
COOM: A Game Benchmark for Continual
Reinforcement Learning

Tristan Tomilin1 Meng Fang2,1 Yudi Zhang1 Mykola Pechenizkiy1

1Eindhoven University of Technology 2University of Liverpool
{t.tomilin,y.zhang5,m.pechenizkiy}@tue.nl

Meng.Fang@liverpool.ac.uk

Abstract

The advancement of continual reinforcement learning (RL) has been facing various
obstacles, including standardized metrics and evaluation protocols, demanding
computational requirements, and a lack of widely accepted standard benchmarks.
In response to these challenges, we present COOM (Continual DOOM), a continual
RL benchmark tailored for embodied pixel-based RL. COOM presents a meticu-
lously crafted suite of task sequences set within visually distinct 3D environments,
serving as a robust evaluation framework to assess crucial aspects of continual RL,
such as catastrophic forgetting, knowledge transfer, and sample-efficient learning.
Following an in-depth empirical evaluation of popular continual learning (CL)
methods, we pinpoint their limitations, provide valuable insight into the benchmark
and highlight unique algorithmic challenges. This makes our work the first to
benchmark image-based CRL in 3D environments with embodied perception. The
primary objective of the COOM benchmark is to offer the research community a
valuable and cost-effective challenge. It seeks to deepen our comprehension of
the capabilities and limitations of current and forthcoming CL methods in an RL
setting. The code and environments are open-sourced and accessible on GitHub.
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(a) CD8 Sequence. The agent is expected to locate the correct targets in the environment and eliminate them.
The tasks are based on a single scenario (Run and Gun), but the textures and in-game entities vary. The agent
needs to effectively adapt its policy to adjust to the visual distortions.

Pitfall Arms Dealer Hide and Seek Floor is Lava Chainsaw Raise the Roof Run and Gun Health Gathering

(b) CO8 Sequence. In addition to visual disparities between scenarios, the agent is presented with novel diverse
goals when exposed to a new task. These objectives are often contrasting, e.g., whereas one task requires seeking
enemies, another favours avoiding them entirely.

Figure 1: COOM sequences (encompassing tasks ordered from left to right) for task-incremental
learning are composed of diverse environments built in ViZDoom [25]. The agent perceives its
surroundings from an embodied perspective. The 4-task sequences (CD4 and CO4) are constituted
by environments in the second half, whereas CD16 and CO16 repeat the original sequence.
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1 Introduction

Deep reinforcement learning (RL) has made immense leaps forward over the past decade in the domain
of video games [68, 60, 9], robotic manipulation [28, 30, 72, 50, 76], embodied AI [65, 12, 63], and
foremost on a variety of platforms intended for RL research [44, 22, 5, 63]. However, this success has
primarily resulted from fine-tuning agents to solve specific tasks. As RL is increasingly applied to
solving real-life problems in industry, healthcare, or robotics, situations arise where the environment
and conditions are subject to rapid change. Whereas humans are able to learn to perform new similar
tasks seamlessly, this competence is still predominantly absent in RL agents, who tend to exceedingly
overfit to new tasks and forget all previously acquired competencies. A central goal of RL is thus to
build systems that can master a spectrum of skills in environments as noisy and diverse as the real
world, while being capable of continuing to learn.

Continual learning (CL) is the ability to swiftly learn consecutive tasks while maintaining adequate
performance on previously mastered problems, where they ought to reemerge [49]. The CL paradigm
emerges in RL when an agent proceeds to interact with an altered environment in the attempt to
refine its policy [54]. Whereas task boundaries in CL might be gradual and smooth, we propose to
consider learning a sequence of tasks with sudden transitions. Evaluating a CL agent usually involves
several criteria: catastrophic forgetting, forward transfer and backward transfer [59]. CL research is
particularly vital as it endorses the AI to thrive in encountered scenarios and conditions, which is
much desired for AGI, compared to just solving individual problems.

Many prominent CL platforms are predominantly meant for supervised learning and require non-
trivial adaptation for RL [47, 38, 16]. Video games act as ready-made simulation environments,
which is why RL research platforms and benchmarks have widely been based on repurposed game
engines [7, 6, 19]. There are, however, relatively few visual-based environments for CRL compared
to regular RL. Researchers must instead use ad-hoc adaptations of RL benchmarks to achieve the
desired setting. Proper virtual 3D simulation platforms and benchmarks are required to facilitate
image-based CRL research. They need to be 1) lightweight, 2) well documented, 3) easy to install
and use, 4) equipped with standardized metrics and baseline evaluations, and 5) computationally
viable to run on small-scale systems and university-level budgets.

To this end, we present COOM (Continual DOOM), a CRL benchmark for embodied pixel-based
learning on sequences of tasks with visually distinct 3D environments, designed to assess average
performance, forgetting, and forward transfer. The visual modifications manifest in 1) wall and
surface textures, 2) types, shapes, and sizes of in-game entities, and 3) modes to render objects.
Compared to existing benchmarks for pixel-based learning oriented towards CL, COOM additionally
includes a diverse set of objectives. To the best of our knowledge, this is the first benchmark
specifically targeted towards CRL in complex 3D environments with differing objectives and visuals.

The contributions of our work are three-fold: 1) We assemble 6 task sequences of different lengths,
half with task-dependent objectives, an aspect often absent in previous works. We further include
a very complex sequence, intended as a challenge to the RL community to be solved with more
advanced future algorithms. We include a demo of a trained agent performing COOM tasks. 2)
We design 8 novel ViZDoom scenarios of two difficulties with contrasting visuals and dynamics to
compose and publicly release COOM, a Continual RL benchmark. 3) Following the CL evaluation
principles from [70], we employ multiple well-known CL methods for baseline evaluations on our task
sequences, assessing prominent CL criteria. This makes our work the first to benchmark image-based
CRL in 3D environments. We demonstrate how several methods fail to achieve the CL desiderata
and how none come close to solving the complex sequence. We further elaborate on how the action
distribution provides a more comprehensive understanding of the agent’s continual progression. We
conclude that critic regularization and single output head architectures tend to diminish performance
in CL.

2 Related work

Most recent eminent CL platforms and frameworks, such as Sequoia [47], Avalanche [38], and
Continuum [16] learn from static data sets of fixed sizes [35], and are thus not predominantly
intended for RL. In CRL, the data sequence consists of different environments, and data samples
are obtained through the agent-environment interaction. Sequoia introduces metrics and baselines
aimed at CRL but only consists of simple environments like state-based manipulation tasks from
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Table 1: Comparison of existing Continual Reinforcement Learning benchmarks with COOM.

Benchmark 3D No. Task
Sequences

Embodied
View

Vision
Transfer

Objective
Transfer

Unified
Metric

Continual World [70] ✓ 2 ✗ ✗ ✓ ✓
L2Learner [23] ✓ 0 ✓ ✓ ✓ ✗
Jelly Bean World [52] ✗ 0 ✗ ✓ ✗ ✗
CORA [53] ✓/ ✗ 4 ✓/ ✗ ✓/ ✗ ✓/ ✗ ✓
CRLMaze [37] ✓ 4 ✓ ✓ ✗ ✓

COOM ✓ 7 ✓ ✓ ✓ ✓

Meta-World [73], continuous control tasks from MuJoCo [66], and Monster Kong [62]. Avalanche
RL [39] introduces a library for CRL, but only includes direct support for basic Atari [43] and
Habitat v1.0 [58] environments. Moreover, it does not present any experimental results on baseline
methods.

Most prominent modern RL platforms and benchmarks do not offer a fixed setting for CL [19, 24,
13, 63, 61, 51, 75, 14, 2]. The Atari benchmark [7] has often been employed to assess popular CL
methods [27, 59, 55]. However, the games on the platform are deeply unrelated, lacking the potential
for transfer. DeepMind Lab [6] provides a number of diverse 3D environments and MineRL
[19] incorporates many of the elements found in lifelong learning [64]. Both have widely been
used for assessing CL methods [56, 26, 55, 64]. However, neither include fixed task sequences or
standardized CL metrics, requiring users to hand-pick existing tasks or design new environments.
This causes a tedious experimental setup and provides no evident means of comparison to other
works. DeepMind Lab and ProcGen [13] use procedural content generation (PCG), which renders
them computationally expensive to run for CL. Platforms like AI2Thor [29] and iGibson [36], based
on the Unity3D game engine, are good at replicating the complexity and visual fidelity of real-world
problems. However, they are computationally expensive to simulate, and thus often infeasible for
low-budget computational setups.

Previous CRL benchmarks often exhibit certain deficiencies. CRLMaze [37], based on ViZDoom,
presents a non-stationary object-picking task, subject to visual changes. However, it lacks a com-
prehensive baseline evaluation of the most popular CL methods, does not undertake to change the
objective, and only modifies three attributes (light, textures, objects). Continual World [70] as-
sembles robotic manipulation tasks from Meta-World [73] to evaluate CRL and Jelly Bean World
[52] uses PCG to generate a 2D gridworld test bed. However, neither addresses embodied AI nor
image-based learning. L2Learner [23] creates a 3D PCG world to assess embodied agents, but lacks
baseline evaluations and only consists of 5 tasks in a single environment. CORA [53] aggregates
environments from Atari [7], ProcGen [13], MiniHack [57], and CHORES [29] into task sequences.
The first three environments are all 2D, and the latter lacks diverse visuals. We refer readers to Table 1
for the comparison. Numerous metrics have been employed throughout CRL research that attempt
to measure similar objectives [15, 10, 48]. The abundance and incoherence of metrics can create
confusion in interpreting and disentangling results.

