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Abstract

Sparse training has received an upsurging interest in machine learning due to its
tantalizing saving potential for the entire training process as well as inference.
Dynamic sparse training (DST), as a leading sparse training approach, can train
deep neural networks at high sparsity from scratch to match the performance of
their dense counterparts. However, most if not all DST prior arts demonstrate their
effectiveness on unstructured sparsity with highly irregular sparse patterns, which
receives limited support in common hardware. This limitation hinders the usage of
DST in practice. In this paper, we propose Channel-aware dynamic sparse (Chase),
which for the first time seamlessly translates the promise of unstructured dynamic
sparsity to GPU-friendly channel-level sparsity (not fine-grained N:M or group
sparsity) during one end-to-end training process, without any ad-hoc operations.
The resulting small sparse networks can be directly accelerated by commodity
hardware, without using any particularly sparsity-aware hardware accelerators.
This appealing outcome is partially motivated by a hidden phenomenon of dynamic
sparsity: off-the-shelf unstructured DST implicitly involves biased parameter reallo-
cation across channels, with a large fraction of channels (up to 60%) being sparser
than others. By progressively identifying and removing these channels during
training, our approach translates unstructured sparsity to channel-wise sparsity. Our
experimental results demonstrate that Chase achieves 1.7× inference throughput
speedup on common GPU devices without compromising accuracy with ResNet-50
on ImageNet. We release our codes in https://github.com/luuyin/chase.

1 Introduction

Deep neural networks (DNNs) have recently demonstrated impressive breakthroughs with increasing
scales [2; 8; 36]. Besides the well-known scaling, i.e., test accuracy scales as a power law regarding
model size and training data size in quantity [18; 26], recent work has observed that massive increases
in quantity can imbue models with qualitatively new behavior [49]. However, the memory and
computation required to train and deploy these large models can be a heavy burden on the environment
and finance [13; 43]. Therefore, people start to probe the possibility of training sparse neural networks
from scratch without involving any dense training steps (dubbed sparse training [39; 35]). As the
memory requirement and multiplications (which dominate neural network computation) associated
with zero weights can be skipped, sparse training is becoming a promising direction due to their
“end-to-end” saving potentials for both efficient training and efficient inference.

Sparse training can be categorized into two groups, static sparse training and dynamic sparse
training according to the dynamics of the sparse pattern during training. Static sparse training
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Figure 1: Inference latency and throughput of various DST methods. The sparsity level is 90% for all
approaches. All models are trained for 100 epochs with the ResNet-50/ImageNet benchmark. Each
dot of Chase and Chase (prune skip) corresponds to a model with distinct channel-wise sparsity. The
results of latency are obtained on NVIDIA 2080TI GPU with a batch size of 2.

(SST) [28; 56; 53; 33; 22], namely, draws a sparse neural network at initialization before training and
train with a fixed sparse pattern (sparse connections between layers) without further changes. Dynamic
sparse training (DST) [39; 10; 35], on the contrary, jointly optimizes the weights and sparse patterns
during training, usually delivering better performance than the static ones. DST quickly evolves as a
leading direction in sparse training due to its compelling performance and training/inference efficiency.
For instance, a sparse ResNet-34 with only 2% parameters left can be dynamically trained to match
the performance of its dense counterpart without involving any pre-training or dense training [35].

While showing promise in performance and efficiency, so far the real speedup of DST has only been
demonstrated on CPU [34; 6] or IPU [6]. Most sparse training methods produce unstructured sparse
neural networks with extremely irregular sparse patterns, which can not be directly accelerated in
common hardware (i.e., GPU and TPU), compared to the straightforward and hardware-friendly
sparse pattern produced by channel pruning [17; 37].

Many endeavors strive to solve this issue by coarsening the sparsity granularity, which can be
loosely categorized into two groups. i. Grouping nonzero weights into blocks. As GPU performs
very fast on contiguous memory operations, block-wise sparsity enjoys much more speedups than
unstructured sparsity in practice. Group lasso regularization [41; 14] is a widely-used technique to
induce block sparsity in the network. Ad-hoc grouping operations can also be utilized to build dense
blocks from unstructured sparse weights [46; 3]. ii. Seeking fine-grained structured sparse patterns.
For instance, inspired by the recent support of 2:4 fine-grained sparsity in NVIDIA Ampere [42],
previous arts attempt to find a sweet spot between structured and unstructured sparsity by learning
N:M sparsity patterns [60; 20; 45]. However, these methods either rely on specialized sparse-aware
accelerators [9; 42] to enable speedups or suffer from significant performance degradation due to the
constraint location of nonzero values [25].

In this paper, we propose a new method dubbed Channel-aware dynamic sparse (Chase), which can
effectively transfer the promise of unstructured sparse training into the hardware-friendly channel
sparsity with comparable or even better performance on common GPU devices. The roadmap of our
exploration is as follows:

■ Observation 1: We first present an emerging characteristic of DST: off-the-shelf DST
approaches implicitly involve biased parameter reallocation, resulting in a large proportion
of channels (up to 60%) that rapidly become sparser than their initializations at the very
early training stage. We term them as “sparse amenable channels” for the sake of convenient
reference.

■ Observation 2: We examine the prunability (i.e., the accuracy drop caused by pruning) of
the sparse amenable channels, we find that these channels cause marginal damages to the
model performance than their counterparts when pruned.
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■ A New Metric: We propose a new, sparsity-inspired, channel pruning metric – Unmasked
Mean Magnitude (UMM) – that can be used to precisely discover sparse amenable channels
during training by monitoring the quantity and quality of weight sparsity.

■ A New Approach: Based on the above findings, we propose Channel-aware dynamic
sparse (Chase), a first sparse training framework that can favorably transform unstructured
sparsity into channel-wise sparsity on the fly. Chase starts with an unstructured sparse neural
network and dynamically trains it while gradually eliminating sparse amenable channels
with the lowest UMM scores. During training, we globally grow and shrink parameters to
strengthen performance further.

■ Performance: Chase inherently can be tailed into an unstructured sparse training approach
and a structured sparse training approach. Our unstructured variant establishes a new state-
of-the-art accuracy bar for sparse training. More impressively, our structured approach is
able to maintain or even surpass SoTA performance with ResNet-50 on ImageNet, while
achieving 1.2× - 1.7× inference throughput speedups on common GPU devices.

2 Sparse Amenable Channels in DST

We first describe the basis and notations of the prior sparse training arts. Afterward, we provide
evidence for the existence of the sparse amenable channels during the dynamic sparse training across
different architectures and demonstrate that pruning of such channels leads to marginal performance
damage than their counterparts. Based on this interesting finding, we introduce Chase, a sparsity-
inspired sparse training method that for the first time translates the theoretical promise of sparse
training into GPU-friendly speedup, without using any specialized CUDA implementations.

2.1 Prior Sparse Training Arts

Let us denote the sparse neural network as f(x;θs). θs refers to a subset of the full network
parameters θ at a sparsity level of (1− ∥θs∥0

∥θ∥0
) and ∥ · ∥0 represents the ℓ0-norm.

