
Affinity-Aware Graph Networks

Ameya Velingker∗
Google Research

ameyav@google.com

Ali Kemal Sinop∗

Google Research
asinop@google.com

Ira Ktena
Google DeepMind

iraktena@google.com

Petar Veličković
Google DeepMind

petarv@google.com

Sreenivas Gollapudi
Google Research

sgollapu@google.com

Abstract

Graph Neural Networks (GNNs) have emerged as a powerful technique for learning
on relational data. Owing to the relatively limited number of message passing
steps they perform—and hence a smaller receptive field—there has been significant
interest in improving their expressivity by incorporating structural aspects of
the underlying graph. In this paper, we explore the use of affinity measures as
features in graph neural networks, in particular measures arising from random
walks, including effective resistance, hitting and commute times. We propose
message passing networks based on these features and evaluate their performance
on a variety of node and graph property prediction tasks. Our architecture has low
computational complexity, while our features are invariant to the permutations of
the underlying graph. The measures we compute allow the network to exploit the
connectivity properties of the graph, thereby allowing us to outperform relevant
benchmarks for a wide variety of tasks, often with significantly fewer message
passing steps. On one of the largest publicly available graph regression datasets,
OGB-LSC-PCQM4Mv1, we obtain the best known single-model validation MAE
at the time of writing.

1 Introduction

Graph Neural Networks (GNNs) constitute a powerful tool for learning meaningful representations in
non-Euclidean domains. GNN models have achieved significant successes in a wide variety of node
prediction [18, 31], link prediction [55, 52], and graph prediction [11, 50] tasks. These tasks naturally
emerge in a wide range of applications, including autonomous driving [8], neuroimaging [36],
combinatorial optimization [14, 34], and recommender systems [51], while they have enabled
significant scientific advances in the fields of biomedicine [45], structural biology [23], molecular
chemistry [42] and physics [3].

Despite the predictive power of GNNs, it is known that the expressive power of standard GNNs is
limited by the 1-Weisfeiler-Lehman (1-WL) test [47]. Intuitively, GNNs possess at most the same
power in terms of distinguishing between non-isomorphic (sub-)graphs, while having the added
benefit of adapting to the given data distribution. For some architectures, two nodes with different
local structures have the same computational graph, thus thwarting distinguishability in a standard
GNN. Even though some attempts have been made to address this limitation with higher-order
GNNs [32], most traditional GNN architectures fail to distinguish between such nodes.

A common approach to improving the expressive power of GNNs involves encoding richer struc-
tural/positional properties. For example, distance-based approaches form the basis for works such as

∗Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Position-aware Graph Neural Networks [52], which capture positions/locations of nodes with respect
to a set of anchor nodes, as well as Distance Encoding Networks [29], which use the first few powers
of the normalized adjacency matrix as node features associated with a set of target nodes.

Here, we take an approach that is inspired by this line of work but departs from it in some crucial
ways: we seek to capture both distance and connectivity information using general-purpose node and
edge features without the need for specifying any anchor or target nodes.

Contributions: We propose the use of affinity metrics as features in a GNN. Specifically, we consider
statistics that arise from random walks in graphs, such as hitting time and commute time between
pairs of vertices (see Sections 3.1 and 3.2). We present a means of incorporating these statistics as
scalar edge features in a message passing neural network (MPNN) [15] (see Section 3.4). In addition
to these scalar features, we present richer vector-valued resistive embeddings (see Section 3.3), which
can be incorporated as node or edge feature vectors in the network. Resistive embeddings are a natural
way of embedding each node into Euclidean space such that the squared L2-distance between nodes
recovers the commute time. We show that such embeddings can be incorporated into MPNNs, even
for larger graphs, by efficiently approximating them using sketching and dimensionality reduction
techniques and prove a novel additive approximation for hitting time (see Section 4).

Moreover, we evaluate our networks on a number of benchmark datasets of diverse scales (see
Section 5). First, we show that our networks outperform other baselines on the PNA dataset [9],
which includes 6 node and graph algorithmic tasks, showing the ability of affinity measures to exploit
structural properties of graphs. We also evaluate the performance on a number of graph and node
tasks for datasets in the Open Graph Benchmark (OGB) collection [21], including molecular and
citation graphs. In particular, our networks with scalar effective resistance edge features achieve
the state of the art on the OGB-LSC PCQM4Mv1 dataset, which was featured in a KDD Cup 2021
competition for large scale graph representation learning.

Finally, we provide intuition for why affinity-based measures are fundamentally different from
aforementioned distance-based approaches (see Section 3.5) and bolster it with detailed theoretical
and empirical results (see Appendix D) showing favorable results for affinity-based measures.

2 Related Work

Our work builds upon a wealth of graph theoretic and graph representation learning works, while we
focus on a supervised, inductive setting.

Even though GNN architectures were originally classified as spectral or spatial, we abstain from
this division as recent research has demonstrated some equivalence of the graph convolution process
regardless of the choice of convolution kernels [2, 7]. Spectrally-motivated methods are often
theoretically founded on the eigendecomposition of the graph Laplacian matrix (or an approximation
thereof) and, hence, corresponding convolutions capture different frequencies of the graph signal.
Early works in this space include ChebNet [10] and its more efficient 1-hop version by Kipf et
al. [24], which offers a linear function on the graph Laplacian spectrum. Levie et al. [28] proposed
CayleyNets, an alternative rational filter.

Message passing neural networks (MPNNs) [15] perform a transformation of node and edge repre-
sentations before and after an arbitrary aggregator (e.g. sum). Graph attention networks (GATs) [44]
aimed to augment the computations of GNNs by allowing graph nodes to “attend” differently to
different edges, inspired by the success of transformers in NLP tasks. One of the most relevant works
was proposed by Beaini et al. [4], i.e. directional graph networks (DGN). DGN uses the gradients of
the low-frequency eigenvectors of the graph Laplacian, which are known to capture key information
about the global structure of the graph and prove that the aggregators they construct using these
gradients lead to more discriminative models than standard GNNs according to the 1-WL test. Prior
work [32] used higher-order (k-dimensional) GNNs, based on k-WL, and a hierarchical variant and
proved theoretically and experimentally the improved expressivity in comparison to other models.

Other notable works include Graph Isomorphism Networks (GINs) [47], which represent a simple,
maximally-powerful GNN over discrete-featured inputs. Hamilton et al. [18] proposed a method to
construct node representations by sampling a fixed-size neighborhood of each node and then perform-
ing aggregation over it, which led to impressive performance on large-scale inductive benchmarks.
Bouritsas et al. [6] use topologically-aware message passing to detect and count graph substructures,

2

while Bodnar et al. [5] propose a message-passing procedure on cell complexes motivated by a novel
color refinement algorithm that proves to be powerful for molecular benchmarks. Meanwhile, Horn et
al. [19] propose a layer based on persistent homology to incorporate global topological information.

Expressivity. Techniques that improve a GNN’s expressive power largely fall under three broad
directions. While we focus on the feature-based direction in this paper, we also acknowledge that it in
no way compels the GNN to use the additional provided features. Hence, we briefly survey the other
two, as an indication of the future research in affinity-based GNNs we hope this work will inspire.

Another avenue involves modulating the message passing rule to make advantage of the desired
computations. Popular recent examples of this include DGN [4] and LSPE [12]. DGNs leverage
the graph’s Laplacian eigenvectors, but they do not merely use them as input features; instead, they
define a directional vector field based on the eigenvectors, and use it explicitly to anisotropically
aggregate neighbourhoods. LSPE features a “bespoke pipeline” for processing positional inputs.

