
A Notations and Proof452

A.1 Basic Concepts and Notations453

Markov Decision Process (MDP): The reinforcement learning problem can be described with454

an MDP, denoted by M = (S,A,P,R, γ), where S is the state space, A is the action space,455

P : S ×A×S → [0, 1] is the state transition function,R : S ×A → R1 is the reward function, and456

γ ∈ (0, 1] is the discount factor.457

State transition graph in an MDP: The state transitions inM can be modelled as a state transition458

graph G = (VG, EG), where VG is a set of vertices representing the states in S, and EG is a set of459

undirected edges representing state adjacency inM. We note that:460

Remark. There is an edge between state s and s′ (i.e., s and s′ are adjacent) if and only if461

∃ a ∈ A, s.t. P(s, a, s′) > 0 ∨ P(s′, a, s) > 0.462

The adjacency matrix A of G is an |S| × |S| matrix whose (i, j) entry is 1 when si and sj are463

adjacent, and 0 otherwise. The degree matrix D is a diagonal matrix whose entry (i, i) equals the464

number of edges incident to si. The Laplacian matrix of G is defined as L = D − A. Its second465

smallest eigenvalue λ2(L) is called the algebraic connectivity of the graph G, and the corresponding466

normalized eigenvector is called the Fiedler vector [36]. Last, the normalized Laplacian matrix is467

defined as L = D− 1
2LD− 1

2 .468

A.2 Derivation of the Variational Lower Bound in Section 3.1469

To start with, we can find a lower bound of the second term in Eq. (4) as follows:470

− β E
s0∼µ(·)

[I(c, τ |s0)] = −β E
s0∼µ(·)

[
−
∑
τ

P (τ |s0) logP (τ |s0) +
∑
c,τ

P (c, τ |s0) logPθ(τ |s0, c)

]

= −β E
s0∼µ(·)

[
−
∑
c,τ

P (c, τ |s0) logP (τ |s0) +
∑
c,τ

P (c, τ |s0) logPθ(τ |s0, c)

]

= −β E
s0∼µ(·)

[∑
c,τ

Pω(c|s0)Pθ(τ |c, s0) log
Pθ(τ |s0, c)
P (τ |s0)

]

= −β E
s0∼µ(·)

[∑
c,τ

Pω(c|s0)Pθ(τ |c, s0)
[
log

Pθ(τ |s0, c)
Unif(τ |s0)

− log
P (τ |s0)

Unif(τ |s0)

]]

= −β E
s0∼µ(·)

[[∑
c,τ

Pω(c|s0)Pθ(τ |c, s0) log
Pθ(τ |s0, c)
Unif(τ |s0)

]
−DKL(P (τ |s0)||Unif(τ |s0))

]

≥ −β E
s0∼µ(·)

[∑
c,τ

Pω(c|s0)Pθ(τ |c, s0) log
Pθ(τ |s0, c)
Unif(τ |s0)

]
= −β E

s0∼µ(·)
c∼Pω(·|s0)

[DKL(Pθ(τ |s0, c)||Unif(τ |s0))]

(13)
where DKL(·) denotes the Kullback-Leibler (KL) Divergence which is non-negative, Pθ(τ |s0, c) =471 ∏T−1
t=0 πθ(at|st, c)P (st+1|st, at) is the probability of the trajectory τ given s0 and c under the option472

policy πθ, and Unif(τ |s0) is the probability of the same trajectory given s0 under the random walk473

policy. Instead of explicitly calculating P (τ |s0) which is impractical, we introduce Unif(τ |s0) to474

convert the second term in Eq. (4) into a regularization term to encourage exploration and diversity.475

As for the first term in Eq. (4), we can deal with it as Eq. (14), where we introduce Pϕ(c|s0, G) as476

the variational estimation of P (c|s0, G) which is hard to acquire. The first inequality in Eq. (14) is477

based on the fact that KL Divergence is non-negative. While, the second inequality holds because we478

only keep the trajectory τ from which G is sampled, so the trajectory and its corresponding landmark479

states form a bijection.480

12

E
s0∼µ(·)

[I(c,G|s0)] = E
s0∼µ(·)

−∑
c

Pω(c|s0) logPω(c|s0) +
∑
c,G

Pω(c|s0)Pθ(G|s0, c) logP (c|s0, G)


= E
s0∼µ(·)