3 Preliminaries

Reinforcement Learning from Images We formulate embodied image-based learning as a par-
tially observable Markov decision process (POMDP) [8], in which an agent interacts with an en-
vironment over a fixed horizon of discrete time steps T . A POMDP can be described as a tuple
(S,A, p, R,Ω, O, γ). At each timestep t, the environment is in some state st ∈ S. By taking an
action at ∈ A, the agent causes the environment to transition to another state st+1 with proba-
bility p = P(st+1|st, at). The agent cannot observe the full state st of the environment, but an
observation ot ∈ Ω dependent on the action at taken and new state st+1 reached with probability
O(o|st+1, a). Ω is the high-dimensional set of pixel-observations. The agent receives a reward
rt = R(st, at), which is mapped by the reward function R : S × A → R given a state and action.
Finally, γ ∈ [0, 1) is the discount factor determining how much immediate rewards are favoured
over more distant rewards. The n-step return Rt:t+n at time step t is defined as the discounted
sum of rewards, Rt:t+n =

∑n
i=1 γ

irt+i. The value function V π(s) = E
[
Rt:T |st = s, π

]
is the
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Table 2: COOM scenarios. The core properties determine 1) how the agent’s performance is
measured; 2) whether enemies exist; 3) does the agent has a weapon; 4) do items spawn on the
ground; 5) number of iterations in an episode; 6) which action can the agent execute apart from
navigation; 7) what is randomized in the environment.

Scenario Success Metric Enemies Weapon Items Max Steps Execute Stochasticity

Pitfall Distance Covered ✗ ✗ ✗ 1000 JUMP Pitfall tile locations
Arms Dealer Weapons Delivered ✗ ✓ ✓ 1000 SPEED Weapon and delivery locations
Hide and Seek Frames Alive ✓ ✗ ✓ 2500 SPEED Enemy behaviour, item locations
Floor is Lava Frames Alive ✗ ✗ ✗ 2500 SPEED Platform locations
Chainsaw Kill Count ✓ ✓ ✗ 2500 ATTACK Enemy and agent spawn locations
Raise the Roof Frames Alive ✗ ✗ ✗ 2500 USE Agent spawn location
Run and Gun Kill Count ✓ ✓ ✗ 2500 ATTACK Enemy and agent spawn locations
Health Gathering Frames Alive ✗ ✗ ✓ 2500 SPEED Health kit spawn locations

expected return from state s, when actions are selected accorded to a policy π(a|s). The action-
value function Qπ(s, a) = E

[
Rt:T |st = s, at = a, π

]
is the expected return following action a

from state s. We aim to find a policy π(at|st) that maximizes the cumulative discounted return
Eπ

[∑T
t=1 γ

trt|at ∼ π(·|st), s′t ∼ p(·|st, at), s1 ∼ p(·)
]
.

Continual Learning In the CL setting of this paper, we aim to learn a policy πθ by training an
agent sequentially on a fixed task sequence T = {T1, . . . , Tn}. The ith task is trained during the
interval t ∈ [(i− 1) ·∆, i ·∆], where ∆ is the fixed number of iterations per task, during which the
agent can only interact with the given environment. The agent thus obtains trajectories τi,1, . . . , τi,∆
from a single task to learn from, during which the POMDP to solve becomes (Si,A, pi, ri, γ).

4 COOM benchmark

The COOM (Continual DOOM) benchmark is based on ViZDoom [25], a flexible RL research
platform for learning from raw visual information, based on the engine of the classical FPS video
game Doom. ViZDoom has the benefit of being very lightweight, enabling gameplay up to 7000
FPS on a single GPU. The benchmark is comprised of 8 scenarios built in the Action Code Script
(ACS) language. Every scenario is orientated towards accomplishing a particular objective, each
having one or multiple aspects which make the environment stochastic. In Table 2, we display the
core properties of each scenario: 1) the metric for measuring agent performance, 2) are there enemies
in the environment 3) is the agent equipped with a weapon, 4) do items spawn on the ground, 5)
how many iterations an episode lasts, 6) which is the execute action, and 7) what is randomized in
the environment. A more detailed description of each scenario can be found in Appendix A. The
limitations of COOM are addressed in Appendix L.

4.1 Basic Setup

Observations The agent is limited to only observing a portion of its surroundings, having a 90
degree horizontal field of view (FoV), which ranks lower than human vision [17] and modern cameras
[74]. The observation space S is 4 stacked frames of 160 × 120 pixels in a 4:3 resolution with 3
channels of 8-bit values in RGB, which represents the partially observed environment from the first
person perspective of the embodied agent.

Action Space To facilitate the training of a CL task sequence using a single model, we re-
quire a unified action space across environments. We thus limit the full actions from the original
Doom game to suit the scenarios of our benchmark. We obtain a multi-discrete action space A
for all environments by finding the Cartesian Product of singular actions A = A1 × A2 × A3,
where A1 = {MOVE_FORWARD, NO-OP}, A2 = {TURN_LEFT, TURN_RIGHT, NO-OP}, and A3 =
{ATTACK/USE/SPEED, NO-OP}. The agent hence needs to choose one of |A| = 12 actions per
iteration. Note that the execute operation A3 is scenario-dependent as indicated in Table 2.

Rewards The core component of the reward granted in each scenario is directly tied with the
success metric (e.g., performance in Run and Gun increases when shooting a target, for which the
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(a) Default environment of Floor is Lava (left) and its
hard counterpart (right), where only 5% of the surface
tiles are platforms instead of the regular 30%. The
agent is tasked to stand on the platforms, not the lava.
The locations of all platforms are randomized after a
time interval, which is shorter in the harder version.

(b) Default environment of Arms Dealer (left) and
its hard counterpart (right), where only 1 weapon is
spawned at a time instead of the regular 5. The agent
is tasked to pick up a weapon and deliver it to the blue
platform that only appears after pickup and immedi-
ately disappears after delivery.

Figure 2: Constructing the hard COC sequence. We modify each CO8 task, leading to more sparse
and elusive rewards, to impose a more complex CL challenge.

agent is also rewarded). We further utilize reward shaping for more granular dense feedback. A
comprehensive description of reward functions is presented in Appendix B.

4.2 Task Sequences

We compose three lengths of sequences: 1) 8 unique tasks T8 = {T0, . . . , T7}, 2) including only the
second half of the former T4 = {T4, . . . , T7} to streamline the experimental process, considering the
computationally intensive nature of training RL agents, and 3) repeating the sequence T16 = T8+T8

(similar to [70]) allowing for revisiting each task in the same order. By default, the order of tasks
in a sequence is predetermined. However, we provide the option for randomizing the sequence
order, although this requires a substantially higher number of trials to ensure consistent results. This
is due to 1) the performance of most continual learning methods being heavily dependent on the
feature representation learned for the first task, and 2) the transferability of knowledge varying among
different pairs of tasks. We distinguish between two sequence modalities.

Cross-Domain Sequence In the cross-domain setting, the agent is sequentially trained on modified
versions of the same scenario. We select the Run and Gun scenario as the basis, as it best resembles
the original Doom game, requiring the agent to navigate the map and eliminate enemies by firing
a weapon. As depicted in Figure 1a, the objective and map layout remain the same across tasks,
whereas we modify the environment by 1) changing wall, ceiling and floor textures, 2) varying
enemy size, shape and type, 3) randomizing the view height of the agent, and 4) adding obstructions
which block the agent’s movement. The modifications are inspired by the LevDoom generalization
benchmark [67]. We henceforth refer to the cross-domain sequences as CD4, CD8 and CD16.

Cross-Objective Sequence In addition to changing the visuals and dynamics within a scenario, we
now design and employ new scenarios with novel objectives for consecutive tasks, as illustrated in
Figure 1b. This presents a more diverse challenge, as the goal might drastically change from locating
and eliminating enemies (Run and Gun and Chainsaw) to running away and hiding from them
(Hide and Seek). This introduces a concept in CL commonly known as Task Interference. Similarly,
the scenario Floor is Lava requires the agent to stay at a bounded location for good performance,
whereas scenarios Pitfall, Arms Dealer, Raise the Roof, and Health Gathering encourage
constant movement. We equivalently refer to the sequences as CO4, CO8 and CO16.

Cross-Objective Challenge There are two main dogmas in the RL community that dictate how to
make progress in solving real-world decision-making problems [42]. The first is usually referred to
as the generalizable agent view, in which focus should be attended towards the large-scale training of
agents that solve diverse problems, hoping that along the way, a generalist agent will evolve. Our
previously defined two task sequences endorse this philosophy. The second view, generally referred
to as deployable RL, takes a more pragmatic view by seeking to design RL algorithms that solve
particular difficult problems. To facilitate the advancement of the latter principle, we include a task
sequence in our benchmark which serves as a challenge, aimed foremost to initially be solved. We
posit that harder tasks are easier to forget in a CL setting. To this end, we create a hard counterpart
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Table 3: Results of Average Performance (AP), Forgetting (F) and Forward Transfer (FT) across 10
seeds. Extended results with 95% confidence intervals are presented in Tables 19 of Appendix N.
The result of the best performing method is highlighted in bold.

Method CD4 CO4 CD8 CO8 COC Average
AP F FT AP F FT AP F FT AP F FT AP F FT AP F FT

PackNet 0.92 0.00 0.40 0.87 0.01 -0.24 0.91 -0.01 0.19 0.82 -0.01 0.25 0.20 0.04 0.08 0.74 0.01 0.13
MAS 0.55 0.50 0.11 0.72 0.24 -0.04 0.82 0.14 0.25 0.58 0.19 0.01 0.04 0.09 0.02 0.54 0.23 0.07
AGEM 0.35 0.80 0.10 0.42 0.80 0.03 0.30 0.86 0.17 0.30 0.84 0.23 0.02 0.11 0.02 0.28 0.68 0.11
L2 0.71 0.01 -0.28 0.80 0.00 -0.60 0.87 -0.03 0.07 0.71 -0.04 -0.32 0.10 0.00 0.00 0.64 -0.02 -0.23
EWC 0.69 0.00 -0.41 0.65 0.05 -0.77 0.76 -0.04 -0.55 0.65 0.05 -0.38 0.07 0.00 -0.01 0.56 0.00 -0.43
VCL 0.46 0.77 0.21 0.40 0.82 -0.57 0.36 0.73 0.04 0.39 0.64 0.20 0.03 0.16 0.05 0.33 0.62 -0.01
Fine-tuning 0.59 0.63 0.32 0.50 0.71 -0.01 0.45 0.75 0.28 0.44 0.48 0.23 0.02 0.10 0.02 0.40 0.53 0.17
ClonEx-SAC 0.87 0.00 0.11 0.86 -0.03 -0.26 0.92 -0.03 0.13 0.89 0.00 0.27 0.13 0.01 0.03 0.73 -0.01 0.06
Perfect Memory 0.89 -0.01 0.30 0.89 0.02 0.03 - - - - - - - - - - - -

for each task in CO8, as illustrated in Figure 2. We will further refer to this sequence as COC, which
is further elaborated on in Appendix F.

