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1 Model Definition

Static spatial relation predicates. We define the spatial relations of two objects, such as
{left, right, in front, behind, far from, inside}. Take “left" for example,

Rleft(s1, s2) = 1

{
ϵ < ∥s1 − s2∥ < L, atan 2(s1 − s2) ∈ (

3π

4
, π] ∪ [−π,−3π

4
)

}
.

The other relations can also be represented in the same way. We will either treat the static spatial
relation predicates as a boolean variable, or we can parameterize them as spatial kernel functions of
s1, s2 with learnable parameters that map to [0, 1].

Dynamic spatial relation predicates. We define dynamic spatial relations of two objects, such as
{closer to, father away}. For example,

RCloserTo((c1, t, s1), (c2, t, s2)) = 1

{
∂d

dt
< 0

}
,

RFartherAway((c1, t, s1), (c2, t, s2)) = 1

{
∂d

dt
> 0

}
,

where d = ∥s1 − s2∥.

One can freely define other types of spatial-temporal predicates. We just provide some concrete
examples above to illustrate the ideas.

2 The Number of Training Triplets

To better evaluate different methods under cases where training triplets are limited, in this section we
reduce the amount of training data to see how the performance varies. The results are presented in
Figure 1. We can see that all of methods have better performance with the increase of training triplets.
And our model achieves the best results.

3 Comparison of Parameters

The parameters and FLOPs of all methods is shown in Table 1. As we can see, with reasonable
storage consumption, our method has comparable FLOPs and provides promising performance.
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Figure 1: Performance w.r.t. training triplets.

Table 1: Comparison of different backbones on parameter numbers and FLOPS.

Methods # Params FLOPS

PECNet 9.38M 764.03M
Social SSL 2.27M 24.36M
NMMP 58.01M 712.64M
STGAT 1.10M 34.32M
SOPHIE 0.29M 108.57M
STAR 3.91M 272.82M
Ours 1.41M 100.53M

4 Backbone

We added the relevant ablation experiments on the different components of the approach. For the rule
generator and the decoder, we compare ours (transformer-based) with three widely used backbones,
including CNN, RNN and GNN (graph neural network), and evaluate them in the NBA dataset. As
shown in Table 3 and Table 4, our architecture can actually achieve superior results in all metrics.
Moreover, in the E-step, we will identify top K rules from all generated rules, where K is a tunable
hyperparameter. So we also add a hyperparameter tuning study of the number of K. The results are
shown in Table 2. The best result appears when K is set as 5, and the performance is almost the same
after the K is larger than 5, but it brings more storage consumption. So finally, we set K as 5.

5 Additional Results

To make our current experimental results more convincing, we further added seven more recent
SOTA baselines, including Y-Net [10], MID [5], NSP-SFM [15], Social-SSL [13], Social-Implicit
[11], Social-VAE [14], and ABC+ [7]. Note that all of these newly included baselines were proposed
in between 2021 and 2022. We also evaluated them in the ETH/UCY dataset, as shown in Table
5 respectively. These new experimental results show that we still achieve superior results in most
metrics.

Table 2: Comparison of different values of K.

K 1.0 2.0 3.0 4.0
ADE FDE ADE FDE ADE FDE ADE FDE

1 0.47 0.53 0.67 1.08 1.00 1.41 1.27 1.71
2 0.42 0.47 0.66 1.04 1.00 1.40 1.23 1.68
3 0.40 0.45 0.61 0.99 0.96 1.35 1.21 1.65
4 0.34 0.40 0.59 0.94 0.92 1.32 1.19 1.63
5 0.30 0.40 0.58 0.88 0.87 1.31 1.13 1.60
6 0.30 0.41 0.59 0.89 0.87 1.32 1.13 1.61
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Table 3: Comparison of different backbones in the rule generator in SDD dataset. The bold font
represent the best result.

Method 1.0 2.0 3.0 4.0
ADE FDE ADE FDE ADE FDE ADE FDE

CNN 0.41 0.60 0.78 1.07 0.98 1.53 1.24 1.76
GNN 0.38 0.59 0.76 1.03 0.96 1.49 1.19 1.69
RNN 0.36 0.49 0.69 1.00 0.95 1.39 1.17 1.67
Ours 0.30 0.40 0.58 0.88 0.87 1.31 1.13 1.60

Table 4: Comparison of different backbones in the decoder in SDD dataset. The bold font represent
the best result.

Method 1.0 2.0 3.0 4.0
ADE FDE ADE FDE ADE FDE ADE FDE

CNN 0.39 0.47 0.74 1.01 0.93 1.49 1.23 1.80
GNN 0.36 0.41 0.72 0.96 0.92 1.42 1.19 1.72
RNN 0.35 0.40 0.66 0.93 0.91 1.34 1.18 1.65
Ours 0.30 0.40 0.58 0.88 0.87 1.31 1.13 1.60

6 Implement Details

The input of our framework is the historical trajectory coordinates of entities, and the output is the
predicted future trajectory. Coordinates as input would be first encoded into a vector by three-layer
MLPs before being fed into the Transformer, and a ReLU nonlinearity following each of the first two
layers. The dimensions of keys, values, and queries are all set to 256, and the hidden dimension of
feed-forward layers is 512. The number of heads for multi-head attention is 8.

7 Automatically Generating Actions

To learn specific actions would require learning recursion and predicate invention. Invented predicates
can be interpreted as a set of phrases to express the meaning of actions. we embed meta-interpretive
learning (MIL), which supports efficient predicate invention and learning of recursive logic programs
built as a set of metalogical substitutions by a modified Prolog meta-interpreter, into our framework
and evaluate its performance in the NBA dataset. Obviously, this operation actually brings slight
improvements.

