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Abstract

Under Display Camera (UDC) is a novel imaging system that mounts a digital
camera lens beneath a display panel with the panel covering the camera. How-
ever, the display panel causes severe degradation to captured images, such as low
transmittance, blur, noise, and flare. The restoration of UDC-degraded images
is challenging because of the unique luminance and diverse patterns of flares.
Existing UDC dataset studies focus on unrealistic or synthetic UDC degradation
rather than real-world UDC images. In this paper, we propose a real-world UDC
dataset called UDC-SIT. To obtain the non-degraded and UDC-degraded images
for the same scene, we propose an image-capturing system and an image align-
ment technique that exploits discrete Fourier transform (DFT) to align a pair of
captured images. UDC-SIT also includes comprehensive annotations missing from
other UDC datasets, such as light source, day/night, indoor/outdoor, and flare
components (e.g., shimmers, streaks, and glares). We compare UDC-SIT with
four existing representative UDC datasets and present the problems with existing
UDC datasets. To show UDC-SIT’s effectiveness, we compare UDC-SIT and a
representative synthetic UDC dataset using five representative learnable image
restoration models. The result indicates that the models trained with the synthetic
UDC dataset are impractical because the synthetic UDC dataset does not reflect
the actual characteristics of UDC-degraded images. UDC-SIT can enable further
exploration in the UDC image restoration area and provide better insights into the
problem. UDC-SIT is available at: https://github.com/mcrl/UDC-SIT.

1 Introduction

Under Display Camera (UDC) is a technology designed to place a camera module under the display
to use the UDC area as a display space and take pictures when the camera operates. Since a larger
screen-to-body ratio is a common consumer demand that leads to a trend toward bezel-less display
products [21, 26, 41], such as smartphones, laptops, tablets, and TVs, the display products equipped
with UDC will well meet such a market trend. Moreover, video conferencing uses UDC products that
enable natural eye-tracking by arranging a camera in the center of the display. However, UDC has
some drawbacks of image deterioration problems, such as low transmittance, blur, noise, and flare.

Since the pixels in the micrometer scale diffract the light traveling through the camera lens [35],
degrading image quality, UDC displays have a lower pixel density above the camera lens to reduce
transmittance loss and diffraction, as shown in Figure 1. However, a lower display resolution in the
UDC area affects natural video viewing. Thus, improving the quality of UDC images is a critical
problem. Especially UDC image reconstruction models to enable higher pixel densities around the
camera are essential to overcome the problem for more comfortable viewing.
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Figure 1: Comparison of conventional hole-display and under-display cameras. The UDC area has a
lower pixel density since the pixel pattern functions as diffraction slits. (a) Under Display Camera
(UDC). (b) Hole display camera. (c) Pixel structure of the UDC area. (d) Comparison between the
UDC area and other display area.

Several studies address the UDC image restoration problem. However, most of them [15, 50, 52]
have limitations because their datasets do not completely reflect the properties of actual UDC images
(i.e., are synthesized). A challenging problem in constructing the UDC dataset is finding a matching
pair of the ground truth and distorted UDC images, which requires significant time and effort.

Feng et al.[13] proposes a pseudo-real-world UDC dataset. However, their dataset contains images
with occlusions. Ignatov et al. [23, 24] try to match two images for the same scene captured by
different devices with different positions and angles. They use the SIFT key points [32] of paired
images and the RANSAC algorithm [16] to align the two images in a pair. However, the geometric
alignment algorithm fails to adequately perform when there is a large discrepancy in the scenes of the
two images, such as UDC degradation.
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Figure 2: The image capturing system to capture a pair of matching images (the ground-truth image
and the degraded image by the UDC). (a) The lid opens to get a ground-truth image. (b) The lid
closes to get the corresponding degraded image.

This paper proposes a new UDC dataset called UDC-SIT (UDC’s Still Images by the Thunder
Research Group). As far as we know, it is the first real-world UDC dataset to overcome the problems
of the existing UDC datasets.

We devise an image-capturing system that minimizes lens movement when capturing matching image
pairs. We cut and take the UDC area of the flexible display panel of a smartphone with a UDC (e.g.,
Samsung Galaxy Z-Fold 3 [39]). We use the piece of the display panel as a lid on the camera lens of
another smartphone with a non-UDC (e.g., Samsung Galaxy Note 10 [38]). The lid on the non-UDC
can be opened and closed. As a result, our image-capturing system has minor geometric inconsistency
compared to Feng et al. [13]. In addition, it helps to restrict rotations and tilts by the movement of
the lid to a degree that does not notably influence alignment. Figure 2 illustrates our image-capturing
system. We get a matching pair by capturing the ground-truth image with the lid off and the distorted
image with the lid on.

We compensate for the pixel-position difference between the two images for the same scene by
exploiting the discrete Fourier transform (DFT) [6]. The discrepancy in pixel positions is inevitable
because of the slight movement of the camera when opening and closing the lid.

The contributions of this paper are summarized as follows:

• We propose an image-capturing system for obtaining matched pairs of undistorted and
UDC-distorted images for the same scene.

• We propose an image aligning technique for the paired images of the same scene by
exploiting the discrete Fourier transform.
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• We provide a real-world UDC dataset, UDC-SIT, which accurately reflects actual im-
age degradations by the UDC. UDC-SIT offers a rich set of annotations that stim-
ulate research in UDC image restoration. We make UDC-SIT publicly available
(https://github.com/mcrl/UDC-SIT).

• To show UDC-SIT’s effectiveness, we compare UDC-SIT and a representative synthetic
UDC dataset using five representative learnable image restoration models.

2 Related work

Image restoration. Image restoration techniques restore a high-quality image from a degraded one.
They include denoising, deblurring, and flare removal tasks. Camera-captured images often contain
noisy and blurred pixels due to focus errors and incorrect light sensitivity. Restoring these images by
removing noise and blur is a common task. Uformer [47] is one of the leading hierarchical transformer-
based models for restoring such images. SIDD [1] comprises 30,000 noisy images captured by five
smartphone cameras in 10 different scenes under various lighting conditions. DND [34] offers 50
pairs of noisy and noiseless images of very high resolution.

