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Abstract

Single-step adversarial training (SSAT) has demonstrated the potential to achieve
both efficiency and robustness. However, SSAT suffers from catastrophic overfit-
ting (CO), a phenomenon that leads to a severely distorted classifier, making it
vulnerable to multi-step adversarial attacks. In this work, we observe that some
adversarial examples generated on the SSAT-trained network exhibit anomalous
behaviour, that is, although these training samples are generated by the inner
maximization process, their associated loss decreases instead, which we named
abnormal adversarial examples (AAEs). Upon further analysis, we discover a
close relationship between AAEs and classifier distortion, as both the number
and outputs of AAEs undergo a significant variation with the onset of CO. Given
this observation, we re-examine the SSAT process and uncover that before the
occurrence of CO, the classifier already displayed a slight distortion, indicated by
the presence of few AAEs. Furthermore, the classifier directly optimizing these
AAEs will accelerate its distortion, and correspondingly, the variation of AAEs will
sharply increase as a result. In such a vicious circle, the classifier rapidly becomes
highly distorted and manifests as CO within a few iterations. These observations
motivate us to eliminate CO by hindering the generation of AAEs. Specifically, we
design a novel method, termed Abnormal Adversarial Examples Regularization
(AAER), which explicitly regularizes the variation of AAEs to hinder the classifier
from becoming distorted. Extensive experiments demonstrate that our method
can effectively eliminate CO and further boost adversarial robustness with neg-
ligible additional computational overhead. Our implementation can be found at
https://github.com/tmllab/2023_NeurIPS_AAER.

1 Introduction

In recent years, deep neural networks (DNNs) have demonstrated impressive performance in various
decision-critical domains, such as autonomous driving [25, 12], face recognition [31, 3] and medical
imaging diagnosis [8]. However, DNNs were found to be vulnerable to adversarial examples [35,
9, 16]. Although these adversarial perturbations are imperceptible to human eyes, they can lead to
a completely different prediction in DNNs. To this end, many adversarial defence strategies have
been proposed, such as pre-processing techniques [13], detection algorithms [27], verification and
provable defence [20, 44], and adversarial training (AT) [11, 26, 46]. Among them, AT is considered
to be the most effective method against adversarial attacks [2, 4].

Despite the notable progress in improving model robustness, the standard multi-step AT signifi-
cantly increases the computational overhead due to the iterative steps of forward and backward
propagation [26, 40, 41, 42, 48, 47]. In light of this, several works have attempted to use single-step
adversarial training (SSAT) as a more efficient alternative to achieve robustness. Unfortunately, a
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Figure 1. The test accuracy of RS-FGSM [39]
(red line) and RS-AAER (green line) with
16/255 noise magnitude. The dashed and
solid lines denote natural and robust (PGD-7-
1) accuracy, respectively. The dashed black
line corresponds to the 9th epoch, which is
the point that RS-FGSM occurs CO.

serious problem catastrophic overfitting (CO) has
been identified in SSAT [39], manifesting as a sharp
decline in the model’s robust accuracy against multi-
step adversarial attacks, plummeting from a peak to
nearly 0% within a few iterations, as shown in Fig-
ure 1. This intriguing phenomenon has been widely
investigated and prompted numerous efforts to re-
solve it. Recently, Kim [21] pointed out that the
SSAT-trained classifiers are typically accompanied
by highly distorted decision boundaries, which will
lead to the model manifestation as CO. However, the
underlying process of the classifier’s gradual distor-
tion, as well as the factor inducing rapid distortion,
remains unclear.

In this study, we identify some adversarial exam-
ples generated by the distorted classifier exhibiting
anomalous behaviour, wherein the loss associated
with them decreases despite being generated by the
inner maximization process. We refer to these anoma-
lous training samples as abnormal adversarial exam-
ples (AAEs). Upon further investigation of the train-
ing process, we observe that both the number and outputs of AAEs undergo a significant variation
during CO. This observation suggests a strong correlation between the variation of AAEs and the
gradually distorted classifier. By utilizing AAEs as the indicator, we re-evaluate the process of SSAT
and uncover that the classifier already exhibits slight distortions even before the onset of CO, which
is evidenced by the presence of few AAEs. To make matters worse, directly optimizing the model
based on these AAEs will further accelerate the distortion of the decision boundaries. Furthermore, in
response to this more distorted classifier, the variation in AAE will dramatically increase as a result.
This interaction leads to a vicious circle between the variation of AAEs and the decision boundaries
distortion, ultimately leading to the model rapidly manifesting as CO. All these atypical findings
raise a question:

Can CO be prevented by hindering the generation of abnormal adversarial examples?

To answer the above question, we design a novel method, called Abnormal Adversarial Examples
Regularization (AAER), which prevents CO by incorporating a regularizer term designed to suppress
the generation of AAEs. Specifically, to achieve this objective, AAER consists of two components:
the number and the outputs variation of AAEs. The first component identifies and counts the number
of AAEs in the training samples through anomalous loss decrease behaviour. The second component
calculates the outputs variation of AAEs by combining the prediction confidence and logits distribu-
tion. Subsequently, AAER explicitly regularizes both the number and the outputs variation of AAEs
to prevent the model from being distorted. It is worth noting that our method does not involve any
extra example generation or backward propagation processes, making it highly efficient in terms of
computational overhead. Our major contributions are summarized as follows:

• We identify a particular behaviour in SSAT, in which some AAEs generated by the distorted
classifier have an opposite objective to the maximization process, and their number and outputs
variation are highly correlated with the classifier distortion.

• We discover that the classifier exhibits initial distortion before CO, manifesting as a small
number of AAEs. Besides, the model decision boundaries will be further exacerbated by directly
optimizing the classifier on these AAEs, leading to a further increase in their number, which
ultimately manifests as CO within a few iterations.

• Based on the observed effect, we propose a novel method - Abnormal Adversarial Examples
Regularization (AAER), which explicitly regularizes the number and outputs variation of AAEs
to hinder the classifier from becoming distorted. We evaluate the effectiveness of our method
across different adversarial budgets, adversarial attacks, datasets and network architectures,
showing that our proposed method can consistently prevent CO even with extreme adversaries
and boost robustness with negligible additional computational overhead.
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2 Related Work

2.1 Adversarial Training

DNNs are known to be vulnerable to adversarial attacks [35], and AT has been demonstrated to
be the most effective defence method [2]. AT is generally formulated as a min-max optimization
problem [26, 4]. The inner maximization problem tries to generate the strongest adversarial examples
to maximize the loss, and the outer minimization problem tries to optimize the network to minimize
the loss on adversarial examples, which can be formalized as follows:

min
θ

E(x,y)∼D

[
max
δ∈∆

ℓ(x+ δ, y; θ)

]
, (1)

where (x, y) is the training dataset from the distribution D, ℓ(x, y; θ) is the loss function parameterized
by θ, δ is the perturbation confined within the boundary ϵ shown as: ∆ = {δ : ∥δ∥p ≤ ϵ}.