−∑
c

Pω(c|s0) logPω(c|s0) +
∑
c,G

Pω(c|s0)Pθ(G|s0, c) log
[
Pϕ(c|s0, G)

P (c|s0, G)

Pϕ(c|s0, G)

]
= H(C|S) + E

s0∼µ(·)

∑
c,G

Pω(c|s0)Pθ(G|s0, c) logPϕ(c|s0, G)

+
∑
G

P (G|s0)DKL(P (c|s0, G)||Pϕ(c|s0, G))

≥ H(C|S) + E
s0∼µ(·)

∑
c,G

Pω(c|s0)Pθ(G|s0, c) logPϕ(c|s0, G)


= H(C|S) + E

s0∼µ(·)

∑
c,G

Pω(c|s0)

[∑
τ ′

Pθ(τ
′|s0, c)PDPP (G|τ ′)

]
logPϕ(c|s0, G)


≥ H(C|S) + E

s0∼µ(·)

[∑
c,τ

Pω(c|s0)Pθ(τ |s0, c)PDPP (G|τ) logPϕ(c|s0, G)

]
(14)

A.3 Derivation of the Gradients Shown in Section 3.3481

First, we take the gradient with respect to ω and get the following result:482

∇ωL = E
s0∼µ(·)

[−
∑
c

[∇ωPω(c|s0) logPω(c|s0) +∇ωPω(c|s0)]

+
∑
c,τ

∇ωPω(c|s0)Pθ(τ |s0, c)PDPP (G|τ) logPϕ(c|s0, G)

− β
∑
c

∇ωPω(c|s0)DKL(Pθ(τ |s0, c)||Unif(τ |s0))

+ α1

∑
c,τ

∇ωPω(c|s0)Pθ(τ |s0, c)f(τ)

− α2

∑
c

∇ωPω(c|s0)
∑

−→τ (s0,c)

Pθ(
−→τ |s0, c)g(−→τ (s0, c))

+ α3

∑
c

∇ωPω(c|s0)
∑

−→τ (s0,c)

Pθ(
−→τ |s0, c)h(∪

c′

−→τ (s0, c
′))]

(15)

Given that ∇ωPω(c|s0) = Pω(c|s0)∇ω logPω(c|s0) and the definition of KL Divergence, i.e.,483

DKL(Pθ(τ |s0, c)||Unif(τ |s0)) =
∑
τ Pθ(τ |s0, c)

∑T−1
t=0 [log πθ(at|st, c)− log πunif (at|st)], we484

can simplify Eq. (15) as:485

∇ωL = E
s0∼µ(·)

c∼Pω(·|s0)

[
∇ω logPω(c|s0)APω (c, s0)

]
(16)

where the related advantage function APω (c, s0) is defined as:486

APω (c, s0) = − logPω(c|s0) + E−→τ (s0,c)∼Pθ(·|s0,c)

[
−α2g(

−→τ (s0,c)) + α3h(∪
c′
−→τ (s0,c′)

]
+ E
τ∼Pθ(·|s0,c)

[
PDPP (G|τ) logPϕ(c|s0, G)− β

T−1∑
t=0

log πθ(at|st, c) + α1f(τ)

] (17)

13

Next, we calculate the gradient with respect to θ as follows:487

∇θL = E
s0∼µ(·)

∑
c,τ

Pω(c|s0)∇θPθ(τ |s0, c)PDPP (G|τ) logPϕ(c|s0, G)

− β
∑
c,τ

Pω(c|s0)∇θPθ(τ |s0, c)
T−1∑
t=0

[log πθ(at|st, c)− log πunif (at|st)]

− β
∑
c,τ

Pω(c|s0)Pθ(τ |s0, c)
T−1∑
t=0

∇θ log πθ(at|st, c)

+ α1

∑
c,τ

Pω(c|s0)∇θPθ(τ |s0, c)f(τ)

+
∑
c

Pω(c|s0)
∑

−→τ (s0,c)

∇θPθ(−→τ |s0, c)
[
−α2g(

−→τ (s0, c)) + α3h(∪
c′
−→τ (s0, c

′))
]

(18)
With ∇θPθ(τ |s0, c) = Pθ(τ |s0, c)∇θ logPθ(τ |s0, c) = Pθ(τ |s0, c)

∑T−1
t=0 ∇θ log πθ(at|st, c), and488

∇θPθ(−→τ |s0, c) = Pθ(
−→τ |s0, c)