Light flares degrade image quality significantly due to strong light intensities. Wu et al. [48] generate
synthetic flare removal datasets and train a neural network by modeling the optical characteristics of
flares. Also, Dai et al. [11, 12] introduce a nighttime flare removal dataset to address the limitations
of existing methods that only work well on daytime flares.

The UDC image restoration is complex, and its degradation patterns differ from other restoration
tasks of images captured by standard cameras.

Existing UDC datasets. Zhou et al. [52] tackle the UDC image restoration problem using paired
images from a Monitor Camera Imaging System (MCIS) and synthesized PSFs using optical modeling.
However, their dataset has limitations, including unrealistic flares captured from a monitor with a
limited dynamic range and inaccurate PSFs. They provide only 300 pairs of images for T-OLED and
P-OLED, respectively.

Feng et al. [15] improve the UDC dataset. To measure the PSF, they place a white point light source
one meter away from the OLED display of ZTE Axon 20 [10] and following the methodology
presented by Sun et al. [43]. By convolving the PSF with HDR images from the HDRI Haven
dataset [18], a synthetic dataset is generated. However, it lacks real-world characteristics because the
images and PSFs come from different devices. Also, the flare shapes are limited, not including the
distorted flares addressed by Yoo et al. [50].

Yoo et al. [50] introduce a synthetic UDC dataset that includes spatially varying PSFs obtained by
optical simulation using the Brown-Conrady Distortion model [46]. However, their simulated flare
distortions differ from real-world distortions, and their dataset is not publicly available.

Feng et al. [13] create a pseudo-real dataset by capturing degraded images with ZTE Axon 20
UDC [10] and ground-truth images with iPhone 13 Pro camera [25]. They face domain discrepancy
and geometric misalignment challenges. Geometric misalignment is severe due to using different
camera modules for the two paired images. AlignFormer [13] overcomes the geometric misalignment
in UDC by aligning domain information with StyleConv [28] and AdaIN [22], and geometric
information with an attention mechanism and a pre-trained optical flow estimator called RAFT [45].

DNN models for UDC image restoration. The UDC image restoration challenges [14, 53] use the
datasets by Feng et al. [15] and Zhou et al. [52]. In these challenges, most of the top-ranked teams
[31, 44, 49, 54] use the U-Net model [37] and residual networks [19] as their backbone Deep Neural
Network (DNN) model for restoration.

3 Obtaining aligned images

This section describes our alignment technique of the standard and UDC images for the same scene.
Misalignment between the two images is not due to the UDC itself but rather a problem that arises
when capturing them. Previous techniques, such as SIFT [32] and RANSAC [16], are inadequate
for this purpose because of severe degradation by the UDC. Feng et al. [13] use two cameras with
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different specifications, leading to variations in perspectives and contents between paired images.
Some tools, such as AlignFormer [13], align these images but introduce occlusion regions.

In contrast, our approach minimizes misalignment without introducing occlusion regions. After
capturing the two images with our image-capturing system, we exploit discrete Fourier transform
(DFT) to align the two paired images. We especially exploit their spatial frequency domain after the
DFT to achieve degradation-resilient alignment [9, 17, 27].

3.1 Discrete Fourier transform

DFT converts a discrete signal represented by complex exponential waves into constituent frequencies.
Equation 1 defines 2D DFT used to obtain the frequency representation of an image.

F(u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y) · e−i2π(ux
M + vy

N ), (1)

where F(u, v) denotes the frequency value, (u, v) represents a point in the frequency domain, M×N
is the image size, and f(x, y) is the pixel value at a point (x, y) in the image (i.e., in the spatial
domain). Using Euler’s formula decomposes the exponential function in Equation 1 into cosine and
sine functions, and Equation 1 becomes

F(u, v) = R(u, v) + iI(u, v), (2)

where R(u, v) and I(u, v) denote the real and the imaginary part of F(u, v), respectively. The
amplitude |F(u, v)| and phase ϕ(u, v) of F(u, v) are defined as:

|F(u, v)| =
[
R2(u, v) + I2(u, v)

] 1
2 and ϕ(u, v) = tan−1

[
I(u, v)
R(u, v)

]
. (3)

3.2 Alignment of paired images

Let M × N be the image size. To measure the difference between the degraded image (D) and
ground-truth image (G), we typically use Mean Squared Error (MSE),

MSE =

M−1∑
x=0

N−1∑
y=0

(D(x, y)−G(x, y))2. (4)

However, MSE primarily emphasizes local information at points (x, y). In contrast, the spectrum’s
value for a specific point (u, v) in the frequency domain relies on the collective contribution of all
points (x, y) in the spatial domain because F(u, v) is the sum that iterates through each pixel (x, y)
of the image in Equation 1. Thus, to align the two images, we assess the distance between paired
images in both spatial and frequency domains as shown in Figure 3. To incorporate both local and
global information, we employ a loss function that combines information in the spatial and frequency
domains:

Loss = λ1

M−1∑
x=0

N−1∑
y=0

(D(x, y)−G(x, y))2 + λ2

M−1∑
u=0

N−1∑
v=0

∆Famp(u, v) + λ3

M−1∑
u=0

N−1∑
v=0

∆ϕ(u, v), (5)

where ∆Famp(u, v) is the L1 distance for the amplitude defined as ∆Famp(u, v) = |FD(u, v)−
FG(u, v)|, and ∆ϕ(u, v) is the L1 distance for the phase defined as ∆ϕ(u, v) = |ϕD(u, v) −
ϕG(u, v)|).
F(u, v) at a point (u, v) represents a distinct spatial frequency component, and applying inverse
DFT to F(u, v) at a point (u, v) generates a sinusoidal grating in the spatial domain. Figure 4(a)
and Figure 4(c) illustrate the isolation of sinusoidal gratings associated with FG(u, v) and FD(u, v),
respectively.

