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Abstract

Multi-Agent Reinforcement Learning (MARL) has shown promising results across
several domains. Despite this promise, MARL policies often lack robustness and
are therefore sensitive to small changes in their environment. This presents a serious
concern for the real world deployment of MARL algorithms, where the testing
environment may slightly differ from the training environment. In this work we
show that we can gain robustness by controlling a policy’s Lipschitz constant, and
under mild conditions, establish the existence of a Lipschitz and close-to-optimal
policy. Based on these insights, we propose a new robust MARL framework,
ERNIE, that promotes the Lipschitz continuity of the policies with respect to the
state observations and actions by adversarial regularization. The ERNIE framework
provides robustness against noisy observations, changing transition dynamics, and
malicious actions of agents. However, ERNIE’s adversarial regularization may
introduce some training instability. To reduce this instability, we reformulate
adversarial regularization as a Stackelberg game. We demonstrate the effectiveness
of the proposed framework with extensive experiments in traffic light control and
particle environments. In addition, we extend ERNIE to mean-field MARL with
a formulation based on distributionally robust optimization that outperforms its
non-robust counterpart and is of independent interest. Our code is available at
https://github.com/abukharin3/ERNIE.

1 Introduction
In the past decade advances in deep neural networks and greater computational power have led to
great successes for Multi-Agent Reinforcement Learning (MARL), which has achieved success on a
wide variety of multi-agent decision-making tasks ranging from traffic light control [1] to StarCraft
[2]. However, while much effort has been devoted to applying MARL to new problems, there has
been limited work regarding the robustness of MARL policies.

Despite the limited attention paid to robustness, it is essential for MARL policies to be robust. Most
MARL policies are trained in a fixed environment. Since these policies are trained solely to perform
well in that environment, they may perform poorly in an environment with slightly different transition
dynamics than the training environment. In addition, while agents are fed with exact state information
in training, MARL policies deployed in the real world can receive inaccurate state information (e.g.,
due to sensor error). Finally, even a single agent acting maliciously or differently than expected
can cause a chain reaction that destabilizes the whole system. These phenomena cause significant
concern for the real-world deployment of MARL algorithms, where the environment dynamics and
observation noise can change over time. We observe that even when the change in the environment’s
dynamics is small, the performance of MARL algorithms can deteriorate severely (See an example
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in Section 5). Thus there is an emerging need for MARL algorithms that are robust to changing
transition dynamics, observation noise, and changing behavior of agents.

Although many robust RL methods have been proposed for the single agent case, three major barriers
prevent their use for MARL. Theoretically, it is not clear if or when such methods can work for
MARL. Methodologically, it is not straightforward to apply single agent robust RL methods to MARL,
as single agent methods may not consider the interactions between several agents. Algorithmically,
single agent robust RL algorithms are often unstable, and may not perform well when applied to
inherently unstable MARL training. Therefore to learn robust MARL policies, we provide theoretical,
methodological, and algorithmic contributions.

Theory. Theoretically, we first show that when the transition and reward function are smooth, a
policy’s value function is also smooth. In our experiments, we show that this assumption can serve as
a useful prior knowledge, even if the transition function is not smooth in every state. Second, we
prove that a smooth and close-to-optimal policy exists in any such environment. Third, we show that
a policy’s robustness is proportional to its Lipchitz constant with no smoothness assumption on the
environment’s smoothness. These observations advocate for using smoothness as an inductive bias to
not only reduce the policy search space, but simultaneously improve the robustness of the learned
policy. Finally, we prove that large neural networks are capable of approximating the target policy or
Q functions with smoothness guarantees. These findings give us the key insight that in order to learn
robust and high-performing deep MARL policies, we should enforce the policies’ smoothness.

