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Abstract

Dataset condensation (DC) distills a large real-world dataset into a small synthetic
dataset, with the goal of training a network from scratch on the latter that per-
forms similarly to the former. State-of-the-art (SOTA) DC methods have achieved
satisfactory results through techniques such as accuracy, gradient, training tra-
jectory, or distribution matching. However, these works all perform matching in
the high-dimension pixel space, ignoring that natural images are usually locally
connected and have lower intrinsic dimensions, resulting in low condensation
efficiency. In this work, we propose a simple-yet-efficient dataset condensation
plugin that matches the raw and synthetic datasets in a low-dimensional manifold.
Specifically, our plugin condenses raw images into two low-rank matrices instead
of parameterized image matrices. Our plugin can be easily incorporated into ex-
isting DC methods, thereby containing richer raw dataset information at limited
storage costs to improve the downstream applications’ performance. We verify on
multiple public datasets that when the proposed plugin is combined with SOTA DC
methods, the performance of the network trained on synthetic data is significantly
improved compared to traditional DC methods. Moreover, when applying the DC
methods as a plugin to continual learning tasks, we observed that our approach
effectively mitigates catastrophic forgetting of old tasks under limited memory
buffer constraints and avoids the problem of raw data privacy leakage.

1 Introduction

Modern machine learning techniques utilize large-scale real-world datasets and advanced deep neural
networks (DNNs) to achieve amazing success in various fields, such as models like SAM [24]
and GPT [6, 38] in the fields of computer vision and natural language processing, both of which
have surpassed classical models [51, 42, 43] trained on small datasets. However, training a well-
performing model in the machine learning community requires repeated tuning of various aspects of
the model [14], such as the number of layers, learning rate, and other important hyper-parameters.
When the dataset is large, the cost of data management and repeated model training becomes
unacceptable. As stated in [65], NAS-Bench-101 [63] spent 100 TPU-years of computing time on the
CIFAR10 dataset [26] for an exhaustive neural architecture search. In contrast, it only takes dozens
of TPU minutes to train the best model from scratch using the optimal configuration discovered [65].
Additionally, in continual learning [41, 2, 60, 61], to prevent forgetting old tasks while learning new
tasks, a certain amount of old task data is typically stored for replay [58, 57, 2, 41]. Nevertheless,
storing large old task datasets is unrealistic due to strict memory and privacy constraints. Therefore,
reducing the data size becomes a valuable and emerging research direction.
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A direct way to reduce data size is to select a representative subset from the original dataset [17].
This paradigm calculates the importance score for each sample based on specific importance criteria
and selects a subset to replace the entire training dataset [62]. The calculation criteria include the
distance between the sample and the class center [10], the gradient norm of sample [39], and the
diversity among samples [47, 57], etc. However, the selection-based method is not always effective,
particularly when the task-condition data information is uniformly distributed in the original data [30].
In such cases, the heuristic coreset selection method can only capture a limited amount of information.
Recent research [56] has shown that generating a small dataset that performs similarly to the original
dataset, instead of selecting a subset, is a promising direction. Therefore, dataset condensation (DC)
or dataset distillation (DD) [56, 66, 64, 65, 37, 11, 15] has recently received increasing attention.
This novel paradigm distills information from a large real-world dataset into a compact synthetic
dataset that produces comparable results to the original dataset. The earliest DD [56] method
uses accuracy value as the direct distillation objective and describes the distillation process as a
bi-level optimization problem. However, matching accuracy directly through bi-level optimization
involves high computational costs and memory overhead [15]. Therefore, state-of-the-art (SOTA) DC
methods perform condensation through surrogate objectives, such as gradient [66, 64, 22], training
trajectory [8], feature [55], or distribution [65] matching, and achieve more satisfactory results.