2.2 Catastrophic Overfitting

Since the intriguing phenomenon of CO was identified [39], there has been a line of work trying
to explore and mitigate this problem. [39] first suggested using a random initialization and early
stopping to avoid CO. Furthermore, [36] empirically showed that using a dynamic dropout schedule
can avoid early overfitting to adversarial examples, and [6, 45] found that incorporating a stronger
data augmentation is effective in avoiding CO. Another alternative approach imports partial multi-step
AT, for example, [38] periodically trained the model on natural, single-step and multi-step adversarial
examples, and [37] built a regularization term by comparing with the multi-step adversarial examples.

However, the above methods have not provided a deeper insight into the essence of CO. Separate
works found that CO is closely related to anomalous gradient updates. [24] constrained the training
samples to a carefully extracted subspace to avoid abrupt gradient growth. [10] ignored the small
gradient adversarial perturbations to mitigate substantial weight updates in the network. [15] proposed
an instance-adaptive SSAT approach where the perturbation size is inversely proportional to the
gradient. [29] leveraged the latent representation of gradients as the adversarial perturbation to
compensate for local linearity. [34] introduced a relaxation term to find more suitable gradient
directions by smoothing the loss surface. [1] proposed a regularization term to avoid the non-
linear surfaces around the samples. More recently, [21] introduced a new perspective that CO is a
manifestation of highly distorted decision boundaries. Accordingly, they proposed to reduce the
perturbation size for the already misclassified adversarial examples.

Unfortunately, the aforementioned methods tend to either suffer from CO with strong adversaries or
significantly increase the computational overhead. In this work, we delve into the interaction between
AAEs and distorted decision boundaries, revealing a close relationship between them. Based on
this insight, we propose a novel approach, AAER, that eliminates CO by explicitly hindering the
generation of AAEs, thereby achieving both efficiency and robustness.

3 Methodology

In this section, we first define the abnormal adversarial example (AAE) and show how their numbers
change throughout the training process (Section 3.1). We further compare the outputs variation
of normal adversarial examples (NAEs) and AAEs and find that their outputs exhibit significantly
different behaviour after CO (Section 3.2). Building upon our observations, we propose a novel
regularization term, Abnormal Adversarial Examples Regularization (AAER), that uses the number
and outputs variation of AAEs to explicitly suppress the generation of them to eliminate catastrophic
overfitting (CO) (Section 3.3).

3.1 Definition and Counting of AAE

Adversarial training employs the most adversarial data to reduce the sensitivity of the network’s
outputs w.r.t. adversarial perturbation of the natural data. Consequently, the inner maximization
process is expected to generate effective adversarial examples that maximize the classification loss. As
empirically demonstrated by [21], the decision boundaries of the classifier become highly distorted
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Figure 2. A conceptual diagram of the classifier’s decision boundary and training samples. The
training samples belonging to NAE (blue) can effectively mislead the classifier, while AAE (red)
cannot. The left panel shows the decision boundary before optimizing AAEs, which only has a slight
distortion. The middle panel shows the decision boundary after optimizing AAEs, which exacerbates
the distortion and generates more AAEs.

after the occurrence of CO. In this study, we find that after adding the adversarial perturbation
generated by the distorted classifier, the loss of certain training samples unexpectedly decreases. This
particular behaviour is illustrated in Figure 2, we can observe that the NAEs (blue) can either lead to
the model misclassifications or position themselves closer to the decision boundary after the inner
maximization process. In contrast, the AAEs (red) will be located further away from the decision
boundary and fail to mislead the classifier after adding the perturbation generated by the distorted
classifier. Therefore, we introduce the following formula to define AAEs:

δ = sign (∇x+ηℓ(x+ η, y; θ)) ,

xAAE def
= ℓ (x+ η, y; θ) > ℓ (x+ η + δ, y; θ) ,

(2)

where η is the random initialization.

Next, we observe the variation in the number of AAEs throughout the model training process, and
the corresponding statistical results are presented in Figure 3 (left). It can be observed that before
the occurrence of CO, a small number of AAEs already existed, indicating the presence of slight
initial distortion in the classifier. To further validate this point, we visualize the loss surface of
both AAEs and NAEs using the method proposed by [23] as shown in Figure 4 (left and middle).
It’s evident that before CO, the classifier showcases a more nonlinear loss surface around AAEs in
comparison to NAEs. This empirical observation strongly suggests that the generation of AAEs is
directly influenced by the distorted classifier.

Besides, the number of AAEs experiences a dramatic surge during CO occurrences. For example, the
number of AAEs (red line) exploded 19 times at the onset of CO (9th epoch), as shown in Figure 3
(left). Importantly, this rapid increase in the AAEs number implies a continuous deterioration in
the classifier’s boundaries, which in turn leads to a further increase in their number. The number of
AAEs reaches its peak at the 10th epoch, surging to approximately 66 times than that before CO. To
meticulously analyze the interaction between AAEs and CO, we delve into their relationship at the
iteration level, as shown in Figure 4 (right). We can observe that the robustness accuracy from peak
sharply drops to nearly 0% within 18 iterations, simultaneously, the number of AAEs rises from 0 to
70. Remarkably, the trends in robustness accuracy and the number of AAEs display a completely
opposite relationship, suggesting a vicious cycle between optimizing AAEs and CO. Lastly, the
number of AAEs consistently maintains a high level until the end of the training. Given this empirical
and statistical observation, we can infer that there is a close correlation between the number of AAEs
and the CO phenomenon, which also prompts us to wonder (Q1): whether CO can be mitigated by
reducing the number of abnormal adversarial examples.

3.2 Outputs Variation of NAE and AAE

The above observations indicate the close relationship between CO and AAEs. In this part, we
further analyze the outputs variation of AAEs during CO. Specifically, we discover that CO has a
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Figure 3. The number, the variation of prediction confidence and logits distribution (from left to
right) for NAEs, AAEs and training samples in RS-FGSM with 16/255 noise magnitude. The dashed
black line corresponds to the 9th epoch, which is the point that the model occurs CO.

significant impact on both the prediction confidence and the logits distribution of AAEs. To quantify
the variation in prediction confidence, we utilize the cross-entropy (CE) to calculate the change in
loss during the inner maximization process, which is formulated as follows:

ℓ (x+ η + δ, y; θ)− ℓ (x+ η, y; θ) . (3)

We investigate the prediction confidence of NAEs and AAEs variation during the model training. From
Figure 3 (middle), we can observe that the change in prediction confidence of NAEs is consistently
greater than 0, indicating that their lead to a worse prediction in the classifier. On the contrary, this
variation in AAEs is atypical negative implying that the associated adversarial perturbation has an
unexpected opposite effect. Moreover, we delve into the impact of CO on the variation in prediction
confidence. Before CO, we note a slight negative variation in the AAEs’ prediction confidence, which
has an insignificant impact on all training samples (blue line). However, during CO, the prediction
confidence of AAEs undergoes a rapid and substantial drop, reaching a decline of 17 times at the 9th
epoch. After CO, the prediction confidence of AAEs is 43 times (10th epoch) smaller than before
and significantly impacts all training samples.