Method. Based on these findings, we propose a new training framework – advErsarially Regularized
multiageNt reInforcement lEarning (ERNIE), that applies adversarial training to learn smooth and
robust MARL policies in a principled manner. In particular, we develop an adversarial regularizer
to minimize the discrepancy between each policy’s output given a perturbed observation and a non-
perturbed observation. This adversarial regularization gives two main benefits: Lipschitz continuity
and rich data augmentation with adversarial examples. The adversarial regularization encourages
the learned policies to be Lipschitz continuous, improving robustness. Augmenting the data with
adversarial examples further provides robustness against environment changes. Specifically, new
scenarios emerge when the environment changes, and data augmentation with adversarial examples
provides a large coverage of these scenarios as long as the environment change is small. Adapting
to adversarial examples during training ensures that the agents will perform reasonably even in the
worst case.

To further provide robustness against the changing behaviors of a few malicious agents, we propose an
extension of ERNIE that minimizes the discrepancy between the global Q-function with maliciously
perturbed joint actions and non-perturbed joint actions. This regularizer encourages the policies to
produce stable outputs even when a subset of agents acts sub-optimally, therefore granting robustness.
Such robustness has not been considered in previous works.

Algorithm. We find that adversarial regularization can improve robust performance [3]. However, ad-
versarial regularization can also be unstable. More concretely, conventional adversarial regularization
can be formulated as a zero-sum game where the defender (the policy) and attacker (the perturbation)
hold equal positions and play against each other. In this case, a small change in the attacker’s strategy
may result in a large change for the defender, rendering the problem ill-conditioned. Coupled with
the already existing stability issues that come with training MARL algorithms, this instability issue
greatly reduces the power of adversarial regularization methods for MARL.

To address this issue, we reformulate adversarial training as a Stackelberg game. In a Stackelberg
game, the leader (defender) has the advantage as it knows how the follower (attacker) will react to its
actions and can act accordingly. This advantage essentially makes the optimization problem smoother
for the defender, leading to a more stable training process.

Extension to Mean-field MARL. We further demonstrate the general applicability of ERNIE by
developing its extension to robustify mean-field MARL algorithms. The mean-field approximation
has been widely received as a practical strategy to scale up MARL algorithms while avoiding the
curse of many agents [4]. However, as mean-field algorithms are applied to real-world problems, it
is essential to develop robust versions. To facilitate policy learning that is more robust, we extend
ERNIE to mean-field MARL with a formulation based on distributionally robust optimization [5; 6].

To demonstrate the effectiveness of the proposed framework, we conduct extensive experiments that
evaluate the robustness of ERNIE on traffic light control and particle environment tasks. Specifically,
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we evaluate the robustness of MARL policies when the evaluation environment deviates from the
training environment. These deviations include observation noise, changing transition dynamics,
and malicious agent actions. The results show that while state-of-the-art MARL algorithms are
sensitive to small changes in their environment, the ERNIE framework enhances the robustness of
these algorithms without sacrificing efficiency.

Contributions. We remark that adversarial regularization has been developed for single-agent
RL, but never for MARL [3]. Our contribution in this paper has four aspects: (1) advances in
theoretical understanding (2) development of new regularizers for MARL (3) new algorithms for stable
adversarial regularization in MARL (4) comprehensive experiments in a number of environments.

2 Background
In this section, we introduce the necessary background for MARL problems together with related
literature. We consider the setting of cooperative MARL, where agents work together to maximize a
global reward.

• Cooperative Markov Games. We consider a partially observable Markov game
hS,O

N
,A

N
,P,R, N, �i in which a set of agents interact within a common environment. We

let S ✓ RS denote the global state space, O ✓ RO denote the observation space for each of the N

agents, A ✓ RA denote the action space, P : S ⇥A 7! S denote the transition kernel, � denotes the
discount factor, and R : S ⇥A 7! RN denotes the reward function. At every time step t, each of the
N agents selects an action according to its policy, which can be stochastic or deterministic. Then,
the system transitions to the next state according to the transition kernel and each agent receives a
reward ri,t. We denote the global reward at time t as rg

t
. The goal of each agent is to find a policy

that maximizes the discounted sum of its own reward,
P

t�0 �
t
ri,t.