It is common to initialize sparse subnetworks θs randomly based on the uniform [40; 5] or non-
uniform layer-wise sparsity ratios with Erdős-Rényi (ER) graph [39; 10; 35; 31]. In the case of
image classification, sparse training aims to optimize: θ̂s = argminθs

∑N
i=1 L(f(xi;θs), yi) us-

ing data {(xi, yi)}Ni=1, where L is the loss function. Static sparse training (SST) maintains the
same sparse network connectivity during training after initialization. Dynamic sparse training
(DST), on the contrary, allows the sparse subnetworks to dynamically explore new parameters
while sticking to a fixed sparsity budget. Most of the DST methods follow a simple prune-and-grow
scheme [39] to perform parameter exploration, i.e., pruning r proportion of the least important param-
eters based on their magnitude, and immediately grow the same number of parameters randomly [39]
or using the potential gradient [10]. Formally, the parameter exploration can be formalized as the
following two steps:

θs = Ψ(θs, r), (1)

θs = θs ∪ Φ(θi/∈θs
, r). (2)

where Ψ is the specific pruning criterion and Φ is growing scheme. These metrics may vary from
sparse training method to another. In addition to prune-and-grow, previous work [23; 47] dynamically
activates top-K parameters during forward-pass while keeping a larger number of parameters updated
in backward-pass to get rid of dense calculation of gradient. At the end of the training, sparse training
can converge to a performant sparse subnetwork. Since the sparse neural networks are trained from
scratch, the memory requirements and training/inference FLOPs are only a fraction of their dense
counterparts.

One daunting drawback of sparse training is the resulting subnetworks are usually imbued with
extremely irregular sparsity patterns, therefore, receiving very limited support from common hardware
like GPU and TPU.
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Figure 2: The portion of sparse amenable channels justified by two metrics, the Unmasked Mean
Magnitude (UMM) and the Weight Sparsity (WS), of ResNet-50 trained on CIFAR-100.

2.2 Sparse Amenable Channels

Here, we introduce the most important cornerstone concept for this work - “sparse amenable channels”
- which is defined as the channels whose sparsity becomes higher than their initial values caused by
dynamic sparse training.

To provide empirical evidence for this interesting observation, we visualize the training dynamics
of DST by monitoring two specific metrics of channels, Weight Sparsity and Unmasked Weight
Magnitude, which are defined below.

Weight Sparsity (WS) (Quantity): Weight Sparsity directly quantizes the emergence of the Sparse
Amenable Channels in quantity. Larger weight sparsity means more elements in the channel are
becoming zero. Consequently, channels with fewer non-zero weights than their initial status are
justified as Sparse Amenable Channels in this case.

Unmasked Mean Magnitude (UMM) (Quantity and Quality): Instead of solely quantitatively
monitoring the weight sparsity, it is preferable to take the quality (i.e., magnitude) of the nonzero
weights into consideration due to the crucial role of magnitude to dynamic sparse training [39; 10; 35].
Here, Unmasked Mean Magnitude refers to the mean magnitude of all the weights (including zero
and nonzero) in the channel without considering masking. Smaller Unmasked Mean Magnitude
represents the channels that come to be more sparse both in quantity and quality. Specifically, channels
with fewer non-zero parameters but larger magnitudes will be excluded from the Sparse Amenable
Channels. Therefore, the number of Sparse Amenable Channels justified here will be smaller than
WS. We formalize these two metrics in Table 1 for a better interpretability. For comparison, we also
evaluate the Masked Mean Magnitude (MMM), i.e., the mean magnitude of the non-zero weights.

Table 1: Metrics that are introduced to measure
the dynamics of the Sparse Amenable Channels.
The weight tensor and the binary mask of a channel
is represented with θ and m, respectively. And ∥ · ∥0
stands for the ℓ0-norm.

Weight Sparsity (WS) 1 − ∥m⊙θ∥0
∥θ∥0

Unmasked Mean Magnitude (UMM)
∑

|θ|
∥θ∥0

Masked Mean Magnitude (MMM)
∑

|m⊙θ|
∥m⊙θ∥0

We determined channels at the i training
iteration are amenable if their values of
Weight Sparsity are larger than their ini-
tialized values by a ratio v or their values
of Unmasked Mean Magnitude are smaller
than their initialized values by a ratio v:
WSi−WS0

WS0
> v or UMM0−UMMi

UMM0
> v. In

other words, we say a channel becomes v
more sparse than its initial status if its WSi

surpasses WS0 by v, or its UMMi is smaller
than UMM0 by v.

Taking the most representative DST ap-
proaches SET [39] and RigL [10] as exam-
ples, we measure the number of the Sparse
Amenable Channels across layers in Figure 2, with v equals 0%, 20%, 30%, and 40%. We summarize
our main observations here. ❶ Overall, we observe that a large part of channels (up to 60%) tend to be
sparse amenable. While the number of amenable channels tends to decrease as v increases, there still
exists around 10% ∼ 40% amenable channels becoming 40% more sparse than their initializations
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Algorithm 1: Pseudocode of Chase
Input: Sparse neural network with initialized sparse weight θs, target sparsity sp, current sparsity st,

parameter update frequency ∆Tp, sparsity mutation factor se, target channel sparsity Sc,
channel pruning frequency ∆T , current channel sparsity St, training steps τ , exploration stop
steps τstop, total training steps τtotal

Output: A sparse model satisfying the target sparsity sp and channel sparsity requirement Sc.
while τ < τstop do

if Mod(t,∆T ) = 0 and t ≤ Tmax then
θs ← Global channel prune(θs, St) ▷ Perform gradual amenable channel pruning using
Eq. 3

if Mod(t,∆Tp) = 0 and t ≤ Tmax then
θs(st = sp − se)← Global Parameter Grow(θs)
Training for ∆τ epochs, τ ← τ +∆Tp

θs(st = sp)← Global Parameter Prune(θs) ▷ Chase adopts global parameter
exploration and soft memory bound.

Continue sparse training from the epoch τstop to τend.

across layers. ❷ Fewer channels are justified as sparse amenable channels using the UMM metric
than WS, as we expected. ❸ Deeper layers suffer from more amenable channels than shallow layers.
❹ RigL tends to extract more amenable channels than SET at the very early training phase. A possible
reason is that the dense gradient encourages RigL to quickly discover and fill weights to the important
(non-amenable) channels compared to the random growth used in SET.

Table 2: Top-1 test accuracy (%) of various channel pruning
criteria with ResNet-50 on CIFAR-100. “Reverse” refers to
pruning with the reversed metric.

Method Channel Sparsity

10% 20% 30%
Standard RigL [10] 76.89±0.43 76.89±0.43 76.89±0.43

Random Pruning [33] 43.01±9.62 11.74±2.79 3.79±1.32

Network Slimming [37] 76.82±0.43 76.67±0.39 66.57±2.95

MMM 62.31±8.66 19.34±14.88 5.32±2.88
MMM Reverse 5.28±2.52 2.04±0.30 1.72±0.40

WS 76.86±0.43 76.79±0.39 62.79±5.42
WS Reverse 2.9±0.91 2.43±0.07 2.03±0.38

UMM 76.88±0.43 76.90±0.42 71.77±2.31
UMM Reverse 3.18±0.48 2.23±0.26 1.51±0.35

Sparse amenable channels enjoy better
prunability1 than their counterparts. So
far, we have unveiled the existence of the
sparse amenable channels. It is natural to
conjecture that these amenable channels
can be a good indicator for channel prun-
ing. To evaluate our conjecture, we choose
the above proposed two metrics, Weight
Sparsity (WS) and Unmasked Mean Mag-
nitude (UMM), as our pruning criteria and
perform a simple one-shot global channel
pruning after regular DST training in com-
parison with their reversed metrics as well
as several commonly-used principles, in-
cluding random pruning [33], network slim-
ming [37], and Masked Mean Magnitude
(MMM). Channels with the highest values
are pruned for WS, and the ones with the smallest values are pruned for UMM. Table 2 shows that
both WS and UMM achieve good performance and UMM performs the best. Meanwhile, their
reversed metrics perform no better than random pruning. Perhaps more interestingly, the resulting
hybrid channel-level sparse models favorably preserve the performance of the unstructured RigL with
no accuracy drop when pruned with mild channel sparsity.