4.3 Evaluation Protocol

The agent is sequentially trained on each task Ti for ∆ = 200K iterations. After every 1000 iterations,
we evaluate the policy on each task of the sequence for 10 episodes. 50K most recent trajectories are
stored in the replay buffer, which is emptied at the end of each task by default. The Cross-Domain
sequences are based on the Run and Gun scenario, in which Kill Count is the core measure of
performance. In the Cross-Objective sequences, however, the agent is expected to achieve different
goals across tasks. We are hence unable to directly use a single metric to adequately compare
performance across tasks. As it would be tedious and convoluted to compare the results between
methods on each task from a Cross-Objective sequence individually, we define a unified metric
success = fi(score) ∈ [0, 1], where score represents the task metric (see Table 2) and fi is a
function for task i that transforms the score to success. The lower bound fi(score) = 0 on Ti is
determined by the performance of a random agent, and the upper bound fi(score) = 1 by SAC
trained until convergence.

Average Performance P is the core evaluation metric in COOM and is measured across the number
of total sequence iterations T = |T | ·∆ averaging the success of all tasks T at each time step t:

P = 1
|T |

1
T

∑
Ti∈T

∑T
t=0 fi(scoret). (1)

Forgetting F quantifies the average decrease of success from the end of training each task i to the
end of the entire sequence T . For consistency, we consider k last iterations of a task:

F = 1
|T |−1

∑|T |−1
i=0

1
m

∑k−1
j=0 fi(score(i+1)·∆−j)− 1

m

∑k−1
j=0 fi(scoreT−j). (2)

Note that we exclude the final task, as no forgetting can have occurred. In the case of negative values
for forgetting (F < 0) we observe positive backward transfer.

Forward Transfer FT is measured by first finding the area under the training curve AUCi on task i
for the CL method and for the SAC baseline AUCb

i with

AUCi =
1
∆

∫ i·∆
i−1·∆ fi(scoret)dt, AUCb

i = 1
∆

∫∆

0
fb
i (scoret)dt. (3)

We can then first find the average normalized area between the curves across all tasks. Note that we
do not consider the first task, as there is no knowledge to transfer forward from previous tasks:

FT = 1
|T |−1

∑|T |
i=1

AUCi−AUCb
i

1−AUCb
i

. (4)

5 Experiments
5.1 Setup

In this section, we assess the CL desiderata of baselines from three different families of popular
CL methods on our task sequences. Regularization-based methods constrain weight updates in
order to maintain knowledge from previous tasks. L2 [27] adds a simple L2 penalty to achieve this.
MAS [3] utilizes a weighted penalty on each parameter depending on its importance to the network
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Figure 3: Visual analysis of CO8 results. 1) The average cumulative performance curves indicate a
high disparity across baselines (top). 2) ClonEx-SAC effectively mitigates forgetting according to
the continual evaluation curves of individual tasks (middle). The tasks are very diverse, as no notable
performance is reached before exposure to the task itself. 3) ClonEx-SAC successfully transfers
knowledge forward compared to the vanilla SAC, which is trained on each task from scratch (bottom).
The blue area between the curves indicates positive forward transfer and red represents its negative
counterpart.

output. EWC [27] uses the Fisher information matrix to approximate the importance of each weight.
VCL [45] uses variational inference to minimize the KL divergence between the prior and posterior
distribution of parameters. Structure-based methods preserve and update the network architecture to
efficiently learn and adapt to new tasks over time. PackNet [41] forbids any changes to parameters
that are important for previous tasks by freezing the most relevant weights at the end of each task
and pruning the rest. Rehearsal-based methods retain samples from previous tasks to constrain
forgetting. Perfect Memory [70] refrains from resetting the buffer after a task and thus remembers
everything. A-GEM [11] projects gradients from new samples as to not interfere with previous tasks.
ClonEx-SAC [71] retains some samples from previous tasks and performs behavior cloning based on
them to reduce forgetting. We also include the naïve Fine-tuning baseline, which simply continues
regular weight updates on a new task. All the CL methods take the efficient and well-known Soft
Actor-Critic (SAC) [20] as an RL training backbone. We follow the evaluation protocol outlined in
Section 4.3 to measure performance of all baselines on CD4, CO4, CD8, CO8 and COC with fixed
orders across 10 seeds controlling the pseudorandom nature of the environments. We refrain from
using random sequence orders due to the necessity for numerous runs to ensure consistent evaluation,
a demand that exceeds our available computational resources. Similarly, we exclude Perfect Memory
on 8-task sequences due to the unfeasible memory requirements for storing all trajectories. We
grant the agent full access to the task identity both at training and test time, a CL setting coined as
Task-Incremental Learning [69]. We use 95% confidence intervals for all results. Our framework is
discussed in finer detail in Appendix C.

5.2 Main Results

Performance PackNet, closely followed by ClonEx-SAC, triumphed across all sequences according
to the results in Table 3. We conjecture PackNet’s success on our benchmark to two key factors: 1)
knowing the task identity during evaluation, and 2) short task sequences with distinct boundaries, as
PackNet needs to assign a fixed fraction of parameters to each task. It is noteworthy that the top three
best-performing methods (PackNet, ClonEx-SAC, and L2) originate from different families of CL,
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Figure 4: SAC does not exhibit a loss of network plasticity on COOM. Measuring the individual
performance of each task across 5 seeds displays that repeated exposure to the same tasks throughout
10 iterations of the CO8 sequence does not hinder the capacity to reattain peak performance.

indicating that each approach has a strong potential for achieving excellent results in the benchmark.
Although Perfect Memory performed well on the 4-task sequences, it required nearly twice as
long to run, and took up 16x more memory in the process. Memory consumption and walltime
is further discussed in Appendix E. The average success curves in Figure 3 illustrate a significant
disparity in performance among our baselines. Despite an exhaustive exploration of hyperparameters,
we were unable to attain satisfactory results with AGEM and VCL. These methods ranked as the
poorest performers in our benchmark, remarkably even falling below the naïve fine-tuning approach.
Comparing results across sequence lengths, almost all methods showed higher results in CO4 than
CO8, whereas among the cross-domain sequences, the top four methods had a substantially higher
performance on the longer version. Performance related to sequence length is more extensively
analysed in Appendix G. The performance difference between CD and CO sequences are not that
staggering, indicating that visual perturbations alone, without a changing objective in our embodied
3D environments, are sufficiently challenging for our CRL baselines.

Forgetting The top four baselines excel at preserving performance on previously learned tasks,
approaching near-perfection. However, out of these four, L2 and EWC have a substantially lower
performance, indicating that regularization-based methods predominantly emphasize stability at the
expense of plasticity. Despite an extensive hyperparameter search for weaker regularization, we were
not able to achieve a more favorable stability-plasticity trade-off. In particular, a lower regularization
constant exhibited a loss of stability but no noticeable further gain in plasticity. In comparison to
good stability, AGEM and VCL experience a decline in average performance immediately after
losing access to a learned task. In terms of forgetting particular tasks, Pitfall and Arms Dealer
appear the hardest to remember given our fixed ordering of tasks in the CO sequence, as analyzed in
Appendix D.

Transfer We attribute the core capacity for transfer in our benchmark environments to navigation.
Success in most tasks heavily relies on the ability to navigate effectively (e.g., repeatedly running
into walls rarely contributes to a high reward). Being able to identify objects and entities from their
surroundings also holds significant importance for most tasks (e.g., detecting useful items to collect).
The training success curve of ClonEx-SAC in Figure 3 delineates the poor sample-efficiency of the
vanilla SAC which is unable to attain comparable performance on several tasks by learning them from
scratch. Regularization-based methods fall significantly below others in terms of utilizing acquired
competencies to effectively learn future tasks. We did not observe notable backward transfer in our
experiments.

5.3 Network Plasticity

Recent research has emphasized the importance of network plasticity in RL [1, 40, 46, 33]. To further
enhance our analysis and provide a comprehensive perspective on the ability to adapt to new targets
on our benchmark. Similar to the experimental design in [1], we aim to investigate whether our base
SAC agent experiences a decline in network plasticity when confronted with the Cross-Objective task
setting. Intriguingly, unlike the trend observed in [1], our findings diverge given the learning curves
of CO4 in Figure 4, where the agent cyclically repeats the sequence 10 times. The agent is able to
reach similar results in equal duration throughout the iterations without any noticeable deterioration.
We therefore conclude that our base SAC agent does not exhibit a decline in network plasticity when
subjected to our benchmark. An avenue for future research would be to investigate whether other
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Figure 5: PackNet quickly adapts its policy to fit a new task when training on CO8. The
stackplot (left) depicts the distribution of actions executed in the environment. For example, in
Pitfall, PackNet highly favours moving forward while accelerating to reap the highest return. The
histogram (right) indicates the mean number of action executions across the entire sequence. Actions
constituting maximal sub-actions appear to be most optimal according to PackNet.

methods, such as model-based approaches, exhibit a similar pattern. The results of CO8 and further
analysis is included in Appendix H.