• Robust RL. In recent years many single agent robust RL techniques have been proposed. Most
of these methods use information about the underlying simulator to train agents over a variety of
relevant environment settings [7; 8; 9; 10; 11]. Although these methods can provide robustness
against a wide range of environment changes, they suffer from long training times and require expert
knowledge of the underlying simulator, which is not practical. Another direction of research focuses
on perturbation based methods [3; 12]. Perturbation based methods train the policy to be robust
to input perturbations, encouraging the policy to act reasonably in perturbed or previously unseen
states. [13] certify robustness by adding smoothing noise to the state; it is not clear how this affects
the learned policy’s optimality. Another related line of work [14; 15; 16; 17] studies robust markov
decision processes and provides a principled way to learn robust policies. However, such methods
often require strict assumptions on the perturbation/uncertainty. Inspiring our work, [3] proposes to
learn a smooth policy in single agent RL, but they do so to reduce training complexity rather than
increase robustness and provide no theoretical justification for their method. Instead, we theoretically
connect smoothness to robustness, extend perturbation based methods to MARL, and develop a more
stable perturbation computation technique, and develop an extension to mean-field MARL.

• Robust MARL. Recently, some works have studied the robustness of MARL systems. Lin et al.
[18] studies how to attack MARL systems and finds that MARL systems are vulnerable to attacks on
even a single agent. Zhang et al. [19] develop a framework to handle MARL with model uncertainty
by formulating MARL as a robust Markov game. However, their proposed method only considers
uncertainty in the reward function, while this article focuses on robustness to observation noise
and changing transition dynamics. Li et al. [20] modify the MADDPG algorithm to consider the
worst-case actions of the other agents in continuous action spaces with the M3DDPG algorithm.
M3DDPG aims to grant robustness against the actions of other agents, which is less general than
the robustness against observation noise, changing transition dynamics, and malicious agents that
our method aims for. Wang et al. [21] consider robustness against uncertain transition dynamics, but
their algorithm is not applied to deep MARL. More recently, He et al. [22]; Han et al. [23] introduces
the concept of robust equilibrium and proposes to learn an adversarial policy to perturb each agent’s
observations. Finally Zhou et al. [24] propose to learn robust policies by minimizing the cross-entropy
loss between agent’s actions in non-perturbed states and perturbed states.

The ERNIE framework is also related to several existing works which use similar adversarial training
methods but target different domains such as trajectory optimization [25], semi-supervised learn-
ing [26; 27; 28], fine-tuning language models [29; 30], and generalization in supervised learning [31].
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3 From Lipschitz Continuity to Robustness
This section presents the theoretical motivation for our algorithm by showing that Lipschitzness
(smoothness) serves as a natural way to gain robustness, while reducing the policy search space. We
start by observing that certain natural environments exhibit smooth transition and reward functions,
especially when the transition dynamics are governed by physical laws (e.g., MuJuCo environment
[32], Pendulum [33]).* Formally, this is stated as the following.
Definition 3.1. Let S ✓ Rd. We say the environment is (Lr, LP)-smooth, if the reward function
r : S ⇥A ! R, and the transition kernel P : S ⇥ S ⇥R satisfy

|r(s, a)� r(s0, a)|  Lr ks� s
0
k and kP(·|s, a)� P(·|s0, a)k1  LP ks� s

0
k ,

for (s, s0, a) 2 S ⇥ S ⇥A. k·k denotes a metric on Rd. We say a policy ⇡ is L⇡-smooth if

k⇡(·|s)� ⇡(·|s0)k1  L⇡ ks� s
0
k .

Without loss of generality, we assume |r(s, a)|  1 for any (s, a) 2 S ⇥ A. We then present our
theory. Due to the space limit, we defer all technical details to the appendix.

• From smooth environments to smooth values. We proceed to show that if the environment is
smooth, then the value functions for smooth policies are also smooth.
Theorem 3.1. Suppose the environment is (Lr, LP)-smooth. Then the Q-function of any policy ⇡,
defined as

Q
⇡(s, a) = E⇡ [

P1
t=0 �

t
r(st, at)|s0 = s, a0 = a] , 8(s, a),

is Lipschitz continuous in the first argument. That is,

|Q(s, a)�Q(s0, a)|  LQ ks� s
0
k , (1)

where LQ := Lr + �LP/(1 � �). Suppose in addition the policy is L⇡-smooth. Then the value
function, defined as

V
⇡(s) = E⇡ [

P1
t=0 �

t
r(st, at)|s0 = s] , 8s,

is Lipschitz continuous. That is,

|V
⇡(s)� V

⇡(s0)|  LV ks� s
0
k ,

where LV := L⇡/(1� �) + LQ.