In addition to the inability to mislead the classifier, the logits distribution of AAE is also disturbed
during the CO process. To analyze the variation in logits distribution, we employ the Euclidean (L2)
distance to quantify the impact of adversarial perturbation, which is formulated as follows:

∥fθ (x+ η + δ)− fθ (x+ η) ∥22, (4)

where fθ is the DNN classifier parameterized by θ and ∥ · ∥22 is the L2 distance.

The logits distribution variation of both NAEs and AAEs are illustrated in Figure 3 (right). Comparing
the logits distribution variation between NAEs and AAEs, we can find that their magnitudes are
similar before CO. However, it becomes evident that the logits distribution variation of AAEs
increases dramatically during CO, being 13 times larger than before. After further optimization
on AAEs, the variation in logits distribution reaches the peak, approximately 62 times larger than
before. This observation highlights that even a small adversarial perturbation can cause a substantial
variation in the logits distribution, this phenomenon typically happens on the highly distorted decision
boundaries. Additionally, it’s worth noting that the increase in logits distribution variation for NAEs
(green line) occurs one epoch later than that of AAEs, indicating that the primary cause of decision
boundary distortion lies within the AAEs. In other words, directly optimizing the network using
these AAEs exacerbates the distortion of decision boundaries, resulting in a significant change in the
logits distribution for NAEs. Even after CO, the logits distribution variance of AAEs remains twice
as large as NAEs. The significant difference between NAEs and AAEs in the variation of prediction
confidence and logits distribution inspires us to wonder (Q2): whether CO can be mitigated by
constraining the outputs variation of abnormal adversarial examples.

3.3 Abnormal Adversarial Examples Regularization

Recognizing the strong correlation between CO and AAEs, we first attempt a passive approach by
removing AAEs and training solely on NAEs. This simple approach demonstrates the capability
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Figure 4. Left/Middle panel: The visualization of AAEs/NAEs loss surface before CO (8th epoch).
Right panel: The number of AAEs and the test robustness within each iteration at CO (9th epoch).
The green and red lines represent the robust accuracy and number of AAEs, respectively.

to delay the onset of CO, thereby confirming that direct optimization of AAEs will accelerate the
classifier’s distortion. However, it is important to note that the generation of AAEs is caused by the
distorted classifier. Passively removing AAEs cannot provide the necessary constraints to promote
smoother classifiers, thereby only delaying the onset of CO but not preventing it.

To truly relieve this problem, we design a novel regularization term, Abnormal Adversarial Examples
Regularization (AAER), which aims to hinder the classifier from becoming distorted by explicitly
reducing the number and constraining the outputs variation of AAEs. Specifically, part (i) categorizes
the training samples into NAEs and AAEs according to the definition in Eq. 2, and then penalizes the
number of AAEs. The AAEs’ outputs variation is simultaneously constrained by part (ii) prediction
confidence and part (iii) logits distribution. In terms of prediction confidence, we penalize the
anomalous variation in AAEs that should not be negative during the inner maximization process,
which is formalized as follows:

AAE_CE =
1

n

n∑
i=1

(
ℓ
(
xAAE
i + η, yi; θ

)
− ℓ

(
xAAE
i + η + δ, yi; θ

))
, (5)

where n is the number of abnormal adversarial examples.

For logits distribution, we first calculate the logits distribution variation of AAEs and NAEs separately,
as shown in Eq. (6) and Eq. (7):

AAE_L2 =
1

n

n∑
i=1

(
∥fθ

(
xAAE
i + η + δ

)
− fθ

(
xAAE
i + η

)
∥22
)
; (6)

NAE_L2 =
1

m− n

m−n∑
j=1

(
∥fθ

(
xNAE
j + η + δ

)
−fθ

(
xNAE
j + η

)
∥22
)
, (7)

where m is the number of training samples.

Then, we use the logits distribution variation of NAEs as a reference to constrain the variation in
AAEs. It’s essential to emphasize that our optimization objective is to make the logits distribution
variation of AAEs closer to that of NAEs, rather than less. To achieve this, we use the max function
to limit the minimum value, which is formalized as follows:

Constrained_V ariation = max (AAE_L2 (6)−NAE_L2 (7), 0) , (8)

where max(, ) is the max function.

Although Figure 3 (right) illustrates that the logits distribution variation of NAEs will significantly
increase and instability after CO. However, that is a natural consequence of the highly distorted
classifier which disrupted the logits distribution of NAEs. In contrast, after using the AAER to hinder
the classifier from becoming distorted, the NAEs can be used as a stable standard throughout the
training, as shown in Figure 5 (a:right).

Based on the optimization objectives described above, we can build a novel regularization term -
AAER, which aims to suppress the AAEs by the number, the variation of prediction confidence
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Algorithm 1 Abnormal Adversarial Examples Regularization (AAER)

Input: Network fθ, epochs T, mini-batch M, perturbation radius ϵ, step size α, initialization term η.
Output: Adversarially robust model fθ

1: for t = 1 . . . T do
2: for k = 1 . . .M do
3: δ = α · sign (∇x+ηℓ(xk + η, yk; θ))
4: CE = 1

m

∑m
k=1 ℓ (xk + η + δ, yk; θ)

5: AAER = Eq. (9)
6: θ = θ −∇θ (CE +AAER)
7: end for
8: end for

and logits distribution, ultimately achieving the purpose of preventing CO, which is shown in the
following formula:

AAER = (λ1 ·
n

m
) · (λ2 ·AAE_CE (5) + λ3 · Constrained_V ariation (8)) , (9)

where λ1, λ2 and λ3 are the hyperparameters to control the strength of the regularization term.

AAER can effectively hinder the generation of AAEs that are highly correlated with the distorted
classifier and CO, thereby encouraging training for a smoother classifier that can effectively defend
against adversarial attacks. By considering both the number and output variation of AAEs, we
establish a more adaptable and comprehensive measure of classifier distortion. Importantly, our
method does not require any additional generation or backward propagation processes, making it
highly convenient in terms of computational overhead. The proposed algorithm AAER realization is
summarized in Algorithm 1.

4 Experiment

In this section, we provide a comprehensive evaluation to verify the effectiveness of AAER, including
experiment settings (Section 4.1), performance evaluation (Section 4.2), ablation studies (Section 4.3)
and time complexity study (Section 4.4).

4.1 Experiment Settings

Baselines. We compare our method with other SSAT methods, including RS-FGSM [39],
FreeAT [30], N-FGSM [6], Grad Align [1], ZeroGrad and MultiGrad [10]. We also compare
our method with multi-step AT, PGD-2 and PGD-10 (PGD-20 with 32/255 noise magnitude) [26],
providing a reference for the ideal performance. The results of other competing baselines, including
GAT [33], NuAT [34], PGI-FGSM [17], SDI-FGSM [18] and Kim [21], can be found in Appendix F.
We report both the natural and robust accuracy results of the final model, which are obtained without
early stopping and using the hyperparameters provided in the official repository. Please note that
for FreeAT, we did not use the subset of training samples to keep the same training epochs across
different methods.