However, existing DC methods all optimize parameterized condensed images in the original high-
dimensional pixel space, overlooking the fact that natural images typically exhibit local connectivity
and have low intrinsic dimensionality [31]. More specifically, in the visual self-supervision task,
Masked Autoencoder [18] divides the image into multiple patches and reconstructs the complete image
by randomly masking a certain proportion of patches. Experimental results show that masking 75% of
the patches can still reconstruct the original image. Also, Maximum Likelihood Estimation [31, 40]
of the image’s intrinsic dimensions on ImageNet [12] dataset shows that although each image
contains 150, 528 pixels, its intrinsic dimension is only between 26 and 43. We further verify in the
appendix that both the original images and the images generated by traditional dataset distillation (e.g.,
DSA [64], DM [65]) are low rank. These results imply that compressing data in high-dimensional
pixel space is an inefficient approach.

In this work, we propose a simple yet efficient plugin for dataset condensing that compresses a
large dataset into a compact synthetic dataset on a low-dimensional manifold. Specifically, unlike
existing DC methods that train a compact dataset S of size N ×D ×H ×W , where N , D, H , and
W are the number, channels, height, and width of images, respectively, we decompose an image
representation under each channel ch ∈ {1, . . . , D} into a low-dimensional space, and learn two
low-rank matrices A ∈ RN×D×H×r and B ∈ RN×D×r×W , where r << min{H,W} represents
the rank size. Obviously, our low-rank method is orthogonal to existing DC methods and can be
integrated into SOTA DC methods as a flexible plugin to improve the learning efficiency of DC.
Without loss of generality, we conduct extensive experiments on multiple publicly real-world datasets,
integrating the proposed plugin into gradient matching-based [66, 64] and distribution matching-
based [65] DC methods. Experimental results show that using our low-rank plugin significantly
reduces storage consumption for compact datasets and achieves comparable performance as SOTA
DC methods based on high-dimensional pixel spaces, with the same number of images. Furthermore,
under the same memory consumption, our plugin can effectively store more information from the
large dataset, thus significantly improving the performance of condensed data in downstream tasks.
Lastly, when applying low-rank DC methods to continual learning (CL) tasks, we observe that our
approach effectively mitigates catastrophic forgetting of old tasks under the constraints of limited
memory buffers and avoids data privacy issues by storing condensed rather than raw data.

The main contributions of this paper are as follows:

• We propose a simple yet effective dataset distillation plugin that condenses a large dataset
into a compact synthetic dataset on a low-dimensional manifold, offering an orthogonal
approach to existing DC methods.

• Experiments on deep learning tasks demonstrate that the proposed plugin achieves per-
formance comparable to that of existing SOTA DC methods while significantly reducing
memory consumption. It achieves significantly better accuracy than existing SOTA DC
methods with the same memory consumption.

• We also verify that the dataset condensed in the low-dimensional manifold has good cross-
architecture transferability and maintains the excellent characteristics of existing DC meth-
ods, such as learning the class distribution information of the large dataset.
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• When applying low-rank DC as a plugin for CL tasks, our DC plugin approach effectively
mitigates the problem of catastrophic forgetting of old tasks while protecting the data privacy.

2 Related Works

In this section, we summarize the most related work to this work as three-fold, including coreset
sample selection and dataset distillation; continual learning; and low-rank manifolds.