The final direction is to modulate the graph over which messages are passed, usually by adding new
nodes that correspond to desired substructures. An early proponent of this is the work of [32], which
explicitly performs message passing over k-tuples of nodes at once. Recently, scalable efforts in this
direction focus on carefully chosen substructures, e.g., junction trees [13], cellular complexes [5].

3 Affinity Measures and GNNs

3.1 Random Walks, Hitting and Commute Times

Let G = (V,E) be a graph of vertices V and edges E ⊆ V × V between them. We define several
natural properties of a graph that arise from a random walk. A random walk on G starting from a
node u is a Markov chain on the vertex set V such that the initial vertex is u, and at each time step,
one moves from the current vertex to a neighbor, chosen with probability proportional to the weight
of outgoing edges. We will use π to denote the stationary distribution of this Markov Chain. For
random walks on weighted, undirected graphs, we know that πu = du

2M , where du is the weighted
degree of node u, and M is the sum of edge weights.

The hitting time Huv from u to v is defined as the expected number of steps for a random walk
starting at u to hit v. We can also define the commute time between u and v as Kuv = Huv +Hvu,
the expected round-trip time for a random walk starting at u to reach v and then return to u.

3.2 Effective Resistance

A closely related quantity is the measure of effective resistances in undirected graphs. This quantity
corresponds to the effective resistance if the whole graph was replaced with a circuit where each
edge becomes a resistor with resistance equal to the reciprocal of its weight. We will use Res(u, v) to
denote the effective resistance between nodes u and v. For undirected graphs, it is known that [30]
the effective resistance is proportional to the commute time, Res(u, v) = 1

2MKuv .

Our broad goal is to incorporate effective resistances and hitting times as edge features in an MPNN.
In Section 3.4, we will show they can provably improve MPNNs’ expressivity.

3.3 Resistive Embeddings

Effective resistances allow us to define the resistive embedding, a mapping that associates each node
v of a graph G = (V,E,W), where W are the non-negative edge weights, with an embedding vector.
Before we specify the resistive embedding, we define a few terms. Let L = D − A be the graph
Laplacian ofG, whereD ∈ Rn×n is the diagonal matrix containing the weighted degree of each node
andA ∈ Rn×n is the adjacency matrix, whose (i, j)th entry is equal to the edge weight between i and
j, if it exists; and 0 otherwise. Let B be the m× n edge-node incidence matrix, where |V | = n and
|E| = m, defined as follows: The i-th row of B corresponds to the i-th edge ei = (ui, vi) of G and
has a +1 in the ui-th column and a −1 in the vi-th column, while all other entries are zero. Finally
we will use C ∈ Rm×m to denote the conductance matrix, which is a diagonal matrix with Cii being
the weight of ith edge. It is easy to verify that BTCB = L. Even though L is not invertible, its
null-space consists of the indicator vectors for every connected component of G. For example, if G is

3

connected, then L’s nullspace is spanned by the all-1’s vector 2. Hence, for any vector x orthogonal
to all-1’s, L · L†x = x, where L† is the pseudo-inverse.

We can express effective resistance between any pair of nodes using Laplacian matrices [30] as
Res(u, v) = (1u − 1v)

TL†(1u − 1v), where 1v is an n-dimensional vector specifying the indicator
for node v. We are now ready to define the resistive embedding.

Definition 3.1. (Effective Resistance Embedding) rv = C1/2BL†1v.

A key property is that the effective resistance between two nodes in the graph can be obtained easily
from the distance between their corresponding embeddings (see proof in Appendix C):
Lemma 3.2. For any pair of nodes u, v, we have ∥ru − rv∥22 = Res(u, v).

One can easily check that any rotation of r also satisfies Lemma 3.2, since rotations preserve
Euclidean distances; more generally, if U is an orthonormal matrix, then Ur is also a valid resistive
embedding. This poses a challenge if we want to use the resistive embeddings as node or edge
features: we want a way to enforce that a (G)NN using them will do so in a way that is invariant or
equivariant to any rotations of the embeddings. In our current work, we rely on data augmentation: at
every training iteration, we apply random rotations to the input ER embeddings.

Remark. While data augmentation is a popular approach for promoting invariant and equivariant
predictions, it is only hinting to the network that such predictions are favourable. It is also possible,
in the spirit of the geometric deep learning blueprint [7], to combine ER embeddings with an O(n)-
equivariant GNN, which rigorously enforces rotational equivariance. A popular approach to building
equivariant GNNs has been proposed by [39], though it focuses on the full Euclidean group E(n)
rather than O(n). We leave this exploration to future work.
Definition 3.3. Let p :=

∑
u πuru be the mean of effective resistance embedding.

We might view p as a “weighted mean”3 of r. We will define the hitting time radius, Hmax, of a
given graph as the maximum hitting time between any two nodes:
Definition 3.4 (Hitting Time Radius). Hmax := maxu,vHu,v .

We will need the following to bound the hitting times we computed:

Lemma 3.5. For any node u, ∥ru − p∥2 ≤ Hmax

M .

The proof follows easily from the fact that p is a convex combination of all r’s and Jensen’s inequality.

3.4 Incorporating Features into MPNNs

We reiterate that our main aim is to demonstrate (theoretically and empirically) that there are good
reasons to incorporate affinity-based measures into GNN computations.

In the simplest instance, a method that improves a GNN’s expressive power may compute additional
features (positional or structural) which would assist the GNN in discriminating between examples
it otherwise wouldn’t (easily) be able to. These features are then appended to the GNN’s inputs
for further processing. For example, it has been shown that endowing nodes with a one-hot based
identity is already sufficient for improving expressive power [33]; this was then relaxed to any
randomly-sampled scalar feature by [38]. It is, of course, possible to create dedicated features that
even count substructures of interest [6]. Further, the adjacency information can be factorised [37] or
eigendecomposed [12] to provide useful structural embeddings for the GNN.

We will focus our attention on exactly this class of methods, as it is a lightweight and direct way of
demonstrating improvements from these computations. Hence, our baselines will all be instances of
the MPNN framework [15], which we will attempt to improve by endowing them with affinity-based
features. We start by theoretically proving that these features indeed improve expressive power:
Theorem 3.6. MPNNs that make use of any one of (a.) effective resistances, (b.) hitting times, (c.)
resistive embeddings are strictly more powerful than the WL-1 test.

2Throughout this section, we will assume that our graph is connected. However everything applies to
disconnected graphs, too.

3Note that the average of all ru’s will be 0. If the graph is regular, then p will also be 0.

4

Proof. Since the networks in question arise from augmenting standard MPNNs with additional
node/edge features, we have that these networks are at least as powerful as the 1-WL test.

In order to show that these networks are strictly more powerful than the 1-WL test, it suffices to
show the existence of a graph for which our affinity measure based networks can distinguish between
certain nodes that a standard GNN (limited by the 1-WL test) cannot.

We present an example of a 3-regular graph on 8 nodes in Figure 1. It is well-known that a standard
GNN that is limited by the 1-WL test cannot distinguish any pair of nodes in a regular graph, as
the computation tree rooted at any node in the graph looks identical. However, there are three
isomorphism classes of nodes in the above graph (denoted by different colors), namely, V1 = {1, 2},
V2 = {3, 4, 7, 8}, and V3 = {5, 6}.