5.4 Action Distributions

Since the agent has a fixed multi-discrete action space across all scenarios, we can visualize how the
action distribution shifts over time as training progresses to new tasks. We plot the actions executed by
PackNet on CO8 in Figure 5. PackNet’s high performance suggests it has obtained an effective action
distribution. We can observe how PackNet quickly manages to adjust its policy to select appropriate
actions when presented with a new task. The action distribution indicates, that on, average executing
multiple sub-actions in a single timestep is more beneficial. In Appendix M we further visualize how
our baselines are able to maintain the acquired action distribution on each given task.

5.5 Method Variations

Image Augmentation Using augmented images as input has been recognized for its potential
to enhance data diversity, mitigate catastrophic forgetting, and facilitate adaptation to changes in
data probability distribution [21]. We explore the impact of incorporating three established image
augmentation methods for RL to our selected baselines on COOM: 1) Random Convolution [34]
randomly perturbs input observations, 2) Random Shift [31] pads each image with 4 pixels (repeating
boundary pixels) and then applies a random crop, yielding the original image shifted by ±4 pixels, 3)
Random Noise [32] injects Gaussian noise into the image.

In our comparative analysis depicted in Figure 6, we can observe that random shifts and noise have
minimal impact on the performance of our baselines, whereas random convolutions significantly
degrade all methods except PackNet. They lead to substantial imbalances in the data distribution for
initial tasks, causing the policy to converge to a local minimum from which it struggles to recover. This
phenomenon is especially pronounced in regularization-based methods that rely on maintaining stable
feature representations, which are highly susceptible to disruption caused by random convolutions
due to their rigid architecture and stringent regularization. Additionally, these perturbations affect the
data distribution stored in the memory of rehearsal-based methods, diminishing their effectiveness for
future task learning. Our findings indicate that PackNet can better recover from a degenerate policy
stuck in local minima, attributed to freeing up redundant parameters after training on a task. This
suggests that architecture-based methods exhibit greater flexibility in the face of significant changes
in data distribution.

LSTM We include an LSTM encoder atop the CNN head in our model architecture to assess
its impact on our baseline methods. Employing a similar approach to a supervised CL setting has
previously been shown to be beneficial [18]. On our benchmark, however, this approach completely
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Figure 6: Performance comparison of potential method enhancements. Key observations: 1) While
most baselines are unable to learn a single task using an LSTM encoder, AGEM reaps a substantial
benefit, and PackNet remains indifferent. 2) Critic regularization has a detrimental effect on CL,
particularly on regularization-based methods. 3) Methods performing well on COOM suffer less
from only a single head output. 4) Attributed to weight-pruning, PackNet demonstrates superior
recovery from a degenerate policy under an imbalanced data distribution with random convolutions.

deteriorates the performance of most methods, rendering them unable to learn anything meaningful.
Strikingly, PackNet’s performance remained consistent, whereas AGEM experienced a substantial
increases. We hypothesize that, by virtue of capturing sequential patterns, an LSTM encoder can
facilitate more accurate and efficient retrieval of relevant experiences from the episodic memory. This
improved retrieval could enable AGEM to make better use of past knowledge when confronted with
new tasks. However, more in-depth analysis is required to confirm this.

Critic Regularization In the context of actor-critic frameworks like SAC, there is a design decision
regarding whether to regularize the critic. In some CL methods, the critic is only used during
training and only needs to store the value function for the current task, making forgetting less of a
concern. However, certain methods, such as replay-based approaches, may not easily accommodate a
framework where only the actor is regularized. We thus investigate critic regularization affects our
baselines. Figure 6 confirm the findings from [70], that regularizing the critic network has a harmful
impact for CL. This suggests that it is better to let the critic adapt freely to the current task while
prioritizing the minimizing of forgetting in the actor. However, this means that the critic needs to be
trained from scratch, which is not particularly efficient when tasks are repeated.

Output Heads In our default setup, we use a separate output head for each task, which is known to
help prevent forgetting [70]. However, this approach is inapplicable to dynamic scenarios with and
unknown number of tasks. Figure 6 depicts how a single-head architecture impacts our baselines. All
methods show a decline in performance, however ClonEx-SAC, PackNet and VCL manage to better
maintain their original performance. Extended results are presented in Appendix I.

6 Conclusion

Training proficient agents, who are able to continually adapt to learning new tasks in an altering
environment, currently remains one of the greatest challenges in RL. To aid the community in
grappling with this challenge, we presented and openly released COOM, a novel benchmark for
assessing CL in visually distinct 3D environments with diverse objectives. COOM comprises seven
task sequences of varying length, complexity, and modality, effectively demonstrating the strengths
and weaknesses of popular continual learning methods. Our experimental evaluations reveal the
impact of different variations to baseline methods, highlighting the importance of critic regularization
and task-dependent output architectures. We visually illustrate how high-performing methods quickly
adapt their policies and maintain learned action distributions across tasks within a sequence. All the
methods in our evaluations struggle with the complex COC sequence, making it a valuable testing
ground for future research, showcasing both learning challenges and transfer difficulties. COOM
serves as a crucial tool to inspire the development of more capable algorithms and we expect it to
facilitate the evaluation and comprehension of future continual reinforcement learning methods.
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Vizdoom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
conference on computational intelligence and games (CIG), pages 1–8. IEEE, 2016.

[26] Khimya Khetarpal and Doina Precup. Attend before you act: Leveraging human visual attention
for continual learning. arXiv preprint arXiv:1807.09664, 2018.

[27] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[28] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[29] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti,
Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d
environment for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[30] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning in robotics:
Applications and real-world challenges. Robotics, 2(3):122–148, 2013.

[31] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[32] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. Advances in neural information processing
systems, 33:19884–19895, 2020.

[33] Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo,
Se-Young Yun, and Chulhee Yun. Enhancing generalization and plasticity for sample efficient
reinforcement learning. arXiv preprint arXiv:2306.10711, 2023.

[34] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple
technique for generalization in deep reinforcement learning. arXiv preprint arXiv:1910.05396,
2019.

12



[35] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and
Natalia Díaz-Rodríguez. Continual learning for robotics: Definition, framework, learning
strategies, opportunities and challenges. Information fusion, 58:52–68, 2020.

[36] Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana Srivastava, Bokui
Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al. igibson 2.0: Object-centric
simulation for robot learning of everyday household tasks. arXiv preprint arXiv:2108.03272,
2021.

[37] Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide Maltoni. Continual
reinforcement learning in 3d non-stationary environments. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 248–249, 2020.

[38] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti,
Tyler L Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido M Van de Ven, et al.
Avalanche: an end-to-end library for continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3600–3610, 2021.

[39] Nicoló Lucchesi, Antonio Carta, Vincenzo Lomonaco, and Davide Bacciu. Avalanche rl: A
continual reinforcement learning library. In International Conference on Image Analysis and
Processing, pages 524–535. Springer, 2022.

[40] Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will
Dabney. Understanding plasticity in neural networks. arXiv preprint arXiv:2303.01486, 2023.

[41] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by
iterative pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 7765–7773, 2018.

[42] Shie Mannor and Aviv Tamar. Towards deployable rl–what’s broken with rl research and a
potential fix. arXiv preprint arXiv:2301.01320, 2023.

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[45] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. arXiv preprint arXiv:1710.10628, 2017.

[46] Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney,
and André Barreto. Deep reinforcement learning with plasticity injection. arXiv preprint
arXiv:2305.15555, 2023.

[47] Fabrice Normandin, Florian Golemo, Oleksiy Ostapenko, Pau Rodriguez, Matthew D Riemer,
Julio Hurtado, Khimya Khetarpal, Ryan Lindeborg, Lucas Cecchi, Timothée Lesort, et al.
Sequoia: A software framework to unify continual learning research. arXiv preprint
arXiv:2108.01005, 2021.

[48] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,
Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for
reinforcement learning. arXiv preprint arXiv:1908.03568, 2019.

[49] German I Parisi and Vincenzo Lomonaco. Online continual learning on sequences. In Re-
cent Trends in Learning From Data: Tutorials from the INNS Big Data and Deep Learning
Conference (INNSBDDL2019), pages 197–221. Springer, 2020.

[50] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE international conference
on robotics and automation (ICRA), pages 3803–3810. IEEE, 2018.

13



[51] Aleksei Petrenko, Erik Wijmans, Brennan Shacklett, and Vladlen Koltun. Megaverse: Simulat-
ing embodied agents at one million experiences per second. In International Conference on
Machine Learning, pages 8556–8566. PMLR, 2021.

[52] Emmanouil Antonios Platanios, Abulhair Saparov, and Tom Mitchell. Jelly bean world: A
testbed for never-ending learning. arXiv preprint arXiv:2002.06306, 2020.

[53] Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. Cora: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. In Conference
on Lifelong Learning Agents, pages 705–743. PMLR, 2022.

[54] Mark B Ring. Child: A first step towards continual learning. In Learning to learn, pages
261–292. Springer, 1998.

[55] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence replay for continual learning. Advances in Neural Information Processing Systems, 32,
2019.

[56] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[57] Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:2109.13202,
2021.

[58] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9339–9347, 2019.

[59] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. In International Conference on Machine Learning, pages 4528–4537.
PMLR, 2018.

[60] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[61] Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. Advances in Neural Information Processing
Systems, 34:251–266, 2021.

[62] Norman Tasfi. Pygame learning environment. https://github.com/ntasfi/
PyGame-Learning-Environment, 2016.

[63] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck,
Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-
ended learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

[64] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. A deep
hierarchical approach to lifelong learning in minecraft. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, 2017.

[65] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
23–30. IEEE, 2017.

14

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment


[66] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[67] Tristan Tomilin, Tianhong Dai, Meng Fang, and Mykola Pechenizkiy. Levdoom: A benchmark
for generalization on level difficulty in reinforcement learning. In 2022 IEEE Conference on
Games (CoG), pages 72–79. IEEE, 2022.

[68] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782,
2017.

[69] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. arXiv preprint arXiv:2302.00487, 2023.

[70] Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Contin-
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A Scenario Descriptions

In this section, we provide a description for each scenario used in our benchmark. We outline and the
reward functions.