Coreset Selection and Data Condensation. Coreset selection [17] and dataset condensation [56]
are two methods to eliminate data redundancy, which help to improve the model’s training efficiency
and reduce the cost of data management. Coreset selection has been widely studied in active
learning [48] and continual learning [34], which tries to identify the most informative training
samples [62, 59, 10, 44, 3]. Unfortunately, these methods fail when the task-condition information is
evenly distributed among the original samples [30]. Empirical studies [56, 66] show that the benefit
of existing coreset selection methods is marginal compared with random selection across multiple
benchmarks. In recent years, dataset condensation [56] has been proposed to distill a large real
dataset onto a small synthetic dataset and achieve better performance than coreset selection. DD [56]
formulates the dataset distillation as a bi-level optimization. The inner loop utilizes the condensed
dataset to train a network, while the outer loop minimizes the prediction error of the trained network
on the original dataset. It updates the synthesized dataset pixel by pixel using Back-Propagation
Through Time [35] to compute the meta gradient. KRR [36] transforms the distillation problem into
a kernel ridge regression problem, simplifying the expensive nested optimization in DD [56] to a
first-order optimization. Unlike the aforementioned works that optimize based on accuracy value,
recent works believe that the effectiveness of models trained on the larger dataset and the compact
dataset can be reflected in their corresponding parameter states or gradient states [15]. Therefore,
they choose to optimize more fine-grained surrogate objectives [66, 64, 30, 8, 65]. Notably, DC [66]
and DSA [64] minimize the gradient matching loss between the large dataset and the synthetic dataset
at each training step, MTT [8] matches the training trajectory of parameters, LCMat [50] matches
loss curvature, CAFE [55] aligns layer-wise features, and DM [65] generates synthetic samples
that resemble the distribution of real samples in the feature space. There has recently been a small
amount of work on parameter-efficient dataset distillation. For example, IDC [23] and IDM [67] take
advantage of the local similarity characteristics of images to partition and expand condensed data to
generate more images at the same memory cost. HaBa [33] and RememberThePast [13] utilize bases
to produce images or share bases among all classes respectively. However, these methods ignore that
natural images have low intrinsic dimensionality [40], which leads to inefficient condensation.

Continual Learning. Continual learning (CL) aims to enable a neural network model to learn new
tasks continuously without forgetting the old tasks [68, 58]. Inspired by the working mechanism of
the human brain, mainstream memory-based CL methods consolidate previously learned knowledge
by replaying old data, thereby avoiding catastrophic forgetting. Due to strict memory and privacy
constraints, usually only a small portion of old task data can be kept, many above-mentioned coreset
selection methods are used to select informative samples for storage. For example, some heuristic
method is used to select the most representative samples from each class [59] (e.g., iCaRL [44]) or
the sample closest to the decision boundary (e.g., Rwalk [9], MIR [2], Shim [49]). However, the
number of new task’s samples and stored old samples in memory is often highly unbalanced, leading
the model to be biased towards learning new tasks with more data. Recent works [7, 41] addressing
this class imbalance in memory-based CL has achieved impressive and satisfactory performance:
End-to-End Incremental Learning [7] samples the data after training on the new classes and combines
it with the data in memory to create balanced data for fine-tuning. GDumb [41] greedily stores
samples in memory and trains the model from scratch on new tasks using only the samples in memory.

Low-rank Manifolds. The low-rank structure is prevalent in machine learning, such as computer
vision [40, 18, 32], natural language processing [20, 1], recommendation systems [25, 45], etc. For
example, MLE [31, 40] found that natural image datasets containing thousands of pixels can actually
be described with fewer variables. LoRA [20] can fine-tune the GPT-3 175B [6] with comparable
accuracy to full-parameter fine-tuning while reducing the number of trainable parameters by a factor
of 10,000 and GPU memory requirements by a factor of three. In recommender systems, the original
highly sparse rating/interaction matrix is usually decomposed into low-rank user embedding matrices
and item embedding matrices [25] to capture user interests and item features. However, to the best
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of our knowledge, no research has explored the exploitation of low-rank structure to improve the
condensation efficiency for the dataset distillation task, and this work is the first to fill this gap.

3 Low-Rank Data Condensation Plugin

In this section, we first define the problem of DC in Sec. 3.1, then introduce our proposed low-rank
plugin for DC in Sec. 3.2, and then describe how to integrate our plugin with existing DC methods in
Sec. 3.3 and further apply it to continual learning in Sec. 3.4.

3.1 Problem Definition

The goal of dataset condensation (DC) is to distills a large target dataset T = {xi, yi}NT
i=1 containing

NT training image xi ∈ Rd and its label yi ∈ {1, 2, . . . , |Y |} into a small dataset S = {si, yi}NS
i=1

with |S| synthetic image si ∈ Rd, where NS ≪ NT (2− 3 orders of magnitude), |Y | represents the
number of classes, and Rd defines a d-dimensional space. We expect a network ϕθS trained on the
small dataset S to have similar performance to a network ϕθT trained on the large training set T on
the unseen test dataset, that is:

Exi∼PT [ℓ (ϕθT (xi), y)] ≃ Exi∼PT [ℓ (ϕθS (xi), y)] ,

s.t. θT = argmin
θT

LT (θT ) = argmin
θT

1

NT

∑
(xi,y)∈T

ℓ (ϕθT (xi), y) ,

θS = argmin
θS

LS(θS) = argmin
θS

1

NS

∑
(xi,y)∈S

ℓ (ϕθS (xi), y) ,

(1)

where PT represents the real distribution of the test dataset, xi represents the input image, y represents
the ground truth, and ℓ(·) represents a loss function such as cross-entropy loss.