We now show that GNNs with affinity based measures can distinguish between a node in Vi and a
node in Vj , for i ̸= j. We note that the hitting time from a to b depends only on the isomorphism
classes of a and b. Thus, we write ri,j as the effective resistance between a node in Vi and a node in
Vj . Note that ri,j = rj,i, and it is easy to verify that:

r1,1 = 2/3, r2,2 = 15/28, r3,3 = 4/7

r1,2 = r2,1 = 185/336

r2,3 = r3,2 = 209/336.

Hence, it follows that in a message passing step of an MPNN that uses effective resistances, vertices
in V1, V2, and V3 will aggregate feature multisets {r1,1, r1,2, r1,2} = {2/3, 185/336, 185/336},
{r2,1, r2,2, r2,3} = {185/336, 15/28, 209/336}, and {r2,3, r2,3, r3,3} = {209/336, 209/336, 4/7},
respectively, all of which are all distinct multisets. Hence, such an MPNN can distinguish nodes in
Vi and Vj , i ̸= j for a suitable aggregation function.

If, instead of effective resistance, we use hitting time features or resistive embeddings, our results still
hold. This is because, as we showed previously, the effective resistance between nodes is a function of
the two hitting times in either direction, as well as of the resistive embeddings of the nodes. In other
words, if either hitting time features or resistive embeddings are used as input features for an MPNN,
this MPNN would be able to compute the effective resistance features by applying an appropriate
function (e.g., Lemma 3.2 for the case of resistive embeddings). Having computed these features, the
MPNN can distinguish any two graphs that the MPNN with effective resistance features can.

3.5 Effective Resistance vs. Shortest Path Distance

Figure 1: Degree 3 graph on 8
nodes, with isomorphism classes
indicated by colors. While nodes
of the same color are structurally
identical, nodes of different col-
ors are not. A standard GNN lim-
ited by the 1-WL cannot distin-
guish between nodes of different
colors. However, affinity based
networks that use effective resis-
tances, hitting times, or resistive
embeddings can distinguish every
pair of such nodes.

It is interesting to ask how effective resistances compare with
shortest path distances (SPDs) in GNNs, given the plethora of
recent works that make use of SPDs (e.g., [49, 52, 29]). The
most direct comparison of our effective resistance-based MPNNs
would be to use SPDs as edge features in the MPNNs. However,
note that SPDs along graph edges are trivial (unlike effective
resistances, which incorporate useful information about the global
graph structure).

An alternative to edge features would be to use (a) SPDs to a
small set of anchor nodes as features in an MPNN (e.g., P-GNN
[52]) or (b) a dense featurization incorporating shortest paths
between all pairs of nodes (e.g., the dense attention mechanism in
Graphormer [49]). We remark that the latter approach typically
incurs an O(n2) overhead, which our MPNN-based approach
avoids.

We empirically compare our models to MPNNs that use ap-
proaches (a) and (b). Results on the PNA dataset show that our
effective resistance-based GNNs outperform these approaches.
Furthermore, we complement the empirical results with a theoret-
ical result (see Appendix D) showing that under a limited number of message-passing steps, effective
resistance features can allow one to distinguish structures that cannot be done using shortest path
features. This provides some insight into why effective resistances can capture structure in GNNs

5

that SPDs are unable to. We describe the result below. We point the reader to Appendix D for a proof
of Theorem D.1.

4 Efficient Computation of Affinity Measures

In order to use our features, it is important that they be computable efficiently. In this section, we
show how to compute or approximate the various random walk-based affinity measures. We share the
results of our method on large-scale graphs in Section 5.4.

4.1 Reducing Dimensionality of Resistive Embeddings

Table 1: log(MSE) on the PNA test dataset.

Node tasks Graph tasks
Model Avg score SSSP Ecc Lap feat Conn Diam Spec rad

GAT -1.730 -2.213 -1.935 -2.644 -0.618 -1.430 -1.538
GCN -1.592 -2.283 -1.978 -1.698 -0.618 -1.432 -1.541

MPNN -2.665 -2.235 -2.419 -3.116 -1.887 -2.681 -3.652
MPNN (rand. feat.) -2.490 -2.136 -1.808 -3.873 -1.696 -2.614 -2.813

DGN (features) -2.743 -2.165 -1.911 -4.184 -1.858 -2.814 -3.528
DGN (features) + ER embed + HT -2.938 -2.360 -2.949 -3.689 -1.744 -3.060 -3.823

ER GNN -2.779 -2.146 -1.869 -3.945 -1.962 -2.940 -3.811
ER (node) embed. -2.658 -2.245 -2.493 -3.533 -1.649 -2.886 -3.144
ER (edge) embed. -2.789 -2.266 -2.125 -4.253 -1.664 -2.807 -3.617

Hitting Times -2.816 -2.189 -1.904 -4.397 -1.888 -2.796 -3.720

All ER features -3.106 -2.789 -3.082 -4.047 -1.858 -2.894 -3.962

Given their higher dimensionality,
we might find it beneficial to use
resistive embeddings as GNN fea-
tures instead of the effective resis-
tance. Now, the difficulty with us-
ing resistive embeddings directly
as GNN features is the fact that
the embeddings have dimension
m, which can be quite large, e.g.,
up to n2 for dense graphs. It was
shown by [41] that one can reduce
the dimensionality of the embed-
ding while approximately preserving Euclidean distances. The idea is to use a random projection via
a constructive version of the Johnson-Lindenstrauss Lemma:

Lemma 4.1 (Constructive Johnson-Lindenstrauss). Let x1, x2, . . . , xn ∈ Rd be a set of n points;
and let α1, α2, . . . , αm ∈ Rn be fixed linear combinations. Suppose Π is a k × d matrix whose
entries are chosen i.i.d. from a Gaussian N(0, 1) and consider x̂i := 1√

k
Πxi.

Then, it follows that for k ≥ C log(mn)/ϵ2, with probability 1 − o(1), we have ∥
∑

j αi,j x̂j∥2 =

(1± ϵ)∥
∑

j αi,jxj∥22 for every 1 ≤ i ≤ m.

Using triangle inequality, we can see that the inner products between fixed linear combinations are
preserved up to some additive error:

Corollary 4.2. For any fixed vectors α, β ∈ Rn, if we let X :=
∑

i αixi, X̂ :=
∑

i αix̂i and
similarly Y :=

∑
i βixi, Ŷ :=

∑
i βix̂i; then:∣∣∣⟨X,Y ⟩ − ⟨X̂, Ŷ ⟩

∣∣∣ ≤ ϵ

2

(
∥X∥2 + ∥Y ∥2

)
.

Therefore, we can choose a desired ϵ > 0 and k = O(log(n)/ϵ2) and instead use r̂ : V → Rk as the
embedding, where

r̂v =
1√
k
ΠBL†ev (1)

for a randomly chosen k × d matrix Π whose entries are i.i.d. Gaussians from N (0, 1). Then, by
lemma 3.2 and lemma 4.1, we have that for every edge (u, v) ∈ E,

∥r̂u − r̂v∥22 = (1± 3ϵ)Res(u, v)

with probability at least 1− 1
n2 .

So the computation of random embeddings, r̂, requires solving O((n+m) log n/ϵ2) many Lapla-
cian linear systems. By using one of the nearly linear time Laplacian solvers [26], we can com-
pute the random embeddings in the near-linear time. Hence the total running time becomes
O
(
(n+m) log3/2 npoly log log n/ϵ2

)
.