The significant advantage of using DFT in aligning the original and shifted images lies in its capability
to decompose an image into its constituent spatial frequency components. Figure 4(a) and Figure 4(c)
display the initial three low-frequency sinusoidal gratings from the two images, clearly revealing a
distinct spatial shift. Notably, while the amplitude of sinusoidal gratings remains constant within the
same column of Figure 4(a) and Figure 4(c), their corresponding phases exhibit variations. Figure 4(b)
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Figure 3: Overview of the proposed loss function to align two paired images. The loss function
considers the difference between degraded (D) and ground-truth (G) images in both the spatial and
frequency domains.
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Figure 4: Frequency analysis of two paired images. One is the original image (G), and the other is
the spatially shifted image (D) of G. Let FX(u, v) be the result of applying DFT to an image X .
(a) G in the spatial domain comprises multiple sinusoidal gratings. Each sinusoidal grating results
from applying inverse DFT to FG(u, v). (b) The amplitude difference between G and D. There is
no difference. (c) Similar to G, D in the spatial domain comprises multiple sinusoidal gratings. (d)
The phase difference between G and D.

and Figure 4(d) visually depict the differences in amplitude (Figure 4(b)) and phase (Figure 4(d))
between the two images. Reducing ∆ϕ is crucial for effectively aligning a misaligned pair of images
for the same scene. Figure 4 is a conceptual illustration for paired images involving shifts without
degradation. However, due to the degradation, UDC-degraded images also exhibit differences from
the ground truth in amplitude. Figure 4 elucidates the importance of the phase component in the
alignment of the images.

Our alignment algorithm minimizes the loss in Equation 5 between the ground-truth image and the
degraded image. The misaligned degraded image is rotated, shifted and then cropped to achieve the
same size as the ground truth until the loss reaches the minimum. Handling rotation and shifts are
manageable, but addressing tilt presents a challenge. It is because tilt requires perspective transforms
optimized for objects within a single image sharing the same plane. Thus, our current emphasis is on
tackling shifts and rotations, with tilt considerations excluded. Nonetheless, our data collection is
meticulous, limiting rotations and tilts to a degree that does not notably influence the alignment, as
the PCK values in Table 2 affirm.

The original size of camera-captured images is (2016, 1512, 4). The ground truth image is center-
cropped to (1792, 1280, 4). The degraded image is similarly cropped around the center. For the
degraded image, iterative shifting of (x, y) coordinates and rotation are used to find the minimum
loss point where the cropped degraded image aligns with the cropped ground truth image. The final
cropped image size becomes (1792, 1280, 4) to ensure H and W are multiples of 256. The detailed
algorithm is illustrated in Algorithm 1. Here, we establish s = 20, θ = 0.3, r = 0.1, and (λ1, λ2, λ3)
combinations in Table 3 as hyperparameters.

5



Algorithm 1 Alignment of paired images IG and ID
Require: Images IG, ID of size (H,W ), hyperparameters s, θr , r, λ1, λ2, λ3

Ensure: Aligned images CG, CD of size (H∗,W ∗)
Crop CG from IG using center crop
Crop CD from ID to the size of CG

Initialize best loss Lbest to a large value
Initialize optimal shifts sopt_x, sopt_y, and rotation θopt to 0
for θrotation from −θr to θr with step r do

Apply rotation of θrotation to ID to get IDrotated

for xshift from −s to s with step 1 do
for yshift from −s to s with step 1 do

Calculate crop position (p, q) relative to the center crop:
p = xcenter_crop + xshift
q = ycenter_crop + yshift

Crop image CDtmp from IDrotated at position (p, q)
Calculate loss L using the loss function in Eq. 5 between CDtmp and CG

if L < Lbest then
Update Lbest to L
Update sopt_x to xshift
Update sopt_y to yshift
Update θopt to θrotation

end if
end for

end for
end for
Apply optimal rotation θopt to ID to get IDrotated

Calculate crop position (popt, qopt) relative to the center crop:
popt = xcenter_crop + sopt_x
qopt = ycenter_crop + sopt_y

Crop IDrotated to acquire an aligned image CD at position (popt, qopt)

We capture images in UDC-SIT without any Image Signal Processing (ISP) and in RAW format.
While High Dynamic Range (HDR) captures more details in shadows and highlights, authentic UDC
images are typically in Low Dynamic Range (LDR). Generating HDR images requires capturing
multiple LDR images with different exposures, then combining them to create an HDR image [2].
This process differs from general photography, so we gather our dataset in LDR.

Table 1: Comparison of the UDC datasets. Unlike others, UDC-SIT provides annotations, such as
light source, day/night, indoor/outdoor, and flare types. Flare types are classified as shimmer, streak,
and glare.

Dataset Scene Dynamic range Dataset size Annotations Publicly available

Zhou et al. [52] Synthetic LDR 300 No Yes
Feng et al. [15] Synthetic HDR 2,376 No Yes
Yoo et al. [50] Synthetic LDR - No No
Feng et al. [13] Real HDR 6,747 No Yes
UDC-SIT Real LDR 2,340 Yes Yes

4 Comparison with the existing UDC datasets

In this section, we compare UDC-SIT with the four existing representative UDC image datasets. We
summarize the five datasets Zhou-S [52], Feng-S [15], Yoo-S [50], Feng-R [13], and UDC-SIT in
Table 1, where S and R stand for synthetic and real datasets, respectively. Feng et al. capture 330
images and then crop them into 6,747 small patches. We explain the detail in the appendix.

Noises and transmittance decrease. Under low-light conditions, the camera sensor amplifies
both the desired signal and unintended random noise. Since the camera sensor in the UDC is
positioned beneath the display pixels that decrease the transmittance, the camera operates in low-
light conditions, resulting in noise amplification. The degraded images in the UDC dataset should
effectively contain the unique UDC noise, which differs from standard cameras. For example, a
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(a) Zhou-S (b) Feng-R (c) Feng-S (d) UDC-SIT
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Noise Noise
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Figure 5: Comparison of the transmittance decrease and UDC noises. GT stands for ground truth. (a)
Zhou-S [52]. (b) Feng-R [13]. (c) Feng-S [15]. (d) UDC-SIT.