To achieve the goal stated in Eq. 1, existing DC methods [56, 66, 64, 8, 65] first initialize the dataset
S ∈ RNS×D×H×W as a set of learnable parameters in high-dimensional pixel space. Here, NS
denotes the number of synthetic images, and C, H , and W represents the number of channels,
the image’s height, and the image’s width, respectively. Then, the dataset S is updated pixel-by-
pixel based on accuracy value matching [56, 36] or surrogate objective matching [66, 8, 65] of the
condensed dataset S and the large dataset T . For example, in the first dataset distillation work
DD [56], dataset S is treated as a hyperparameter in a bi-level optimization problem as follows:

S∗ = argmin
S

LT (ϕθS ) , subject to θS = argmin
θ

LS(ϕθ), (2)

where the inner loop trains a randomly initialized network ϕ (parameters denoted as θ) on the
synthetic dataset S until convergence, and the outer loop uses the large target dataset T as a validation
set to optimize S. The small dataset S is updated by solving the meta-gradient [35] of the bi-
level optimization in Eq. 2, allowing the trained model ϕ on the dataset S to perform well on the
real dataset T . Instead of optimizing directly based on the accuracy value of the distilled data
S, SOTA DC methods are based on surrogate objectives to make the model trained on S and T
approximate each other in the parameter space [66], i.e., θT ≃θS , or in the gradient space [64, 66],
i.e., ∇θLT (θ)≃∇θLS (θ), or in the feature distribution space [65], i.e., ϕθ(xi)≃ϕθ(si). However,
these methods all focus on pixel-by-pixel optimizations of S , ignoring that natural images are locally
connected [18] and usually have low intrinsic dimensionality [32, 40]. In the appendix, we perform
principal component analysis on real images and images obtained by traditional dataset distillation
methods (such as DSA [64] and DM [65]) and show that they have low-rank properties. Hence,
optimizing S in a high-dimensional pixel space is inefficient.

3.2 Our Low-Rank Data Condensation Plugin

In this work, we introduce a low-rank dataset condensation plugin that distills knowledge from a
large dataset T to a small synthetic dataset S in a low-rank manifold. Specifically, instead of directly
initializing S as a variable with shape NS ×D ×H ×W , we conduct a low-rank decomposition of
the content xi,ch ∈ RH×W in the channel ch ∈ {1, . . . , D} of an image xi and employ two variables,
Ai,ch ∈ RH×r and Bi,ch ∈ Rr×W , to reconstruct a high-dimensional image by xi,ch ≈ Ai,chBi,ch,
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Algorithm 1: LoDC: Low-rank Dataset Condensation with Gradient Matching [66]
Input: A large training dataset T

1 Required: Randomly initialized A,B of rank r for |Y | classes, the probability distribution of randomly
initialized weights Pθ0 , neural network ϕθ , number of outer-iterations Tou and number of inner-iterations
Tin, learning rates ηdc and ηθ , minibatch size NT , NAB

2 for outer-iteration k = 1, · · · , Tou do
3 Initialize θ0 ∼ Pθ0

4 for inner-iteration t = 1, · · · , Tin do
5 for class c = 1, · · · , |Y | do
6 Sample a minibatch real pair BT

c ∼ T and a minibatch synthetic pair BΩ(A,B)
c ∼ Ω(A,B)

7 Compute LT
c (θt|BT

c ) = 1
NT

∑
(xi,y)∈BT

c
ℓ(ϕθt(xi), y)