Attack Methods. To report the robust accuracy of models, we attack these methods using the
standard PGD adversarial attack with α = ϵ/4 step size, 50 attack steps and 10 restarts. We also
evaluate our methods on Auto Attack [5] as shown in Appendix C.

Datasets and Model Architectures. We evaluate our method on several benchmark datasets, includ-
ing Cifar-10/100 [22], SVHN [28], Tiny-ImageNet [28] and Imagenet-100 [7]. The standard data
augmentation random cropping and horizontal flipping are applied for these datasets. The settings
and results on SVHN, Tiny-ImageNet and Imagenet-100 are provided in Appendix E. We use the
PreactResNet-18 [14] and WideResNet-34 [43] architectures on these datasets to evaluate results.
The results of WideResNet-34 can be found in Appendix D.

Setup for Our Proposed Method. In this work, we use the SGD optimizer with a momentum of
0.9, weight decay of 5 × 10−4 and L∞ as the threat model. For the learning rate schedule, we use
the cyclical learning rate schedule [32] with 30 epochs, which reaches its maximum learning rate
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Table 1. The hyperparameter settings for Cifar-10/100 are divided by a slash. The top number
represents λ2 while the bottom number represents λ3. Throughout all settings, λ1 is fixed at 1.0.

CIFAR10/100
RS-AAER N-AAER

8/255 12/255 16/255 32/355 8/255 12/255 16/255 32/355

λ2 2.5 / 3.5 5.0 / 3.5 7.0 / 6.0 5.75 / 5.0 1.5 / 1.5 5.0 / 3.5 8.5 / 6.0 2.75 / 3.5

λ3 1.5 / 1.5 2.75 / 2.75 3.25 / 2.25 1.5 / 0.75 0.15 / 0.15 0.55 / 0.3 1.5 / 0.5 0.75 / 0.5

Table 2. CIFAR10/100: Accuracy of different methods and different noise magnitudes using
PreActResNet-18 under L∞ threat model. The top number is the natural accuracy (%), while
the bottom number is the PGD-50-10 accuracy (%). The results are averaged over 3 random seeds
and reported with the standard deviation.

dataset CIFAR10 CIFAR100

noise magnitude 8/255 12/255 16/255 32/255 8/255 12/255 16/255 32/255

FreeAT
76.20 ± 1.09 68.07 ± 0.38 45.84 ± 19.07 61.11 ± 8.41 47.41 ± 0.30 39.84 ± 0.40 3.32 ± 2.48 26.2 ± 15.54

43.74 ± 0.41 33.14 ± 0.62 0.00 ± 0.00 0.00 ± 0.00 22.27 ± 0.33 16.57 ± 0.20 0.00 ± 0.00 0.00 ± 0.00

ZeroGrad
81.60 ± 0.16 77.52 ± 0.21 79.65 ± 0.17 65.48 ± 6.26 53.83 ± 0.22 49.07 ± 0.14 50.76 ± 0.02 49.38 ± 1.39

47.56 ± 0.16 27.34 ± 0.09 6.37 ± 0.23 0.00 ± 0.00 25.02 ± 0.24 14.76 ± 0.26 5.23 ± 0.09 0.00 ± 0.00

MultiGrad
81.65 ± 0.16 81.09 ± 4.67 82.98 ± 3.30 70.84 ± 4.53 53.11 ± 0.34 46.81 ± 0.51 46.05 ± 8.68 28.33 ± 6.48

47.93 ± 0.18 9.95 ± 16.97 0.00 ± 0.00 0.00 ± 0.00 25.68 ± 0.21 16.56 ± 0.56 0.00 ± 0.00 0.00 ± 0.00

Grad Align
82.10 ± 0.78 74.17 ± 0.55 60.37 ± 0.95 25.23 ± 3.41 54.00 ± 0.44 45.83 ± 0.72 36.80 ± 0.10 15.05 ± 0.07

47.77 ± 0.58 34.87 ± 1.00 27.90 ± 1.01 11.53 ± 3.23 25.27 ± 0.68 18.13 ± 0.71 13.77 ± 0.76 2.85 ± 1.34

RS-FGSM
83.91 ± 0.21 66.46 ± 22.80 66.54 ± 12.25 36.43 ± 7.86 60.29 ± 1.51 18.19 ± 8.51 11.03 ± 5.24 11.40 ± 8.60

46.01 ± 0.18 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 10.58 ± 13.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

N-FGSM
80.48 ± 0.21 71.30 ± 0.12 62.96 ± 0.74 29.79 ± 3.87 54.92 ± 0.28 46.16 ± 0.13 37.93 ± 0.22 18.18 ± 4.55

47.91 ± 0.29 36.23 ± 0.10 27.14 ± 1.44 8.30 ± 7.85 26.29 ± 0.41 18.75 ± 0.19 14.05 ± 0.07 0.00 ± 0.00

RS-AAER
83.83 ± 0.27 74.40 ± 0.79 64.56 ± 1.45 31.58 ± 1.13 57.71 ± 0.29 44.06 ± 0.93 33.10 ± 0.05 18.50 ± 1.68

46.14 ± 0.02 32.17 ± 0.16 23.87 ± 0.36 10.62 ± 0.51 25.31 ± 0.01 16.41 ± 0.13 11.80 ± 0.17 4.90 ± 0.50

N-AAER
80.56 ± 0.35 71.15 ± 0.18 61.84 ± 0.43 27.08 ± 0.02 54.47 ± 0.45 45.98 ± 0.13 36.80 ± 0.14 16.95 ± 0.44

48.31 ± 0.23 36.52 ± 0.10 28.20 ± 0.71 12.97 ± 0.57 26.81 ± 0.13 19.03 ± 0.04 14.31 ± 0.05 5.45 ± 0.14

PGD-2
85.07 ± 0.12 78.97 ± 0.23 72.31 ± 0.40 48.45 ± 0.71 60.09 ± 0.20 53.46 ± 0.27 47.50 ± 0.28 31.89 ± 0.69

45.27 ± 0.07 32.99 ± 0.46 24.32 ± 0.64 11.24 ± 0.40 24.58 ± 0.12 17.16 ± 0.21 12.69 ± 0.06 4.51 ± 0.21

PGD-10 (20)
80.55 ± 0.37 72.37 ± 0.31 67.20 ± 0.69 34.70 ± 0.67 55.05 ± 0.25 47.42 ± 0.29 42.39 ± 0.17 21.68 ± 0.18

50.67 ± 0.40 38.60 ± 0.39 29.34 ± 0.18 16.10 ± 0.20 27.87 ± 0.12 20.29 ± 0.18 15.01 ± 0.21 7.39 ± 0.38

(0.2) when half of the epochs (15) are passed. The results obtained by the long training schedule
can be found in Appendix G. We superimpose our method on two baseline methods: RS-FGSM and
N-FGSM, both of which use the vanilla min-max process. For RS-AAER, we follow the settings
of [39] that set step size α = 1.25 · ϵ and random initialization η = Uniform(−ϵ, ϵ). In accordance
with the N-FGSM setting suggested by [6], we set α = 1.0 · ϵ and η = Uniform(−2 · ϵ, 2 · ϵ) for
N-AAER. The hyperparameter settings for Cifar-10/100 are summarized in the Table 1.