∑M
m=1

∑T−1
t=0 ∇θ log πθ(amt |smt , c) where smt (amt) is the state (ac-489

tion) at step t in trajectory m, Eq. (18) can be written as follows:490

∇θL = E
s0,c,τ

[
T−1∑
t=0

∇θ log πθ(at|st, c)

[
PDPP (G|τ) logPϕ(c|s0, G)− β

T−1∑
t=0

log πθ(at|st, c) + α1f(τ)

]]

+ E
s0,c,

−→τ

[
M∑
m=1

T−1∑
t=0

∇θ log πθ(amt |smt , c)
[
−α2g(

−→τ (s0,c)) + α3h(∪
c′

−→τ (s0,c′))
]]

= E
s0,c,

−→τ

[
M∑
m=1

T−1∑
t=0

∇θ log πθ(amt |smt , c)Aπθ
m (−→τ , s0, c)

]
(19)

where the advantage term is as Eq. (20), −→τ = {τ1, · · · , τM}, τm = (sm0 , am0 , · · · , smT−1, a
m
T−1, s

m
T):491

Aπθ
m (−→τ , s0, c) =

PDPP (Gm|τm) logPϕ(c|s0, Gm)

M
− β

M

T−1∑
t=0

log πθ(a
m
t |smt , c)

+
α1

M
f(τm)− α2g(

−→τ (s0,c)) + α3h(∪
c′

−→τ (s0,c′))

(20)

Then, it’s not hard to see the relationship between APω and Aπθ
m as:492

APω (c, s0) =− logPω(c|s0) + E−→τ

[
M∑
m=1

Aπθ
m (−→τ , s0, c)

]
(21)

14

B Pseudo Code of ODPP493

In this section, we present the pseudo code of our proposed algorithm as Algorithm 1.494

Algorithm 1 Unsupervised Option Discovery based on DPP (ODPP)
1: Initialize the prior network Pω , policy network πθ and decoder Pϕ
2: for each training episode do
3: −→τ ←− {}
4: for i = 1, 2, . . . , N do
5: Sample an initial state si0 ∼ µ(·) and an option c ∼ Pω(·|si0)
6: Collect a trajectory τi = (si0, a

i
0, · · · , siT−1, a

i
T−1, s

i
T), where ait ∼ πθ(·|sit, c)

7: −→τ ←− −→τ ∪ {τi}
8: end for
9: Update Pω , πθ with PPO and Pϕ with SGD, based on −→τ and Eq. (10)-(12)

10: end for

C Implementation Details and Analysis of ODPP495

C.1 The Choice of Diversity Measure496

The expected cardinality is a better choice for the diversity measure than the likelihood shown as497

Eq. (1). Using the log-likelihood based on the Determinant of the DPP kernel matrix directly would498

heavily penalize repeated items in the sampled set W in Eq. (1). For example, if there are very499

similar points inW , the corresponding rows in the kernel matrix will be almost identical and lead500

to a zero determinant, which will cause numerical issues for the logarithm function. Take our work501

as an example: at the beginning of the training stage, the moving range of the Mujoco agent is very502

limited, then we always include very close states in a trajectory, which will always lead to a zero503

determinant and thus cannot provide training signals. However, the expected cardinality only counts504

the number of diverse states in a trajectory that will not be heavily influenced by the repeated items.505

Therefore, we select the expected cardinality as the diversity measure in this paper.506

C.2 Fast Greedy MAP Inference for DPP507

The maximum a posteriori (MAP) inference of DPP aims at finding the subset of items with the508

highest possibility under the DPP measure, which is NP-hard [25]. The log-probability function in509

DPP, i.e., l(W) = log det(LW), is submodular, which means:510

∀ i ∈ W, W1 ⊆W2 ⊆ W\{i}, l(W1 ∪ {i})− l(W1) ≥ l(W2 ∪ {i})− l(W2) (22)

Thus, the MAP inference for DPP can be converted to a submodular maximization problem, where511

greedy algorithms have shown promising empirical success. Recently, the authors of [26] propose a512

fast greedy method for MAP inference in DPP with time complexity O(S2N) to return S items out513

of a sample space of size N . The key step of their algorithm is that for each iteration, the item which514

maximizes the marginal gain:515

j = argmax
i∈W\Wmap

l(Wmap ∪ {i})− l(Wmap) (23)

is added to Wmap starting from an initial set ∅, until the maximal marginal gain becomes negative or516

the target sample number is reached (i.e., stopping criteria). This part is not our contribution. We517

provide its detailed pseudo code as Algorithm 2. For the derivation, please refer to the original paper518