8 Compute LΩ(A,B)
c (θt|BΩ(A,B)

c ) = 1
NAB

∑
(AiBi,y)∈B

Ω(A,B)
c

ℓ(ϕθ(AiBi), y)

9 Compute LDC
c (BT

c ,B
Ω(A,B)
c ) = d

(
∇θLT

c (θt|BT
c ),∇θLΩ(A,B)

c (θt|BΩ(A,B)
c )

)
10 Update A ← A− ηdc∇ALDC

c (BT
c ,B

Ω(A,B)
c ) and B ← B − ηdc∇BLDC

c (BT
c ,B

Ω(A,B)
c )

11 Update θt+1 ← θt − ηθ∇θLΩ(A,B)(θt)

Output: A small dataset Ω(A,B)

where the rank r ≪ {H,W}. Therefore, the goal of data condensation in the low-rank manifold is to
optimize A ∈ RNS×D×H×r and B ∈ RNS×D×r×W such that the network ϕθΩ(A,B) , trained on the
small reconstructed data Ω(A,B), achieves similar performance to the network ϕθT trained on the
high-dimensional large dataset T . Therefore, the DC in the low-rank manifold is formalized as:

Exi∼PT [ℓ (ϕθT (xi), y)] ≃ Exi∼PT [ℓ (ϕθΩ(A,B)(xi), y)] ,

s.t. θT = argmin
θT

LT (θT ) = argmin
θT

1

NT

∑
(xi,y)∈T

ℓ (ϕθT (xi), y) ,

θΩ(A,B) = argmin
θΩ(A,B)

LΩ(A,B)(θΩ(A,B)) = argmin
θΩ(A,B)

1

NS

∑
(AiBi,y)∈Ω(A,B)

ℓ (ϕθΩ(A,B)(AiBi), y) ,

(3)

where Ω(A,B) is an operation that reconstructs xi channel-wise from low-rank matrices A and B,
i.e., xi = AiBi = [Ai,1Bi,1| . . . |Ai,DBi,D] ∈ RD×H×W , where [·|·] means channel-wise stacked
the image representation.

Discussion. Our method effectively takes advantage of the low intrinsic dimension of natural images,
and has the following advantages: (i) The proposed low-rank DC plugin significantly improves
condensing efficiency (i.e., fewer training parameters) and reduces the cost of synthetic dataset
storage. This is particularly beneficial when the image height (H) and width (W ) are very large. Due
to the low intrinsic dimension of the image, the value of r can be very small, such as 2. (ii) Under the
same memory consumption or the number of learnable parameters as traditional DC methods, our
plugin can reconstruct a larger number of synthetic images, preserving sufficient information for the
large training dataset T . (iii) Our plugin is orthogonal to existing dataset distillation work and can be
further combined with them.

3.3 Incorporating Low-rank DC Plugin to SOTA Methods

Our proposed low-rank manifolds DC plugin can be easily incorporated into existing DC solutions [56,
66, 8, 64, 65]. Without loss of generality, we integrate it into gradient matching-based DC [66] and
distribution matching-based DM [65], and define the two new methods as Low-rank DC (LoDC)
and Low-rank DM (LoDM), respectively. We verified the effectiveness of the low-rank plugin in
Sec. 4.1. Additionally, in the appendix, we combine our low-rank DC plugin with more advanced
dataset distillation methods, including MTT [8], IDC [23], HaBa [33], and RemenberThePast [13].

Low-rank DC (LoDC). To achieve the goal stated in Eq. 3, we match the gradients of the large dataset
T and the small dataset Ω(A,B) within a low-rank manifold. Specifically, we use the synthetic
dataset Ω(A,B) to train a deep neural network ϕθ (the initial parameter is θ0). After optimizing the
network, we aim to minimize the distance between the gradient ∇θLT (θt) of the loss LT w.r.t θt on
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Algorithm 2: LoDM: Low-rank Dataset Condensation with Distribution Matching [65]
Input: A large training dataset T

1 Required: Randomly initialized A,B of rank r for |Y | classes, the probability distribution of randomly
initialized weights Pθ0 , neural network ψθ , number of iterations Tou, learning rate ηdc.