In addition, we also observe the existence of “sparse amenable channel” in a broad range of settings,
including ResNet-32/VGG-16 on CIFAR-100, MLP Model on CIFAR10, and ViT Small, ResNet-50
on ImageNet in Appendix. Hence, we believe that sparse amenable channels is a very general
phenomenon that widely exists across different architectures and datasets.

This encouraging result confirms our conjecture and demonstrates the promising potentials of sparse
amenable channels (UMM) as a strong metric to remove channels during training. In the next section,
we will explain in detail how we leverage Sparsity Amenable Channels and UMM to translate the
promise of unstructured sparse training to the hardware-friendly sparse neural networks.

1Prunability here refers to the accuracy drop caused by the channel removal.
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3 Methodology - Chase

Inspired by the above encouraging findings of sparse amenable channels, we introduce Chase-aware
dynamic sparse (Chase) in this section. We follow the widely-used sparse training framework used in
[39; 10]. The technical novelty of Chase mainly lies in two aspects. On the structured sparsity level,
we adopt the gradual sparsification schedule [61] to gradually remove Amenable Channels during
training with smallest UMM scores. The gradual sparsification schedule provides us with a moderate
sparsification schedule, favorably relieving the accuracy drop caused by aggressive channel pruning.
On the unstructured sparsity level, we globally redistribute parameters based on their magnitude and
gradient, which significantly strengthens the sparse training performance. The overall Pseudocode of
Chase is illustrated in Algorithm 1. We provide technical details of the above components below.

Gradual Amenable Channel Pruning. The gradual sparsification schedule is widely-used in the
unstructured sparse literature to produce strong unstructured sparse subnetworks [61; 11; 31]. We
explore it to the channel pruning regime with several ad-hoc modifications. Let us denote the initial
and target final channel-wise sparsity level as Si and Sf , respectively; gradual pruning starts at the
training step t0 with pruning frequency ∆T , performing over a span of n pruning steps. The sparsity
level St at pruning step t is:

St = Sf + (Si − Sf )

(
1− t− t0

n∆T

)3

. (3)

We globally collect UMM (see Section 2.2 for the definition) of each channel as the pruning criterion
and progressively remove the sparse amenable channels with the smallest UMM according to Eq 3.
We observe that layer collapse occurs sometimes without setting layer-wise pruning constraints. To
avoid layer collapse, we use β to control the minimum number of channels remaining in layer l to be
(1− Sf ) · β · wl, where wl is the number of channels in layer l. We empirically find that smaller β
tends to yield better performance. We report more details Appendix A.2.

To maintain the overall number of parameters the same during training, we redistribute the overly
pruned parameters back to the remaining channels at the next parameter grow phase using Eq 2. We
find that without doing this will significantly hurt the model’s performance.

Global Parameter Exploration. Global parameter exploration was introduced in previous arts [40; 5].
However, with the popularity of RigL [10], it is common to use a fixed set of layer-wise sparsities.
Here, we revisit global parameter exploration in DST. To be specific, we globally prune parameters
that have the smallest magnitudes and grow parameters with highest gradient magnitude. This small
adaption brings a large performance benefit to RigL (up to 2.62% on CIFAR-100 and 1.7% on
ImageNet), reported as “Chase (Sc = 0)” in Table 3 and Table 4.

Soft Memory Bound. Soft memory bound was proposed in [59], which allows the parameter growing
operation happens before the parameter pruning, improving the performance at the cost of a slight
increase of memory requirements and FLOPs. We borrow the idea of soft memory bound to allow
parameters firstly being added to the existing parameters followed by ∆Tp iteration of training, then
remove the less important parameters including the newly added ones. This can avoid forcing the
existing weights in the model to be removed if they are more important than newly grown weights.

After training, Chase slims down the initial “big sparse” model to a “small sparse” model with a
significantly reduced number of channels. We completely remove the pruned channels in the current
layer as well as the corresponding input dimensions of the next layer, so that the produced small
sparse models can directly enjoy the acceleration in GPU.

4 Experimental Evaluation of Chase

In this section, we comprehensively evaluate Chase in comparison with the various state-of-the-
art (SOTA) unstructured sparse training methods as well as the state-of-the-art channel-pruning
algorithms. At last, we provide a detailed analysis of hyperparameters and perform an ablation study
to evaluate the effectiveness of the components of Chase.

Our evaluation is conducted with two widely used model architectures VGG-19 [48] and ResNet-
50 [15] on across various datasets including CIFAR-10/100 and ImageNet, We summarize the

6



Table 3: Test accuracy (%) of the sparse VGG-19 and ResNet-20/50 on CIFAR-10/100.

Dataset CIFAR-10 CIFAR-100

Sparsity 90% 95% 98% 90% 95% 98%

VGG-19 (Dense) 93.85±0.05 93.85±0.05 93.85±0.05 73.43±0.08 73.43±0.08 73.43±0.08

SynFlow [53] 93.35 93.45 92.24 71.77 71.72 70.94
GraSP [56] 93.30 93.04 92.19 71.95 71.23 68.90
SNIP [28] 93.63 93.43 - 72.84 71.83 -
Chase+GraSP (Sc = 0.5) 94.06±0.22 93.88±0.06 93.89±0.20 73.17±0.09 72.81±0.11 71.66±0.15
Chase+SNIP (Sc = 0.5) 94.83±0.06 95.08±0.14 - 78.26±0.26 77.16±0.04 -

Deep-R [1] 90.81 89.59 86.77 66.83 63.46 59.58
SET [39] 93.61±0.13 93.09±0.25 91.81±0.04 72.58±0.12 71.48±0.12 69.04±0.15
RigL [10] 93.60±0.09 93.05±0.06 91.95±0.15 72.92±0.31 71.85±0.53 69.57±0.24
MEST [59] 93.61±0.36 93.46±0.41 92.30±0.44 72.52±0.37 71.21±0.41 69.02±0.34
Chase (Sc = 0) 94.02±0.13 93.89±0.12 93.60±0.05 73.54±0.12 73.05±0.25 72.19±0.33
Chase (Sc = 0.5) 94.03±0.11 93.84±0.08 93.69±0.03 73.43±0.12 73.04±0.22 71.85±0.18

ResNet-50 (Dense) 94.75±0.01 94.75±0.01 94.75±0.01 78.23±0.18 78.23±0.18 78.23±0.18

SynFlow [53] 92.49 91.22 88.82 73.37 70.37 62.17
SNIP [28] 92.65 90.86 - 73.14 69.25 -
GraSP [56] 92.47 91.32 88.77 73.28 70.29 62.12
Chase+SNIP (Sc = 0.5) 93.99±0.09 93.89±0.10 - 73.44±0.02 72.80±0.05 -
Chase+GraSP (Sc = 0.5) 94.78±0.35 94.71±0.07 94.36±0.15 77.70±0.24 77.65±0.22 75.74±0.24