6

4.2 Fast Computation of Hitting Times

Note that it is not clear whether there is a fast method for computing hitting times similar to commute
times / effective resistances. The naive approach involves solving a linear system for each edge,
resulting in a running time of at least Ω(nm), which is prohibitive. One of our technical contributions
in this paper is a novel method for fast computation of hitting times. In particular, we will show how
to use the approximate effective resistance embeddings, r̂, to obtain an estimate for hitting times with
additive error. Proofs can be found in Appendix C.

Let p̂ :=
∑

u πur̂u. Just like r̂ being an approximation of r, p̂ is an approximation of p. Consider
the following quantity:

Ĥu,v = 2M⟨r̂v − r̂u, r̂v − p̂⟩. (2)

We will use this quantity as an approximation of Hu,v. In the following part, we will bound the
difference betweenHu,v and Ĥu,v . Our starting point will be expressingHu,v in terms of the effective
resistance embeddings.

Lemma 4.3. Hu,v = 2M⟨rv − ru, rv − p⟩ where p :=
∑

u πuru.

Given Lemma 4.3, we can establish the desired additive approximation property of Ĥu,v .

Lemma 4.4. |Ĥu,v −Hu,v| ≤ 3ϵHmax.

5 Experiments

As previously discussed, our empirical evaluation seeks to show benefits from endowing standard
expressive GNNs with additional affinity-based features. All architectures we experiment with will
therefore conform to the MPNN blueprint [15], which we describe in Appendix B. When relevant,
we may also note results that a particular strong baseline (e.g., DGN [4], Graphormer [48]) achieves
on a dataset of interest. Note that these baselines modulate the message passing procedure rather than
appending features and are hence a different category to our method—their performance is provided
for indicative reasons only. Where appropriate, we use “DGN (features)” to refer to an MPNN that
uses eigenvector flows as additional edge features, without modulating the mechanism. We also use
“ER (GNN)” to refer to the use of scalar effective resistance features.

5.1 PNA dataset

The first dataset we explore is the PNA dataset [9], which captures a multimodal setting. This consists
of a collection of node tasks, i.e. (1) Single-source shortest paths, (2) Eccentricity and (3) Laplacian
features, as well as graph tasks, i.e. (4) Connectivity, (5) Diameter and (6) Spectral radius. PNA
dataset is a set of structured graph tasks, and it complements our other datasets. As we can see in
Table 1, even adding a single feature, effective resistance (ER GNN), yields the best average score
compared to other models. Using hitting times as edge features improve upon effective resistances.
However once we combine all ER features, which include effective resistances, hitting times as well
as node and edge embeddings, we get the best scores. On these structured tasks, we can see that the
affinity based measures provide a significant advantage.

We also note that incorporating affinity measures as additional features to the “DGN (features)”
MPNN model also provides improvement over the standard “DGN (features)” baseline. We have
accordingly included the results of a model that uses (both node and edge) ER embeddings and hitting
time features along with DGN features.

5.2 Small molecule classification: ogbg-molhiv

The ogbg-molhiv dataset is a molecular property prediction dataset comprised of molecular graphs
without spatial information (such as atom coordinates). Each graph corresponds to a molecule, with
nodes representing atoms and edges representing chemical bonds. Each node has an associated
9-dimensional feature, containing atomic number and chirality, as well as other additional atom
features such as formal charge and whether the atom is in the ring or not. The goal is to predict
whether a molecule inhibits HIV virus replication or not. Our results are given in Table 2.

7

On this dataset, effective resistances provide an improvement over the standard MPNN. We achieve
the best performance using ER node embeddings and hitting times with random rotations. With these
features, our network achieves 79.13%± 0.358 test accuracy, which is close to DGN.

Table 2: Test % AUC-ROC on the Mol-
HIV dataset. Our results are averaged
over five seeds.

MolHIV
Test % ROC-AUC

GCN 76.06± 0.97
GIN 75.58± 1.40
MPNN 74.67± 0.19
DGN 79.70 ± 0.97
GSN (GIN + VN) 77.99± 1.00
HIMP 78.80± 0.82
GRWNN 78.38± 0.99

ER GNN 77.75± 0.426
ER (node) embed. + HT
(with random rotations)

79.13 ± 0.358

Note that we provide GSN [6], HIMP [13], and GR-
WNN [35] as baselines. HIMP and GSN exploit struc-
tural/toplogical properties; the former is specifically de-
signed for learning on molecular graphs, while the latter
incorporates graph substructures. In addition to the com-
parison to GSN as a baseline, we additionally train an
MPNN with substructure counts as additional features,
namely counts of k-cycles (k = 3, 4) and k-paths (k = 3)
as motifs (in the same vein as the approach of [6], ob-
taining a test ROC-AUC of 76.41% ± 0.42 (note that this
improves on the base MPNN test ROC-AUC of 74.67%
± 0.19). Furthermore, if we also add affinity measures (in
addition to the aforementioned substructure counts), we
obtain a test ROC-AUC of 78.50% ± 0.51. This suggests
that affinity measures provide a performance or expressiv-
ity lift beyond that of substructure counts.

5.3 Multi-task molecular classification: ogbg-molpcba

The ogbg-molpcba dataset comprises molecular graphs without spatial information (such as atom
coordinates). The aim is to classify them across 128 different biological activities. We follow the
baseline MPNN architecture from [17], including the use of Noisy Nodes.

Mirroring the evaluation protocol of [17], Table 3 compares the performance of incorporating ER
and hitting time (HT) features into the baseline MPNN models with Noisy Nodes, at various depths.
What can be noticed is that models utilising affinity-based features are capable of reaching as well as
exceeding peak test performance (in terms of mean average precision). However, what’s important
is the effect of these features at lower depths: it is possible to achieve comparable or better levels
of performance with half the layers, when utilising ER or HT features. This result illustrates the
potential benefit affinity-based computations can have on molecular benchmarks, especially when no
spatial geometry is provided as input.

Table 3: ogbg-molpcba performance for various model
depths. Best performance across all models is underlined.
NN refers to Noisy Nodes.

Test Mean Average Precision
Model 4 layers 8 layers 16 layers

MPNN [17] 27.75% ± 0.20 27.91% ± 0.22 27.64% ± 0.25
MPNN + NN 27.92% ± 0.11 28.07% ± 0.14 28.29% ± 0.13

MPNN + NN + ER (ours) 28.11% ± 0.19 28.27% ± 0.17 28.28% ± 0.14
MPNN + NN + HT (ours) 28.03% ± 0.15 28.32% ± 0.13 28.20% ± 0.19

Table 4: ogbg-molpcba perfor-
mance compared to other baselines.

Model Test Mean AP
GCN (w/ virtual node) 24.24 ± 0.34
GIN (w/ virtual node) 27.03 ± 0.23

DeeperGCN 27.81 ± 0.38
HIMP 27.39 ± 0.17

MPNN + NN + HT (ours) 28.32% ± 0.13

5.4 Scaling to larger graphs

Next, we present results on ogbn-arxiv and ogbn-mag, transductive datasets with large graphs.