In view of Theorem 3.1, it is clear that whenever the environment and the policy are smooth, then
the value functions are also smooth. A natural and important follow-up question to ask is whether
this claim holds in the reverse direction. More concretely, we ask whether it is reasonable to seek a
policy that is also smooth with respect to the state while maximizing the reward. If the claim holds
true, then seeking a smooth policy can serve as an efficient and unbiased prior knowledge, that can
help us reduce the policy search space significantly, while still guaranteeing that we are searching for
high-performing policies.

• Existence of smooth and nearly-optimal policies. The following result shows that for any ✏ > 0,
there exists an ✏-optimal policy that is O(LQ/✏) smooth, where LQ defined in Theorem 3.1 only
depends on the smoothness of reward and transition. This structural observation naturally suggests
seeking a smooth policy for smooth environments.
Theorem 3.2. Suppose the environment is (Lr, LP)-smooth. Then for any ✏ > 0, there exists an
✏-optimal policy ⇡ that is also smooth, i.e.,

V
⇤(s)� V

⇡(s)  2✏
1��

, 8s 2 S and k⇡(·|s)� ⇡(·|s0)k1  |A| log|A|LQ ks� s
0
k /✏,

where LQ is defined as in Theorem 3.1.

Notably, the proof of Theorem 3.2 relies on the key observation that any smooth Q-function satisfying
(1) can be fed into the softmax operator, which induces a smooth policy. This observation also
provides a way for value-based methods (e.g., Q-learning) to learn a smooth policy. Namely, one can
first learn a smooth surrogate of the optimal Q-function, and then feed the learned surrogate into the
softmax operator to induce a close-to-optimal policy that is also smooth.
* See Remark 3.2 for discussions when the smoothness property holds approximately.
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• Robustness against observation noise with smooth policies. We have so far established that
smooth policies naturally exist in a smooth environment as close-to-optimal policies, and thus
smoothness serves as a strong prior for policy search. We will further demonstrate that the benefits
of smooth policy go beyond boosting learning efficiency, by bringing in the additional advantage of
robustness against observation uncertainty.
Theorem 3.3. Let ⇡(a|s) be L⇡-smooth policy. For any perturbation sequence {�

t
s
}
t�0,s2S , define

a perturbed policy (non-stationary) e⇡ = {e⇡t}t�0 by

e⇡t(a|s) = ⇡(a|s+ �
t

s
),

with k�
t
s
k  ✏ for all t � 0. Accordingly, define the value function of the non-stationary policy e⇡

V
e⇡(s) =E

⇥P1
t=0 �

t
r(st, at)|s0 = s, at ⇠ e⇡t(·|st + �

t
st
),

st+1 ⇠ P(·|st, at)
⇤
.

Then we have |V
⇡(s)� V

e⇡(s)|  2L⇡✏

(1��)2 , Similarly, we have

|Q
⇡(s, a)�Q

e⇡(s, a)|  2L⇡✏

(1��)2 ,

where Q
e⇡ is defined similarly as V e⇡ .

Theorem 3.3 establishes the following fact: for a discounted MDP with finite state and finite action
space, the value of the policy when providing the perturbed state is close to the value of the policy
when given the non-perturbed state, provided the policy is Lipschitz continuous in its state. As an
important implication, the learned smooth policy will be robust in the state observation, in the sense
that the accumulated reward will not deteriorate much when noisy, or even adversarially constructed
state observations are given to the policy upon decision making.

We emphasize that Theorem 3.3 holds without any smoothness assumption on the transition or the
reward function. It should also be noted that there are various notions of robustness in MDP, e.g.,
robustness against changes in transition kernel [34; 17], which we defer as future investigations.