Deep-R [1] 91.62 89.84 86.45 66.78 63.90 58.47
SET [39] 94.65±0.01 94.05±0.06 92.98±0.18 76.14±0.54 75.90±0.19 73.21±0.06
RigL [10] 94.42±0.17 94.22±0.23 93.20±0.08 77.18±0.42 76.50±0.26 74.84±0.13
Chase (Sc = 0) 94.95±0.02 94.87±0.02 94.15±0.17 78.11±0.11 78.14±0.28 76.88±0.31
Chase (Sc = 0.5) 94.88±0.03 94.85±0.18 94.20±0.18 77.52±0.30 77.48±0.62 77.03±0.29

ResNet-20 (Dense) 92.55±0.02 92.55±0.02 92.55±0.02 68.65±0.19 68.65±0.19 68.65±0.19

SNIP [28] 88.06±0.07 84.21±0.33 74.61±0.40 54.40±0.09 42.45±0.65 24.55±0.56
GraSP [56] 88.35±0.12 84.95±0.30 78.25±0.22 55.49±0.08 45.96±0.15 30.67±0.94
SET [39] 90.16±0.09 87.70±0.09 83.41±0.04 62.08±0.16 54.77±0.74 43.70±0.92
RigL [10] 89.82±0.10 87.44±0.33 79.16±0.96 60.49±0.17 52.97±0.23 31.94±1.52
Chase (Sc = 0) 90.43±0.16 88.65±0.29 85.26±0.29 62.18±0.05 57.38±0.41 47.06±0.65
Chase (Sc = 0.5) 89.98±0.45 88.65±0.02 85.24±0.18 60.88±0.19 55.78±0.37 46.91±0.41

implementation details for Chase in Appendix B. To show the superior performance of Chase on
unstructured and structured sparsity, we report two variants of Chase: Chase (Sc = 0) represents the
unstructured version without channel pruning and Chase (Sc = 0.5) stands for the structured version
with 50% channel-level sparsity.

4.1 Comparison with off-the-shelf SOTA DST

CIFAR-10/100. Our method is naturally versatile and can be applied to both static sparse training
and dynamic sparse training regimes. Therefore, for each model, we categorize the results into two
groups and report the results in Table 3.

❶ Chase dramatically improves the performance of SST. As shown in the upper panel of each group,
Chase significantly boosts the accuracy (up to 13.62% for GraSP with ResNet-50 on CIFAR-100) of
SST methods like SNIP and GraSP. ❷ Chase (Sc = 0) establishes a new state-of-the-art performance
bar for unstructured sparse training. Compared with the SOTA DST methods such as RigL and MEST,
we clearly see that Chase (Sc = 0) universally outperforms all the presented DST methods by a large
margin. Specifically, Chase (Sc = 0) achieves 3.67 % and 3.15% performance gains compared with
SET on ResNet-50 and VGG-19. We also notice that the performance gain on CIFAR-100 is larger
than the ones on CIFAR-10, which is as expected since CIFAR-100 has a larger improvement space
than CIFAR-10. ❸ Chase (Sc = 0.5), with only 50% channels remaining, matches the performance
of its unstructured variant, demonstrating the promise of the unstructured DST can be favorably
transferred to the structured regime.

ImageNet. We reported the results on ImageNet in Table 4. Again, Chase (Sc = 0) dominates the
performance in the unstructured sparsity regime, achieving 1.7% and 2.12% accuracy improvements
over RigL and MEST, respectively. While the accuracy of Chase (Sc = 0.4) slightly decreases by
0.67% compared to Chase (Sc = 0), it still outperforms RigL by a good margin (1.03%), while
enjoying a 1.5× real inference speedup on common GPU.
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Table 4: Test accuracy (%) of sparse ResNet-50 on ImageNet trained with 100 epochs and 150 epochs
(1.5×). Training FLOPs of sparse training methods are normalized with the FLOPs used to train a
dense model. “GPU-supported FLOPs” refers to the real FLOPs that are required to calculate on a
common GPU which usually does not support irregular sparsity patterns.

Method Top-1 Theoretical Theoretical GPU-Supported TOP-1 Theoretical Theoretical GPU-Supported
Accuracy FLOPs (Train) FLOPs (Test) FLOPs (Test) Accuary FLOPs (Train) FLOP (Test) FLOPs (Test)

ResNet-50 (Dense) 76.8±0.09 1x (3.2e18) 1x (8.2e9) 1x (8.2e9) 76.8±0.09 1x (3.2e18) 1x (8.2e9) 1x (8.2e9)

Sparsity 80% 90%

SET [39] 72.9±0.39 0.23× 0.23× 1.00× 69.6±0.23 0.10× 0.10× 1.00×
DSR [40] 73.3 0.40× 0.40× 1.00× 71.6 0.30× 0.30× 1.00×
SNFS [5] 75.2±0.11 0.61× 0.42× 1.00× 72.9±0.06 0.50× 0.24× 1.00×
RigL [10] 75.1±0.05 0.42× 0.42× 1.00× 73.0±0.04 0.25× 0.24× 1.00×
MEST [59] 75.39 0.23× 0.21× 1.00× 72.58 0.12× 0.11× 1.00×
RigL-ITOP [35] 75.84±0.05 0.42× 0.42× 1.00× 73.82±0.08 0.25× 0.24× 1.00×
Chase (Sc = 0) 75.87 0.37× 0.34× 1.00× 74.70 0.24× 0.21× 1.00×
Chase (Sc = 0.3) 75.62 0.39× 0.36× 0.75× 74.35 0.25× 0.22× 0.74×
Chase (Sc = 0.4) 75.27 0.39× 0.37× 0.68× 74.03 0.26× 0.23× 0.67×
MEST1.5× 75.73 0.40× 0.21× 1.00× 75.00 0.20× 0.11× 1.00×
Chase1.5× (Sc = 0) 76.67 0.55× 0.34× 1.00× 75.77 0.36× 0.21× 1.00×
Chase1.5× (Sc = 0.3) 76.23 0.57× 0.36× 0.75× 75.20 0.37× 0.22× 0.74×
Chase1.5× (Sc = 0.4) 76.00 0.59× 0.37× 0.68× 74.87 0.38× 0.23× 0.67×

When increasing the training time to 1.5× (150 epochs), Chase also demonstrates a promising
scaling trend. Chase (Sc = 0) matches the dense performance with only 0.55× training FLOPs and
consistently outperforms the off-the-shelf best DST method, MEST. Again, the promising results
of Chase (Sc = 0) can be effectively translated to channel-level sparsity. Chase (Sc = 0.4) is 1.5×
faster than MEST, while still performing on par or even better than MEST.