Pitfall In this scenario, the agent is located in a very long rectangular corridor. The surface of the
area is divided into squares, of which there are 7 in each row. At the beginning of an episode, each
of those sections has a 30% chance of being turned into a pit by lowering the height of the floor in
the given area. The floor layout is randomized in every episode, so there is no one optimal route to
take. Falling into a pit instantly terminates the episode and should be avoided at all costs. Reaching
the other end of the corridor also terminates the episode. The agent is tasked to traverse along the
corridor as far as possible and potentially reach the other end. Note that there is a ∼10−5 chance that
a section of the corridor becomes untraversable due to the stochastic nature of the layout. The agent
ought to identify a safe path through the corridor and speedily navigate forwards. The agent can turn
left and right, move forward, and accelerate. The agent is proportionally rewarded for how much it
has travelled forward in the corridor, and penalized for falling into a pit.

Arms Dealer In this scenario, the agent has to pick up weapons from the ground in a square-shaped
room and deliver them to a platform that appears at a random location after a weapon is obtained.
The agent can carry multiple (the exact amount is dependent on the weapon) weapons before making
the delivery. A new weapon is spawned at a random location whenever one is picked up, i.e., there is
always a constant number of weapons on the ground. A new platform is created for every weapon
picked up. After a successful delivery, all the platforms disappear, and the agent has to start over by
collecting weapons. The agent can turn left and right, move forward, and accelerate. The agent is
rewarded for both obtaining a weapon and delivering it. Additionally, a small reward is granted for
how much the agent moves in the environment. Finally, the agent is penalized for being idle.

Hide and Seek In this scenario, the agent is randomly spawned in one of 20 possible locations
within a maze-like environment. 5 enemies are spawned at random locations at the beginning of
an episode. The enemies can only inflict damage at close distance and thus constantly attempt to
move closer to the agent. Health kits granting 25 hit points continually spawn in random locations at
specified time intervals. The objective of the agent is to survive by hiding from the enemies. The
agent should identify the enemies and attempt to constantly move away from them while collecting
the health kits when at low health. The agent can turn left and right, move forward, and run. The
agent is rewarded for movement, surviving a frame and each health item collected, and penalized for
having damage inflicted by enemies.

Floor is Lava In this scenario, the agent is located in a rectangular room divided into 16x16 equal
sized squares. The room is filled with lava, which inflicts 1 health point of damage if being stood
upon. After every fixed time interval, each square section of lava has a 20% chance of being changed
to a platform, which no longer causes damage. The objective is to survive by minimizing the time
spent standing in lava. The agent ought to identify the platforms and quickly navigate on top of them
as soon as they appear to avoid running out of health. The agent can turn left and right, move forward,
and accelerate. The agent is rewarded for surviving a frame, stepping onto a platform whilst having
previously stood in lava, and penalized for standing in lava.

Chainsaw In this scenario, the agent is randomly spawned in one of 20 possible locations within a
maze-like environment, and equipped with a chainsaw. A fixed number of enemies are spawned at
random locations at the beginning of an episode. Additional enemies will continually be added at
random unoccupied locations after each time interval. The enemies are rendered immobile, forcing
them to remain at their fixed locations. The goal of the agent is to find the enemies, walk up to melee
distance from them and saw them in half. The agent can move forward, turn left and right, and use
the chainsaw. The agent is granted a reward for moving in the environment and each enemy killed.

Raise the Roof In this scenario, the agent is randomly spawned in one of 20 possible locations
within a maze-like environment. The room has a very high ceiling at the beginning of an episode,
which, however, starts to be slowly but constantly lowered. At specific locations of the area, there are
switches on the walls that can be pressed to raise the ceiling back up a bit. After a switch is pressed,
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it disappears and can no longer be used. If the switches are not pressed with a high enough frequency,
the ceiling will eventually crush the agent, which terminates the episode. The goal of the agent is
thus to locate and press the switches to keep the ceiling high before the episodes timeouts. The agent
can move forward, turn left and right, and activate a switch. The agent is rewarded for movement,
pressing a switch, and surviving for a frame.

Run and Gun In this scenario, the agent is randomly spawned in one of 20 possible locations
within a maze-like environment, and equipped with a weapon and unlimited ammunition. A fixed
number of enemies are spawned at random locations at the beginning of an episode. Additional
enemies will continually be added at random unoccupied locations after each time interval. The
enemies are rendered immobile, forcing them to remain at their fixed locations. The goal of the agent
is to locate and shoot the enemies. The agent can move forward, turn left and right, and shoot. The
agent is granted a reward for each enemy killed.

Health Gathering In this scenario, the agent is trapped in a room with a surface, which slowly but
constantly decreases the agent’s health. Health granting items continually spawn in random locations
at specified time intervals. The default health item heals grants 25 hit points. Some environments
contain poison vials, which inflict damage to the agent instead of providing health. The objective
is to survive. The agent should identify the health granting items and navigate around the map to
collect them quickly enough to avoid running out of health. The agent can turn left and right, and
move forward. A small reward is granted for every frame the agent manages to survive.

B Reward Shaping

In this section, we present all components constituting the auxiliary reward function r of each
scenario.

Raise the Roof rt = F + c1 · s+ c2 ·
∥∥lt − lt−5

∥∥2
2
, where F = 0.01 is a constant reward granted

for surviving an iteration, s is the number of switches pressed, l represents the coordinates of the
agent’s location, c1 = 15 is the reward of pressing a switch, c2 = 0.001 scales the reward granted for
movement, and t is the time step.

Chainsaw rt = c1 ·kt+c2 ·
∥∥lt− lt−5

∥∥2
2
, where k is the number of enemies eliminated, l represents

the coordinates of the agent’s location, c1 is the reward for eliminating an enemy, c2 = 0.001 scales
the reward granted for movement, and t is the time step.

Health Gathering rt = F + c1 · 1{ht > ht−1}, where F = 0.01 is a constant reward granted for
surviving an iteration, h is the remaining health (increases when a health kit is picked up), c1 = 15
scales the reward granted for picking up a health kit, and t is the time step.

Pitfall rt = d + c1 ·max (0, xt − xt−1), where d = −1.0 is the penalty for falling into a pit, x
represents the x-axis coordinate of the agent, c1 = 0.1 scales the reward for traversing the corridor,
and t is the time step.

Run and Gun rt = c1 · kt + c2 ·
∥∥lt − lt−5

∥∥2
2
, where k is the number of enemies eliminated,

l represents the coordinates of the agent’s location, c1 is the reward for eliminating an enemy,
c2 = 0.001 scales the reward granted for movement, and t is the time step.

Floor is Lava rt = c1 ·1{ht = ht−1 ∧ ht−1 < ht−2}+ c2 ·1{ht < ht−1}, where h is the agent’s
health, c1 = 3 is the reward for stepping on a platform from lava, c2 = −0.1 is the penalty for
standing on lava, and t is the time step.

Arms Dealer rt = P + c1 ·w+ c2 ·d+ c3 ·
∥∥lt− lt−5

∥∥2
2
, where P = −0.01 is a constant penalty to

avoid passivity, w is the number of weapons acquired, d is the number of weapons delivered, c1 = 15
is the reward of acquiring a weapon, c2 = 30 is the reward for delivering a weapon, c3 = 0.001
scales the reward granted for movement, and t is the time step.
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Hide and Seek rt = F + c1 · 1{ht > ht−1}+ c2 · 1{ht < ht−1}, where F = 0.01 is a constant
reward granted for surviving an iteration, h is the remaining health (increases when a health kit is
picked up and decreases when damage is inflicted by an enemy), c1 = 5 is the reward granted for
picking up a health kit, c2 = −5 is the penalty for receiving damage from an enemy, and t is the time
step. It is relevant to note that picking up a health kit grants more health in comparison to the damage
inflicted by the enemy if it were to occur in the same time step, meaning that the agent receives a
positive reward.

C Framework

In this section, we will discuss our experimental framework in detail.

C.1 Network Architecture

We use the same convolutional encoder head as in [44] with relu activations, followed by two fully
connected layers with 256 neurons each. A Layer Normalization is applied after the first dense layer,
with a tanh activation, known to work well with Layer Normalization [4]. The second dense layer is
followed by a leaky ReLU activation (with α = 0.2). Both the actor and critic networks utilize the
presented architecture. The actor network takes an observation as input and generates a Gaussian
distribution of action probabilities corresponding to the action space. Each task has its own actor
head responsible for producing these outputs. The critic network takes the same input and produces
a scalar value for each task head. The network is equipped with multiple heads, each of which is
responsible for outputting the action distribution for one of the tasks in the sequence. Their number
of output heads is thus equal to the number of tasks in the corresponding sequence. In Appendix ??,
we showcase experiments where only a single head is employed, and the one-hot encoded task id
input is provided.

C.2 Implementation Details

During preprocessing the observation from the environment is downscaled to an 84 × 84 pixel RGB
image, and 4 of such most recent frames are stacked before fed to the network. At the start of
each task, the collected experience is emptied from the replay buffer and the agent uses random
policy exploration for 10000 steps to collect experience. The entropy regularization coefficient α is
automatically tuned such that the standard deviation of the action distribution on every dimension
matches a predefined value αtgt. When switching to a new task, we prioritize minimizing forgetting
in the actor while allowing the critic to adapt freely. By default, we thus only regularize the actor,
except for AGEM, where we found it slightly beneficial to also include the regularizing of the critic
network. We use a learning rate decay, which is reset upon the start of a new task.

The agent undergoes sequential training on each task Ti for a duration of ∆ = 200K iterations
each. After every 1000 iterations, we assess the policy’s performance on each task within the
sequence, conducting 10 episodes for evaluation. A buffer is maintained to store the 50K most
recent trajectories, which are subsequently cleared from the buffer at the conclusion of a task. When
calculating forgetting, we consider k = 10 final performance measurements of a task.

All experiments are conducted on a computer with a 20-core i9-10900K CPU and 2 GeForce RTX
3090 GPUs.

C.3 Hyperparameters

We adopt most of the hyperparameters from the original SAC algorithm [20] and Continual World
[70]. The extensive list is brought in Table 4.