Before we conclude this section, we briefly remark on certain generality of our discussion.
Remark 3.1 (Applicability to MARL). The discussions in this section do not depend on the size of
the state space, and apply to the multi-agent setting without any change. To see this, note that our
discussion holds for any discrete state-action space. Setting S as the joint state space and A as the
joint action space, then the obtained results trivially carry over to the cooperative MARL setting.
Remark 3.2 (Environments with approximate smoothness). Many environments are partially
smooth, in the sense that the transition or the reward is non-smooth only on a small fraction of the
state space. Typical examples include the Box2D environment [33], where the agent receives smooth
reward when in non-terminal states (airborne for Lunar Lander), and receives a lump-sum reward in
the terminal state (land/crash) – a vanishing fraction of the entire state space. Given the environment
being largely smooth, it should be expected that for most states the optimal policy is locally smooth.
Consequently, inducing a smoothness prior serves as a natural regularization to constrain the search
space when solving these environments, without incurring a large bias.
Remark 3.3 (Non-smooth environments). From the perspective of robust statistics, achieving
robustness often necessitates a certain level of smoothness in the learned policy, regardless of the
smoothness of the optimal policy. In scenarios where the environment itself is non-smooth, the
optimal policy can also be non-smooth. However, it is important to note that such non-smooth optimal
policies are typically not robust. This means that by trading-off between the approximation bias
and robustness, the smooth policy learnt by out method has the potential to outperform non-smooth
policies in perturbed environments.

4 Method
In this section, we propose our robust MARL framework, advErsarially Regularized multiageNt
reInforcement lEarning (ERNIE).

4.1 Learning Robust Policy with ERNIE
Section 3 shows that the robustness of a policy depends on its Lipschitz constant. Therefore, in
ERNIE we propose to control the Lipschitz constant of each policy with adversarial regularization.
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Given a policy ⇡✓k , where k is the agent index, the ERNIE regularizer is defined by

R⇡(ok; ✓k) = max
||�||✏

D(⇡✓k(ok + �),⇡✓k(ok)). (2)

Here �(ok, ✓k) is a perturbation adversarially chosen to maximize the difference between the policy’s
output for the perturbed observation ok + �(ok, ✓k) and the original observation ok. In this case
✏ controls the perturbation strength and || · || is usually taken to be the `2 or `1 norm. Note that
R⇡(ok; ✓k) essentially measures the local Lipschitz smoothness of policy function ⇡✓ around the
observation ok, defined in metric D(·, ·). Therefore minimizing R⇡(ok; ✓k) will encourage the policy
to be smooth.

Regularization (2) allows straightforward incorporation into MARL algorithms that directly perform
policy search. For actor-critic based policy gradient methods, the regularizer (2) can be directly
included into the objective for updating the actor (policy) networks. When optimizing stochastic
policies (e.g., MAPPO [35]), D can be taken to be the KL divergence and for deterministic policies
(e.g., MADDPG [36] or Q-learning [37]), we set D to be the `p norm.

More concretely, let L(✓) denote the policy optimization objective, i.e., the negative weighted value
function of the policy. We then augment L(✓) with (2), and minimize the regularized objective

min
✓

F(✓) = L(✓) + �
P

N

n=1 E⇡n

⇥
R⇡(on; ✓n)

⇤
, (3)

where � is a hyperparameter. We remark that Shen et al. [3] has explored similar regularization for
single-agent RL (with a goal of improving sample efficiency), but as we explain in sections 4.2, 4.3,
and 4.4, successful application to MARL robustness is highly non-trivial.

4.2 Stackelbeg Training with Differentiable Adversary
Although accurately solving (3) will result in a high-performing and robust policy, we note that (3)
is a nonconvex-nonconcave minimax problem. In practice, we can use multiple steps of projected
gradient ascent to approximate the worse-case state perturbation �(ok, ✓k), followed by one-step
gradient descent for updating the policies/Q-function. Even though this optimization method already
significantly improves robustness over the baseline algorithms, we found that the training process
could be quite unstable. We hypothesize that the intrinsic instability of MARL algorithms due
to simultaneous updates of multiple agents is greatly amplified by the non-smooth landscape of
adversarial regularization.