Real Inference Speedups. We further compare the actual inference throughput and latency of
our model against RigL in Table 5. All results are averaged from 100 individual runs with one
NVIDIA 2080TI GPU in float32 on PyTorch. We set the batch size to 128 for CIFAR-100 and 2 for
ImageNet, when evaluating the latency. We empirically find that pruning the skip connection leads
to a significant accuracy drop while providing benefits on speedups. Therefore, the standard Chase
keeps the skip connection layers untouched for optimal accuracy. To fully unleash Chase’s potential
on real inference speedups, we also provide another variant of Chase that prunes skip connection
layers, dubbed Chase (prune skip). Compared with SoTA RigL, Chase (prune skip) is able to prune
50% channels with ResNet-50 on ImageNet, leading to a notable 68% of throughput gain, while only
losing 0.29% accuracy. Even without pruning skip connections, our model is about to provide 31%
throughput speedups, while outperforming RigL by 0.39%.

Table 5: Inference throughput and latency. The best results are marked in bold.

Method Dataset Model sp Sc Accuracy (%) (↑) Throughput (↑) Latency (ms) (↓)

RigL [10] CIFAR-100 VGG-19 0.9 0.0 72.92±0.31 15274.31 8.42
Chase CIFAR-100 VGG-19 0.9 0.5 73.43±0.12 24981.77 (64%↑) 5.37 (36%↓)

RigL [10] CIFAR-100 ResNet-50 0.9 0.0 77.18±0.42 3095.13 44.23
Chase CIFAR-100 ResNet-50 0.9 0.5 77.52±0.30 3958.67 (28%↑) 34.76 (21%↓)

RigL [10] ImageNet ResNet-50 0.9 0.0 73.00±0.04 59.50 35.79
Chase ImageNet ResNet-50 0.9 0.5 73.39±0.04 78.19 (31%↑) 27.55 (23%↓)
Chase (prune skip) ImageNet ResNet-50 0.9 0.5 72.71±0.03 99.97 (68%↑) 21.55 (40%↓)
Chase ImageNet ResNet-50 0.9 0.4 74.03±0.03 71.54 (20%↑) 30.13 (16%↓)
Chase (prune skip) ImageNet ResNet-50 0.9 0.4 73.24±0.03 87.38 (47%↑) 24.53 (31%↓)

4.2 Extensive Analysis

Performance under different channel sparsity. To investigate the performance of different channel
sparsity with the same parameter count, we maintain 2%, 5% parameters and prune the model to
different channel sparsity ranging from 20% to 70%. The results are reported in Figure 3. The
same training scheme is adopted as Section 4.1. Two DST baselines, RigL and SET are adopted for
comparison. Not surprisingly, the more channels remain the better performance of the model archives.
Notably, in all settings, Chase archives better performance than the baselines with just 50% channels,
and Chase outperforms SET and RigL with just 30% channels on ResNet-50 at 98% sparsity.
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Figure 3: Performance of Chase under different channel sparsity. For Rigl and SET, we keep the
channels un-pruned as baselines.
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Figure 4: Ablation Study of Chase. GACP denotes gradual amenable channel pruning (50% channel
sparsity), SM indicates soft memory bound, GE represents global parameter exploration.

Effect of the channel pruning frequency. We also study how the channel pruning frequency ∆T
affects Chase’s performance. For all experiments, we fixed the ending time τstop for gradual amenable
channel pruning as 130 epochs, the total training epochs τtotal as 160 epochs and the minimum
channel ratio factor as β as 0.5, while altering ∆T to 1000, 4000, 8000, and 16000 iterations. We
report the results in Appendix A.4. Overall, the largest ∆T 16000 leads to worse performance. This
observation is as expected, as we aim to achieve the same channel sparsity and larger ∆T results in
more removed channels in each punning operation. Consequently, larger performance degradation
will be introduced during each pruning which could degrade the training stability.

Ablation study. In Figure 4, we study the effectiveness of different components in Chase, namely,
the soft memory constraint (SM) and global parameter exploration (GE) on CIFAR-10/100 with
ResNet-50 and VGG-19. We denote the RigL as our baseline, as RigL applies magnitude-based
pruning and gradients-based growth like Chase. We apply the same training recipe as described in
Section 4.1. Gradually amenable channel pruning safely removes 50% channels from RigL, while
only suffering from minor or even no performance degradation. As for SM and GE, we found these
techniques all bring universal performance improvements. Surprisingly, adding SM results in a 1.26%
accuracy increase on CIFAR-100 with ResNet-50 at 98% sparsity. With GE, we can obtain a more
optimal layer-wise ratio, which also consistently improves the accuracy from SM.

5 Related Work

Recently, as the financial and environmental costs of model training grow exponentially [50; 43],
endeavors start to pursue training efficiency by investigating training sparse neural networks from
scratch. Most Sparse training works can be divided into two categories, static sparse training, and
dynamic sparse training. Static sparse training determines the structure of the sparse network at the
initial stage of training by using certain pre-defined layer-wise sparsity ratios [38; 39; 10; 33].

Dynamic sparse training is designed to reduce the computation as well as memory footprint during
the whole training phase. It trains a sparse neural network from scratch while allowing the sparse
mask to be updated during training. SET [39] update sparse mask at the end of each training epoch
by magnitude-based pruning and random growing. DSR [40] develops a dynamic reparameterization
method that allows parameter reallocation during dynamic mask updating. DeepR [1] combines
dynamic sparse parameterization with stochastic parameter updates for training. RigL [10] and
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SNFS [5] propose to uses gradient information to grow weights. ITOP [35] studies the underlying
mechanism of DST and discovers that the benefits of DST come from searching across time all
possible parameters. GraNet [31] introduces the concept of “pruning plasticity” and quantitatively
studies the effect of pruning throughout training. MEST [59] proposes a memory-friendly training
framework that could perform fast execution on edge devices. AC/DC [44] co-trains the sparse and
dense models to return both accurate sparse and dense models. [23] dynamically activates top-K
parameters during forward-pass while keeping a larger number of parameters updated in backward-
pass to get rid of dense calculation of gradient. Top-KAST [23] preserves constant sparsity throughout
training in both the forward and backward passes. Built upon Top-KAST, Powerpropagation [47]
leaves the low-magnitude parameters largely unaffected by learning, achieving strong results. CHEX
[19] applied dynamic prune and regrow channels strategies to avoid pruning important channels
prematurely. Very recently, SLaK [32] leverages dynamic sparse training to successfully train
intrinsically sparse 51×51 kernels, which performs on par with or better than advanced Transformers.
A concurrent work [21] discovers that a tiny fraction of channels (up to 4.3%) of RigL become totally
sparse after training.

To enable acceleration of sparse training in practice, [34] build a truly sparse framework based on
SciPy sparse matrices [55] that enables efficient sparse evolutionary training [39] in CPU. [6] fulfill
group-wise DST on Graphcore IPU [24] and demonstrate its efficacy on pre-training BERT. Moreover,
some previous work develops sparse kernels [12; 9] to directly support unstructured sparsity in GPU.
DeepSparse [27] deploys large-scale BERT-level and YOLO-level sparse models on CPU.