[26]. We also provide its implementation code as a part of the complete code of ODPP.519

C.3 Computation of the Laplacian Spectrum for the Infinite-scale State Spaces520

As mentioned in Section 3.2, the feature vector of each state
−→
bi is defined with the eigenvectors521

corresponding to the D-smallest eigenvalues of the Laplacian matrix of the state transition graph.522

However, for the infinite-scale state spaces, we cannot obtain this Laplacian spectrum through matrix-523

based methods, so we adopt the NN-based method proposed in [28] for estimating the Laplacian524

15

Algorithm 2 Fast Greedy MAP Inference for DPP
1: Input: The set of itemsW and its kernel matrix L, stopping criteria
2: Initialize: For i ∈ W , ci = [], d2i = Lii; Wmap = {j}, where j = argmaxi∈W log(d2i)
3: while stopping criteria not satisfied do
4: for i ∈ W\Wmap do
5: ei = (Lji− < cj , ci >)/dj
6: ci = [ci ei], d2i = d2i − e2i
7: end for
8: j = argmaxi∈W\Wmap

log(d2i), Wmap = Wmap ∪ {j}
9: end while

10: Return Wmap

spectrum, which has been proved to be scalable for infinite-scale state spaces and sufficiently accurate525

compared with the groundtruth. Since this algorithm is not our contribution, we only provide the526

take-away messages here for implementation.527

According to [28], the k smallest eigenvalues λ1:k and corresponding eigenvectors v1:k of the528

Laplacian L can be estimated by: (k = D for our case)529

min
v1,··· ,vk

k∑
i=1

(k − i+ 1)vTi Lvi, s.t. v
T
i vj = δij ,∀ i, j = 1, · · · , k (24)

For the large-scale state space, the eigenvectors can be represented as a neural network that takes a state530

s as input and outputs a k-dimension vector [f1(s), · · · , fk(s)] as an estimation of [v1(s), · · · , vk(s)].531

Accordingly, the objective in Equation (24) can be expressed as: (please refer to [28] for details)532

G(f1, · · · , fk) =
1

2
E(s,s′)∼T

[
k∑
l=1

l∑
i=1

(fi(s)− fi(s
′))2

]
(25)

where T is a set of state-transitions collected by interacting with the environment through a random533

policy. Further, the orthonormal constraints in Equation (24) are implemented as a penalty term:534

P (f1, · · · , fk) = αEs∼ρ,s′∼ρ

 k∑
l=1

l∑
i=1

l∑
j=1

(fi(s)fj(s)− δij)(fi(s
′)fj(s

′)− δij)

 (26)

where α is the weight term and ρ is the distribution of states in T . To sum up, the eigenfunctions f535

can be trained as an NN by minimizing the loss function:536

L(f1, · · · , fk) = G(f1, · · · , fk) + P (f1, · · · , fk) (27)

C.4 Computation Complexity Analysis537

To solve the MAP inference shown as Eq. (3), we adopt a fast greedy algorithm, of which the538

implementation details are in Appendix C.2. The time complexity for this greedy algorithm is539

O(S2N) to return S items out of a sample space of size N , which can easily scale to N = 1000 or540

10000. In our setting, we need to sample 10 landmarks out of 50 states in a trajectory which can be541

solved in real-time. Note that trajectory length for an option does not have to be large and can be542

fine-tuned as a hyperparameter. For example, in DIAYN [7], they use 100 or 10 for different tasks.543

As for the spectral feature vector, i.e.,
−→
bi in Section 3.2, we do not need to explicitly computing544

the Laplacian matrix and it eigenvectors. Instead, we can get the eigenvectors corresponding to the545

D smallest eigenvalues of the Laplacian matrix as the output of a neural network trained with the546

representation learning algorithm introduced in Section C.3, so that our algorithm can scale to infinite547

state spaces.548

Finally, as specified in Eq. (6)-(8), calculating the three DPP-based losses necessitates eigen decom-549

position of kernel matrices associated with sets X ,Y,Z . This process exhibits a time complexity of550

O(N3), where N represents the kernel matrix dimension. The N values for sets X ,Y,Z correspond551

to the number of states in a trajectory (i.e., 50), the number of trajectories in a batch pertaining to the552

