = v⃗∗w⃗ where
v∗ denotes the conjugate transpose of v⃗. The argument of a complex number is taken to be in (−π, π].
The numerical range of a matrix A ∈ Cd×d is defined by

W (A) = {z⃗∗Az⃗|z⃗ ∈ Cd, ∥z⃗∥ = 1}.

2 Bounding the range of P

In this section, we fully describe the range of P given by (2) and obtain a full description of the
inputs that map to boundary points. We will use the following notation throughout the next argument.

Definition 3. For (a, b) ∈ C2, we define (a, b)⊥ := (b,−a).

The following identity is a straightforward consequence of the definition.

Proposition 4. For v⃗, w⃗ ∈ C2,
〈
v⃗, w⃗⊥〉 = −⟨v⃗⊥, w⃗⟩.

Our first theorem shows that the range of P is a filled sinusoidal spiral. This result is of mathematical
interest on its own, and will also be applied to cyclic forgetting bounds in the next section.

We begin with a lemma characterizing the critical points of P treated as a smooth map R2k → R2.
We defer the proof to the supplementary material.
Lemma 5. For any critical value c ∈ C of P , there exists a sequence of vectors (a0, b0) =

(1, 0), (a1, b1), . . . , (ak−1, bk−1) such that P ((am, bm)k−1
m=0) = c. Furthermore, there exist α, β ∈ C

such that

1. ⟨(am, bm), (am+1, bm+1)⟩ = α for all m

2. ⟨(am, bm)⊥, (am+1, bm+1)⟩ = βωm−1 for all m

(where indices are treated mod k). Furthermore, any sequence ((am, bm)k−1
m=0) attaining

P (((am, bm)k−1
m=0)) = c can be obtained by taking a sequence satisfying the above conditions

and multiplying each vector by a complex unit.
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Given this characterization of P ’s critical points, our next result computes the boundary points of P ’s
image, from which we obtain the entire image of P as a consequence.
Theorem 6. Let P (v⃗0, . . . , v⃗k−1) = ⟨v⃗0, v⃗1⟩ ⟨v⃗1, v⃗2⟩ . . . ⟨v⃗k−2, v⃗k−1⟩ ⟨v⃗k−1, v⃗0⟩ and let Γk be the
range of P as each v⃗i ranges over unit vectors in Cd. Then

Γk =

{
reiθ| cos

(π
k

)
r−1/k ≥ cos

(
θ − π

k

)
, r ≥ 0, θ ∈ [0, 2π]

}
,

which is a filled sinusoidal spiral.

Proof. We show this result for vectors in C2. In the supplementary material, we show that increasing
the dimension does not affect the range, so considering vectors in C2 is sufficient. The result is trivial
for k ≤ 2, so we will assume k ≥ 3.

The domain of P is compact, so Γk is also compact. P is also smooth (as a function R4 → R2), so
its boundary consists of critical values. We will give a complete description of the critical values and
critical points and show that the outermost critical values form a sinusoidal spiral, which is enough to
show that Γk is contained in the claimed region. We defer showing that Γk contains the entire filled
spiral to the supplementary material.

Fix a critical value c of P and let ai, bi be as in Lemma 5 above. As (am, bm) and (am, bm)⊥ are
orthogonal, they form a basis for C2, so letting α = a0, β = b0, we get a recurrence relation

(a1, b1) = α(1, 0) + β(1, 0)⊥

(a2, b2) = α(a1, b1) + βω(a1, b1)
⊥

(a3, b3) = α(a2, b2) + βω2(a2, b2)
⊥

...
(ak−1, bk−1) = α(ak−2, bk−2) + βωk−1(ak−2, bk−2)

⊥

(1, 0) = (a0, b0) = α(ak−1, bk−1) + βωk(ak−1, bk−1)
⊥.

Representing each vector (a, b) ∈ C2 as a quaternion via (a, b) 7→ a + bj, it follows from direct
computation that (a, b)⊥ 7→ j(a + bj) and, for ϕ ∈ C, ϕ(a, b) 7→ ϕ(a + bj) = (a + bj)ϕ. In
particular, multiplication on the left by a complex number is unambiguous.