(a) Zhou-S (b) Feng-R (c) Feng-S (d) UDC-SIT

(e) Zhou-S (f) Feng-R (g) Feng-S (h) UDC-SIT 

GT Degraded GT Degraded

GT Degraded

GT Degraded

GT Degraded GT Degraded

DegradedGT

GT Degraded

Spatially 
variant flares

Spatially 
variant flares

Figure 6: Comparison of flares. The light sources affect the flare shape. The images in (a) Zhou-
S [52], (b) Feng-R [13], (c) Feng-S [15], and (d) UDC-SIT show the UDC flares by the round shape
of light sources. The images in (e) Zhou-S [52], (f) Feng-R [13], (g) Feng-S [15], and (h) UDC-SIT
show the UDC flares by fluorescent light sources.

visual comparison is given in Figure 5. The image in Zhou-S in Figure 5(a) is captured from a
monitor under controlled lighting conditions. Thus, there exists no noise. However, we observe the
excessive transmittance decrease caused by P-OLED. In addition, the image in Feng-S in Figure 5(c)
is generated by convolving the PSF on an HDR image from the HDRI Haven dataset [18]. The HDR
images in the dataset are meticulously created through exposure bracketing [3] and cleanup to ensure
high quality without overexposure, chromatic aberration, and noise. Thus, the Feng-S image has
reduced noise and minimal transmittance loss. On the other hand, the images in Feng-R in Figure 5(b)
and in UDC-SIT in Figure 5(d) accurately depict the visible noise caused by the UDC. They also
show the effect of transmittance decrease.
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Table 2: The PCK comparison between the datasets. UDC-SIT shows the best alignment and has
PCK values close to 100% for all values of α.

Dataset Need alignment PCK (α = 0.01) PCK (α = 0.03) PCK (α = 0.10)

Zhou-S [52] 98.11 98.45 99.08
Feng-S [15] 99.95 99.96 99.99
Feng-R [13] ✔ 58.75 95.08 99.93
UDC-SIT ✔ 97.26 98.56 99.35

Flares. Lens flares typically occur when intense light scatters or reflects within an optical sys-
tem [11]. In contrast, UDC flares result from light interacting with the display panel above the camera
sensor, resulting in undesired reflections, diffraction, or scattering. Thus, it is essential for the images
in the UDC dataset to exactly describe real UDC flares if they exist. For example, a visual comparison
is given in Figure 6. The images in Zhou-S in Figure 6(a) and (e) do not exhibit any flares since
they capture images displayed on a monitor. Similarly, the images in Feng-S in Figure 6(c) and (g)
generate unrealistic flares by convolving PSFs to HDR images. Specifically, it lacks the generation
of glare, streaks, and spatially variant flares. The shapes of real-world UDC flares vary depending
on their positions, resulting in different diffraction patterns. However, the flares in the image in
Feng-S in Figure 6(c) appear overly regular. (Figure 6(c) versus (b) and (d)). Moreover, the image
in Feng-S in Figure 6(g) demonstrates different fluorescent light flares from the real-world UDC
flares in Figure 6(f) and (h). Figure 6(b) versus (d) and (f) versus (h) depict various flare shapes from
different UDC smartphones.

(a) (b) (c)

Figure 7: Invalid mask visualization in Feng-R [13]. (a) The degraded image captured by the ZTE
Axon 20 [10] UDC. (b) The ground-truth image captured by the iPhone 13 Pro rear camera [25]. (c)
Aligned ground-truth image by AlignFormer [13].

Occlusion regions. Although Feng-R consists of real images, it has some limitations. They avoid
capturing close objects to avoid parallax and occlusion. Nonetheless, AlignFormer [13] used in
Feng-R creates occlusion regions marked red in Figure 7. This area is typically excluded in training
the DNN restoration models. This is why they call Feng-R as pseudo-real pairs.

Table 3: Analyzing UDC-SIT’s PCK relative to λ1, λ2, λ3, and θrotation. When no rotation is applied,
θrotation = 0; otherwise, θrotation = θr. Notably, λ2 = 1 significantly improves the alignment over
using MSE alone (i.e., the case of (1, 0, 0, 0)).

(λ1 , λ2 , λ3 , θrotation) PCK (α = 0.01) PCK (α = 0.03) PCK (α = 0.10)

( 1, 0, 0, 0 ) 78.77 81.09 85.65
( 0, 1, 0, 0 ) 34.05 50.70 64.66
( 0, 0, 1, 0 ) 62.27 64.59 72.54
( 1, 1, 0, 0 ) 35.55 49.41 63.25
( 1, 0, 1, 0 ) 98.22 98.73 99.31
( 1, 1, 1, 0 ) 86.13 95.02 99.23
( 1, 0.1, 0.1, 0 ) 72.40 77.40 83.30
( 1, 0, 0, 0.3 ) 43.83 47.78 59.60

Alignment quality. Finally, to measure the alignment quality of paired images, we compare the
Percentage of Correct Keypoints (PCK) using LoFTR [42] as a keypoint matcher by following the
methodology presented by Feng et al. [13]. A keypoint pair is considered correctly aligned when
d < α×max(H,W ), where d is the position difference between a pair of matched keypoints, α is the
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Table 4: Restoration performance for synthetic and real UDC datasets. The term Input refers to the
PSNR and SSIM values between the paired degraded and ground-truth images.

Input DISCNet [15] UDC-UNet [31] Uformer-T [47] ECFNet [54] SRGAN [29]

Feng-S [15] PSNR 26.08 43.27 49.37 42.47 52.17 32.35
SSIM 0.8561 0.9877 0.9933 0.9844 0.9958 0.9538

UDC-SIT PSNR 21.03 26.32 27.44 27.28 28.22 24.70
SSIM 0.7330 0.8457 0.8637 0.8594 0.9002 0.8195

threshold, and H and W represent the height and width of the image. To apply a consistent alignment
criterion across the datasets with different resolutions, we uniformly set max(H,W ) = 1024,
aligning with Feng et al. [13]. Then the PCK for an image pair is defined by the ratio of the number
of correctly aligned keypoint pairs to the total number of keypoint pairs. Table 2 illustrates the
comparison result. Since Zhou-S and Feng-S consist of synthetic images, they do not require an
additional alignment process, resulting in PCK values close to 100%. On the other hand, Feng-R
undergoes alignment using AlignFormer on the images in the paired dataset. It achieves 58.75%
for α = 0.01. Unlike Feng-R, UDC-SIT consistently exhibits PCK values close to 100% across all
values of α.

Table 3 shows the analysis result of PCK values on average for various λ1, λ2, λ3, and θrotation
combinations. We found that the optimal combination of λ1, λ2, λ3, and θrotation is different for each
image pair. The images in UDC-SIT are selected by human inspection, and the PCK values of UDC-
SIT in Table 2 originate from the human assessment. The human inspection result is comparable to
results obtained by the best combination (1, 0, 1, 0) in Table 3.

