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A Conditional Permutation Importance (CPI) Wald statistic asymptotically1

controls type-I errors: hypotheses, theorem and proof2

Outline The proof relies on the observation that the importance score defined in (4) is 0 in the3

asymptotic regime, where the permutation procedure becomes a sampling step, under the assumption4

that variable j is not conditionally associated with y. Then all the proof focuses on the convergence of5

the finite-sample estimator to the population one. To study this, we use the framework developed in6

[Williamson et al., 2021]. Note that the major difference with respect to other contributions [Watson7

and Wright, 2021] is that the ensuing inference is no longer conditioned on the estimated learner µ̂.8

Next, we first restate the precise technical conditions under which the different importance scores9

considered are asymptotically valid, i.e. lead to a Wald-type statistic that behaves as a standard10

normal under the null hypothesis.11

Notations Let F represent the class of functions from which a learner µ : x 7→ y is sought.12

Let P0 be the data-generating distribution and Pn is the empirical data distribution observed after13

drawing n samples (noted ntrain in the main text; in this section, we denote it n to simplify14

notations). The separation between train and test samples is actually only relevant to alleviate15

some technical conditions on the class of learners used. M is the general class of distributions16

from which P1, . . . , Pn, P0 are drawn. R := {c(P1 − P2) : c ∈ [0,∞), P1, P2 ∈ M} is the17

space of finite signed measures generated by M. Let l be the loss function used to obtain µ.18

Given f ∈ F , l(f ;P0) =
∫
l(f(x), y)P0(z)dz, where z = (x, y). Let µ0 denote a population19

solution to the estimation problem µ0 ∈ argminf∈F l(f ;P0) and µ̂n a finite sample estimate µ̂n ∈20

argminf∈F l(f ;Pn) =
1
n

∑
(x,y)∈Pn

l(f(x), y).21

Let us denote by l̇(µ, P0;h) the Gâteaux derivative of P 7→ l(µ, P ) at P0 in the direction h ∈ R,22

and define the random function gn : z 7→ l̇(µ̂n, P0; δz − P0)− l̇(µ0, P0; δz − P0), where δz is the23

degenerate distribution on z = (x, y).24

Hypotheses25

(A1) (Optimality) there exists some constant C > 0, such that for each sequence µ1, µ2, · · · ∈ F26

given that ‖µn − µ0‖ → 0, |l(µn, P0) − l(µ0, P0)| < C‖µn − µ0‖2F for each n large27

enough.28

(A2) (Differentiability) there exists some constant κ > 0 such that for each sequence ε1, ε2, · · · ∈29

R and h1, h2, · · · ∈ R satisfying εn → 0 and ‖hn − h∞‖ → 0, it holds that30

sup
µ∈F :‖µ−µ0‖F<κ

∣∣∣∣ l(µ, P0 + εnhn)− l(µ, P0)

εn
− l̇(µ, P0;hn)

∣∣∣∣→ 0.
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(A3) (Continuity of optimization) ‖µP0+εh − µ0‖F = O(ε) for each h ∈ R.31

(A4) (Continuity of derivative) µ 7→ l̇(µ, P0;h) is continuous at µ0 relative to ‖.‖F for each32

h ∈ R.33

(B1) (Minimum rate of convergence) ‖µ̂n − µ0‖F = oP (n
−1/4).34

(B2) (Weak consistency)
∫
gn(z)

2dP0(z) = oP (1).35

(B3) (Limited complexity) there exists some P0-Donsker class G0 such that P0(gn ∈ G0)→ 1.36

Proposition (Theorem 1 in [Williamson et al., 2021]) If the above conditions hold, l(µ̂n, Pn) is an37

asymptotically linear estimator of l(µ0, P0) and l(µ̂n, Pn) is non-parametric efficient.38

Let P ?0 be the distribution obtained by sampling the j-th coordinate of x from the conditional39

distribution of q0(xj |x−j), obtained after marginalizing over y:40

q0(x
j |x−j) =

∫
P0(x, y)dy∫

P0(x, y)dxjdy

P ?0 (x, y) = q0(x
j |x−j)