5.4.1 Large citation network: ogbn-arxiv

Most expressive GNNs that rely on computation of structural features have not been scaled beyond
small molecular datasets (such as the ones discussed in prior sections). This is due to the fact
that computing them requires (time or storage) complexity which is at least quadratic in the graph
size—making them inapplicable even for modest-sized graphs. This is, however, not the case for our
proposed affinity-based metrics. We demonstrate this by scalably computing them on a larger-scale
node classification benchmark, ogbn-arxiv (a citation network with the goal of predicting the arXiv
category of each paper). ogbn-arxiv has 169,343 nodes and 1,166,243 edges, making quadratic
approaches infeasible. Using the combinatorial multigrid preconditioner [27, 25], we constructed the
effective resistances on this graph in an hour on a standard MacBook Pro 2019 laptop.

8

As MPNN models overfit this transductive dataset quite easily, the dominant approach to tackling
it are graph attention networks (GATs) [44]. Accordingly, we trained a simple four-layer GAT on
this dataset, achieving 72.02% ± 0.05 test accuracy. This compares with 71.97% ± 0.24 reported
for a related attentional baseline on the leaderboard [54], indicating that our baseline performance is
relevant.

ER embeddings on ogbn-arxiv need to be exceptionally high-dimensional to achieve accurate ER
estimates (∼11,000 dimensions), hence we were unable to use them here. However, incorporating
ER scalar features into our GAT model yielded a statistically-significant improvement of 72.14% ±
0.03 test accuracy. Hitting time features improve this result further to 72.25% ± 0.04 test accuracy.
This demonstrates that our affinity-based metrics can yield useful improvements even on larger
scale graphs, which are traditionally out of reach for methods like DGN [4] due to computational
complexity limitations.

Reliable global leaderboarding with respect to ogbn-arxiv is difficult, as state-of-the art approaches
rely either on privileged information (such as raw text of the paper abstracts), incorporating node
labels as features [46], post-processing the predictions [22], or various related tricks [46]. With that in
mind, we report for convenience that the current state-of-the-art performance for ogbn-arxiv without
using raw text is 76.11% ± 0.09 test accuracy, achieved by GIANT-XRT+DRGAT.

5.4.2 Heterogeneous citation network: ogbn-mag

We additionally present experiments on an even larger-scale network, ogbn-mag, a heterogeneous
network derived from the Microsoft Academic Graph whose nodes consist of four types of entities
(papers, authors, institutions, fields of study) and whose edges capture directed relations (e.g., a paper
cites another paper, an author is affiliated with an institution, etc.). The task is to predict the venues
of papers. The ogbn-mag dataset consists of 111,059,956 nodes and 1,615,685,872 edges.

As in the case of ogbn-arxiv, ER embeddings require an exceptionally high number of dimensions,
given the large size of the network. Hence, we incorporated ER scalar features. As a baseline, we
used a GraphSAINT [53] model that uses R-GCN aggregation [40], which reported a test accuracy of
47.51% ± 0.22 in a relevant leaderboard entry. After incorporating ER scalar features into the same
model, we obtained a statistically-signficant improvement of 47.99% ± 0.23 in test accuracy.

5.5 Large scale graph regression: OGB-LSC PCQM4Mv1

We finally include experimental results for one of the largest-scale publicly available graph regression
tasks: the PCQM4Mv1 dataset from the OGB Large Scale Challenge [20]. PCQM4M is a quantum
chemistry dataset spanning 4 million small molecules, with a task to predict the HOMO-LUMO gap,
an important quantum-chemical property. It is anticipated that structural features such as ER could
be of great help on this task, as the v1 version of it is provided without any structural information,
and the molecule’s geometry is assumed critical for predicting the gap. We report the single-model
validation performance on this dataset, in line with previous works [17, 48, 1].

Table 5: Single-model OGB-LSC PCQM4Mv1 results.

Model #Layers Noisy Nodes Validation MAE
MPNN [17] 16 Yes 0.1249 ± 0.0003
MPNN [17] 50 No 0.1236 ± 0.0001

Graphormer [48] - - 0.1234
MPNN [17] 50 Yes 0.1218 ± 0.0001

MPNN + Conformers [1] 32 Yes 0.1212 ± 0.0001

MPNN + ER (ours) 32 Yes 0.1197 ± 0.0002

PCQM4Mv1 comprises molecular
graphs which consist of bonds and atom
types, and no 3D or 2D coordinates.
We reuse the experimental setup and
architecture from [17], with only one
difference: appending the effective resis-
tance to the edge features. Additionally,
we compare against an equivalent model
which uses molecular conformations estimated by RDKit as an additional feature. This gives us a
baseline which leverages an explicit estimate of the molecular geometry.

Our results are summarised in Table 5. We once again see a powerful synergy of effective resistance-
endowed GNNs and Noisy Nodes [17], allowing us to significantly reduce the number of layers
(to 32) and outperform the 50-layer MPNN result in [17]. Further, we improve on the single-
model performance of both the Graphormer [48] (which won the original PCQM4M contest after
ensembling), and an equivalent model to ours which uses molecular conformers from RDKit. This
illustrates how ER features can be competitive in geometry-relevant tasks even against features that
inherently encode an estimate of the molecule’s spatial geometry.

9

Lastly, we remark that, to the best of our knowledge, our result is the best published single-model
result on the large-scale PCQM4M-v1 benchmark to date, and the only single model result with
validation MAE under 0.120. We hope this will inspire future investigation on affinity-related GNNs
for molecular tasks, especially in settings where spatial geometry is not reliably available.

6 Conclusions

In this paper, we proposed a message passing network based on random walk based affinity measures.

We believe that the comprehensive theoretical and practical results presented in our paper have
solidified affinity-based computations as a strong component of a graph representation learner’s
toolbox. Our proposal carefully balances theoretical expressive power, empirical performance, and
scalability to large graphs. While adding affinity measures as node/edge features provides the most
direct route to incorporating them in a graph network, an interesting future direction would be to
explore variants of GNN message functions that explicitly make use of affinity-based computations.

Acknowledgments and Disclosure of Funding

We would like to specially thank Jonathan Godwin for his extensive support in setting up the codebase
for large-scale GNNs, and Gabriele Corso for his support in setting up the PNA dataset. Additionally,
we would like to thank Beatrice Bevilacqua, Wilfried Bounsi, Larisa Markeeva and Pete Battaglia for
reviewing the paper prior to submission.

This research was funded by Google Research and Google DeepMind.

References
[1] Ravichandra Addanki, Peter W Battaglia, David Budden, Andreea Deac, Jonathan Godwin,

Thomas Keck, Wai Lok Sibon Li, Alvaro Sanchez-Gonzalez, Jacklynn Stott, Shantanu Thakoor,
et al. Large-scale graph representation learning with very deep gnns and self-supervision. arXiv
preprint arXiv:2107.09422, 2021.

[2] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam,
and Paul Honeine. Analyzing the expressive power of graph neural networks in a spectral
perspective. In International Conference on Learning Representations, 2021.

[3] Victor Bapst, Thomas Keck, A Grabska-Barwińska, Craig Donner, Ekin Dogus Cubuk, Samuel S
Schoenholz, Annette Obika, Alexander WR Nelson, Trevor Back, Demis Hassabis, et al.
Unveiling the predictive power of static structure in glassy systems. Nature Physics, 16(4):448–
454, 2020.

[4] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and
Pietro Liò. Directional graph networks. In International Conference on Machine Learning
(ICML), pages 748–758. PMLR, 2021.

[5] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural
Information Processing Systems, 34, 2021.