Applying rotation (i.e., the case of (1, 0, 0, 0.3)) from Algorithm 1 significantly reduces PCK as
shown in Table 3. While this rotation causes a slight MSE decrease, its impact on digitized images
leads to notable PCK decline because of changes in ordinary translational correlation during the
rotation [7].

To mitigate rotation and tilt effects, we use an image-capturing system in Figure 2, applying only
shifts in (x, y) coordinates. Employing the DFT loss without MSE (the cases of (0, 1, 0, 0) and (0, 0,
1, 0)) yields lower PCK values of 34.05% and 62.27%, respectively (α = 0.01). Using only MSE and
∆Famp(u, v) without ∆ϕ(u, v) (case (1, 1, 0, 0)) results in a reduced PCK of 35.55% (α = 0.01).
The loss functions encompassing spatial and frequency domains, focusing on ϕ(u, v) of F(u, v) (the
cases of(1, 0, 1, 0) and (1, 1, 1, 0)), show high PCK values of 98.22% and 86.13%, respectively
(α = 0.01). The case of (1, 0.1, 0.1, 0) lacks sufficient λ2 and λ3 to reflect the frequency domain loss
effectively.

5 Effects on learnable restoration models

We demonstrate the effectiveness and benefits of UDC-SIT by comparing the UDC image restoration
performance with Feng-S. We only compare UDC-SIT to Feng-S because Yoo-S is not publicly
available, Feng-R is planned for a future release but is currently unavailable, and Zhou-S needs more
flares that are essential for UDC image restoration. We use five learning-based image restoration
models, including DISCNet [15], UDC-UNet [31], Uformer [47], ECFNet [54], SRGAN [29] using
UDC-SIT. We modify the authors’ code of the models to account for the difference in dynamic range
and channel size between UDC-SIT and Feng-S [15]. To ensure reproducibility, we explain the
experimental setting in the appendix and our GitHub.

The restoration performance of the five models on Feng-S and UDC-SIT is given in Table 4. Models
trained with Feng-S successfully restore the images with up to 2.0 times higher PSNR values than
Input (except SRGAN). They also achieve a nearly perfect SSIM score. However, none of the models
trained with UDC-SIT can restore the images to the same extent as Feng-S. Feng-S inadequately
represents actual UDC degradation, such as intense flares. The high degree of glares, shimmers, and
streaks results in substantial information loss. Consequently, model performance degradation occurs
when those obscured objects become unrecognizable. Thus, restoration becomes more challenging
with UDC-SIT than with conventional synthetic datasets.

Effects of annotations. It is noteworthy that annotations are specifically available in the UDC-SIT.
Flare scenes heavily rely on the capturing environment. For example, artificial lights emit a different
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Figure 8: Description of flare components. (a)-(c) The components of a flare include glare, shimmer,
and streaks [11]. (d)-(f) Flare components observed in actual degraded images of UDC-SIT. (g)-(i)
Ground-truth images corresponding to the UDC degraded images.

spectrum than natural sunlight, resulting in a distinct diffraction pattern. Weak light sources can
cause streaks under low-light conditions. Thus, we attach annotations, such as light source, day/night,
indoor/outdoor, and flare components, to the images in UDC-SIT. UDC-SIT follows the classification
labels of flare components by Dai et al. [11] including shimmer, streak, glare, and light source as
illustrated in Figure 8. Detailed explanations and instructions for the annotations, and experimental
result of their effect on the restoration models can be found in the appendix.

6 Limitations

The degradation of images by the UDC depends on the display pixel patterns, which vary between
products, as shown in Figure 6. When obtaining UDC-SIT, Galaxy Z Fold 3 [39] display panel is
used. Thus UDC-SIT is optimal for restoring Galaxy Z Fold 3 [39] images. Models trained with
UDC-SIT may not be suitable for restoring UDC images taken by other devices (e.g., ZTE Axon
20 [10] and Galaxy Z Fold 4 [40]).

7 Conclusions

As far as we know, UDC-SIT is the first dataset to include real-world UDC degradation, such as low
transmittance, blur, noise, and flare, along with detailed annotations for the light source, day/night,
indoor/outdoor, and flare components. With UDC-SIT, one can train a UDC image restoration model
to improve the quality of UDC images taken by the UDC. We propose an effective image-capturing
system for paired UDC-distorted and ground-truth images. We also propose a technique for aligning
the paired images by exploiting the discrete Fourier transform. The experimental result of comparing
UDC-SIT and a representative synthetic UDC dataset with five representative learnable restoration
models indicates that the models trained with the synthetic UDC dataset are impractical because
the synthetic UDC dataset does not reflect the actual characteristics of UDC-degraded images. This
implies UDC-SIT is an adequate dataset for UDC image restoration.
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A Background

In this section, we discuss the factors that contribute to the UDC degradation. We also explore
the concept of dynamic range and tone mapping. Also, we discuss color representation and image
formats to elucidate the rationale behind collecting the UDC-SIT dataset in the form of RAW images
with an GRBG 4-channel Bayer pattern.

A.1 Image degradation due to the UDC

The representative reasons for image degradation due to the UDC can be categorized into three
classes: noise, low transmittance, and flare caused by the display panel on top of the camera lens.
The reasons for the degradation differ depending on various factors, such as display types (T-OLED
and P-OLED), pixel designs, the distance from the display to the camera lens, and the lens structure.
Qin et al. [35] demonstrates that pixel designs affect the diffraction level. The optimal pixel design
could improve the image quality of the UDC. However, the design of the pixels needs to consider
many factors, not only the degradation by the UDC but also the size and shape of the red, green, and
blue sub-pixels. They affect the color intensity and image sharpness.

Under the UDC setting, because the pixels work as if they were slits, as shown in Figure A.1, the
light diffracts, and this causes the degradation. The light diffracts when it passes through obstacles
comparable in size to its wavelength. Unfortunately, we cannot avoid diffraction because the aperture
size of the pixel layout is on the order of the wavelength of visible light. The diffracted light
propagates to the camera sensor through the camera lens.

The Point Spread Function (PSF) of an optical system is the image-irradiance distribution or impulse
response on an image plane that results from a point source [5]. For example, an image of a distant
star through a telescope is a PSF. It is an energy distribution pattern. It peaks in the center and has
characteristics of long-tail low-energy sidelobes. Since a different light source has a different PSF,
the flare shape might differ depending on the light source. Also, the diffraction levels of red, green,
and blue waves differ because of their wavelengths in the visible ray region.