8 Determine the Number of Rules

The number of rules can also be automatically learned by neural networks or other deep learning
methods. In our settings, we manually set K as the upper limit to reduce the computation cost. In
E-step, some movements are so simple that they only require less rules because most of the candidate
rules’ weights are minimal. Moreover, we set a weight threshold to automatically determine the

Table 5: Quantitative results (ADE20/FDE20) of trajectory prediction in ETH/UCY dataset. The
bold/underlined font represent the best/second best result.

Methods ETH HOTEL UNIV ZARA1 ZARA2 AVG
Y-Net 0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27 0.13/0.22 0.18/0.27
MID 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38
NSP-SFM 0.25/0.44 0.09/0.13 0.21/0.38 0.16/0.27 0.12/0.20 0.17/0.24
Social SSL 0.69/1.37 0.24/0.44 0.51/0.93 0.42/0.84 0.34/0.67 0.44/0.85
Social Implicit 0.66/1.44 0.20/0.36 0.32/0.60 0.25/0.50 0.22/0.43 0.33/0.37
Social-VAE 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 0.21/0.33
ABC+ 0.31/0.44 0.16/0.21 0.25/0.47 0.21/0.28 0.20/0.26 0.23/0.32
Ours 0.22/0.30 0.07/0.13 0.16/0.34 0.14/0.25 0.07/0.16 0.13/0.24
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Table 6: Quantitative results (ADE/FDE) of trajectory prediction in NBA dataset. “Ours+” means
that we automatically extract the actions.

Times Ours Ours+
1.0s 0.30/0.40 0.28/0.37
2.0s 0.58/0.88 0.58/0.87
3.0s 0.87/1.31 0.85/1.28
4.0s 1.13/1.60 1.11/1.54

Table 7: Ablation study of discretization rate in SDD dataset.

Metric d=0.1 d=0.2 d=0.3 d=0.4
ADE 8.24 12.21 15.03 19.49
FDE 1.74 19.58 24.98 30.87

number of rules, and the results are shown in the Table 8. Obviously, this operation can bring slight
improvements.

9 Discretization Rate

The discretization rate can directly influence the computation cost and the loss of information. The
larger discretization rate means more loss of information but less computation cost. In fact, our
method can tackle different discretization rates properly. We also set different discretization rates
(presented as d, and "d=0.1" means that we remove 10% trajectory data regularly) in the SDD dataset
and obtain some results in Table 7.

10 3D scenarios

To demonstrate the benefit of our method in 3D scenarios, we also evaluate it in the 3D motion
prediction dataset, called Haggling dataset, over 7 different action types, and the results are shown
in Table 9. Our method achieves promising results for both short-term and long-term predictions of
complex activities.

11 Related work

Trajectory Prediction A number of recent works [1, 3, 8] have studied to incorporate the interaction
relations of multiple objects to infer trajectories. Social-LSTM [1] is a pioneering work that models
social interaction for trajectory prediction via the concept of social pooling, which aggregates the
hidden states among the nearby agents. SocialGAN [6] revises the pooling module to capture global
information from all agents in the scene. Different from previous works that utilize LSTM models, a
recent line of studies introduced new ideas, such as graph attention networks [10, 14], for modeling
the social interactions between pedestrians. Unlike previous works, we introduce a novel approach
on the spatio-temporal modeling strategy under guidance of logic rules. This makes better use of
the sequence data by predicting the agent’s hidden intentions and modeling the spatio-temporal

Table 8: Quantitative results of trajectory prediction in NBA dataset. “Ours++” means that we
automatically determine the number of rules.

Times Ours Ours++
1.0s 0.30/0.40 0.29/0.38
2.0s 0.58/0.88 0.57/0.86
3.0s 0.87/1.31 0.85/1.29
4.0s 1.13/1.60 1.11/1.55
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Table 9: Performance evaluation (MAE) of comparison methods on the Haggling (H3.6m) dataset.
Time 80ms 160ms 320ms 400ms 560ms 640ms 720ms 1000ms
Walking 0.38 0.58 0.80 0.89 0.98 1.03 1.11 1.22
Eating 0.25 0.39 0.60 0.76 0.94 1.01 1.03 1.29
Discussing 0.31 0.57 0.88 0.99 1.48 1.65 1.81 1.96
Phoning 0.55 0.83 1.22 1.35 1.58 1.65 1.72 1.92
Posing 0.27 0.56 1.19 1.48 1.93 2.14 2.29 2.58
Sitting 0.40 0.63 1.02 1.18 1.28 1.34 1.40 2.02
Waiting 0.36 0.69 1.25 1.46 1.80 1.95 2.12 2.57

interactions between agents. Casas et al. [2] introduced IntentNet, a novel deep network that reasons
about both high level behavior and long term trajectories, which exploited motion and prior knowledge
about the road topology. Li et al. [9] proposed a generic trajectory forecasting framework with explicit
interaction modeling via a latent graph, and evolve the underlying interaction graph adaptively along
time. Graber et al. [4] developed Dynamic Neural Relational Inference by incorporating insights
from sequential latent variable models to predict separate relation graphs for every timestamp. Tang
et al. [12] introduced a collaborative-uncertainty-based framework to models the uncertainty from
the usage of interaction modules in multi-agent trajectory forecasting.
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