D Task Recollection

The individual tasks in our benchmark may vary in overall complexity and exhibit different potential
for transfer between each other. In this section, we therefore examine the difficulty of maintaining
performance on tasks within the Cross-Objective sequence. Our analysis in Table 5 reveals that the
task Pitfall, closely followed by Hide and Seek, exhibit the highest levels of forgetting across
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Table 4: Overview of the hyperparameters used in our experiments.
Hyperparameter Value

Shared by all algorithms
optimizer Adam
initial learning rate 10−3

learning rate decay Linear
learning rate decay rate 0.1
learning rate decay steps per task 105

Adam β1, β2 0.9, 0.999
target action distribution std αtgt 0.089
hidden layer sizes 256, 256
activation convolution relu
activation dense tanh, lrelu
discount (γ) 0.99
polyak averaging interpolation factor (ρ) 0.995
frame stack 4
frame skip 4
batch size (n) 128
replay buffer size 50K
initial collect steps (binit) 104

steps per task 200K
update frequency (steps) 5000
gradient steps per update 50
number of evaluation episodes 10
regularization number of batches 10
regularization batch size 32

PackNet
retrain steps 104

gradient clipping norm 2 · 10−5

MAS
regularization coefficient 104

L2
regularization coefficient 105

EWC
regularization coefficient 250

AGEM
episodic memory per task 104

episodic batch size 128

VCL
regularization coefficient 1

ClonEx-SAC
exploration kind best return
regularization coefficient 100
episodic memory per task 104

episodic batch size 128
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Scenario PackNet MAS AGEM L2 EWC Fine-tuning VCL ClonEx-SAC Average
Pitfall 0.18 ± -0.01 0.60 ± 0.01 0.81 ± 0.06 0.04 ± 0.03 0.10 ± 0.01 0.75 ± 0.09 0.55 ± 0.04 0.00 ± 0.02 0.38 ± 0.31

Arms Dealer 0.00 ± -0.00 0.50 ± -0.14 0.63 ± -0.34 0.01 ± -0.01 0.08 ± -0.06 0.47 ± -0.08 0.63 ± -0.19 0.01 ± -0.01 0.29 ± 0.27

Hide and Seek 0.00 ± -0.01 0.25 ± -0.10 0.80 ± 0.07 -0.04 ± 0.07 0.14 ± -0.03 0.84 ± 0.05 0.76 ± -0.01 0.06 ± -0.04 0.35 ± 0.36

Floor is Lava -0.18 ± 0.07 -0.03 ± 0.01 0.85 ± -0.04 0.01 ± 0.03 -0.04 ± 0.00 -0.00 ± 0.03 0.64 ± -0.21 -0.01 ± 0.02 0.15 ± 0.35

Chainsaw -0.01 ± -0.00 -0.02 ± 0.02 0.93 ± -0.01 -0.08 ± -0.01 -0.02 ± 0.01 0.62 ± -0.08 0.61 ± -0.15 -0.07 ± 0.06 0.25 ± 0.38

Raise the Roof -0.06 ± 0.10 -0.07 ± -0.02 0.97 ± 0.02 -0.13 ± 0.01 -0.01 ± -0.02 0.46 ± -0.01 0.89 ± 0.00 -0.02 ± 0.03 0.25 ± 0.43

Run and Gun -0.01 ± 0.01 -0.02 ± 0.01 0.93 ± 0.03 -0.08 ± 0.02 -0.08 ± -0.02 0.20 ± -0.15 0.36 ± -0.08 0.00 ± -0.00 0.16 ± 0.32

Table 5: Forgetting of all methods on each individual task of the CO8 sequence, calculated as outlined
in Equation 2. The results of tasks that were most forgotten by a given method are highlighted in bold.
The final task of the sequence is omitted from the comparison, as no forgetting can have occurred.

all methods. However, it is important to note that this comparison may not accurately reflect the
inherent difficulty of each task in terms of forgetting.

The ordering of tasks within the sequence can introduce a disparity, as the policy undergoes a greater
number of weight updates based on experience gathered from later tasks before completing the entire
sequence. This dynamic impacts the difficulty of remembering tasks at the beginning of the sequence.
On the other hand, it increases the potential for backward transfer from future tasks, which could
potentially enhance performance. However, we did not observe notable instances of backward transfer
in our experiments. Consequently, we posit that tasks at the beginning may be slightly disadvantaged
in the comparison due to forgetting.

Exploring different orders of sequences would be an interesting avenue for future research. By
varying the order, we could better determine the complexity of different scenarios and their impact
on performance. This approach would provide more nuanced insights into the difficulty of each
task within the sequence. We have provided the functionality in COOM to randomize the tasks in a
sequence. However, we have not conducted any experiments in this setting, as a proper evaluation
would require numerous trials, which we lack the computational resources for.

Overall, our current analysis highlights the challenges in maintaining performance on the Pitfall
and Hide and Seek tasks. However, further investigation is necessary to fully understand the
complexities involved and to identify the most challenging scenarios within the Cross-Objective
sequence.

E Memory and Time Consumption

(a) Elapsed Real Clock-Time (b) Memory Consumption

Figure 7: Time and Memory Consumption on the CD4 task sequence

Our experiments indicate that replay-based methods consume more resources in terms of both time
and memory compared to other baselines. Figure 7a depicts the elapsed real clock-time in hours.
Most methods indicate an average runtime of 16-17 hours, whereas AGEM and Perfect Memory
take around 20 and 25 hours to complete respectively. Figure 7b depicts memory consumption in
gigabytes. Most methods exhibit an equal memory consumption of approximately 35GB, as the
replay has a fixed size of 50K trajectories. AGEM uses slightly more memory due to storing selective
episodic memory from previous tasks. Lastly, Perfect Memory clearly stands out in the comparison
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with a consumption of over 500GB. This analysis can be valuable for when resources are a critical
factor when selecting an appropriate CL method.

F Cross-Objective Challenge

The Cross-Objective Challenge (COC) is designed to be a challenge for future methods. In this
section we will describe how the task sequence is constructed, and further expand how our baseline
methods performed on the sequence. The following list outlines how each scenario is modified to
obtain a harder version.

1. Pitfall
• The chance of a tile being a pit is raised from 0.4 to 0.7.
• The actor property APROP_Speed of the agent is decreased from 1.0 to 0.7.

2. Arms Dealer
• The size of the map is increased by 50%.
• Instead of 5 weapons, only 1 is spawned at a time.
• Instead of a single weapon type (Chaingun), one of 7 weapons (BFG9000, Chaingun,
Pistol, PlasmaRifle, RocketLauncher, Shotgun, SuperShotgun) is randomly
spawned.

3. Hide and Seek
• Number of initially spawned monsters is increased from 10 to 20.
• Number of initially spawned health kits is decreased from 20 to 10.
• The actor property APROP_Speed of the agent is decreased from 1.0 to 0.7.

4. Floor is Lava
• The change of a tile being a platform is decreased from 0.1 to 0.02.
• The change interval of the platforms is decreased from 150 to 100 game tics.

5. Chainsaw
• Number of initially spawned monsters is decreased from 20 to 5.
• The spawn interval of a new monster is decreased from 90 to 30 game tics.
• Monster health is increased from 1 to 50.

6. Raise the Roof
• The matching texture of the wall sections with switches (SW1BLUE1) is changed to

(SW1GRAY1), so that it no longer differs from the rest of the wall.
7. Run and Gun

• Number of initially spawned monsters is decreased from 20 to 5.
• The spawn interval of a new monster is decreased from 90 to 30 game tics.
• Monster health is increased from 1 to 25.

8. Health Gathering
• The map layout from health_gathering is replaced with a more complex maze-like

version health_gathering_supreme from ViZDoom [25].
• The spawn interval of a new health kit is increased from 30 to 60 game tics.

We will henceforth compare results between the CO8 and COC sequences. We depict the training
curves of each individual task with its corresponding core success metric in Figure 8. We can
observe a slight performance increase in each task on COC, but it significantly falls below the CO8
counterparts. Figure 9 indicates that PackNet, the best method in our previous benchmark evaluations,
also stands out in COC. The continual evaluation results in Figure 10 further show how all displayed
methods underperform on the hard COC.
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Figure 8: Performance comparison of PackNet and MAS on individual tasks of CO8 and their
complex counterparts in COC. Each graph only depicts the time steps during which the task was
trained. COC remains unsolved for MAS and even PackNet, which was the best performing method
on other sequences.
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Figure 9: Comparison of average success between CO8 and COC.
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Figure 10: Continual evaluation results of select methods on CO8 and COC.
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G Sequence Length Comparison

Table 6: Average performance comparison of 4-task se-
quences with the 2nd half of the corresponding 8-task se-
quence.

Method CD4 CD82nd CO4 CO82nd

PackNet 0.92 ± 0.04 0.92 ± 0.03 0.87 ± 0.13 0.91 ± 0.04

MAS 0.55 ± 0.33 0.83 ± 0.16 0.72 ± 0.15 0.76 ± 0.23

AGEM 0.35 ± 0.24 0.43 ± 0.18 0.42 ± 0.25 0.35 ± 0.32

L2 0.71 ± 0.25 0.71 ± 0.12 0.80 ± 0.16 0.54 ± 0.14

VCL 0.46 ± 0.26 0.43 ± 0.17 0.40 ± 0.28 0.61 ± 0.26

Fine-tuning 0.59 ± 0.23 0.72 ± 0.18 0.50 ± 0.19 0.69 ± 0.21

Average 0.595 0.673 0.618 0.643

Another way of assessing forward
transfer would be to compare the av-
erage performance on a 4-task se-
quences with the corresponding 2nd

half of its 8-task counterpart. The
tasks and their order in this compar-
ison are the same. The only differ-
ence here is that the 8-task sequence
has had the potential to learn relevant
competencies from previous tasks in
its 1st half. If the 2nd half of the 8-
task sequence has higher performance
then this would be an indicator that
knowledge from the initial tasks has
been transferred forward to the later
ones. We present this comparison in Table 6. Across all methods, we report a 4.04% performance
increase from CO4 to CO82nd and 12.8% from CD4 to CD82nd. A performance decrease only
occurred in 3/12 of cases. We can indeed thus conclude that the 1st half of 8-task sequences fastens
learning the 2nd half. We posit that the Cross-Domain setting has higher transfer due to the shared
objective across tasks, meaning that learned behaviour can better bolster performance in further tasks.