∫
P0(x, y)dx

j . Similarly, let P ?n denote its finite-sample counterpart. It41

turns out from the definition of m̂j
CPI in Eq. 4 that m̂j

CPI = l(µ̂n, P
?
n)− l(µ̂n, Pn). It is thus the42

final-sample estimator of the population quantity mj
CPI = l(µ̂0, P

?
0 )− l(µ̂0, P0).43

Given that m̂j
CPI = l(µ̂n, P

?
n)− l(µ̂0, P

?
0 )− (l(µ̂n, Pn)− l(µ̂0, P0)) + l(µ̂0, P

?
0 )− l(µ̂0, P0), the44

estimator m̂j
CPI is asymptotically linear and non-parametric efficient.45

The crucial observation is that under the j-null hypothesis, y is independent of xj given x−j. Indeed,46

in that case P0(x, y) = q0(x
j |x−j)P0(y|x−j)P0(x

−j) and P0(x
j |x−j, y) = P0(x

j |x−j), so that47

P ?0 = P0. Hence, mean/variance of m̂j
CPI ’s distribution provide valid confidence intervals for mj

CPI48

and mean(m̂j
CPI) →n→∞ 0. Thus, the Wald statistic ẑjCPJ defined in section (4.2) converges to a49

standard normal distribution, implying that the ensuing test is valid.50

In practice, hypothesis (B3), which is likely violated, is avoided by the use of cross-fitting as discussed51

in [Williamson et al., 2021]: as stated in the main text, variable importance is evaluated on a set of52

samples not used for training. An interesting impact of the cross-fitting approach is that it reduces the53

hypotheses to (A1) and (A2), plus the following two:54

(B’1) (Minimum rate of convergence) ‖µ̂n − µ0‖F = oP (n
−1/4) on each fold of the sample55

splitting scheme.56

(B2’) (Weak consistency)
∫
gn(z)

2dP0(z) = oP (1) on each fold of the sample splitting scheme.57

B Evaluation Metrics58

AUC score [Bradley, 1997]: The variables are ordered by increasing p-values, yielding a family of59

p splits into relevant and non-relevant at various thresholds. AUC score measures the consistency of60

this ranking with the ground truth (nsignals predictive features versus p− nsignals).61

Type-I error : Some methods output p-values for each of the variables, that measure the evidence62

against each variable being a null variable. This score checks whether the rate of low p-values of null63

variables is not exceeding the nominal false positive rate (set to 0.05).64

Power : This score reports the average proportion of informative variables detected (when consid-65

ering variables with p-value < 0.05).66

Computation time : The average computation time per core on 100 cores.67

Prediction Scores : As some methods share the same core to perform inference and with the data68

divided into a train/test scheme, we evaluate the predictive power for the different cores on the test69

set.70
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C Supplement Figure 1 - Diagram of CPI71
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Figure 1: CPI-DNN’s constructions: Constructing the variable of interest x̃j is done either (1) by
the additive construction (top block) where a shuffled version of the residuals is added to the predicted
version using the remaining predictors with the mean of a random forest (RF) or (2) by the sampling
construction (bottom block) using a random forest (RF) model to fit xj from X−j and then sample
the prediction within the leaves of the RF.

D Supplement Figure 1 - Power & Computation time72

C
or

re
la

tio
n 

st
re

ng
th

CPI-DNN

Permfit-DNN0.
8

CPI-DNN

Permfit-DNN0.
5

CPI-DNN

Permfit-DNN0.
2

CPI-DNN

Permfit-DNN

0

0.30 0.40 0.50 0.60 0.70
Power

A

100 200 300 400 500 700 900
Time (mins)

CPI-DNN

Permfit-DNN

B

CPI-DNN Permfit-DNN
Method

Figure 2: Permfit-DNN vs CPI-DNN: Performance at detecting important variables on simulated
data under the setting of experiment 1, with n = 300 and p = 100. (A): The power reports the average
proportion of informative variables detected (p-value < 0.05). (B): The computation time is in mins
with (log10 scale) per core on 100 cores.