16

same option starting from the same initial state (i.e., 20), and the total number of trajectories in a553

batch (i.e., 200), respectively. Thus, the objectives in Eq. (6)-(8) can all be computed in real-time on a554

regular PC. Deep reinforcement learning are typically performed in batches, which ensures real-time555

learning and efficient updates in our algorithm.556

C.5 Important Hyperparameters557

First, we introduce the structure of the networks used in our algorithm and the baselines as follows.558

We use s_dim, a_dim to represent the dimension of the state space and action space respectively,559

and use c_num to represent the number of options to learn at a time, which can be 10, 20, 40 or560

60 in our experiments. Also, we use tanh and relu to denote the hyperbolic tangent function and561

rectified linear unit used as the activation functions, FC(X,Y), BiLSTM(X,Y) to denote the562

fully-connected and bidirectional LSTM layer with the input size X and output size Y .563

• The prior network Pω is used in all the algorithms other than DCO and its structure is564

[FC(s_dim, 64), tanh, FC(64, 64), tanh, FC(64, 64), tanh, FC(64, c_num)]. The565

value network corresponding to Pω has the same structure as Pω , except that the output is of566

size 1.567

• The policy network πθ is used in all the algorithms, with the structure [FC(s_dim +568

c_num, 64), tanh, FC(64, 64), tanh, FC(64, 64), tanh, FC(64, a_dim), tanh]. Its569

corresponding value network has the same structure except that the output is of size 1 and570

there is not tanh at the end.571

• The decoder Pϕ used in ODPP and VALOR takes a sequence of states in the trajectory as572

input, so it uses bidirectional LSTM as part of the network, i.e., [BiLSTM(s_dim, 64),573

FC(2 ∗ 64, c_num)]. While, the decoder of VIC and DIAYN takes one state574

as input rather than sequential data, so it uses the fully-connected layer instead, i.e.,575

[FC(s_dim, 180), tanh, FC(180, 180), tanh, FC(180, 180), tanh, FC(180, c_num)].576

• The option selector Pψ has the same structure as Pω and is used in all the algorithms.577

• The eigenfunction network introduced in Section C.3 is used in ODPP and DCO to estimate578

the Laplacian spectrum. Its structure is [FC(s_dim, 256), relu, FC(256, 256), relu,579

FC(256, 256), relu, FC(256, 256), relu, FC(256, 30)], where 30 denotes the dimension580

of the feature vector
−→
bi mentioned in Section 3.2.581

Next, we introduce the weights for each term in the objective function of ODPP (Eq. (5) and582

(9)): β = 10−3, α1 = 10−4, α2 = 10−2, α3 = 10−2. For other parameters, please refer to the583

configuration file in the provided codes. The codes are run on a machine with 4 GeForce RTX 2080584

GPUs.585

In our approach, we fine-tune important hyperparameters using a sequential, greedy method based on586

options’ visualization, such as in Figure 2, and following our ablation study process. For instance,587

in Figure 2(e), we retain only the LIB objective and select its weight β = 10−3 from five possible588

choices: 1, 10−1, 10−2, 10−3, 10−4, guided by the visualization results. Next, as Figure 2(f), we589

introduceLDPP1 and fine-tune the corresponding weight α1 while keeping β fixed at 10−3. Ultimately,590

we incorporate LDPP2 and LDPP3 , adjusting α2 and α3 accordingly. It is crucial to note that the final591

two terms must work in tandem to ensure that the discovered options exhibit diversity across different592

options and consistency for a specific option choice.593

D Additional Evaluation Results594

D.1 Complementary Results on the Effect of the Prior Network595

As discussed in Section 3, we learn a prior network Pω concurrently with the option policy network πθ.596

Figure 6 demonstrates how initializing the option selector Pψ with Pω can lead to further performance597

improvement in the downstream task, using the Point Corridor goal-achieving task as an example.598

This is based on the fact that both networks share the same structure.599

First, in (a), we sample 10,000 trajectories for each option and visualize the agent orientation600

distribution corresponding to different options. In (b), we present the coordinate system setup along601