4.2 Performance Evaluation

CIFAR10 Results. In Table 2 (left), we present a comparison of our proposed methods with the
competing baselines. First, we can observe that CO occurs in all baseline methods except for
Grad Align. However, Grad Align requires double backward propagation which notably reduces its
efficiency. Compared to them, RS-AAER and N-AAER can effectively eliminate CO with all noise
magnitudes and only incur negligible computational overhead. It is worth noting that our primary
objective is to eliminate CO in SSAT, thus AAER will show significant performance enhancements
under CO scenarios, exemplified by RS-AAER under 12, 16 and 32 noise magnitude, and N-AAER
under 32 noise magnitude. Even without the CO scenario, our approach can consistently outperform
the baselines under all experimental conditions. Additionally, we implemented Vanilla-AAER in
Appendix A to further demonstrate the effectiveness of our method. For a fair comparison, we also
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Figure 5. The number, the variation of prediction confidence and logits distribution (from left to
right) for NAEs, AAEs and training samples in RS-AAER with 16/255 noise magnitude.

attempt to use the N-FGSM augmentation on Grad Align. However, we could not find suitable
hyperparameter settings for Grad Align with the original step size. After reducing the step size to
α = 1.0 · ϵ (consistent with N-AAER), the performance of Grad Align is similar to that reported
in Table 2 (left). Besides, AAEs are not a unique phenomenon in SSAT, we also found them in the
multi-step AT, indicating the existence of non-smooth points in their classifiers. However, we could
not find competitive hyperparameter settings to enhance the robustness of multi-step AT using AAER.

Figure 6. The role of α.

CIFAR100 Results. We also conduct experiments on the CI-
FAR100 dataset, and the results are summarized in Table 2
(right). It is worth noting that CIFAR100 is more challenging
as the number of classes/training images per class is ten times
larger/smaller than that of CIFAR10. However, our proposed
methods demonstrate their effectiveness in preventing CO and
improving robust accuracy on CIFAR-100 as well. These results
further validate that AAER is capable of reliably preventing CO
and effectively improving robustness across different datasets.

4.3 Ablation Studies

In this part, we investigate the impacts of RS-AAER compo-
nents with 16/255 noise magnitude using PreactResNet-18 on
CIFAR10 under L∞ threat model.

Optimization Objectives. To validate the effectiveness of our proposed method, we illustrate
the variation in test accuracy and three optimization objectives during the training process. Fig-
ure 1 demonstrates that our approach can successfully prevent CO and continuously improves
robustness throughout the training. Additionally, from Figure 5, we can observe that the num-
ber, the variation of prediction confidence and logits distribution for AAEs are effectively con-
strained during the training. Specifically, when CO occurs in RS-FGSM (9th epoch), these
three optimization objectives in RS-AAER are 29, 14, and 24 times smaller than it, respectively.

Table 3. The impact of regularization term.

(i) (ii) (iii) Natural Acc (%) Robust Acc (%)

✓ 75.14 0.00

✓ 77.22 0.00

✓ 13.61 9.77

✓ ✓ 76.19 0.00

✓ ✓ 56.65 23.29

✓ ✓ 16.68 12.56

✓ ✓ ✓ 64.56 23.87

The Role of α. From Figure 6, we can ob-
serve that enlarging the α size will lead to
an increase in the robust accuracy, and corre-
spondingly a decrease in the natural accuracy.
In light of this trade-off, we follow the base-
line setting and do not adjust the α size.

The impact of Regularization Term. We
further investigate the interaction between the
three parts of our regularization term as shown
in Table 3. We find that neither part (i) num-
ber nor part (ii) prediction confidence can in-
dependently prevent CO, and only using part
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Table 4. CIFAR10 training time on a single NVIDIA RTX 4090 GPU using PreactResNet-18. The
results are averaged over 30 epochs.

Method FreeAT ZeroGrad MultiGrad Grad Align RS/N-FGSM RS/N-AAER PGD-2 PGD-10

Training Time (S) 43.8 11.0 21.7 36.1 11.0 11.2 16.4 59.1

(iii) logits distribution can partially mitigate CO. However, solely relying on part (iii) cannot ac-
curately reflect the degree of classifier distortion as it lacks a comprehensive measure, resulting in
poor performance. Additionally, part (i) also plays an important role in performance, without it,
both natural and robust accuracy significantly drop. Meanwhile, part (ii) contributes to the stability
and natural accuracy of the method. Therefore, to effectively and stably eliminate CO, all parts of
the regularization term are necessary and critical. Further ablation studies on other regularization
methods and λ selection can be found in Appendix B.

4.4 Time Complexity Study

Efficiency is a key advantage of SSAT over multi-step AT, as it can be readily scaled to large networks
and datasets. Consequently, the computational overhead plays an important role in the SSAT overall
performance. In Table 4, we present a time complexity comparison among various SSAT methods. It
can be seen that AAER only imposes a minor training cost of 0.2 seconds, representing a mere 1.8%
increase compared to FGSM. In contrast, Grad Align and PGD-10 are 3.2 and 5.3 times slower than
our method.

5 Conclusion

In this paper, we find that the abnormal adversarial examples exhibit anomalous behaviour, i.e. they
are further to the decision boundaries after adding perturbations generated by the inner maximization
process. We empirically show the abnormal adversarial examples are closely related to the classifier
distortion and catastrophic overfitting, by analyzing their number and outputs variation during the
training process. Motivated by this, we propose a novel and effective method, Abnormal Adversarial
Examples Regularization (AAER), through a regularizer to eliminate catastrophic overfitting by
suppressing the generation of abnormal adversarial examples. Our approach can successfully resolve
the catastrophic overfitting with different noise magnitudes and further boost adversarial robustness
with negligible additional computational overhead.
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A Vanilla-AAER

To further validate the effectiveness of our method, we implement Vanilla-AAER to prevent CO.
The Vanilla-AAER method follows the settings of Vanilla-FGSM [11], which does not use random
initialization and sets the step size as α = 1.0 · ϵ. The Vanilla-AAER hyperparameters setting is
shown in Table 5.

Table 5. The hyperparameters setting for different noise magnitudes. The top number is λ2 while the
bottom number is λ3. The λ1 is fixed as 1.0 in all settings.