H Network Plasticity Experiments

In our experiments for network plasticity, we halve the number of steps for each task, reducing
them to 100K, as we found it to be sufficient for convergence. The entire sequences thus lasts 4M
and 8M environment iterations in CO4 and CO8 respectively. After a task is finished, we maintain
the network weights and only reset the learning rate decay and replay buffer. Instead of measuring
Success, we assess the individual performance metric of each task. We wish to observe whether the
initial performance achieved by the agent on a given task deteriorates over successive trials when
re-encountering it. We additionally depict the learning curves of the SAC agent on the CO8 task
sequence in Figure 11.

Similar to the results on CO4 in the main paper (Figure 4), the attained peak performance remains
stable throughout the iterations. However, on CO8, we can witness a discernible dip in performance
across most tasks midway through the entire sequence, yet notably, this decline is followed by a
resurgence towards the end. Further, on CO4 we can observe that the initial iteration of some tasks is
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Figure 11: SAC does not exhibit a loss of network plasticity. Measuring the individual performance
metric of each task across 5 seeds displays that repeated exposure to the same tasks throughout 10
iterations of the CO8 sequence does not hinder the capacity to reattain peak performance.
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substantially lower than the subsequent runs. This, however, does not appear for the same tasks on
CO8, because the agent has already learned to succeed in other tasks and is capable of transferring
knowledge forward.

I Method Variations

Table 7 presents the full results of incorporating variations to our baseline methods. Figures 12
and 13 depict the average success curves of selects methods on the CO8 and CO4 task sequences
respectively. PackNet stands the strongest in terms of stability across the variations, as not a single
variations causes a substantial degradation of performance. Regularization-based methods stand out
in our evaluations as the most volatile, as their performance is very likely to completely degrade
when employed with variations. The variation that improved the performance of most methods is the
Noise augmentation.
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Figure 12: Performance comparison on the CO8 sequence of select methods between critic regular-
ization and single output with the original setting.
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Table 7: Method variation performance on CO8. Results higher than the default are highlighted in
bold.

Method Default Conv Shift Noise LSTM Single Head Critic Reg

PackNet 0.84 ± 0.07 0.72 ± 0.09 0.87 ± 0.04 0.88 ± 0.03 0.83 ± 0.06 0.68 ± 0.15 0.70 ± 0.12

MAS 0.58 ± 0.17 0.08 ± 0.07 0.48 ± 0.15 0.47 ± 0.15 0.01 ± 0.01 0.29 ± 0.18 0.25 ± 0.12

AGEM 0.30 ± 0.13 0.02 ± 0.00 0.40 ± 0.09 0.33 ± 0.02 0.48 ± 0.09 0.12 ± 0.11 0.28 ± 0.04

L2 0.73 ± 0.10 0.34 ± 0.05 0.75 ± 0.11 0.79 ± 0.08 0.01 ± 0.01 0.28 ± 0.10 0.28 ± 0.10

VCL 0.39 ± 0.15 0.05 ± 0.04 0.30 ± 0.10 0.29 ± 0.13 0.01 ± 0.00 0.31 ± 0.08 0.41 ± 0.06

ClonEx-SAC 0.89 ± 0.07 0.26 ± 0.01 0.89 ± 0.00 0.90 ± 0.06 0.02 ± 0.01 0.79 ± 0.11 0.87 ± 0.04

EWC 0.65 ± 0.13 - - - - 0.32 ± 0.15 0.26 ± 0.17

Fine-tuning 0.44 ± 0.11 - - - - 0.13 ± 0.13 -
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Figure 13: Performance comparison on the CO4 sequence of select methods between image augmen-
tation methods and and LSTM encoder with the original setting.
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J Repeated Sequences
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Figure 14: Average cumulative success off PackNet on CO16.
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Figure 15: Continual evaluation of PackNet on each task of CO16.

In line with the approach used in [70], we have repeated our core sequences to generate 16-task
sequences for both modalities. More tasks present a greater challenge in retaining previously acquired
knowledge. Additionally, it enables a thorough evaluation of how methods leverage their acquired
competencies when encountering previously learned tasks anew. Given the substantial computational
cost associated with conducting experiments on the 16-task sequences, we have limited our evaluation
to PackNet applied to CO16. We present a visual overview of the results in Figures 14 and 15.

K Cross-Domain Sequence

In this section, we provide a detailed description of the modifications implemented to compose
the Cross-Domain sequences based on the default environment of the Run and Gun scenario. The
specific modification types for each environment are displayed in Table 8.

Table 8: Environment modification types of Run and Gun
Environment Obstacles Green Resized Monsters Default Red Blue Shadows

Modification Type Decorations Textures Target & Agent Size Target Type - Textures Textures Target Rendering

Decorations: This modification involves adding various in-game elements (e.g., torches, pillars,
barrels, lamps), to the game environment at fixed locations. These decorations serve as 1) distractions
by having the agent considering them relevant, and 2) obstacles by impeding the agent’s movement.

Textures: The textures used for various game assets, such as walls, floors, and ceilings, are altered in
this modification. Different textures are applied to create distinct visual appearances for each task,
further increasing the visual disparity across tasks.

Target & Agent Size: This modification involves adjusting the width and height of targets and the
height of the agent within the game environment. Smaller or narrower targets can be more difficult to
detect. Changing the height of the agent affects the view height and thus creates a visual shift of the
perceived environment.
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Target Type: In this modification, the visual appearance of targets is altered. We use various enemies
from the original game and render them immobilized.

Target Rendering: This modification focuses on changing the visual rendering of the targets. For
example, targets can be rendered with different visual effects or styles, making them visually more
distinct or harder to detect and requiring the agent to adapt its perception and recognition abilities.

To implement these modifications, we utilize the SLADE3 tool, which enables us to customize
various aspects of the DOOM game environment. Each modification type contributes to the visual
disparity and complexity across tasks, challenging the agent’s perception, decision-making, and
adaptation capabilities, creating a comprehensive continual learning task sequence. In the following
we provide a more comprehensive description of changes.

1. Obstacles
• A total of 25 elements named Tall Blue Torch, Tall Green Torch, and Tall Red Torch

with respective in-game id’s [44, 45, 46] are constructed at fixed locations of the map,
which act as obstacles

2. Green
• Wall texture A-CAMO1
• Floor texture AQF022
• Ceiling texture DOGRMSC

3. Resized
• The actor properties APROP_ScaleX and APROP_ScaleY of enemies are randomized

in the range of [0.3, 3.0]
• The actor property APROP_ViewHeight of the agent is randomized in the range of [0.0,

70.0]
4. Monsters

• Replaced targets with immobile enemies: Arachnotron, Fatso, Cacodemon, Archvile,
Revenant

• The number of initially spawned enemies is set to 3 per type
• The actor property APROP_Invulnerable of the agent is set to True

5. Default
• The map layout originates from the ViZDoom [25] scenario health_gathering_supreme
• Wall textures ICKWALL3
• Floor texture AQF051
• Ceiling texture FLAT19
• The surface no longer inflicts damage to the agent
• Stationary targets are spawned at random locations around the map
• The target type is CommanderKeen
• The health of the target is set to 1
• The number of initially spawned targets is set to 20
• The spawn delay of every subsequent target is set to 30 game ticks
• The agent is equipped with a pistol and 200 bullets

6. Red
• Wall texture FIREWALL
• Floor texture CRACKLE4
• Ceiling texture DORED

7. Blue
• Wall texture FIREBLU2
• Floor texture FLAT14
• Ceiling texture CEIL4_3

8. Shadows
• The actor property APROP_RenderStyle of targets is set to STYLE_Shadow
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L Limitations

Sequence ordering In our benchmark, we focused on evaluating performance and transferability
in the context of a fixed sequence ordering. We acknowledge that varying the order of the sequences
could introduce additional dynamics and complexities to the continual learning (CL) process.

Different sequence orderings have the potential to impact the learning process by introducing
variations in task difficulty, temporal dependencies, or interference patterns. Exploring multiple
sequence orderings could provide valuable insights into the robustness and adaptability of CL methods
across different scenarios.

However, due to practical constraints, such as limited computational resources and time, we were
unable to thoroughly investigate the effects of sequence ordering in our experiments. Consequently,
our benchmark considers only a single predefined ordering of the sequences.

Future research endeavors could delve into the impact of sequence ordering by systematically
exploring different orderings and analyzing their effects on CL performance. This would enable
a more comprehensive understanding of the challenges and opportunities associated with varying
sequence orderings in continual learning scenarios.

Restricted Action Space In order to simplify the training process, enhance ease of learning, and
bring more focus to the continual learning paradigm, rather than very complex RL challenges, we
opted to restrict the total action space of the DOOM video game. By doing so, we only included
actions that we deemed essential for effectively achieving the established objectives.

In addition to maintaining the core actions required for navigating within the game environment, we
kept a single additional action called for each scenario, which we referred to as EXECUTE. For instance,
in some scenarios, the action resulted in the agent accelerating, while in others, it corresponded to
firing the weapon. This approach allowed us to condense the action space even further, particularly in
cross-objective sequences where certain actions would have otherwise been rendered unnecessary or
redundant in some tasks.

However, this potentially confuses the agent both when selecting the best action during training, but
also, when attempting to maintain performance on learned tasks, in which performing an action on a
previous task from the given space would result in a different action in-game compared to the one in
the task being trained. On the other hand, allowing the agent to have a broader range of actions at its
disposal may have the potential to enhance overall performance, especially when employing more
sophisticated and powerful methods. A wider variety of actions would enable the agent to explore
different strategies and potentially discover more effective approaches to achieving the objectives.