2 for iteration k = 1, · · · , Tou do
3 Initialize θ0 ∼ Pθ0

4 Initialize LDM
s = 0

5 for class c = 1, · · · , |Y | do
6 Sample a minibatch real pair BT

c ∼ T and a minibatch synthetic pair BΩ(A,B)
c ∼ Ω(A,B)

7 Compute LDM
c (BT

c ,B
Ω(A,B)
c ) =

d
(

1
NT

∑
(xi,y)∈BT

c
ψθ0 (xi) ,

1
NAB

∑
(AiBi,y)∈B

Ω(A,B)
c

ψθ0 (AiBi)
)

8 Compute LDM
s = LDM

s + LDM
c (BT

c ,B
Ω(A,B)
c )

9 Update A ← A− ηdc∇ALDM
s and B ← B − ηdc∇BLDM

s

Output: A small dataset Ω(A,B)

the large dataset T and the gradient ∇θLΩ(A,B)(θt) of the loss LΩ(A,B) w.r.t θt on the small dataset
Ω(A,B) at step t as DC [66]. That is, we solve the following optimization problem:

min
A,B

Eθ0∼Pθ0

[
Tin∑
t=1

d
(
∇θLT (θt|T ) ,∇θLΩ(A,B) (θt|Ω(A,B))

)]
, (4)

where d(·, ·) is a distance function, Tin is the number of training iterations. A and B are updated
using gradients obtained by backpropagation in Eq. 4, and θ is trained using the whole small dataset
Ω(A,B) by gradient descent optimization. We provide the pseudocode of our LoDC in Algorithm 1.
Additionally, LoDC can be easily extended to DSA [64] methods that incorporate differentiable data
augmentations into gradient matching [66].

Low-rank DM (LoDM). To achieve the goal of Eq. 3, our LoDM requires the distribution of the
small dataset Ω(A,B) to accurately approximate the distribution of the real training large dataset T
as DM [65]. Specifically, we first transform each input image AiBi ∈ R(C×H×W ) into a different
space through a family of parametric functions ψθ: R(C×H×W ) → Rd′ . We then use the maximum
mean difference (MMD) [16] to estimate the distance between the real and compact data distributions:
sup∥ψθ∥H≤1 (E [ψθ(T )]− E [ψθ(Ω(A,B))]), where H is reproducing kernel Hilbert space. As the
real data distribution is unavailable, we utilize the empirical estimate of MMD as DM [65], that is,
LoDM to solve the following optimization problem:

min
A,B

Eθ0∼Pθ0

[
d

(
1

NT

NT∑
i=1

ψθ0 (xi) ,
1

NAB

NAB∑
i=1

ψθ0 (AiBi)

)]
, (5)

whereNT andNAB represent the sample sizes of T and Ω(A,B) respectively. The low-rank matrices
A and B are updated by performing a gradient descent on Eq. 5. DM [65] indicates that network ψθ0
can perform well when a family of random initializations is adopted. Therefore, θ0 does not need to
be updated but is randomly sampled in each training iteration. We have adopted this default setting in
this paper. Algorithm 2 provides the optimization process of our LoDM.

3.4 Application to Continual Learning

The goal of class continual learning (CL) is to use a model to learn from a continuously arriving
sequence of new classes while retaining knowledge from previous classes [68, 58]. Mainstream
memory-based CL methods typically involve carefully selecting a small number of old samples from
a large training dataset and storing them in a limited memory buffer M to mitigate catastrophic
forgetting [59, 7, 41, 57]. The degree of forgetting of old classes is directly affected by the amount of
data information in the samples stored in the limited memory buffer M. Our dataset condensation
plugin can compress a raw large dataset into a smaller dataset Ω(A,B) by Alg. 1 or Alg. 2 to story in
M, thereby to preserve more information about older classes under strict memory constraints. In this
work, similar to DM [65], we establish a baseline using the simple yet effective GDumb [41] approach
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Table 1: Comparison with coreset selection methods and dataset condensation methods.
DataSet Img/Cls Ratio%