6 Conclusions

In this paper, we have presented Chase, a new sparse training approach that seamlessly translates
the promise of unstructured sparsity into channel-level sparsity, while performing on par or even
often better than state-of-the-art DST approaches. Extensive experiments across various network
architectures including VGG-19 and ResNet-50 on CIFAR-10/100 and ImageNet demonstrated Chase
can achieve better performance with 1.2× ∼ 1.7× real inference speedup on common GPU devices
while performing on par or even better than unstructured SoTA. The results in this paper strongly
challenge the common belief that sparse training typically suffers from limited acceleration support
in common hardware, opening doors for future work to build more efficient sparse neural networks.
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A Remaining Experimental Analysis

A.1 Effect of the Initial Sparsity

Chase starts from a subnetwork with unstructured sparsity to produce channel-level sparsity during
one end-to-end training process. Here we fix the target channel-level sparsity Sc as 0.4 and study
how the initialized unstructured sparsity impacts the model performance. The results are reported
in Figure 5. It could be seen that, in general, initialization with more parameters leads to better
performance. Counter-intuitively, the best accuracy is achieved using 0.6 unstructured sparsity, which
is 0.26% higher than initialized as a dense model.
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Figure 5: Performance under different initial unstructured sparsity on ResNet-18, CIFAR-100.

A.2 Effect of the Minimum Channel Ratio Limitation β

We alter the ratio of the minimum channel ratio β to 0.2, 0.5, 0.8 and show the performance in Table 6.
The channel pruning frequency ∆T is fixed at 4000 iterations. Apparently, large ratio β = 0.8
archives the worst performance while β = 0.2 outperforms other settings in 4 out of 6 cases. In view
of the fact that smaller β provide more channel exploration space.

Table 6: Test accuracy (%) on CIFAR-100 of Chase at 50% channel-wise sparsity using different
minimum layer limitation factor β. The best results are marked in bold.

Minimum Sparity

layer ratio 90% 95% 98%

VGG-19

0.20 73.45±0.27 72.98±0.32 71.69±0.21
0.50 73.16±0.06 72.39±0.17 71.74±0.06
0.80 72.26±0.24 72.20±0.27 71.28±0.26’

ResNet-50

0.20 77.47±0.40 77.43±0.36 76.68±0.27
0.50 77.54±0.40 77.31±0.34 76.64±0.26
0.80 76.76±0.66 77.26±0.73 76.67±0.29

A.3 Ablation of Gradual Amenable Channel Pruning

Here, we perform a more university ablation study of Gradual Amenable Channel Pruning (GACP) on
CIFAR10/100, ResNet-50 and VGG-19, with RigL and SET. The results are reported in Table 7.Sur-
prisingly, GACP brings performance increases in most cases. To be specific, we found that GACP
could boost the performance of RigL in 9 out of 12 cases and output SET in 10 out of 12 cases with
just 50% remaining channels.

A.4 Effect of the Channel Pruning Frequency

In this Appendix, we study how the channel pruning frequency ∆T affects Chase’s performance.
For all experiments, we fixed the ending time τstop for gradual amenable channel pruning as 130
epochs, the total training epochs τtotal as 160 epochs and the minimum channel ratio factor as β as
0.5, while altering ∆T to 1000, 4000, 8000, and 16000 iterations. We report the results in Table 8.
Overall, the largest ∆T 16000 leads to worse performance. This observation is as expected, as we
aim to achieve the same channel sparsity and larger ∆T results in more removed channels in each
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Table 7: Ablation of gradual amenable channel pruning (GACP). The best results are marked in bold.

Dataset CIFAR-10 CIFAR-100

Sparsity 90% 95% 98% 90% 95% 98%

VGG-19 SET [39] 93.61±0.13 93.09±0.25 91.81±0.04 72.58±0.12 71.48±0.12 69.04±0.15
SET+GACP (Sc = 0.5) 93.78±0.16 93.56±0.05 92.66±0.10 72.93±0.18 71.89±0.20 70.03±0.13

RigL [10] 93.60±0.09 93.05±0.06 91.95±0.15 72.92±0.31 71.85±0.53 69.57±0.24
RigL+GACP (Sc = 0.5) 93.91±0.14 93.70±0.06 92.80±0.06 72.97±0.09 71.80±0.17 69.83±0.20

ResNet-50 SET [39] 94.65±0.01 94.05±0.06 92.98±0.18 76.14±0.54 75.90±0.19 73.21±0.06
SET+GACP (Sc = 0.5) 94.52±0.17 94.51±0.19 93.23±0.13 76.75±0.47 75.67±0.64 73.86±0.12

RigL [10] 94.42±0.17 94.22±0.23 93.20±0.08 77.18±0.42 76.50±0.26 74.84±0.13
RigL+GACP (Sc = 0.5) 94.45±0.10 94.41±0.13 93.50±0.16 76.86±0.56 76.33±0.63 74.92±0.27

punning operation. Consequently, larger performance degradation will be introduced during each
pruning which could degrade the training stability.

Table 8: Test accuracy (%) on CIFAR-100 of Chase at 50% channel-wise sparsity using different
channel pruning frequency ∆T . The best results are marked in bold.

∆T Sparsity

(Iterations) 90% 95% 98%

VGG-19

1000 73.07±0.26 72.72±0.1 71.69±0.35
4000 73.16±0.06 72.39±0.17 71.74±0.06
8000 73.15±0.23 72.81±0.07 71.94±0.13

16000 72.88±0.24 72.66±0.04 71.79±0.43

ResNet-50

1000 77.52±0.30 77.48±0.62 77.03±0.29
4000 77.54±0.40 77.31±0.34 76.64±0.26
8000 77.46±0.47 77.49±0.47 76.74±0.27

16000 77.02±0.25 76.96±0.37 76.77±0.35

B Implementation Details of Chase

In this appendix, we report the implementation details for Chase, including total training time (τtotal),
exploration stop time (τstop), gradual channel pruning frequency (∆T ), parameter update frequency
∆Tp, minimum layer limitation factor (β), learning rate (LR), batch size (BS), learning rate drop (LR
Drop), weight decay (WD), SGD momentum (Momentum), sparse initialization (Sparse Init), target
sparsity (sp), target channel-wise sparsity (Sc), etc.

Table 9: Implementation hyperparameters of Chase in Table 3, on CIFAR-10/100.

Model τtotal (epochs) τstop (epochs) ∆T (iterations) ∆Tp (iterations) β BS LR LR Drop, Epochs Optimizer Momentum WD Sparse Init
VGG-19 160 130 8000 1000 0.2 128 0.1 10x, [80, 120] SGD 0.9 5e-4 ERK

ResNet-50 160 130 1000 1000 0.5 128 0.1 10x, [80, 120] SGD 0.9 5e-4 ERK

Table 10: Implementation hyperparameters of Chase in Table 4, on ImageNet.

Model τtotal (epochs) τstop (epochs) ∆T (iterations) ∆Tp (iterations) β BS LR LR Drop Optimizer Momentum WD Sparse Init
ResNet-50 100 80 1000 1000 0.2 512 0.512 Cosine Decay SGD 0.9 1e-4 ERK
ResNet-50 150 120 1000 1500 0.2 512 0.512 Cosine Decay SGD 0.9 1e-4 ERK

Table 11: Implementation hyperparameters of Chase in Table 13, on ImageNet.

Name sp Sc Model τtotal (epochs) τstop (epochs) ∆T (iterations) ∆Tp (iterations) β BS LR LR Drop Optimizer Momentum WD Sparse Init
Chase-1 80% 40% ResNet-50 250 170 1000 2500 0.2 512 0.512 Cosine Decay SGD 0.9 1e-4 ERK
Chase-2 90% 40% ResNet-50 250 170 1000 2500 0.2 512 0.512 Cosine Decay SGD 0.9 1e-4 ERK
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C Real Inference Speedups

We report the real inference latency and throughput of Chase on various sparity in Table 12.