To promote a more stable straining process, we propose to reformulate adversarial training in ERNIE
as a Stackelberg game. The reformulation defines adversarial regularization as a leader-follower
game [38]:

R⇡(o, �
K

✓
(o); ✓) = D

�
⇡✓(o+ �

K(o, ✓)),⇡✓(o)
�

(4)

s.t. �
K(o, ✓) = U✓ � U✓ � · · · � U✓| {z }

K-fold composition

(�0(o, ✓)).

Here � denotes the operator composition (i.e f � g = f(g(·))), and

�
k+1(o, ✓) = U✓(�

k(o, ✓)) = �
k(o, ✓) + ⌘r�D

�
⇡✓

�
o+ �

k(o, ✓)
�
,⇡✓(o)

�

is a one-step gradient ascent for maximizing the divergence of the perturbed and original observation.

Compared to the vanilla adversarial regularizer in (2), the perturbation � is treated as a function of
the model parameter ✓. This formulation allows the leader (✓) to anticipate the action of the follower
(�), since the follower’s response given observation o is fully specified by �

K(o, ✓). This structural
anticipation effectively produces an easier and smoother optimization problem for the leader (✓),
whose gradient, termed Stackelberg gradient, can be readily computed by

@R⇡(o, �K✓ (o); ✓)

@✓
=

@R⇡(o, �K , ✓)

@✓| {z }
leader

+
@R⇡(o, �K(✓), ✓)

@�K(✓)

�
K(✓)

@✓| {z }
leader-follower interaction

Note that the gradient used in (3) only contains the “leader” term, such that interaction between
the model ✓ and the perturbation � is ignored. The computation of the Stackelberg gradient can be
reduced to Hessian vector multiplication using finite difference method [39], which only requires two
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backpropogations and extra O(d) complexity operation. Thus no significant computational overhead
is introduced for solving (4).

The benefit of Stackelberg training for MARL is twofold. First, a smoother optimization problem
results in a more stable training process. This extra stability is essential given the inherent instability
of MARL training. Second, giving the policy ✓ priority over the attack � during the training process
allows for a better training data fit than normal adversarial training allows. This better fit allows the
MARL policies trained with Stackelberg training to perform better in lightly perturbed environments
than those trained with normal adversarial regularization.

4.3 Robustness against Malicious Actions
Given the complex interactions of agents within of a multi-agent system, a robust policy for any
given agent should meet the criterion that the action made is not overly dependent on any small
subset of agents. This is particularly the case when the agents are homogeneous in nature [4; 40], and
thus there should be no notion of coreset agents in the decision-making process that could heavily
influence the actions of other agents. We proceed to show how ERNIE could be adopted to induce
such a notion of robustness.

The core idea of ERNIE for this scenario is to encourage policy/Q-function smoothness with respect
to joint actions. Similar to our treatment in (2), we now seek to promote learning a Q-function that
yields a consistent value when perturbing the actions for any small subset of agents. Specifically, for
discrete action space, we define a regularizer on the global Q-function as

R
A

!
(s,a) = max

D(a,a0)K

||Q(s,a;!)�Q(s,a0;!)||22, (5)

where D(a,a0) =
P

i
I(ai 6= a0i). The regularizer (5) seeks to compute the worst subset of changed

actions with cardinality less than K. For continuous action spaces, one could replace the metric D in
(5) by a differentiable metric defined over the action space (e.g., k·k2-norm), and then evaluate the
regularizer with projected gradient ascent.

To evaluate the adversarial regularizer for the discrete action space, we propose to solve (5) in a greedy
manner by finding the worst-case change in the action of a single agent at a time, until the action of
K agents is changed. Specifically, at each training step, we search through all the agents/actions and
then pick the actions that produce the top-K changes in the Q-function, resulting in a O(|A| ⇤N ⇤K)
computation. Our complete algorithm can be found in Appendix H, and we find that in our numerical
study, perturbing the action of a single agent (K = 1) is sufficient for increased robustness.

Similar to the regularizer in (2), the regularizer in (5) provides the benefits of Lipschitz smoothness
(with respect to the Hamming distance) and data augmentation with adversarial examples. If the
behavior of a few agents changes (either maliciously or randomly), the behavior of policies trained
by conventional methods may change drastically. On the other hand, policies trained by our method
will continue to make reasonable decisions, resulting in more stable performance (see section 5).