A.2 Dynamic ranges and tone mapping

An image’s dynamic range describes a scene’s luminance range or the limits of the luminance range
that a digital camera can capture [33]. The digital camera sensor is narrower than the range of
brightness that the human eye can accommodate. Multiple frames of the same scene captured with
different exposures, shutter speeds, and F-numbers can be combined to create an image with a higher
dynamic range than individually captured frames.

Tone mapping is required to view a video or image captured with High Dynamic Range (HDR) on a
monitor. Since the display device has a limited dynamic range unsuitable for reproducing the full
range of light intensities in an actual scene, tone mapping approximates the appearance of an HDR
image in a medium with a more limited dynamic range by mapping one set of colors to another. One
of the representative tone mapping operations is Reinhard tone mapping [36].

(a)

Diffraction PSF

(b)

Pixel 

pattern

Camera 

lens

Camera 

sensor

PSF

Figure A.1: (a) The diffraction. (b) The PSF is attributed to the pixel pattern on the UDC area.
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A.3 Color representation and image formats

A Bayer pattern [4] is a Color Filter Array (CFA) for arranging RGB color filters on a square grid of
photosensors. It uses a checkerboard arrangement of filter patterns, such as BGGR, RGBG, GRBG, or
RGGB. Image sensors for digital cameras typically use the Bayer pattern. Since each pixel provides
only a single-color pixel value (e.g., green) obtained from a CFA sensor, demosaicing is used to
reconstruct the full-color RGB image. Interpolation computes the pixel’s missing color values (e.g.,
red and blue) using the colors of neighboring pixels.

RAW image files contain unprocessed or minimally processed data from a digital camera’s image
sensor. RAW image files in recent smartphone camera sensors have a 10-bit range, and each pixel
records one of the three colors: red, green, and blue in 1,024 steps using the Bayer pattern. Other
image formats, such as JPEG and PNG, are converted from the RAW format using an Image Signal
Processor (ISP) with some loss of information in 256 steps. Thus, collecting the images in the RAW
format is essential to ensure that the dataset is free from the influence of the ISP (i.e., free from the
loss of information).

B Details of the UDC datasets and DNN models used

This section provides detailed information on the UDC datasets and the DNN models used to compare
the datasets in the paper for reproducibility.

The datasheets for datasets describe UDC-SIT’s hosting, licensing, and maintenance plan.
The UDC-SIT dataset, code, and evaluation procedure can be found and downloaded at:
https://github.com/mcrl/UDC-SIT.

B.1 UDC datasets

The images in UDC-SIT are captured in the RAW format using the GRBG 4-channel Bayer pattern,
effectively eliminating the influence of the built-in ISP. Although HDR captures the details in shadows
and highlights better, actual UDC images are predominantly in LDR. Consequently, we capture
images in LDR to align with real-world conditions.

We compare the available UDC dataset in Table B.1. Unlike Table 1, it emphasizes information
relevant to the DNN model execution. Zhou et al. [52] also obtain 16-bit RAW sensor data but only
release the paired RGB data. Thus, we classify Zhou-S as 3-channel RGB images. When working
with HDR images, tone mapping becomes necessary. Feng et al. capture 330 images with dimensions
3200 × 2400 × 3. These are then cropped into 6,521 training images of size 512 × 512 × 3 and
226 test images sized 1024× 1024× 3. We provide the dataset in the NPY format (.npy) to make
UDC-SIT open and widely used.

B.2 DNN models for evaluating UDC-SIT

The DNN models used for evaluating UDC-SIT include DISCNet [15], UDC-UNet [31], Uformer-
T [47], ECFNet [54], and SRGAN [29]. While we primarily adhere to the original authors’ code for
the models, we make some modifications.

Table B.1: Comparison of the available UDC datasets.

Zhou-S [52] Feng-S [15] Feng-R [13] UDC-SIT

Raw sensor data ✔ ✔
Color representation RGB RGB RGB GRBG Bayer
Dimensions [1024, 2048, 3] [800, 800, 3] [512, 512, 3], [1792, 1280, 4]

[1024, 1024, 3]
Dynamic range LDR HDR HDR LDR
Tone mapping ✔ ✔
Value range [0, 255] [0, 500] [0, 255] [0, 1023]
File format .png .npy .png .npy

15

https://github.com/mcrl/UDC-SIT


DISCNet, UDC-UNet, and ECFNet are designed to restore UDC images in HDR (i.e., Feng-S [15]),
while Uformer-T is designed to restore motion-blurred images in LDR. Also, SRGAN is designed
to super-resolve at large upscaling factors while also taking into account the preservation of high-
frequency details. Consequently, we make some necessary adjustments to the PyTorch DataLoader,
implementing tone mapping [36] for Feng-S and opting for normalization instead of tone mapping
for UDC-SIT. Also, we increase the channel size of the models to 4 to match the channel size of
UDC-SIT. Training is performed with four NVIDIA GeForce RTX 3090 GPUs. The following are
the training details specific to each model for the UDC-SIT dataset:

• DISCNet. Due to the channel size of 4 in UDC-SIT, we solely utilize L1 loss as the loss
function, excluding perceptual loss. To accelerate training, the models are trained using
PyTorch Distributed Data Parallel (DDP) [30] with a batch size of 32.

• UDC-UNet. The model output is clamped to the range [0, 1] to calculate the training loss.
The additional modification aligns with the details described in DISCNet.

• Uformer-T. To maintain consistency with other models operating solely in FP32, we have
modified Uformer-T to use FP32 instead of mixed precision. Also, we utilize Transformer
feature channels with C = 8. The patch size is set to 1, 280× 1, 280, and the batch size is 4.

• ECFNet. Since the training script of ECFNet is not publicly available, we follow the method
used in MIMOUNet [9] that heavily affected ECFNet. We increase the base channel size of
blocks from 24 to 32 to provide eight channels per image channel. ECFNet introduces the
progressive training strategy adopted by Restormer [51]. Specifically, the training phase of
the network consists of three stages with different patch sizes (e.g., 256× 256, 512× 512,
and 800 × 800). We modify the batch size of each stage from 3, 1, and 2 to 16, 4, and
4, respectively. In the third stage, we employ activation recomputation [8] to address the
memory constraint of NVIDIA GeForce RTX 3090 GPUs. It effectively reduces the peak
memory usage from 46GB to 18GB per device, enabling efficient utilization of available
GPU memory resources. We do not use external data or adopt model ensemble strategies
that the authors of the models describe.