Table 12: Real inference latency and throughput of Chase on the ResNet-50/ImageNet benchmark.
The best results are marked in bold.

Method sp Sc Accuracy (%) (↑) Throughput (↑) Latency (ms) (↓)

Chase 0.9 0.2 74.40 69.30 30.89
Chase 0.9 0.3 74.35 70.07 30.39
Chase 0.9 0.4 74.03 71.54 30.13
Chase 0.9 0.5 73.39 78.19 27.55
Chase 0.9 0.6 72.85 82.98 26.09
Chase 0.9 0.7 71.98 86.26 25.10

Chase (prune skip) 0.9 0.2 74.15 72.57 29.38
Chase (prune skip) 0.9 0.3 74.06 78.30 27.33
Chase (prune skip) 0.9 0.4 73.24 87.38 24.53
Chase (prune skip) 0.9 0.5 72.71 99.97 21.55
Chase (prune skip) 0.9 0.6 71.62 107.99 20.03
Chase (prune skip) 0.9 0.7 67.15 123.30 17.56

Chase 0.8 0.2 75.82 66.39 32.05
Chase 0.8 0.3 75.62 69.30 30.81
Chase 0.8 0.4 75.27 73.32 29.22
Chase 0.8 0.5 74.76 76.68 28.05
Chase 0.8 0.6 73.77 80.51 26.81
Chase 0.8 0.7 72.88 86.12 25.15

Chase (prune skip) 0.8 0.2 75.27 72.47 29.38
Chase (prune skip) 0.8 0.3 74.96 78.60 27.20
Chase (prune skip) 0.8 0.4 74.58 87.91 24.38
Chase (prune skip) 0.8 0.5 73.53 98.43 21.86
Chase (prune skip) 0.8 0.6 71.70 104.82 20.58
Chase (prune skip) 0.8 0.7 67.53 123.46 17.57

D Comparisons with SOTA Channel Pruning Methods

We further compare Chase with various state-of-the-art channel pruning approaches in Table 13.
It is encouraging to see that Chase performs on par with state-of-the-art SOTA channel pruning
approaches, such as Group Fisher [30], CafeNet-R [51], and CHIP [52], without the need for the
costly dense pretraining step. The implementation details are reported in Table 13.

Table 13: Comparison with state-of-the-art channel pruning methods on popular benchmark: ResNet-
50 on ImageNet.

Methods FLOPs Top-1 Epochs

GBN [57] 2.4G 76.2% 350
LEGR [4] 2.4G 75.7% -
FPGM [16] 2.4G 75.6% 200
TAS [7] 2.3G 76.2% 240
Hrank [29] 2.3G 75.0% 570
SCOP [54] 2.2G 76.0% 230
CHIP [52] 2.2G 76.3% -
Group Fisher [30] 2.0G 76.4% -
AutoSlim [58] 2.0G 75.6% -
Uniform 2.0G 75.1% 300
Random 2.0G 74.6% 300
CafeNet-R [51] 2.0G 76.5% 300
Chase-1 1.5G 76.6% 250

Uniform 1.0G 73.1% 300
Random 1.0G 72.2% 300
Group Fisher [30] 1.0G 73.9% -
CafeNet-R [51] 1.0G 74.9% 300
CafeNet-E [51] 1.0G 75.3% 300
Chase-2 0.9G 75.7% 250
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E Existence of Sparse Amenable Channel in Various Settings

To demonstrate the broad prevalence of sparse amenable channels across diverse architectures and
datasets, we have evaluated their ratio in multiple scenarios, including ResNet-32/VGG-16 on
CIFAR-100, ResNet-50/ViT-small on ImageNet, an MLP model on CIFAR-10.

The MLP model consists of two hidden layers, each with 512 neurons. For the ViT small model, we
focus our attention on the neurons within the MLP layers that exhibit suitability for pruning. In all
cases, the sparse amenable channels are identified by Unmasked Mean Magnitude (UMM), with the
threshold, v, set to 20%.

The results, shown in the corresponding tables, underline the consistent presence of sparse amenable
channels across various architectures and datasets, reinforcing the argument that the phenomenon is
both significant and widespread.

Table 14: Sparse amenable channel portion during training on various settings
Settings Layer 10 Epoch 20 Epoch 40 Epoch 100 Epoch

ResNet-32/CIFAR-100 blocks.3.conv1 0.23 0.38 0.38 0.63
blocks.6.conv1 0.16 0.19 0.28 0.32

VGG-16/CIFAR-100 features.0 0.11 0.22 0.30 0.39
features.7 0.19 0.20 0.17 0.65

Settings Layer 5 Epoch 10 Epoch 20 Epoch 50 Epoch

ResNet-50/ImageNet layer3.1.conv2 0.14 0.18 0.21 0.33
layer4.1.conv1 0.44 0.49 0.49 0.56

ViT-Small/ImageNet blocks.0.mlp.fc1 0.11 0.14 0.15 0.31
blocks.8.mlp.fc1 0.20 0.22 0.21 0.33

Settings Layer 5 Epoch 10 Epoch 20 Epoch 50 Epoch

MLP Model/Cifar10 fc1 0.21 0.21 0.30 0.37
fc2 0.36 0.42 0.49 0.63
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F Addressing the Memory Limitation of Global Parameter Exploration

During global parameter exploration, directly loading all the parameters for gradients/magnitude
sorting is memory-consuming. Inspired by [40], we layer-wisely select parameters with the largest
gradients for growth and the lowest magnitude for pruning by an adaptive global threshold H , until
reaching the target sparsity. H is determined by a set point negative feedback loop to maintain an
approximate parameter amount during each reallocation step, as reported below.

Algorithm 2: Overview of Global Parameter Exploration
Input: Network with sparse weight θs, target sparsity sp, current sparsity st, prune magnitude

threshold Hp, grow gradient threshold Hg , threshold incremental value Hi, sparsity tolerance
sδ

Output: A sparse model θs satisfying the target sparsity sp.
Initialize a grow threshold Hg ▷ Begin global parameter growing

while not sp + sδ >st >sp − sδ do
for each sparse tensor θl

s of layer l do
(θl

s, gl)← grow by threshold(θl
s, Hg) ▷ gl is the number of pruned weights in layer l

G←
∑

i gi , st ← calculate current sparsity(G) ▷ G is total number of grown weights
in all layers

if st <sp − sδ then
Hg ← (Hg +Hi)

if st >sp + sδ then
Hg ← (Hg −Hi) ▷ Update the grow threshold

Initialize a prune threshold Hp ▷ Begin global parameter pruning
while not sp + sδ >st >sp − sδ do

for each sparse tensor θl
s of layer l do

(θl
s, pl)← prune by threshold(θl

s, Hp) ▷ pl is the number of pruned weights in layer l
P ←

∑
i pi , st ← calculate current sparsity(P ) ▷ P is the total number of pruned

weights in all layers
if st <sp − sδ then

Hp ← (Hp −Hi)

if st >sp + sδ then
Hp ← (Hp +Hi) ▷ Update the prune threshold
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G Learned Layerwise Sparsity

Table 15 summarize the final learned layer-wise sparsity on ResNet-50 under 80% sparsity and 40%
channel-wise sparsity. The model is obtained by training 100 epochs on ImageNet-1K. The parameter-
wise sparsity represents the sparsity budgets for all the CNN layers without the last fully-connected
layer. The channel-wise sparsity denotes the sparsity of all the CNN internal layers (the first two
convolution layers in the bottleneck blocks).