Our recurrence relation can be expressed as

a1 + b1j = (α+ βj)(1 + 0j)

a2 + b2j = (α+ βωj)(a1 + b1j)

a3 + b3j = (α+ βω2j)(a2 + b2j)

...
ak−1 + bk−1j = (α+ βωk−2j)(ak−2 + bk−2j)

1 + 0j = (α+ βωk)(ak−1 + bk−1j).

In other words, the vectors must be the partial products

(am, bm) = (α+ βωm−1j)(α+ βωm−1j) . . . (α+ βω0j)

for m = 0, . . . , k − 1 (which is the empty product of m = 0), where α, β satisfy the equation

1 = (α+ βωk−1j)(α+ βωk−2j) . . . (α+ βω0j).

We now show that any sequence of vectors (a0, b0), . . . , (ak−1, bk−1) in a solution to the above
system of equations can be obtained by slightly modifying a solution in the case ω = 1 (possibly
with a different value of k).

Let ζk be a (not necessarily primitive) complex kth root of unity. Consider the sequence

(a0, b0), (a1ζk, b1ζk), (a2ζ
2
k , b2ζ

2
k), . . . , (ak−1ζ

k−1
k , bk−1ζ

k−1
k ).

7



This also satisfies the two conditions in Lemma 5, so we can run the same logic as above. The
corresponding change in the resulting system is that this multiplies α, β by ζk and ω by ζ2k , so by
multiplying each vector by these complex units we may freely modify ω by ζ2k for any kth root of
unity ζk, or equivalently any power of e2πi/k.

If k is odd, this is enough to show that any nonzero critical value can be ob-
tained by ω = 1, and furthermore that any critical point can be expressed as
(a0, b0), (a1ζk, b1ζk), (a2ζ

2
k , b2ζ

2
k), . . . , (ak−1ζ

k−1
k , bk−1ζ

k−1
k ) for some kth root of unity ζk.

If k is even, let ζ2k be a 2kth root of unity. Consider the sequence

(a0, b0), (a1ζ2k, b1ζ2k), (a2ζ
2
2k, b2ζ

2
2k), . . . , (ak−1ζ

k−1
2k , bk−1ζ

k−1
2k ),

(a0ζ
k
2k, b0ζ

k
2k), (a1ζ

k+1
2k , b1ζ

k+1
2k ), . . . , (ak−1ζ

2k−1
2k , bk−1ζ

2k−1
2k ).

This satisfies the conditions in Lemma 5 for 2k in place of k. The corresponding values of α, β in the
resulting system are the same as in the original multiplied by ζ2k, and the resulting value of ω is the
same as the original multiplied by ζ22k. As ζ22k can be chosen to be ω−1, we can reduce to the case

1 = (ζ2k(α+ βω2k−1j))(ζ2k(α+ βω2k−2j)) . . . (ζ2k(α+ βω0j))

where ω = 1, or equivalently
1 = (ζ2k(α+ βj))2k.

Remark 7. These reductions can also be interpreted using quaternions, which we demonstrate in the
supplementary material.

For any integer m, the mth roots of unity in H are precisely those numbers whose real parts are the
same as those of the real parts of the mth roots of unity in C. So (α+ βj)m = 1 if and only if α lies
on one of the vertical diagonals of the m-gon whose vertices are the mth roots of unity (where the
vertical diagonals are those with constant real part, including sides of the n-gon).

Therefore, the values of α in the phase-shifted sequences are vertical diagonals in the regular k-gon
if k is odd and every other vertical diagonal in the regular 2k-gon if k is even, where the vertices are
the corresponding roots of unity. Inverting the phase shift gives that, regardless of whether k is even
or odd, the values of α in the solutions to

1 = (α+ βωk−1j)(α+ βωk−2j) . . . (α+ βω0j)

form the diagonals (including the sides) of the k-gon whose vertices are the kth roots of unity.

As the inner product of consecutive vectors at such a sequence is α, the value of P at such a sequence
is αk. Therefore the critical values of f are then kth powers of these diagonals. Furthermore, when
k is odd the critical points are sequences of the form (am, bm) = ϕm(α+ βj)m where α+ βj is a
quaternionic kth root of unity and ϕm are units in C; When k is even, the critical points are sequences
of the form (am, bm) = ϕm(α+ βj)m where α+ βj are quaternionic 2kth roots of unity and ϕm

are units in C,

By the maximum principle for holomorphic maps, the outer boundary of Γk is obtained by taking
the kth powers of the sides (where each side maps to the same curve). Using polar coordinates, the
resulting curve is the sinusoidal spiral cos(πk )r

−1/k = cos( θ−π
k ).