• SRGAN. The model output is clamped to the range [0, 1] to calculate the training loss.
Due to the channel size of 4 in UDC-SIT, we utilize L2 loss and adversarial loss as the loss
function, excluding perceptual loss.

C Details of the annotations

This section describes annotation instructions for crowdsourcing and the effect of annotations in the
UDC-SIT.

Table B.2: Annotation examples for UDC-SIT. The corresponding annotated images are shown in
Figure B.2. "Indoor" and "Outdoor" scenes are labeled 1 and 3, respectively. The labels for "No
distinction," "Day," and "Night" are 1, 2, and 3, respectively. For indoor images, if flares occur due to
the influence of natural light sources through windows, we label them "Day" and "Night". For indoor
scenes without windows, we label them "No distinction". Glares, shimmers, and streaks are labeled 1
if present and 0 otherwise. If there is no flare, it is labeled 0. The occurrences of flares caused by
natural sunlight, artificial light, or both are labeled 1, 2, and 3, respectively.

File Indoor/Outdoor No distinction/Day/Night Glare Shimmer Streak Light sources
(1/3) (1/2/3) (0/1) (0/1) (0/1) (0/1/2/3)

317.npy 3 3 1 1 0 2
333.npy 3 3 1 1 1 2
677.npy 3 2 1 0 0 1
689.npy 3 2 1 1 1 1
698.npy 1 2 1 1 0 1
903.npy 1 2 1 1 0 2
905.npy 1 1 1 1 0 2

2384.npy 3 2 0 0 0 0
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Figure B.1: Visual comparison of flare removal on real-world UDC images. Flare shapes vary
according to the captured environments. GT stands for ground truth. (a) Indoor + artificial light (glare
+ shimmer). (b) Indoor + artificial light (glare + shimmer + streak). (c) Outdoor + day + sunlight
(glare + shimmer + streak). (d) Outdoor + night + artificial light (glare + shimmer + streak).

Table B.3: Annotation distribution and the number of pairs.

Label # of pairs
Indoor (1) 1,754
Outdoor (3) 586
No distinction (1) 1,340
Day (2) 649
Night (3) 351
Glare (0 or 1) 2,037
Shimmer (0 or 1) 1,899
Streak (0 or 1) 1,067
No flare (0) 273
Natural light (1) 175
Artificial light (2) 1,639
Both (3) 253
Total 2,340

C.1 Effects of image capturing environments

The combination of various factors, including light sources, indoor/outdoor, and day/night, affect the
level of degradation or flare shapes in UDC images. The images in Figure B.1(a) show only glare and
shimmer, while the images in Figure B.1(b) display glare, shimmer, and streak caused by different
artificial light sources. Natural sunlight in Figure B.1(c) has the strongest intensity. It shows extreme
flares with glare, shimmer, and streak even in the daytime, while artificial light at night with the
low-light condition in Figure B.1(d) has relatively weak intensity but still has extreme glare, shimmer,
and streak.
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C.2 Types of annotations

We offer annotations for each image pair. Table B.3 provides a detailed overview of the total count
and distribution of different annotation labels. Note that an image pair can have multiple annotation
labels. The parenthesized number beside a label is the encoding of the label. The pairs are categorized
based on image degradation factors, such as indoor/outdoor, day/night, glare/shimmer/streak, and
light sources. If images are captured indoors without any window or access to natural sunlight,
there would be no distinction between daytime and nighttime. In such cases, we label them as "No
distinction." Detailed information can be found at: https://github.com/mcrl/UDC-SIT.

Participants involved in the crowdsourcing for UDC-SIT are provided with the annotation examples
in Table B.2. The corresponding annotated images are shown in Figure B.2. The details of the
annotations are described as follows.

Flare components. We follow the classification scheme proposed by Dai et al. [11] to categorize
different flare components, including glares, shimmers, and streaks. Figure 8 in the main body
of the paper and Figure B.2 provide detailed explanations and visual representations of each flare
component, serving as comprehensive annotation instructions. A glare refers to the presence of
intense and strong light that produces artifacts such as circular light patterns. A shimmer involves
rapid and subtle light or color intensity variations within an image. A streak is a long, thin, and

(a) (b)

(c) (d)

(e) (f)

(g) (h)

GT Degraded GT Degraded

Glare

Glare

Streak

Glare

Streak

Glare

Shimmer

Glare

Shimmer

Shimmer

Shimmer

Shimmer

Glare

Glare
Shimmer

Figure B.2: UDC-SIT in various scenarios. Table B.2 shows the corresponding annotations. (a)
317.npy. (b) 333.npy. (c) 677.npy. (d) 689.npy (e) 698.npy. (f) 903.npy. (g) 905.npy. (h) 2384.npy.
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Table C.1: The comparison of restoration performance of the DNN models regarding the annotations
in UDC-SIT. "Input" refers to the PSNR and SSIM between the degraded and ground-truth images in
UDC-SIT.

Input DISCNet [15] UDC-UNet [31] Uformer-T [47] ECFNet [54] SRGAN [29]

Indoor PSNR 21.17 26.63 27.79 27.58 28.64 25.06
SSIM 0.7437 0.8535 0.8715 0.8680 0.9058 0.8311

Outdoor PSNR 20.53 25.18 26.13 26.15 26.66 23.37
SSIM 0.6924 0.8163 0.8346 0.8272 0.8795 0.7761

Day PSNR 21.54 26.23 27.28 27.47 28.17 24.67
SSIM 0.7689 0.8669 0.8857 0.8823 0.9152 0.8408

Night PSNR 19.63 25.32 26.62 25.99 27.06 23.62
SSIM 0.6012 0.7436 0.7633 0.7536 0.8485 0.7016

Sunlight PSNR 20.48 24.49 25.52 25.62 26.22 22.72
SSIM 0.7488 0.8475 0.8670 0.8637 0.8966 0.8147

Artificial light PSNR 20.37 26.40 27.67 27.19 28.37 24.72
SSIM 0.7026 0.8279 0.8459 0.8401 0.8895 0.8022