Table 15: ResNet-50 learnt budgets using Chase at 80% and channel-wise sparsity at 40%.
ResNet-50 Fully Dense

Params
Fully Dense

Weights Dimension
Weights Dimension Parameter-wise Channel-wise

after Chase Sparsity (%) Sparsity (%)

Backbone 23454912 - - 80 40

Layer 1 - conv1 9408 64× 3× 7× 7 64× 3× 7× 7 5.11 0.00
Layer 2 - layer1.0.conv1 4096 64× 64× 1× 1 64× 64× 1× 1 8.45 0.00
Layer 3 - layer1.0.conv2 36864 64× 64× 3× 3 64× 64× 3× 3 44.61 0.00
Layer 4 - layer1.0.conv3 16384 256× 64× 1× 1 256× 64× 1× 1 51.16 0.00
Layer 5 - layer1.0.downsample.0 16384 256× 64× 1× 1 256× 64× 1× 1 65.58 0.00
Layer 6 - layer1.1.conv1 16384 64× 256× 1× 1 63× 256× 1× 1 53.13 1.56
Layer 7 - layer1.1.conv2 36864 64× 64× 3× 3 62× 63× 3× 3 42.51 3.13
Layer 8 - layer1.1.conv3 16384 256× 64× 1× 1 256× 62× 1× 1 36.48 0.00
Layer 9 - layer1.2.conv1 16384 64× 256× 1× 1 63× 256× 1× 1 48.64 1.56
Layer 10 - layer1.2.conv2 36864 64× 64× 3× 3 64× 63× 3× 3 52.23 0.00
Layer 11 - layer1.2.conv3 16384 256× 64× 1× 1 256× 64× 1× 1 48.68 0.00
Layer 12 - layer2.0.conv1 32768 128× 256× 1× 1 128× 256× 1× 1 32.51 0.00
Layer 13 - layer2.0.conv2 147456 128× 128× 3× 3 127× 128× 3× 3 71.73 0.78
Layer 14 - layer2.0.conv3 65536 512× 128× 1× 1 512× 127× 1× 1 54.16 0.00
Layer 15 - layer2.0.downsample.0 32768 512× 256× 1× 1 512× 256× 1× 1 86.72 0.00
Layer 16 - layer2.1.conv1 65536 128× 512× 1× 1 111× 512× 1× 1 79.24 13.28
Layer 17 - layer2.1.conv2 147456 128× 128× 3× 3 117× 111× 3× 3 73.93 8.59
Layer 18 - layer2.1.conv3 65536 512× 128× 1× 1 512× 117× 1× 1 69.68 0.00
Layer 19 - layer2.2.conv1 65536 128× 512× 1× 1 106× 512× 1× 1 79.15 17.19
Layer 20 - layer2.2.conv2 147456 128× 128× 3× 3 108× 106× 3× 3 74.98 15.62
Layer 21 - layer2.2.conv3 65536 512× 128× 1× 1 512× 108× 1× 1 74.50 0.00
Layer 22 - layer2.3.conv1 65536 128× 512× 1× 1 122× 512× 1× 1 78.87 4.69
Layer 23 - layer2.3.conv2 147456 128× 128× 3× 3 96× 122× 3× 3 78.88 25.00
Layer 24 - layer2.3.conv3 65536 512× 128× 1× 1 512× 96× 1× 1 71.11 0.00
Layer 25 - layer3.0.conv1 131072 256× 512× 1× 1 255× 512× 1× 1 57.36 0.39
Layer 26 - layer3.0.conv2 589824 256× 256× 3× 3 241× 255× 3× 3 85.19 5.86
Layer 27 - layer3.0.conv3 262144 1024× 256× 1× 1 1024× 241× 1× 1 65.11 0.00
Layer 28 - layer3.0.downsample.0 524288 1024× 512× 1× 1 1024× 512× 1× 1 97.36 0.00
Layer 29 - layer3.1.conv1 262144 256× 1024× 1× 1 151× 1024× 1× 1 85.45 41.80
Layer 30 - layer3.1.conv2 589824 256× 256× 3× 3 143× 151× 3× 3 75.48 44.14
Layer 31 - layer3.1.conv3 262144 1024× 256× 1× 1 1024× 143× 1× 1 76.19 0.00
Layer 32 - layer3.2.conv1 262144 256× 1024× 1× 1 151× 1024× 1× 1 83.22 41.80
Layer 33 - layer3.2.conv2 589824 256× 256× 3× 3 108× 151× 3× 3 77.29 57.81
Layer 34 - layer3.2.conv3 262144 1024× 256× 1× 1 1024× 108× 1× 1 76.97 0.00
Layer 35 - layer3.3.conv1 262144 256× 1024× 1× 1 91× 1024× 1× 1 84.94 64.84
Layer 36 - layer3.3.conv2 589824 256× 256× 3× 3 74× 91× 3× 3 63.20 71.88
Layer 37 - layer3.3.conv3 262144 1024× 256× 1× 1 1024× 74× 1× 1 78.42 0.00
Layer 38 - layer3.4.conv1 262144 256× 1024× 1× 1 76× 1024× 1× 1 84.05 70.31
Layer 39 - layer3.4.conv2 589824 256× 256× 3× 3 41× 76× 3× 3 56.02 83.98
Layer 40 - layer3.4.conv3 262144 1024× 256× 1× 1 1024× 41× 1× 1 73.70 0.00
Layer 41 - layer3.5.conv1 262144 256× 1024× 1× 1 105× 1024× 1× 1 83.33 58.59
Layer 42 - layer3.5.conv2 589824 256× 256× 3× 3 44× 105× 3× 3 63.34 82.81
Layer 43 - layer3.5.conv3 262144 1024× 256× 1× 1 1024× 44× 1× 1 66.12 0.00
Layer 44 - layer4.0.conv1 524288 512× 1024× 1× 1 499× 1024× 1× 1 74.52 2.54
Layer 45 - layer4.0.conv2 2359296 512× 512× 3× 3 241× 499× 3× 3 88.06 52.93
Layer 46 - layer4.0.conv3 1048576 2048× 512× 1× 1 2048× 241× 1× 1 65.89 0.00
Layer 47 - layer4.0.downsample.0 2097152 2048× 1024× 1× 1 2048× 1024× 1× 1 99.55 0.00
Layer 48 - layer4.1.conv1 1048576 512× 2048× 1× 1 146× 2048× 1× 1 84.56 71.09
Layer 49 - layer4.1.conv2 2359296 512× 512× 3× 3 89× 146× 3× 3 62.39 82.23
Layer 50 - layer4.1.conv3 1048576 2048× 512× 1× 1 2048× 89× 1× 1 72.09 0.00
Layer 51 - layer4.2.conv1 1048576 512× 2048× 1× 1 489× 2048× 1× 1 82.31 4.49
Layer 52 - layer4.2.conv2 2359296 512× 512× 3× 3 292× 489× 3× 3 87.01 42.97
Layer 53 - layer4.2.conv3 1048576 2048× 512× 1× 1 2048× 292× 1× 1 62.42 0.00
Layer 54 - fc 2048000 1000× 2048 1000× 2048 61.82 0.00
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