The same proof shows that all other critical points other than those that P sends to 0 arise from the
other diagonals of the polygons and their corresponding critical values are their kth powers, which
are also sinusoidal spirals. A computation shows that a sequence of vectors that P sends to 0 is a
critical point if and only if at least two of the inner products are 0.

3 Application to cyclic forgetting bounds

As an immediate application of Theorem 6, we can control the numerical range of a product of k
orthogonal projections.
Corollary 8. Let A = PkPk−1 . . . P1 be a product of k orthogonal complex projections Cd → Cd.
Then W (A) ⊆ Γk+1.
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Proof. We first observe a general fact. Let P : Cd → Cd be an orthogonal projection and let z⃗ ∈ Cd.
Let q⃗ = P z⃗

∥P z⃗∥ . Then
P z⃗ = q⃗⟨q⃗, z⃗⟩ = q⃗q⃗∗z⃗.

Now let z⃗ be an arbitrary unit vector and let

q⃗i =
PiPi−1 . . . P1z⃗

∥PiPi−1 . . . P1z⃗∥
.

Iterating the fact stated above,
(q⃗iq⃗

∗
i ) . . . (q⃗1q⃗

∗
1)z⃗ = Pi . . . P1z⃗,

for all i ∈ [k]. Hence
z⃗∗Az⃗ = z⃗∗(q⃗kq⃗

∗
k)(q⃗k−1q⃗

∗
k−1) . . . (q⃗1q⃗

∗
1)z⃗ = ⟨z⃗, q⃗k⟩ ⟨q⃗k, q⃗k−1⟩ . . . ⟨q⃗2, q⃗1⟩ ⟨q⃗1, z⃗⟩ ,

so W (A) ⊆ Γk+1.

In the supplementary material, we use our characterization of P−1(∂Γk+1) to characterize the pairs
(A, z⃗) such that z⃗∗Az⃗ ∈ ∂Γk+1.

We now bound ∥Am(I −A)∥ uniformly over all linear maps A : Cn → Cn that can be expressed
as a product of k complex projections by applying the above bound on the numerical range into the
result of [CP17] that there exists a constant Q ≤ 1 +

√
2 such that

∥p(A)∥ ≤ Q sup
z∈W (A)

|p(z)|

for all polynomials p. We defer the calculation to the supplementary material.
Lemma 9.

sup
z∈Γk

|zm(1− z)| ≤ k

m

(
4

eπ2
+ ok,m→∞(1)

)
.

A more precise version of this bound in which 4
eπ2 can be improved in terms of k

m will be given in
the supplementary material.

This, combined with Crouzeix’s inequality, gives Lemma 2, which we restate below more precisely,
and hence Theorem 1.
Lemma 2. For any linear map A : Cn → Cn expressible as a product of k complex projections,

∥Am(I −A)∥ ≤ k

m

(
4

eπ2
+ ok,m→∞(1)

)
Q

where Q is the constant of Crouzeix’s inequality as presented above.

4 Real projections

In the application to forgetting, all relevant projections are real projections. Therefore one may ask
whether our bound can be improved by restricting to products of k real projections.

As we show in the supplementary material, the union of the numerical ranges is the same even if we
restrict to real orthogonal projections R4 → R4, and it is possible to get the maximal asymptotic
decay rate on

∥∥Am −Am+1
∥∥, but any real or complex sequence of orthogonal projections attaining

a point on ∂Γk in its numerical range can be orthogonally decomposed into invariant (under all
projections) subspaces U ⊕ V where ∥Amu⃗∥ −

∥∥Am+1u⃗
∥∥ decays quickly on U . In particular, any

indecomposable such sequence must have quickly decaying forgetting.

5 Future Work

It is not clear that this yields a completely optimal bound for forgetting. Is it possible to improve
O(T 2/m) to O(T/m) matching the lower bound of [Evr+22]?

Finally one might wonder how rare the worst-case bound is. For example if one visits the T tasks
cyclically, but in a random order is it possible to beat the O(T 2/m) bound, perhaps with some weak
dependence on the ambient dimension?
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