Vanilla-AAER 8/255 12/255 16/255 32/255

λ2 5.5 6.5 7.0 4.8

λ3 2.0 3.5 3.5 0.7

Table 6. CIFAR10: Accuracy of Vanilla-FGSM and Vanilla-AAER with different noise magnitude
using PreActResNet-18 under L∞ threat model. The top number is the natural accuracy (%), while
the bottom number is the PGD-50-10 accuracy (%).

noise magnitude 8/255 12/255 16/255 32/255

Vanilla-FGSM 84.16 ± 4.68 79.86 ± 2.05 72.51 ± 3.79 64.29 ± 3.83
0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Vanilla-AAER 80.45 ± 0.25 64.97 ± 3.14 51.92 ± 2.90 18.78 ± 2.45
46.66 ± 0.74 32.44 ± 1.18 24.12 ± 0.76 12.19 ± 0.40

Based on the results presented in Table 6, we can observe that Vanilla-AAER achieves comparable
or even superior robustness compared to RS-AAER. This outcome may be attributed to the fact
that Vanilla-FGSM has a higher expectation of adversarial perturbation, as demonstrated in prior
work [1]. However, the absence of random initialization in Vanilla-AAER may reduce the diversity of
adversarial examples, potentially impacting the natural accuracy of the model. Nonetheless, the most
significant finding is that Vanilla-AAER effectively eliminates CO across various noise magnitudes,
which cannot be accomplished by Vanilla-FGSM.

B Impacts of Regularization Term

To showcase the distinct effectiveness of our method in eliminating CO, we conducted a comparison
with other regularization methods used in multi-step AT, such as TRADES [46] and ALP [19]. In
order to ensure a fair comparison, we set the iteration times for TRADES and ALP as 1, and the step
size as α = 1.25 · ϵ and α = 1.0 · ϵ for superimposing RS-FGSM and N-FGSM, respectively.

From Table 7, we can observe that TRADES and ALP methods may improve adversarial robustness
when CO is not present in the baseline methods. However, these methods are not effective in
eliminating CO. As demonstrated by the RS-TRADES and RS-ALP methods, CO still occurs with
larger noise magnitudes, similar to RS-FGSM. Furthermore, these methods can even harm the
baseline method, as they break the N-FGSM robustness with 32/255 noise magnitude. Therefore,
we conclude that the TRADES and ALP methods are not suitable for eliminating CO. Additionally,
other multi-step and robust overfitting methods also prove ineffective against CO. Hence, CO has
been identified as an independent phenomenon requiring distinct solutions. In contrast to these
regularization methods, AAER explicitly reflects and prevents distortion of the classifier from the
perspective of AAEs, which is the key factor enabling AAER to effectively eliminate CO.

We further investigate the impact of hyperparameters λ1, λ2, and λ3 on the performance of AAER.
Figure 7 (left) shows the effect of λ1 on the performance. It can be observed that when λ1 is small,
AAER is unable to effectively suppress CO, and increasing λ1 improves both natural and robust
accuracy. However, when λ1 increases from 1.0 to 2.0, the robust accuracy remains unchanged while
the natural accuracy decreases. Therefore, we choose λ1 = 1 to balance both natural and robust
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Table 7. CIFAR10: Accuracy of TRADES and ALP methods with different noise magnitude using
PreActResNet-18 under L∞ threat model. The top number is the natural accuracy (%), while the
bottom number is the PGD-50-10 accuracy (%).

noise magnitude 8/255 12/255 16/255 32/255

RS-TRADES (β = 1.0) 89.03 91.41 92.11 90.95
35.56 0.86 0.00 0.00

RS-TRADES (β = 6.0) 90.72 92.19 91.50 88.69
11.29 0.03 0.01 0.00

RS-ALP (logit pairing weight=0.5) 86.75 92.18 91.14 81.03
43.96 0.04 0.00 0.00

RS-ALP (logit pairing weight=1.0) 85.15 92.14 90.48 81.03
46.59 0.02 0.00 0.00

N-TRADES (β = 1.0) 86.82 81.12 85.62 81.81
41.24 16.40 0.12 0.00

N-TRADES (β = 6.0) 83.23 74.77 68.16 85.97
49.56 35.98 26.13 0.24

N-ALP (logit pairing weight=0.5) 84.63 81.57 72.05 79.41
46.03 27.85 0.32 0.00

N-ALP (logit pairing weight=1.0) 82.60 76.84 69.32 82.98
48.32 33.36 23.46 0.00

Figure 7. The role of λ1 λ2 and λ3 under 16/255 noise magnitude (from left to right).

accuracy. Figure 7 (middle) demonstrates the impact of λ2. It can be observed that when λ2 is small,
increasing λ2 is beneficial for both natural and robust accuracy. However, when λ2 increases from 7
to 14, the robust accuracy becomes flat while the natural accuracy decreases. Therefore, we select
λ2 = 7 considering both natural and robust accuracy. Figure 7 (right) shows the effect of λ3. It
can be observed that when λ3 is small (2.25), the model experiences CO. Increasing λ3 reduces the
natural accuracy. From the variation of λ3 between 2.25 and 4.75, we choose λ3 = 3.25 to balance
the elimination of CO with natural and robustness performance.

C Evaluation Based on Auto Attack

Auto Attack [5] is regarded as the most reliable robustness evaluation to date. It is an ensemble of
complementary attacks, consisting of three white-box attacks (APGD-CE, APGD-DLR, and FAB)
and a black-box attack (Square Attack). In order to avoid the pseudo-robustness brought by gradient
masking or gradient obfuscation, we report the Auto Attack results on Cifar10/100 in Table 8 and
Table 9.

In Table 8 and Table 9, we observe that our method, AAER, consistently improves adversarial
robustness under Auto Attack on both the CIFAR-10 and CIFAR-100 datasets. It demonstrates that
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AAER is effective in preventing CO and enhancing robustness under various adversarial attacks. The
results validate the robustness and comprehensiveness of our proposed method.

Table 8. CIFAR10: Accuracy of different methods and different noise magnitudes using PreactResNet-
18 under L∞ threat model. We only report the robust accuracy (%) under Auto Attack while the
natural accuracy is same as Table 2. The results are averaged over 3 random seeds and reported with
the standard deviation.

noise magnitude 8/255 12/255 16/255 32/255

FreeAT 40.23 ± 0.33 28.04 ± 0.73 0.00 ± 0.00 0.00 ± 0.00

ZeroGrad 43.48 - - -

MulitGrad 44.39 - - -

Grad Align 44.82 ± 0.09 30.05 ± 0.17 19.60 ± 0.47 7.89 ± 2.62

RS-FGSM 43.17 ± 0.34 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

N-FGSM 44.43 ± 0.24 30.32 ± 0.08 19.06 ± 1.81 6.78 ± 0.75

RS-AAER 43.22 ± 0.20 26.75 ± 0.21 17.03 ± 0.51 5.37 ± 0.67

N-AAER 44.79 ± 0.23 30.76 ± 0.17 20.18 ± 0.15 8.46 ± 0.74

PGD-2 42.97 ± 0.65 28.63 ± 0.38 18.52 ± 0.55 3.77 ± 0.02

PGD-10 (20) 46.95 ± 0.54 33.30 ± 0.20 22.29 ± 0.27 11.48 ± 0.43

Table 9. CIFAR100: Accuracy of different methods and different noise magnitudes using
PreactResNet-18 under L∞ threat model. We only report the robust accuracy (%) under Auto
Attack while the natural accuracy is same as Table 2. The results are averaged over 3 random seeds
and reported with the standard deviation.