Coreset Selection Methods Dataset Condensation Methods
Random Herding Forgetting DD LD DC DSA DM LoDM(Ours)

MNIST
1 0.017 64.9±3.5 89.2±1.6 35.5±5.6 - 60.9±3.2 91.7±0.5 88.7±0.6 89.7±0.6 91.2±0.4

10 0.17 95.1±0.9 93.7±0.3 68.1±3.3 79.5±8.1 87.3±0.7 97.4±0.2 97.1±0.1 96.5±0.2 97.7±0.1
50 0.83 97.9±0.2 94.8±0.2 88.2±1.2 - 93.3±0.3 98.8±0.2 99.2±0.1 97.5±0.5 98.2±0.1

CIFAR10
1 0.02 14.4±2.0 21.5±1.2 13.5±1.2 - 25.7±0.7 28.3±0.5 28.8±0.7 26.0±0.8 43.8±0.8

10 0.2 26.0±1.2 31.6±0.7 23.3±1.0 36.8±1.2 38.3±0.4 44.9±0.5 51.1±0.5 48.9±0.6 59.8±0.4
50 1 43.4±1.0 40.4±0.6 23.3±1.1 - 42.5±0.4 53.9±0.5 60.6±0.5 63.0±0.4 64.6±0.1

CIFAR100
1 0.2 4.2±0.3 8.4±0.3 4.5±0.2 - 11.5±0.4 12.8±0.3 13.9±0.3 11.4±0.3 25.6±0.5

10 2 14.6±0.5 17.3±0.3 15.1±0.3 - - 25.2±0.3 32.3±0.3 29.7±0.3 37.5±0.8

TinyImageNet
1 0.2 1.4±0.1 2.8±0.2 1.6±0.1 - - 4.61±0.2 4.79±0.2 3.9±0.2 10.3±0.2

10 2 5.0±0.2 6.3±0.2 5.1±0.2 - - 11.6±0.3 14.7±0.2 12.9±0.4 18.3±0.3

Table 2: Comparison with dataset distillation methods on the same image (SI) or same memory (SM).
DataSet Img/Cls DC LoDC(SI) LoDC(SM) DSA LoDSA(SI) LoDSA(SM) DM LoDM(SI) LoDM(SM)

MNIST 1 91.7±0.5 - 93.0±0.3 88.7±0.6 - 90.6±0.6 89.7±0.6 87.0±0.7 91.2±0.4
10 97.4±0.2 96.0±0.2 97.6±0.3 97.1±0.1 95.3±0.2 97.7±0.1 96.5±0.2 92.0±0.6 97.7±0.1

CIFAR10 1 28.3±0.5 28.2±0.5 35.2±0.5 28.8±0.7 28.3±0.6 41.0±0.2 26.0±0.8 24.8±0.3 43.8±0.8
10 44.9±0.5 42.8±0.4 50.8±0.3 51.1±0.5 47.6±0.4 56.5±0.3 48.9±0.6 46.0±0.7 59.8±0.4

CIFAR100 1 12.8±0.3 12.3±0.2 18.6±0.1 13.9±0.3 13.5±0.2 22.9±0.2 11.4±0.3 9.6±0.4 25.6±0.5
10 25.2±0.3 24.4±0.2 27.1±0.6 32.3±0.3 29.8±0.1 33.7±0.7 29.7±0.3 27.7±0.2 37.5±0.8

TinyImageNet 1 4.61±0.2 4.21±0.2 6.80±0.1 4.79±0.2 4.70±0.3 9.90±0.4 3.9±0.2 3.6±0.1 10.3±0.2

in CL. GDumb first stores training samples in memory in a greedy manner while ensuring balanced
samples per class. During testing, the model is trained from scratch exclusively using samples from
memory M. More specifically, we compare the effects of storing randomly selected sample sets [41],
Herding sample sets [59, 44, 7], traditional DC condensed dataset (i.e., DC [66]/DSA [64], DM [65]),
and our low-rank manifold condensed dataset (i.e., LoDC or LoDM in Sec. 3.3) in memory M for
CL in Sec. 4.2.