Based on Fig. 2, both methods Permfit-DNN and CPI-DNN have almost similar power. In high73

correlation regime, Permfit-DNN yields more detections, but it does not control type-I errors (Fig. 1).74

Regarding computation time, CPI-DNN is slightly more computationally expensive than Permfit-DNN.75

76
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E Supplement Figure 3 - Extended model comparisons77

We also benchmarked the following methods deprived of statistical guarantees:78

• Knockoffs [Candes et al., 2017, Nguyen et al., 2020]: The knockoff filter is a variable79

selection method for multivariate models that controls the False Discovery Rate. The first80

step of this procedure involves sampling extra null variables that have a correlation structure81

similar to that of the original variables. A statistic is then calculated to measure the strength82

of the original variables versus their knockoff counterpart. We call this the knockoff statistic83

w = {wj}pj=1 that is the difference between the importance of a given feature and the84

importance of its knockoff.85

• Approximate Shapley values [Burzykowski, 2020]: SHAP being an instance method, we86

relied on an aggregation (averaging) of the per-sample Shapley values.87

• Shapley Additive Global importancE (SAGE) [Covert et al., 2020]: Whereas SHAP focuses88

on the local interpretation by aiming to explain a model’s individual predictions, SAGE is89

an extension to SHAP assessing the role of each feature in a global interpretability manner.90

The SAGE values are derived by applying the Shapley value to a function that represents the91

predictive power contained in subsets of features.92

• Mean Decrease of Impurity [Louppe et al., 2013]: The importance scores are related to the93

impact that each feature has on the impurity function in each of the nodes.94

• BART [Chipman et al., 2010]: BART is an ensemble of additive regression trees. The trees95

are built iteratively using a back-fitting algorithm such as MCMC (Markov Chain Monte96

Carlo). By keeping track of covariate inclusion frequencies, BART can identify which97

components are more important for explaining y.98

Based on AUC, we observe SHAP, SAGE and Mean Decrease of Impurity (MDI) perform poorly.99

These approaches are vulnerable to correlation. Next, Knockoff-Deep and Knockoff-Lasso perform100

well when the model does not include interaction effects. BART and Knockoff-Bart show fair101

performance overall.
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Figure 3: Extended model comparisons: State-of-the-art methods for variable importance not
providing statistical guarantees in terms of p-values are compared (outer columns) and to competing
approaches across data-generating scenarios (inner columns) using the settings of experiments 2 and
3. Prediction tasks were simulated with n = 1000 and p = 50. Solid line: chance level.

102
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F Supplement Figure 3 - Power103
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Figure 4: Extended model comparisons: CPI-DNN and Permfit-DNN were compared to base-
line models (outer columns) and to competing approaches across data-generating scenarios (inner
columns). Convention about power as in Fig. 2. Prediction tasks were simulated with n = 1000 and p
= 50.

Based on the power computation, Permfit-DNN and CPI-DNN outperform the alternative methods.104

Thus, the use of the right learner leads to better interpretations.105
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G Supplement Figure 3 - Computation time106
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Figure 5: Extended model comparisons: The computation times for the different methods (with
and without statistical guarantees in terms of p-values) are reported in mins with (log10 scale) per
core on 100 cores. Prediction tasks were simulated with n = 1000 and p = 50.

The computation time of the different methods mentioned in this work (with and without statistical107

guarantees) is presented in Fig. 5 in mins with (log10 scale). First, we compare CPI-RF, cpi-knockoff108

and LOCO based on a Random Forest learner with p=50. We see that cpi-knockoff and LOCO are109

faster than CPI-DNN. A possible reason is that CPI-DNN uses an inner 2-fold internal validation for110

hyperparameter tuning (learning rate, L1 and L2 regularization) unlike the alternatives. Next, The111

DNN-based methods (CPI-DNN and Permfit-DNN) are competitive with the alternatives that control112

type-I error (d0CRT , cpi-knockoff and LOCO) despite the use of computationally lean learners in113

the latter.114
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H Supplement Figure 3 - Prediction scores on simulated data115
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Figure 6: Evaluating predictive power: Performance of the different base learners used in the
variable importance methods (Marginal = {Marginal effects}, Lasso = {Knockoff-Lasso}, Random
Forest = {MDI, d0CRT, CPI-RF, Conditional-RF, cpi-knockoff, LOCO}, BART = {Knockoff-BART,
BART} and DNN = {Knockoff-Deep, Permfit-DNN, CPI-DNN, Lazy VI}) on simulated data with n
= 1000 and p = 50 in terms of ROC-AUC score for the classification and R2 score for the regression.

The results for computing the prediction accuracy using the underlying learners of the different116

methods are reported in Fig. 6. Marginal inference, performs poorly, as it is not a predictive approach.117

Linear models based on Lasso show a good performance in the no-interaction effect scenario. Non-118

linear models based on Random Forest and BART improve on the lasso-based models. Nevertheless,119

they fail to achieve a good performance in scenarios with interaction effects. The models equipped120

with a deep learner outperform the other methods.121
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