[6] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

[7] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[8] Siheng Chen, Sufeng Niu, Tian Lan, and Baoan Liu. Pct: Large-scale 3d point cloud represen-
tations via graph inception networks with applications to autonomous driving. In 2019 IEEE
international conference on image processing (ICIP), pages 4395–4399. IEEE, 2019.

10

[9] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems
(NeurIPS), 33, 2020.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29:3844–3852, 2016.

[11] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. Advances in Neural Information Processing Systems, 28:2224–2232,
2015.

[12] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

[13] Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for
learning on molecular graphs. arXiv preprint arXiv:2006.12179, 2020.

[14] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Ex-
act combinatorial optimization with graph convolutional neural networks. arXiv preprint
arXiv:1906.01629, 2019.

[15] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning
(ICML), pages 1263–1272. PMLR, 2017.

[16] Jonathan Godwin, Thomas Keck, Peter Battaglia, Victor Bapst, Thomas Kipf, Yujia Li, Kimberly
Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez. Jraph: A library for graph neural
networks in jax., 2020.

[17] Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia
Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple GNN regularisation
for 3d molecular property prediction and beyond. In The Tenth International Conference on
Learning Representations, 2022.

[18] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025–1035, 2017.

[19] Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten M.
Borgwardt. Topological graph neural networks. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[20] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-
lsc: A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430,
2021.

[21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[22] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining
label propagation and simple models out-performs graph neural networks. arXiv preprint
arXiv:2010.13993, 2020.

[23] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[24] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

11

[25] Ioannis Koutis and Gary L. Miller. CMG: Combinatorial Multigrid. https://github.com/
ikoutis/cmg-solver.

[26] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
linear systems. SIAM J. Comput., 43(1):337–354, 2014.

[27] Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and multilevel
solvers for problems in computer vision and image processing. Computer Vision and Image
Understanding, 115(12):1638–1646, 2011. Special issue on Optimization for Vision, Graphics
and Medical Imaging: Theory and Applications.

[28] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1):97–109, 2018.

[29] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[30] László Lovász. Random walks on graphs: A survey. Combinatorics, 2:1–46, 1993.

[31] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger
multi-scale deep graph convolutional networks. Advances in Neural Information Processing
Systems, 32:10945–10955, 2019.

[32] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4602–4609, 2019.

[33] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663–4673. PMLR, 2019.

[34] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[35] Giannis Nikolentzos and Michalis Vazirgiannis. Geometric random walk graph neural networks
via implicit layers. 2022.

[36] Sarah Parisot, Sofia Ira Ktena, Enzo Ferrante, Matthew Lee, Ricardo Guerrero, Ben Glocker,
and Daniel Rueckert. Disease prediction using graph convolutional networks: application to
autism spectrum disorder and alzheimer’s disease. Medical image analysis, 48:117–130, 2018.

[37] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the
eleventh ACM international conference on web search and data mining, pages 459–467, 2018.

[38] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),
pages 333–341. SIAM, 2021.

[39] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural
networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 9323–9332. PMLR, 2021.

[40] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In Aldo Gangemi,
Roberto Navigli, Maria-Esther Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna

12

https://github.com/ikoutis/cmg-solver
https://github.com/ikoutis/cmg-solver

Tordai, and Mehwish Alam, editors, The Semantic Web - 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, volume 10843 of Lecture Notes
in Computer Science, pages 593–607. Springer, 2018.

[41] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
J. Comput., 40(6):1913–1926, 2011.

[42] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

[43] Prasad Tetali. Random walks and effective resistance of networks. J. Theoretical Probability,
1:101–109, 1991.

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

[45] Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi, Cankun Wang,
Hongjun Fu, Qin Ma, and Dong Xu. scgnn is a novel graph neural network framework for
single-cell rna-seq analyses. Nature communications, 12(1):1–11, 2021.

[46] Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of
tricks for node classification with graph neural networks. arXiv preprint arXiv:2103.13355,
2021.

[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

[48] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform bad for graph representation? ArXiv,
abs/2106.05234, 2021.

[49] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation? In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 28877–28888, 2021.

[50] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32:9240, 2019.

[51] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 974–983, 2018.

[52] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Interna-
tional Conference on Machine Learning, pages 7134–7143. PMLR, 2019.

[53] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[54] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan:
Gated attention networks for learning on large and spatiotemporal graphs. arXiv preprint
arXiv:1803.07294, 2018.

[55] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
Neural Information Processing Systems, 31:5165–5175, 2018.

13

A Hyperparameters for PNA dataset.

In this section we provide the hyperparameters used for the different models on the PNA multitask
benchmark. We train all models for 2000 steps and with 3 layers. The remaining hyperparameters
for hidden size of each layer, learning rate, number of message passing steps (only valid for MPNN
models), number of rotation matrices and same example frequency (when relevant) are provided in
Table 6.

Table 6: Training hyperparameters for PNA dataset

Model #Hidden size L. rate #MP steps #Rotation matrices #Same Examples

GAT 64 10−4 - - -
GCN 64 10−4 - - -
DGN 256 10−3 - - -

MPNN 256 10−3 2 - -
ER GNN 128 10−3 2 - -

ER (node) embed. 64 10−3 1 - -
ER (edge) embed. 256 10−3 2 - -
ER (edge) embed. 256 10−3 2 - -

All ER features 256 10−4 2 23 9
HT + ER (rand rot) 512 10−4 2 23 4

B Details of MPNN Framework

As discussed previously, the architectures used in the experiments conform to the MPNN framework,
which allows affinity measures to be added as additional node and edge features. We describe the
details here for completeness.

Assume that our input graph, G = (V, E), has node features xu ∈ Rn, edge features xuv ∈ Rm

and graph-level features xG ∈ Rl, for nodes u, v ∈ V and edges (u, v) ∈ E . We provide encoders
fn : Rn → Rk, fe : Rm → Rk and fg : Rl → Rk that transform these inputs into a latent space:

h(0)
u = fn(xu) h(0)

uv = fe(xuv) h
(0)
G = fg(xG) (3)

Our MPNN then performs several message passing steps:

H(t+1) = Pt+1(H
(t)) (4)

where H(t) =

({
h
(t)
u

}
u∈V

,
{
h
(t)
uv

}
(u,v)∈E

,h
(t)
G

)
contains all of the latents at a particular process-

ing step t ≥ 0.

This process is iterated for T steps, recovering final latents H(T). These can then be decoded into
node-, edge-, and graph-level predictions (as required), using analogous decoder functions gn, ge and
gg:

yu = gn(h
(T)
u) yuv = ge(h

(T)
uv) yG = gg(h

(T)
G) (5)

Generally, f and g are simple MLPs, whereas we use the MPNN update rule for P . It computes
message vectors, m(t)

uv , to be sent across the edge (u, v), and then aggregates them in the receiver
nodes as follows:

m(t+1)
uv = ψt+1

(
h(t)
u ,h(t)

v ,h(0)
uv

)
, h(t+1)

u = ϕt+1

(
h(t)
u ,

∑
u∈Nv

m(t+1)
vu

)
(6)

The message function ψt+1 and the update function ϕt+1 are both MLPs. All of our models have
been implemented using the jraph library [16].

We incorporate edge-based affinity features (e.g., effective resistances and hitting times) in fe
and node-based affinity features (e.g., resistive embeddings) in fn. Note that node-based affinity

14

features may also naturally be incorporated as edge features by concatenating the node features at the
endpoints.