17

Figure 6: (a) Agent orientation distribution corresponding to different options. (b) Setup of the
coordinate system and start points. (c) The output distribution of the prior network at different start
points. (d) Performance improvement in the downstream task when applying the prior initialization.
The trained prior gives preference to more useful options at corresponding states. At Location #1,
Option #5, which tends to go left or down, is preferred; at Location #3, Option #3 is preferred which
can lead the agent to go up or right. Moreover, Option #8 is preferred at Location #2 to lead the agent
to go down, while Option #6 is preferred at Location #4 to lead the agent to go up.

with the four turning points for evaluation. The option choices at these turning points provided by the602

prior network are displayed in (c). It can be observed that Pω favors the most significant options at a603

given state. For instance, at Location #1, Option #5, which tends to go left or down as shown in (a),604

is preferred, while at Location #3, Option #3 is favored, guiding the agent to go up or right. Lastly, in605

(d), we demonstrate that initializing the option selector with the prior network can further enhance606

the agent’s performance in the downstream goal-achieving task.607

D.2 More Visualization of the Learned Ant Locomotion Behaviors608

In Figure 7, we show more visualization results of the learned Ant locomotion behaviors without the609

supervision of task-specific rewards.

(a) Flip

(b) Rotation

Figure 7: (a) The Ant agent learns to flip over first, then tries to flip back, and finally stands on its
Leg 1. (b) The Ant agent walks to the right while rotating. It uses Leg 2&3 as the front legs at first
and Leg 1&2 as the front leags at last.

610

18

(a) CartPole (b) RiverRaid (c) AirRaid

Figure 8: Evaluation results on the Atari games (including CartPole, RiverRaid and AirRaid) to show
the superiority of our algorithm on more general, non-maze tasks. Each experiment is repeated for
five times with different random seeds. The solid lines represent the mean value across different
random seeds of the trajectory reward of the learned options in the training process and the shadow
areas represent the standard deviation. Our algorithm performs the best in all the three tasks, and the
performance improvement becomes more significant as the task difficulty increases.

D.3 Evaluation in Atari Video Games611

To further demonstrate the applicability and effectiveness of our algorithm (i.e., ODPP), as shown in612

Figure 8, we compare it with the SOTA baselines on the more general, challenging Atari tasks [3],613

including CartPole, RiverRaid, and AirRaid. For CartPole, a pole is attached by an unactuated joint to614

a cart, which moves along a frictionless track; the pendulum starts upright, and the goal is to prevent615

it from falling over by increasing and reducing the cart’s velocity. While, RiverRaid is a top-down616

shooting game with the aim of destroying enemy tankers, helicopters, and jets; the player gets a617

score for each entity destroyed; with only 4 lives and finite fuel (can be refilled in game), the player618

aims to maximize the total score. Last, in AirRaid, the player controls a ship that scrolls side-to-side619

directly above two buildings, with the objective of protecting the buildings from being destroyed by620

the bombs of enemy ships above. CartPole has a 4-dimensional continuous state space. While, for621

RiverRaid and AirRaid, they use gray-scale images as states which are flattened as 128-dimensional622

vectors for input.623

We adopt ODPP and the baselines to learn skills (i.e., options) for these tasks in an unsupervised624

manner. Specifically, the skills are discovered/trained based on the mutual information or Laplacian-625

based objectives. Then, these skills are evaluated with the carefully-crafted reward functions designed626

for each task, which are provided by the designers of the Atari benchmark. For each algorithm,627

we learn 10 skills of which the average cumulative rewards (i.e., the sum of the rewards within the628

duration of a skill) in the training process are shown in Figure 8. The skill duration is set as 100629

for CartPole and 50 for the other two. Note that the complete episode horizon is 200 for CartPole630

and 10000 for AirRaid and RiverRaid. Thus, it would be unfair to compare the cumulative reward631

of a skill with the one of a whole episode in a game. For each task, we repeat the evaluations for632

five times with different random seeds, and plot the mean value across the five experiments as the633

solid lines and the standard deviation as the shadow areas. It can be observed from Figure 8 that our634

algorithm performs the best in all the three tasks, and the performance improvement becomes more635

significant as the task difficulty increases. Similar to the results in Figure 5(b), it’s reasonable that636

the performance of some algorithms drops in the middle, because the “Reward" used as evaluation637

metrics (i.e., the Y-axis in Figure 8), are the Atari environment/task rewards as mentioned above,638

while the unsupervised training of the skills is based on the variational or Laplacian objectives. Even639

without the supervision of reward signals, our algorithm can find effective skills for specific tasks640

with high return.641

19