No light PSNR 22.43 26.22 26.52 27.18 27.52 24.95
SSIM 0.7180 0.8521 0.8645 0.8623 0.8893 0.8103

Glare PSNR 20.91 26.37 27.57 27.29 28.32 24.71
SSIM 0.7351 0.8456 0.8643 0.8598 0.9024 0.8211

Shimmer PSNR 20.67 26.41 27.62 27.33 28.42 24.73
SSIM 0.7301 0.8413 0.8601 0.8557 0.9000 0.8181

Streak PSNR 20.20 26.05 27.27 26.83 28.04 24.30
SSIM 0.7109 0.8266 0.8465 0.8400 0.8897 0.8026

typically irregular line of light or color observed in an image. Note that the shapes of glares and
shimmers vary depending on factors such as day and night conditions, indoor and outdoor settings,
and light sources, as illustrated in Figure B.2. In addition, Figure B.2(b) demonstrates that the shape
and intensity of glares, shimmers, and streaks differ based on the location within the scene, even
when originating from the same light source.

Light sources. The intensity and shape of flares vary also depending on the light sources. Flares
generated by natural sunlight, as depicted in Figure B.2(d), exhibit an extreme intensity and often
include streaks. Additionally, flares can have different characteristics under different conditions,
such as day/night and indoor/outdoor settings. For example, the flare in Figure B.2(e) is also
caused by natural sunlight, but its shape differs from the flare in Figure B.2(d). Also, Figure B.2(a),
Figure B.2(b), Figure B.2(f), and Figure B.2(g) demonstrate variations in the shape of flares caused
by different types of lights. Particularly, Figure B.2(b) demonstrates that artificial lights in close
proximity during nighttime can induce streaks, and Figure B.2(g) highlights how different types of
artificial lights result in various flare characteristics.

Day/Night. In the case of indoor images, such as those depicted in Figure B.2(g), the distinction
between day and night is generally not required (labeled as "No distinction" in Table B.2). However,
we distinguish between day and night when sunlight enters the indoor space through a window,
leading to flare occurrence as shown in Figure B.2(e). Indoor images with windows, even if no flare
occurs (Figure B.2(f)), are still labeled as day or night. This reflects that windows in indoor spaces
may not always cause flares during the day, as flare occurrence can depend on the presence and
intensity of sunlight between day and night.

Indoor/Outdoor. The illuminance outdoors is generally higher than that indoors during the daytime.
Figure B.2(d) and Figure B.2(e) demonstrate that the flares caused by sunlight exhibit variations de-
pending on whether the image is captured indoors or outdoors. Interestingly, the flares in Figure B.2(c)
are caused by the reflection of sunlight on the exterior walls of the building.

C.3 Restoration performance regarding the annotations

Table C.1 shows the comparative analysis of the restoration performance achieved by different
DNN models depending on UDC-SIT annotations. Since a UDC-SIT image generally has multiple
annotations, the annotation type in a row cannot be regarded as the sole factor influencing UDC
degradation when obtaining the PSNR and SSIM values. However, it is reasonable to acknowledge
the annotation type as a significant factor that affects the PSNR and SSIM values.
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Overall, there is a tendency for the restored image to have low PSNR and SSIM values when the
input pair has low PSNR and SSIM values. For instance, Table C.1 demonstrates that input pair
captured in outdoor environments exhibit lower PSNR and SSIM values than indoor images. In turn,
the restored images by the models also demonstrate inferior PSNR and SSIM values for outdoor
restorations compared to indoor restorations. This observation can be attributed to strong sunlight,
and intense flares often accompanying outdoor scenes.

The low-light conditions at night influence the degradation significantly. Night conditions tend to be
darker, increasing noise and introducing extreme flares. This phenomenon can be observed from the
lower PSNR and SSIM values for the annotation Night compared to Day, as indicated in Table C.1.

The presence of flares and the type of light sources inducing flares are also significant factors in UDC
degradation. Table C.1 demonstrates the impact of flares on degradation. The input images degraded
by sunlight and restored images have low PSNR values compared to the no-light condition. However,
interestingly, restored images from the images degraded by artificial light depict higher PSNR values
compared to the no-light condition. This tells us that the DNN models are relatively proficient in
restoring the degradation caused by artificial light compared to natural sunlight.

Under the sunlight condition, the SSIM values are higher than under the no-light condition. On the
contrary, the SSIM values under the artificial light condition are less than those under the no-light
condition. PSNR measures the noise level by comparing the original and degraded images. Increasing
degradation leads to higher noise and lower PSNR values. On the other hand, SSIM measures
structural similarity, considering brightness, contrast, and structural features. Thus, SSIM may
exhibit slightly different sensitivity towards different types of degradation compared to PSNR [20]. If
degradation factors like flares do not significantly reduce structural similarity, SSIM values will be
relatively high.

When flares are present in a degraded image, glares and shimmers appear over a wider area than
streaks. Glares and shimmers may significantly impact the reduction of PSNR and SSIM values.
On the other hand, streaks typically occur in conjunction with glares and shimmers rather than as a
standalone phenomenon. Thus, there may not be significant differences in PSNR and SSIM values
based on glares, shimmers, or streaks individually, as shown in Table C.1. However, low-intensity
artificial lights at night or natural sunlight in the daytime may cause extreme flares, including streaks.
These extreme flares introduce more significant degradation than glares or shimmers alone. Thus,
streaks generally exhibit slightly low PSNR and SSIM values compared to glares and shimmers due
to their association with extreme flares, as illustrated in Table C.1.

High-resolution images taken by modern smartphones often require training the image-restoration
DNN models by patching smaller images. The annotated information, such as indoor/outdoor,
day/night, glare/shimmer/streak, and light sources, attached to each patch facilitate the patch-level
training in UDC restoration tasks. For example, restoring streaks is challenging for the DNN models
when performing the patch-level training, as illustrated in Figure B.1(c). Figure B.1(c) shows big
streaks that cover almost the entire image. Providing the annotation information about the entire
image can enhance patch-level training by enabling the model to learn correlations between patches
and patterns across the patches. This additional information improves the model’s ability to restore or
enhance images effectively.

In summary, UDC-SIT annotations are crucial for advancing UDC research as none of the existing
UDC datasets provide similar information.
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