Occasionally, the dataset in question will be easy to overfit with the most general form of message
function (see (6)). In these cases, we resort to assuming that ψ factorises into an attention mechanism:

m(t+1)
uv = at+1

(
h(t)
u ,h(t)

v ,h(0)
uv

)
ψt+1

(
h(t)
u

)
(7)

where the attention function a is scalar-valued. We will refer to this particular MPNN baseline as a
graph attention network (GAT) [44].

C Omitted Proofs

Lemma 3.2. For any pair of nodes u, v, we have ∥ru − rv∥22 = Res(u, v).

Proof.

∥ru − rv∥22 = ∥C1/2BL−1
G (1u − 1v)∥22

= (1u − 1v)
TL†(BTCB)L†(1u − 1v)

= (1u − 1v)
TL†LL†(1u − 1v)

= (1u − 1v)
TL†(1u − 1v) = Res(u, v).

Corollary 4.2. For any fixed vectors α, β ∈ Rn, if we let X :=
∑

i αixi, X̂ :=
∑

i αix̂i and
similarly Y :=

∑
i βixi, Ŷ :=

∑
i βix̂i; then:∣∣∣⟨X,Y ⟩ − ⟨X̂, Ŷ ⟩

∣∣∣ ≤ ϵ

2

(
∥X∥2 + ∥Y ∥2

)
.

Proof. Since ⟨X,Y ⟩ = 1
4

(
∥X + Y ∥2 − ∥X − Y ∥2

)
, we can bound A =

∣∣⟨X,Y ⟩ − ⟨X̂, Ŷ ⟩
∣∣ from

above as:

A =

∣∣∣∣14 (∥X + Y ∥2 − ∥X̂ + Ŷ ∥2 − ∥X − Y ∥2 + ∥X̂ − Ŷ ∥2
)∣∣∣∣

≤ 1

4

(∣∣∣∥X̂ + Ŷ ∥2 − ∥X + Y ∥2
∣∣∣+ ∣∣∣∥X̂ − Ŷ ∥2 − ∥X − Y ∥2

∣∣∣)
≤ 1

4

(
ϵ · ∥X + Y ∥2 + ϵ · ∥X − Y ∥2

)
(8)

=
ϵ

4

(
∥X + Y ∥2 + ∥X − Y ∥2

)
=
ϵ

2

(
∥X∥2 + ∥Y ∥2

)
,

where (8) follows from Lemma 4.1 with probability 1 − o(1), by our choice of k (as Lemma 4.1
guarantees that each of ∥X̂ + Ŷ ∥2 = (1± ϵ)∥X + Y ∥2 and ∥X̂ − Ŷ ∥2 = (1± ϵ)∥X − Y ∥2 holds
with probability 1− o(1), and one can take a union bound over the two events).

Lemma 4.3. Hu,v = 2M⟨rv − ru, rv − p⟩ where p :=
∑

u πuru.

Proof. Consider the following expression of hitting times in terms of commute times by [43].

Hu,v =
1

2

[
Ku,v +

∑
i

πi (Kv,i −Ku,i)

]
. (9)

Dividing both sides of eq. (9) and using the relation Ku,v = 2MRes(u, v), we see that:

Hu,v

2M
=

1

2

[
Res(u, v) +

∑
i

πi (Res(v, i)− Res(u, i))

]

=
1

2

[
∥ru − rv∥2 +

∑
i

πi
(
∥rv − ri∥2 − ∥ru − ri∥2

)]
. (10)

15

Let’s focus on the inner summation. After expanding out the squared norms, we see that:∑
i

πi
(
∥rv − ri∥2 − ∥ru − ri∥2

)
=
∑
i

πi
(
∥rv∥2 − ∥ru∥2

)
− 2

∑
i

πi⟨rv − ru, ri⟩

=
(
∥rv∥2 − ∥ru∥2

)
− 2⟨rv − ru,

∑
i

πiri⟩

=
(
∥rv∥2 − ∥ru∥2

)
− 2⟨rv − ru,p⟩.

Substituting this back into eq. (10), we can express 1
2MHu,v as:

1

2

(
∥rv − ru∥2 + ∥rv∥2 − ∥ru∥2 − 2⟨rv − ru,p⟩

)
= ∥rv∥2 − ⟨ru, rv⟩ − ⟨rv − ru,p⟩ = ⟨rv − ru, rv − p⟩.

Lemma 4.4. |Ĥu,v −Hu,v| ≤ 3ϵHmax.

Proof. Using Lemma 4.3, we see that

|Ĥu,v −Hu,v| = 2M |⟨r̂v − r̂u, r̂v − p̂⟩ − ⟨rv − ru, rv − p⟩|
≤ ϵM

(
∥rv − ru∥2 + ∥rv − p∥2

)
≤ 3ϵHmax,

where we used Corollary 4.2 in the first inequality and Definition 3.4 in the last inequality.

D Comparison: Effective Resistances vs. Shortest Path Distances

Given that effective resistance (ER) captures times associated with random walks in a graph, it is
tempting to ask how effective resistances compare to shortest path distances (SPDs) between nodes in
a graph. Indeed, for some simple graphs, e.g., trees, shortest path distances and effective resistances
turn out to be identical. However, in general, effective resistances and shortest path distances behave
quite differently.

Nevertheless, it is tempting to ask how effective resistance features compare to SPD features in
GNNs, especially as there have been a number of recent model architectures that make use of SPD
features (e.g., Graphormer [49], Position-Aware GNNs [52], DE-GNN [29]). We first note that
the most natural direct comparison of our ER-based MPNNs with SPD-based networks does not
quite make sense. The reason is that the analogous comparison would be to determine the effect of
replace ERs with SPDs as features in our MPNNs. However, since our networks only use ER features
along edges of the given graph, the corresponding SPD features would then be trivial (as the SPD
between two nodes directly connected by an edge in the graph is 1, resulting in a constant feature on
every edge)!

As a result, graph learning architectures that use SPDs typically either (a.) use a densely-connected
network (e.g., Graphormer [49], which uses a densely-connected attention mechanism) that incurs
O(n2) overhead, or (b.) pick a small set of anchor nodes or landmark nodes to which SPDs from
all other nodes are computed and incorporated as node features (e.g., Position-Aware GNNs [52],
DE-GNN [29]). We stress that the former approach generally modifies the graph (by connecting
all pairs of nodes) and therefore does not fall within the standard MPNN approach, while the latter
includes architectures that fall within the MPNN paradigm.

Furthermore, we note that DE-GNNs are arguably one of the closest proposals to ours, as they
compute distance-encoded features. These features can be at least as powerful as our proposed
affinity-based features if polynomially many powers of the adjacency matrix are used. However,
for all but the smallest graphs, using this many powers will be impractical—in fact, [29] only use
powers of A up to 3, which would not be able to reliably approximate affinity-based features. We also

16

observe that the DE-GNN paper is concerned with learning representations of small sets of nodes
(e.g., node-, link-, and triangle-prediction) and does not show how to handle graph prediction tasks,
which the authors mention as possible future work. This makes a direct comparison of our methods
with DE-GNNs difficult.