4.4 Extension to Mean-field MARL
MARL algorithms have been known to suffer from the curse of many agents [4], as the search space
of policies and value functions grows exponentially w.r.t. the number of agents. A practical approach
to tackle this challenge of scale is to adopt the mean-field approximation, which views each agent as
realizations from a distribution of agents. This distributional perspective requires a distinct treatment
of ERNIE applied to the mean-field setting.

Mean-field MARL avoids the curse of many agents by approximating the interaction between each
agent and the global population of agents with that of an agent and the average agent from the
population. In particular, we can approximate the action-value function of agent j as Qj(s,a) =
Q

j(sj , ds, aj , āj), where a is the global joint action, s is the global state, āj is the average action
of agent j’s neighbors, and ds is the empirical distribution of states over the population. Such an
approximation has found widespread applications in practical MARL algorithms [41; 42; 40; 43],
and can be motivated in a principled fashion for agents of homogeneous nature [4; 40].

To learn robust and scalable policies, we extend ERNIE to the mean-field setting by applying
adversarial regularization to the approximation terms ds and ā

j . It is important to note that as the
terms ds and d

0
s

represent distributions over states, we bound the attack by the Wasserstein distance
[44]. In what follows we only apply the regularizer to ds for simplicity. This leads to a new regularizer
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defined over the mean field state

R
Q

W(s; ✓) = max
W(d0

s,ds)✏

X

a2A
kQ✓(s, d

0
s
, a)�Q✓(s, ds, a)k

2
2 ,

where W denotes the Wasserstein distance metric. Since the explicit Wasserstein constraint may
be difficult to optimize in practice, we can instead enforce the constraint through regularization, as
displayed in Appendix C.

5 Experiments
We conduct extensive experiments to demonstrate the effectiveness of our proposed framework. In
each environment, we evaluate MARL algorithms trained by the ERNIE framework against baseline
robust MARL algorithms. To evaluate robustness, we train MARL policies in a non-perturbed
environment and evaluate these policies in a perturbed environment. The reported results are gathered
over five runs for each algorithm. Given the space limit, we put additional results in Appendix E.

Traffic Light Control. In this scenario, cooperative agents learn to minimize the total travel time
of cars in a traffic network. We use QCOMBO [45] and COMA [46] (results in appendix E) as
our baseline algorithms and conduct experiments using the Flow framework [47]. We train the
MARL policies on a two-by-two grid (four agents). We then evaluate the policies on a variety of
realistic environment changes, including different car speeds, traffic flows, network topologies, and
observation noise. In each setting, we plot the reward for policies trained with ERNIE, the baseline
algorithm (QCOMBO), and another baseline where the attack � is generated by a Gaussian random
variable (Baseline-Gaussian, see Appendix I). Implementation details can be found in Appendix G.

Figure 1, 2a, and 2b show that the baseline algorithm is vulnerable to small changes in the training
environment (higher reward is better). On the other hand, ERNIE achieves more stable reward on each
environment change. This observation confirms that the ERNIE framework can improve robustness
against observation noise and changing transition dynamics. The Gaussian baseline performs well on
some environment changes, like when the observations are perturbed by Gaussian noise, but performs
poorly on other environment changes, like when the car speed is changed. We hypothesize that while
some environment changes may be covered by Gaussian perturbations, other environment changes
are unlike Gaussian perturbations, resulting in a poor performance from this baseline.

Robustness Against Malicious Actions. We also evaluate the extension of ERNIE to robustness
against changing agent behavior, which we refer to as ERNIE-A. To change agent behavior, we
adversarially change the action of a randomly selected agent a small percentage of the time, i.e. 5%
or 3% of the time. As can be seen in Figures 2c and 2d, the two baseline algorithms perform poorly
when some agent’s behavior changes. In contrast, ERNIE-A is able to maintain a higher reward.

(a) Gaussian Noise (0.01) (b) Different Speed (c) Traffic Flow (Flow-3)

Figure 1: Evaluation curves on different environment changes for traffic light control.