noise magnitude 8/255 12/255 16/255 32/255

FreeAT 18.28 ± 0.20 12.37 ± 0.14 0.00 ± 0.00 0.00 ± 0.00

ZeroGrad 21.15 - - -

MulitGrad 21.62 - - -

Grad Align 21.87 ± 0.13 13.78 ± 0.11 9.64 ± 0.12 1.76 ± 0.70

RS-FGSM 7.98 ± 11.91 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

N-FGSM 22.68 ± 0.25 14.57 ± 0.09 10.30 ± 0.14 0.00 ± 0.00

RS-AAER 21.41 ±0.01 12.31± 0.28 8.56 ±0.02 2.93 ± 0.17

N-AAER 22.93 ± 0.10 14.73 ± 0.24 10.35 ± 0.11 3.46 ± 0.14

PGD-2 22.52 ± 0.14 13.69 ± 0.02 9.56 ± 0.07 1.76 ± 0.22

PGD-10 (20) 23.78 ± 0.08 15.61 ± 0.09 10.93 ± 0.05 4.13 ± 0.10

D Experiment with WideResNet Architecture

We also compare the performance of our method using WideResNet-34, which is more complex
than PreActResNet. Since the baselines cannot adapt well to WideResNet-34, we also need to
correspondingly adjust the hyperparameters. The λ1 is fixed as 1.0 in all settings. For CIFAR10,
we set RS-AAER λ2 = 4.0 and λ3 = 2.0, N-AAER λ2 = 2.5 and λ3 = 0.6. For CIFAR100, we
set RS-AAER λ2 = 2.5 and λ3 = 1.0, N-AAER λ2 = 1.0 and λ3 = 0.2. We report the results on
Cifar10/100 in Table 10 and Table 11.
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Table 10. CIFAR10: Accuracy of different methods with 8/255 noise magnitude using WideResNet-
34 under L∞ threat model. The results are averaged over 3 random seeds and reported with the
standard deviation.

method RS-FGSM N-FGSM RS-AAER N-AAER PGD-2 PGD-10

natural accuracy (%) 84.41 ± 0.45 84.67 ± 0.32 87.39 ± 0.14 84.47 ± 0.23 88.68 ± 0.14 85.53 ± 0.22

robust accuracy (%) 0.00 ± 0.00 49.72 ± 0.25 47.58 ± 0.42 50.07 ± 0.53 47.32 ± 0.50 53.70 ± 0.53

training time (S) 98.2 98.6 147.1 536.2

Table 11. CIFAR100: Accuracy of different methods with 8/255 noise magnitude using WideResNet-
34 under L∞ threat model. The results are averaged over 3 random seeds and reported with the
standard deviation.

method RS-FGSM N-FGSM RS-AAER N-AAER PGD-2 PGD-10

natural accuracy (%) 55.04 ± 1.24 59.02 ± 0.63 59.81 ± 0.38 57.76 ± 0.36 64.64 ± 0.27 60.34 ± 0.34

robust accuracy (%) 0.00 ± 0.00 28.49 ± 0.54 26.88 ± 0.30 29.09 ± 0.66 26.47 ± 0.10 30.02 ± 0.09

In Table 10 and Table 11, we observe that when using the WideResNet-34 architecture, RS-FGSM
suffers from CO with a noise magnitude of 8/255, which is different from the results obtained with
the PreActResNet-18 architecture. However, our method, AAER, can successfully prevent CO and
achieve high robustness even with complex network architectures. This demonstrates the reliability of
AAER in preventing CO and improving robustness across different network architectures. It is worth
noting that complex networks can better reflect the efficiency of our method in terms of training time,
while our method can achieve comparable robustness to multi-step AT.

E Settings and Results on SVHN, Tiny-ImageNet and Imagenet-100

SVHN Settings and Results. For experiments on SVHN, we use the cyclical learning rate schedule
with 15 epochs that reaches its maximum learning rate (0.05) when 40% (6) epochs are passed. In
the meantime, we uniformly increase the step size between 0 and 5 epochs, which follow the settings
of [6]. We show the hyperparameters setting on SVHN in Table 12. In Table 13, we present the
performance of AAER on the SVHN dataset, along with the results of the competing baseline taken
from [6]. It is evident that our method can successfully prevent CO and improve robust accuracy
across different noise magnitudes. This demonstrates the effectiveness of AAER in enhancing the
robustness of models trained on the SVHN dataset.

Table 12. SVHN: The hyperparameters setting for different noise magnitudes. The top number is λ2

while the bottom number is λ3. The λ1 is fixed as 1.0 in all settings.

SVHN 4/255 8/255 12/255

RS-AAER 0.5 0.6 0.45
1.25 0.85 0.55

N-AAER 0.75 1.0 1.0
0.25 1.0 0.75

Tiny-ImageNet Settings and Results. We also scale our method to a medium-sized dataset Tiny-
ImageNet to showcase its effectiveness. We utilized the cyclical learning rate schedule with 30
epochs, reaching the maximum learning rate of 0.2 at the midpoint of 15 epochs. For RS-AAER,
we set λ2 = 0.75 and λ3 = 0.15, while for N-AAER, we set λ2 = 0.25 and λ3 = 0.05. The value
of λ1 remained fixed at 1.0 in all settings. Table 14 presents the performance of AAER on the
Tiny-ImageNet dataset. We can observe that our method effectively prevents CO and improves robust
accuracy in this medium-scale dataset.
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Table 13. SVHN: Accuracy of different methods and different noise magnitudes using PreActResNet-
18 under L∞ threat model. The baseline results are taken from [6]. The top number is the natural
accuracy (%), while the bottom number is the PGD-50-10 accuracy (%). The results are averaged
over 3 random seeds and reported with the standard deviation.

noise magnitude 4/255 8/255 12/255

FreeAT 93.66 ± 0.12 91.29 ± 4.07 92.36 ± 1.00
71.61 ± 0.75 0.01 ± 0.00 0.00 ± 0.00

ZeroGrad 94.81 ± 0.16 92.42 ± 1.29 88.09 ± 0.40
71.59 ± 0.22 35.93 ± 2.73 14.14 ± 0.32

MultiGrad 94.71 ± 0.17 94.86 ± 0.97 94.48 ± 0.19
71.98 ± 0.26 11.49 ± 16.19 0.00 ± 0.00

Grad Align 94.56 ± 0.21 90.1 ± 0.34 84.01 ± 0.46
72.12 ± 0.19 43.85 ± 0.14 23.62 ± 0.41