D.1 Empirical Results

In an effort to empirically compare the expressivity of ER features with that of SPD features, we once
again perform experiments on the PNA dataset, picking the following baselines that make use of SPD
features:

• The first baseline is roughly an MPNN with Graphormer-based features. More precisely, it
is a densely-connected MPNN with SPDs from the original graph as edge features. In order
to retain the structure of the original graph, we also use additional edge features to indicate
whether or not an edge in the dense (complete) graph is a true edge of the original graph.
We also explore the use of the centrality encoding (in-degree and out-degree embeddings)
from Graphormer as additional node features.

• The second baseline is the Position-Aware GNN (P-GNN), which makes use of “anchor sets”
of nodes and encodes distances to these nodes.

The results of these baselines are shown in Table 7. In particular, we note that our ER-based MPNNs
outperform all aforementioned baselines.

Table 7: Results on the PNA dataset for MPNNs with Graphormer-based features (yellow) as well
as SPD-based P-GNNs (orange). Here, CE refers to the centrality encoding, which is incorporated
in the relevant MPNNs as additional node features. Similarly, SPD refers to shortest path distance
features — in the relevant MPNNs, shortest path distances between all pairs of nodes in the graph are
incorporated as edge features, along with an additional edge feature indicating whether an edge exists
in the input graph. Therefore, the MPNN baselines are all variants of the same model with additional
node/edge features. Similarly, P-GNN [52] uses SPD features with respect to a set of chosen anchor
nodes. The average score metric is, as before, the average of the log(MSE) metric over all six tasks,
as in Table 1.

Model Average score
*MPNN + CE -2.728

*MPNN (dense) + SPD -2.157
*MPNN (dense) + CE + SPD -2.107

*P-GNN -2.650
MPNN w/ resistive (edge) embeddings -2.789
MPNN w/ all affinity measure features -3.106

D.2 Theory: ER vs. SPD

In addition to experimental results, we would like to provide some theory for why effective resistances
can capture structure in GNNs that SPDs are unable to.

We will call an initialization function u 7→ h
(0)
u on nodes of a graph node-based if it assigns values

that are independent of the edges of the graph. Such an initialization is, however, allowed to depend
on node identities (e.g., for the single-source shortest path problem from a source s, one might find it
natural to define h

(0)
s = 0 and h

(0)
u = +∞ for all u ̸= s).

Consider the task of computing “single-source effective resistances,” i.e., the effective resistance
from a particular node to every other node. We show that a GNN with a limited number of message
passing steps cannot possibly learn single-source effective resistances, even to nearby nodes.

Theorem D.1. Suppose we fix k > 0. Then, given any node-based initialization function h
(0)
u , it

is impossible for a GNN to compute single-source effective resistances from a given node w to any
nodes within a k-hop neighborhood.

17

More specifically, for any update rule

m(t+1)
uv = ψt+1

(
h(t)
u ,h(t)

v , fe(xuv)
)

h(t+1)
u = ϕt+1

(
h(t)
u , f ({muv : v ∈ N (u)})

), (11)

there exists a graph G = (V,E) and u ∈ V such that after k rounds of message passing, h(k)v ̸=
Res(u, v) for some v ̸= u within a k-hop neighborhood of u.

On the other hand, there exists an initialization with respect to which k rounds of message passing
will compute the correct shortest path distances to all nodes within k-hop neighborhood.

Note that the assumption on the initialization function in the above theorem is reasonable because
enabling the use of arbitrary, unrestricted functions would allow for the possibility of precomputing
effective resistances in the graph and trivially incorporating them as node features, which would
defeat the purpose of computing them using message-passing.

Proof. Consider the following set of graphs, each on 4k + 1 nodes:

Figure 2: Both of the above graphs are on 4k+1 vertices, labeled v0, v1, . . . , v4k. The only difference
is a single edge, i.e., the graph on the left has an edge between v2k and v2k+1, while the one on the
right does not have this edge.

v0

v1

v2

v2k v2k+1

v4k

v0

v1

v2

v2k v2k+1

v4k

Let V = {v0, v1, . . . , v4k}. The first graph G = (V,E) is a cycle, while the second graph G′ =
(V,E′) is a path, obtained by removing a single edge from the first graph (namely, the one between
vk and vk+1). Suppose the edge weights are all 1 in the above graphs.

Let w = v0 be the source and let {h(0)
v : v ∈ V } be a “local” node feature initializa-

tion. Note that for any GNN (i.e., update and aggregation rules in (11), add the formal update
rule somewhere), the computation tree after k rounds of message passing is identical for nodes
v0, v1, . . . , vk, v3k+1, v3k+2, . . . , v4k (i.e., the nodes within the k-hop neighborhood of v0) in both
G and G′. This is because the only difference between G and G′ is the existence of the edge
between v2k and v2k+1, and this edge is beyond a k-hop neighborhood centered at any one of the
aforementioned nodes. Therefore, we will necessarily have that h(k)

vi is identical in both G and G′ for
i = 1, . . . , k, 3k + 1, 3k + 2, . . . , 4k.

However, it is easy to calculate the effective resistances in both graphs. In G, we have ResG(v0, vi) =
i(4k+1−i)

4k+1 , while in G′, we have ResG′(v0, vi) = min{i, 4k + 1 − i}. Therefore, ResG(v0, vi) ̸=
ResG′(v0, vi) for all i = 1, 2, . . . , k, 3k + 1, 3k + 2, . . . , 4k.

It follows that for any i = 1, 2, . . . , k, 3k + 1, 3k + 2, . . . , 4k, the execution of k message passing
steps of a GNN cannot result in h

(k)
vi = Res(v0, vi) for both G and G′, which proves the first claim

of the theorem.

18

For the second part (regarding single-source shortest paths), observe that single-source shortest path
distances can, indeed, be realized via aggregation and update rules for a message passing network. In
particular, for k rounds of message passing, it is possible to learn shortest path distances of all nodes
within a k-hop neighborhood. Specifically, for a source w, we can use the following setup: Take
hw = 0 and hu = ∞ for all u ̸= w. Moreover, for any edge (u, v), let the edge feature xuv ∈ R
simply be the weight of (u, v) in the graph. Then, take the update rule (11) with fe, ψt+1 as identity
functions and

fe(xuv) = xuv

ψt+1

(
h(t)
u ,h(t)

v , fe(xuv)
)
= h(t)

u + xuv

f(S) = min
S

{s ∈ S}

ϕt+1(a, b) = min{a, b}.

It is clear that the above update rule simply simulates the execution of an iteration of the Bellman-Ford
algorithm. Therefore, k message passing steps will simulate k iterations of Bellman-Ford, resulting
in correct shortest path distances from the source w for every node within a k-hop neighborhood.

19

	Introduction
	Related Work
	Affinity Measures and GNNs
	Random Walks, Hitting and Commute Times
	Effective Resistance
	Resistive Embeddings
	Incorporating Features into MPNNs
	Effective Resistance vs. Shortest Path Distance

	Efficient Computation of Affinity Measures
	Reducing Dimensionality of Resistive Embeddings
	Fast Computation of Hitting Times

	Experiments
	PNA dataset
	Small molecule classification: ogbg-molhiv
	Multi-task molecular classification: ogbg-molpcba
	Scaling to larger graphs
	Large citation network: ogbn-arxiv
	Heterogeneous citation network: ogbn-mag

	Large scale graph regression: OGB-LSC PCQM4Mv1

	Conclusions
	Hyperparameters for PNA dataset.
	Details of MPNN Framework
	Omitted Proofs
	Comparison: Effective Resistances vs. Shortest Path Distances
	Empirical Results
	Theory: ER vs. SPD