Sequence length The number of tasks in our benchmark is relatively small, and they are not
repeated. Introducing task repetition in a continual learning (CL) benchmark can yield additional
interesting observations. However, due to the extensive runtime requirements for low-level budget
setups, we opted to avoid long sequences in this benchmark.

The dimensionality of the observation space and the rendering of the environment contribute to
longer learning times for a single task. We established a fixed task length of 200K timesteps, as our
observations indicated that this was sufficient for reaching convergence. In our limited experiments
with longer task lengths, we found that no method exhibited notable performance improvement after
this number of iterations nor managed to learn anything meaningful beyond this point.

While longer task lengths and task repetition could provide valuable insights, the constraints of our
experimental setup, including limited resources and time, prevented us from exploring these aspects
in-depth. However, future studies with more resources and computational power could investigate
these factors and potentially uncover further insights in the context of continual learning benchmarks.

Task boundaries In our benchmark, we adopted the use of explicit task boundaries to define the
transitions between different tasks. While this approach provides a clear and well-defined setting for
evaluation, it does come with certain limitations.

By relying on explicit task boundaries, we assume that the learner has prior knowledge or external
cues to identify and differentiate between tasks. In real-world scenarios, however, the presence of
explicit task boundaries may not be readily available or easily discernible. Therefore, extending
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the benchmark to incorporate task inference mechanisms would be a valuable direction for future
research.

Task inference mechanisms enable the learner to autonomously detect task boundaries without explicit
supervision. Incorporating such mechanisms in the benchmark would allow for a more comprehensive
evaluation of CL algorithms that possess the capability to infer task transitions.

Additionally, the current format of the benchmark does not explicitly test algorithms’ ability to handle
continuous distributional drift. The absence of continuous drift scenarios limits the assessment of CL
methods in dynamic and evolving environments. Future iterations of the benchmark could include
settings that introduce continuous distributional drift, thereby enabling the evaluation of algorithms
that can adapt to changing data distributions over time.

M Action Distributions

Apart from visualizing the actions executed during training, it is more relevant for the CL conundrum
to observe how a particular method manages to preserve the obtained distribution after training on a
particular task has concluded and the sequence continues with new tasks being introduced. To this
end, we depict the distribution of actions continuously performed by PackNet and L2 on each task
within the CO8 task sequence in Figures 16 and 17.

Given the experimental results in Table 3, we know that PackNet and L2 significantly outperformed
VCL in both average performance and forgetting. Observing the figures on action distributions, this
manifests in VCL being noticeably incapable of maintaining the obtained distribution as new tasks
come along, whereas PackNet and L2 have minimal fluctuation after the policy has been adjusted for
a given task. We can notice that although PackNet and L2 both had a relatively high performance on
the task sequence, the distributions for particular tasks can drastically vary. This suggests that there
are a multitude of possible policies for acquiring adequate results on a task. For instance, there are
two clearly dominating actions which PackNet utilizes in Arms Dealer, whereas L2 has more variety
in the selection of actions, with MOVE_FORWARD being the most used one. Interestingly, L2 also has
low variance in the distribution before a task has been encountered, whereas for PackNet it is more
random. The L2 regularization after the first task seems to fix the distribution also for all other future
tasks.
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Figure 16: Actions executed by PackNet on CO8.
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Figure 17: Actions executed by L2 on CO8.
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Figure 18: Actions executed by VCL on CO8.
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N Extended Results and Plots

In Table 19 we present the main experimental results with 95% confidence intervals.

Sequence PackNet MAS AGEM L2 EWC VCL Fine-tuning ClonEx-SAC Perfect Memory

CD4 0.92 ± 0.02 0.55 ± 0.17 0.35 ± 0.12 0.71 ± 0.13 0.69 ± 0.08 0.46 ± 0.14 0.59 ± 0.12 0.87 ± 0.03 0.89 ± 0.05

CO4 0.87 ± 0.07 0.72 ± 0.08 0.42 ± 0.13 0.80 ± 0.08 0.65 ± 0.11 0.40 ± 0.14 0.50 ± 0.10 0.86 ± 0.04 0.89 ± 0.06

CD8 0.91 ± 0.05 0.82 ± 0.12 0.30 ± 0.10 0.87 ± 0.06 0.76 ± 0.11 0.36 ± 0.13 0.45 ± 0.11 0.92 ± 0.03 -
CO8 0.82 ± 0.09 0.58 ± 0.17 0.30 ± 0.13 0.71 ± 0.13 0.65 ± 0.13 0.39 ± 0.18 0.44 ± 0.11 0.89 ± 0.07 -
COC 0.20 ± 0.08 0.04 ± 0.02 0.02 ± 0.01 0.10 ± 0.05 0.07 ± 0.04 0.03 ± 0.02 0.02 ± 0.01 0.13 ± 0.05 -
Average 0.74 ± 0.06 0.54 ± 0.11 0.28 ± 0.10 0.64 ± 0.09 0.56 ± 0.09 0.33 ± 0.12 0.40 ± 0.09 0.73 ± 0.05 -

(a) Performance

Sequence PackNet MAS AGEM L2 EWC VCL Fine-tuning ClonEx-SAC Perfect Memory

CD4 0.00 ± 0.00 0.50 ± 0.24 0.80 ± 0.06 -0.02 ± 0.00 0.00 ± 0.01 0.77 ± 0.08 0.63 ± 0.19 0.00 ± 0.00 -0.01 ± 0.01

CO4 0.01 ± 0.01 0.24 ± 0.13 0.80 ± 0.22 0.00 ± 0.00 0.04 ± 0.05 0.82 ± 0.09 0.71 ± 0.06 -0.03 ± 0.02 0.02 ± 0.01

CD8 0.01 ± 0.00 0.14 ± 0.12 0.86 ± 0.02 -0.03 ± 0.03 -0.04 ± 0.03 0.73 ± 0.10 0.75 ± 0.07 -0.03 ± 0.02 -
CO8 -0.01 ± 0.02 0.17 ± 0.03 0.84 ± 0.03 -0.04 ± 0.02 0.02 ± 0.02 0.64 ± 0.09 0.48 ± 0.02 0.00 ± 0.01 -
COC 0.04 ± 0.00 0.09 ± 0.03 0.11 ± 0.05 0.00 ± 0.01 0.00 ± 0.00 0.16 ± 0.06 0.10 ± 0.04 0.01 ± 0.00 -
Average 0.01 ± 0.00 0.23 ± 0.10 0.68 ± 0.03 -0.02 ± 0.01 0.00 ± 0.01 0.62 ± 0.06 0.53 ± 0.06 -0.01 ± 0.01 -

(b) Forgetting

Sequence PackNet MAS AGEM L2 EWC VCL Fine-tuning ClonEx-SAC Perfect Memory

CD4 0.40 ± 0.08 0.11 ± 0.32 0.10 ± 0.21 -0.28 ± 0.32 -0.41 ± 0.10 0.21 ± 0.29 0.32 ± 0.19 0.11 ± 0.05 0.30 ± 0.15

CO4 -0.24 ± 0.32 -0.04 ± 0.06 0.03 ± 0.10 -0.60 ± 0.37 -0.77 ± 0.13 -0.57 ± 0.30 -0.01 ± 0.15 -0.26 ± 0.09 0.03 ± 0.20

CD8 0.19 ± 0.25 0.25 ± 0.03 0.17 ± 0.21 0.07 ± 0.05 -0.55 ± 0.16 0.04 ± 0.08 0.28 ± 0.11 0.13 ± 0.05 -
CO8 0.25 ± 0.05 0.01 ± 0.10 0.23 ± 0.02 -0.32 ± 0.07 -0.38 ± 0.13 0.20 ± 0.06 0.23 ± 0.04 0.27 ± 0.10 -
COC 0.08 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 -0.00 ± 0.01 -0.01 ± 0.00 0.05 ± 0.02 0.02 ± 0.00 0.03 ± 0.01 -
Average 0.13 ± 0.14 0.07 ± 0.10 0.11 ± 0.11 -0.23 ± 0.16 -0.43 ± 0.10 -0.01 ± 0.15 0.17 ± 0.10 0.06 ± 0.06 -

(c) Transfer

Figure 19: Extended results of average performance, forgetting and forward transfer with 95%
confidence intervals across 10 seeds. The result of the best performing method is highlighted in bold.
In the case of ties, the one with the highest confidence in selected.

34



0 1 2 3 4 5 6 7 8
1e5

0.0

0.5

1.0

Su
cc

es
s

PackNet

0 1 2 3 4 5 6 7 8
1e5

0.0

0.5

1.0

Su
cc

es
s

MAS

0 1 2 3 4 5 6 7 8
1e5

0.0

0.5

1.0

Su
cc

es
s

AGEM

0 1 2 3 4 5 6 7 8
1e5

0.0

0.5

1.0

Su
cc

es
s

L2

0 1 2 3 4 5 6 7 8
1e5

0.0

0.5

1.0

Su
cc

es
s

EWC

0 1 2 3 4 5 6 7 8
1e5

0.0

0.5

1.0

Su
cc

es
s

Fine-tuning

0 1 2 3 4 5 6 7 8
1e5

0.0

0.5

1.0

Su
cc

es
s

VCL

0 1 2 3 4 5 6 7 8
1e5

0.0

0.5

1.0

Su
cc

es
s

ClonEx-SAC

0 1 2 3 4 5 6 7 8
Timesteps 1e5

0.0

0.5

1.0

Su
cc

es
s

Perfect Memory

Default Red Blue Shadows

Figure 20: Continual evaluation results on the CD4 sequence.
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Figure 21: Continual evaluation results on the CO4 sequence.
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Figure 22: Continual evaluation results on the CD8 sequence.
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Figure 23: Continual evaluation results on the CO8 sequence.
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Figure 24: Forward transfer results on the CO8 sequence.
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