RS-FGSM 95.09 ± 0.09 94.46 ± 0.16 92.74 ± 0.5
71.28 ± 0.40 0.00 ± 0.00 0.00 ± 0.00

N-FGSM 94.54 ± 0.15 89.56 ± 0.49 81.48 ± 1.64
72.53 ± 0.19 45.63 ± 0.11 26.13 ± 0.81

RS-AAER 94.99 ± 0.70 90.11 ± 0.85 83.50 ± 4.13
71.97 ± 0.88 41.75 ± 0.55 22.84 ± 0.51

N-AAER 94.35 ± 0.26 89.26 ± 0.57 82.76 ± 0.84
73.10 ± 0.23 46.98 ± 0.25 26.87 ± 1.51

PGD-2 94.66 ± 0.10 94.63 ± 1.29 94.16 ± 0.54
73.29 ± 0.29 20.68 ± 18.56 0.02 ± 0.03

PGD-10 94.37 ± 0.13 89.67 ± 0.34 80.08 ± 0.93
74.76 ± 0.19 53.95 ± 0.55 37.65 ± 0.53

Table 14. Tiny-ImageNet: Accuracy of different methods with 8/255 noise magnitude using
PreActResNet-18 under L∞ threat model. The results are averaged over 3 random seeds and
reported with the standard deviation.

method RS-FGSM N-FGSM RS-AAER N-AAER PGD-2

natural accuracy (%) 52.28 ± 2.64 48.16 ± 0.61 49.86 ± 0.39 47.93 ± 0.27 46.43 ± 0.35

robust accuracy (%) 0.00 ± 0.00 20.73 ± 0.40 19.66 ± 0.14 20.92 ± 0.01 20.72 ± 0.32

Table 15. ImageNet-100: Accuracy of different methods with 8/255 noise magnitude using
PreActResNet-18 under L∞ threat model. The results are averaged over 3 random seeds and
reported with the standard deviation.

method RS-FGSM N-FGSM RS-AAER N-AAER

natural accuracy (%) 27.10 ± 11.44 38.87 ± 0.17 32.28 ± 1.52 39.52 ± 0.42

robust accuracy (%) 0.00 ± 0.00 20.71 ± 0.74 14.22 ± 0.96 20.90 ± 0.34

18



ImageNet-100 Settings and Results. We have also extended our method to a large-sized dataset,
ImageNet-100, to demonstrate its effectiveness. We utilized the cyclical learning rate schedule with
30 epochs, reaching the maximum learning rate of 0.2 at the midpoint of 15 epochs. For RS-AAER,
we set λ2 = 3.0 and λ3 = 2.5, while for N-AAER, we set λ2 = 1.25 and λ3 = 0.25. The value of λ1

remained fixed at 1.0 in all settings. From Table 15, it is evident that our method effectively prevents
CO and enhances robust accuracy in this large-scale dataset. It needs to be highlighted that the results
in the above table may not be optimal, which can be further improved by increasing training epochs
or adjusting hyperparameters and learning rate. However, they do establish the effectiveness of our
method in trustworthyly eliminating CO on a larger-scale dataset. The above outcomes underscore
the scalability and effectiveness of AAER in fortifying the robustness of models trained.

F More Competing Baselines

We also compare the performance of our method with other SSAT methods, including GAT [33],
NuAT [34], PGI-FGSM [17], SDI-FGSM [18] and Kim [21]. The results for GAT, NuAT and Kim
are directly taken from [6], while the reported PGI-FGSM and SDI-FGSM results are based on the
official code after searching the hyperparameters across different noise magnitudes.

Table 16. CIFAR10: Accuracy of different methods and different noise magnitudes using
PreActResNet-18 under L∞ threat model. GAT, NuAT and Kim results are taken from [6]. The top
number is the natural accuracy (%), while the bottom number is the PGD-50-10 accuracy (%). The
results are averaged over 3 random seeds and reported with the standard deviation.

noise magnitude 8/255 12/255 16/255

GAT 76.75 ± 0.38 80.44 ± 5.08 82.17 ± 2.47
50.98 ± 0.12 14.93 ± 9.26 1.25 ± 0.51

NuAT 73.22 ± 0.34 74.38 ± 7.32 80.1 ± 1.08
50.10 ± 0.33 17.54 ± 8.82 3.29 ± 0.87

PGI-FGSM 77.94 ± 0.26 83.82 ± 0.86 83.42 ± 0.24
52.86 ± 0.34 5.19 ± 0.59 4.16 ± 0.31

SDI-FGSM 79.28 ± 0.08 70.07 ± 0.84 81.09 ± 0.13
49.26 ± 0.10 36.56 ± 1.34 0.05 ± 0.01

Kim 89.02 ± 0.10 88.35 ± 0.31 90.45 ± 0.08
33.01 ± 0.09 13.11 ± 0.63 1.88 ± 0.05

RS-AAER 83.83 ± 0.27 74.40 ± 0.79 64.56 ± 1.45
46.14 ± 0.02 32.17 ± 0.16 23.87 ± 0.36

N-AAER 80.56 ± 0.35 71.15 ± 0.18 61.84 ± 0.43
48.31 ± 0.23 36.52 ± 0.10 28.20 ± 0.71

In Table 16, we can observe that GAT, NuAT, PGI-FGSM and SDI-FGSM demonstrate superior
performance under 8/255 noise magnitude. However, it becomes apparent that these methods still
suffer from CO with strong adversaries, resulting in nearly zero robustness under 16/255 noise
magnitude, let alone the more challenging 32/255. In contrast, our proposed method exhibits
consistent effects across different settings with negligible computational overhead, demonstrating
its trustworthy effectiveness in preventing CO. We would like to emphasize that while achieving
excellent performance under 8/255 noise magnitude is certainly gratifying, but can reliable defence
against CO is more critical to a successful SSAT method.

G Long Training Schedule

We also compare the performance of our method using the standard robust overfitting training
schedule. This training schedule consists of 200 epochs with an initial learning rate of 0.1. The
learning rate is divided by 10 at the 100th and 150th epochs, respectively. During the long training
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schedule, we employ a warm-up strategy in the first 20 epochs, which uniformly rises the strength of
AAER from 0% to 100%.

Table 17. CIFAR10: Accuracy of long training schedule with 8/255 noise magnitude using
PreActResNet-18 under L∞ threat model. The results are averaged over 3 random seeds and
reported with the standard deviation.

method RS-FGSM N-FGSM RS-AAER N-AAER

natural accuracy (%) 91.21 ± 0.26 83.25 ± 0.04 85.69 ± 0.20 83.23 ± 0.25

robust accuracy (%) 0.00 ± 0.00 36.98 ± 0.34 36.05 ± 0.17 37.38 ± 0.16

In Table 17, we observe that our method, AAER, consistently improves adversarial robustness
under the long training schedule, underscoring its consistently reliable and effective performance in
preventing CO.
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