Particle Environments. We evaluate ERNIE on the cooperative navigation, predator-prey, tag, and
cooperative communication tasks. In each setting, we investigate the performance of the baseline
algorithm (MADDPG), ERNIE, M3DDPG, and the baseline-gaussian in environments with varying
levels of observation noise. We also compare ERNIE to the RMA3C algorithm proposed in [23]. In
Figure 3, we find ERNIE performs better or equivalently than MADDPG in all settings. Surprisingly,
M3DDPG can provide some robustness against observation noise, even though it is designed to
provide robustness against malicious actions.

Mean-field MARL. We evaluate the performance of the mean-field ERNIE extension on the co-
operative navigation task [36] with different numbers of agents. We compare the performance of
the baseline algorithm, ERNIE, and M3DDPG under various levels of observation noise. We use
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(a) Larger Network (b) Different Topology (c) Actions (3%) (d) Actions (5%)

Figure 2: Performance on changed traffic network topologies and with malicious agents. In Figures
(c) and (d) we perturb the actions according to the specified percentages.

(a) Covert Comm. (b) Tag (c) Navigation (d) Predator Prey

Figure 3: Training reward versus noise level (✏) in the evaluation environment for the particle games.

mean-field MADDPG as our baseline and follow the implementation of [40]. As can be seen in
Figure 4, ERNIE displays a higher reward and a slower decrease in performance across noise levels.

(a) N=3 (b) N=6 (c) N=15 (d) Model Width

Figure 4: (a)-(c) Training reward versus noise level (mean ± standard deviation over 5 runs) with a
various number of agents (N) (d) Network width and robustness.

(a) Different Speed (b) Observation Noise (c) Sensitivity to ✏ (d) Sensitivity to K

Figure 5: Sensitivity and ablation experiments.

Hyperparameter Study. We investigate the sensitivity of ERNIE to the hyperparameters K (the
number of attack steps) and ✏ (the perturbation strength). We plot the performance of different
hyperparameter settings in the traffic light control task with perturbed car speeds on three random
seeds. From Figures 5c and 5d we can see that adversarial training (K > 0) outperforms the baseline
(K = 0) for all K. Similarly, we can see that all values of ✏ outperform the baseline (✏ = 0). This
indicates that ERNIE is robust to different hyperparameter settings of ✏ and K.

Sensitivity and Ablation Study. The advantage of the ERNIE framework goes beyond improving
the mean reward. To show this, we evaluate 10 different initializations of each algorithm in two
traffic environments: one with different speeds and another environment with observation noise. We
then sort the cumulative rewards of the learned policies and plot the percentiles in Figures 5a and 5b.
Although the best-case performance is the same for all algorithms, ERNIE significantly improves the
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robustness to failure. As an ablation, we evaluate the effectiveness of ERNIE with and without the
Stackelberg formulation of adversarial regularization (ST). ERNIE displays better performance in
both settings, indicating that Stackelberg training can lead to a more stable training process. Ablation
experiments in other environments can be found in Appendix E.4.

Robustness and Network Width. In Appendix B, we show that in order to learn a robust policy
with ERNIE, we should use a sufficiently wide neural network. Therefore, we evaluate the robust
performance of ERNIE using policy networks with 32, 64, 128, and 256 hidden units. We carefully
tune their regularization parameters such that all networks perform similarly in the lightly perturbed
environment. As seen in Figure 4d, when the perturbed testing environment deviates more from
the training environment, the performance of the narrower policy networks (32/64 hidden units)
significantly drops, while the wider networks (128/256 hidden units) are more stable. We also observe
that when the policy networks are sufficiently wide (128/256), their robustness is similar.

Robotics Experiments. Additional experiments in multi-agent drone control environments can be
found in Appendix E.1, which further verify the enhanced robustness that ERNIE provides.

6 Discussion
ERNIE is motivated by smoothness, but real-world environments are not always smooth. In section
3, we hypothesize that most environments are at least partially smooth, implying that smoothness
can serve as useful prior knowledge while providing robustness (our experiments validate this). To
increase ERNIE’s flexibility, future work could adaptively select � based on the current state to allow
for state-dependent smoothness.
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