4 Experiment

In this section, we conduct experiments to verify the effectiveness of the proposed low-rank DC
plugin. Due to space constraints, some experiment results are included in the Appendix.

4.1 Data Condensation for Deep Learning

Datasets. We evaluate our low-rank DC plugin on four benchmark datasets as DM [65], including
MNIST [29], CIFAR10 [26], CIFAR100 [26], and TinyImageNet [28]. MNIST contains 60,000
grayscale images of size 28×28, totaling 10 classes. CIFAR10 and CIFAR100 contain 50,000 RGB
images of size 32×32. The former has 10 classes, and the latter has 100 classes. TinyImageNet
contains 100,000 images resized to 64×64, with a total of 200 classes.

Baselines. We compare two kinds of methods to reduce the amount of data: coreset selection (i.e.,
Random, Herding [59, 4], Forgetting [53]) and synthetic dataset distillation (i.e., DD [56], LD [5],
DC [66], DSA [64], DM [65]). Specifically, Random sampling selects images randomly, Herding
heuristically selects the sample closest to the center of the class, and Forgetting selects the sample
that is most likely to be forgotten during model training. DD is one of the earliest works on dataset
distillation, which updates the synthetic dataset by solving a bi-level optimization problem. LD
performs label distillation rather than image distillation. DC performs gradient matching between
large training dataset and condensed dataset, and DSA further considers differentiable siamese
augmentation strategies based on DC. DM condenses datasets through distribution matching. We
further combine the proposed low-rank plugin into DC, DSA and DM to obtain LoDC, LoDSA and
LoDM, respectively. Comparisons with other dataset distillation methods (e.g., MTT [8], IDC [23],
HaBa [33], and RemenberThePast [13]) are provided in the appendix.

Experimental Details. In each experiment, we first choose the coreset (for Random, Herding,
Forgetting) or learn a synthetic dataset (for DD, LD, DC, DSA, DM, LoDC, LoDSA, LoDM) and
then employ it to train 20 randomly initialized networks (default ConvNet [46] architecture). By
default, we set the rank r of our low-rank plugin to 2 for MNIST, CIFAR10, CIFAR100, and 4 for
TinyImageNet. In a few cases, the rank r will be searched in {1, 2, 4, 8}. Other hyperparameters are
the same as baselines [66, 64, 65]. We repeat the experiment multiple times for each method and
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Table 3: Cross-architecture testing performance on CIFAR10 (10 images per class). LearnOn means condensing
the dataset on this architecture, and TestOn means using the condensed dataset to train a new architecture.

Method LearnOn \ TestOn ConvNet LeNet AlexNet VGG11 ResNet18

DSA AlexNet 30.4±0.7 24.2±0.4 28.3±0.4 27.2±1.0 27.8±1.1
ConvNet 31.4±1.1 21.7±1.6 25.9±0.8 27.6±0.8 27.6±1.4

DM AlexNet 41.4±0.8 31.4±0.2 37.5±0.9 36.8±0.5 34.9±1.1
ConvNet 42.2±0.5 33.4±0.6 38.8±1.3 36.2±1.0 34.6±0.5

LoDM(ours) AlexNet 56.2±0.3 32.9±0.9 49.9±0.5 51.0±0.6 50.9±0.5
ConvNet 56.4±0.3 45.5±0.6 53.4±0.6 50.7±0.6 50.6±0.7

(a) (b) (c) (d) (e) (f)
Figure 1: Distribution of real (all images) and synthetic images (50 images per class) on MNIST dataset: (a)
Real, (b) DC, (c) Our LoDC(r=8), (d) DM, (e) Our LoDM(r=2), and (f) Our LoDM(r=8).

report the average test accuracy. Additionally, in Sec. 4.1.2, we also tested the cross-architecture
effectiveness of the synthetic dataset on five standard deep network architectures: ConvNet [46],
LeNet [29], AlexNet [27], VGG11 [52], and ResNet18 [19].

4.1.1 Compared to SOTA DC Baselines

We compare the performance of our LoDC, LoDSA, LoDM with other baseline methods under
different sample sizes (1/10/50 image(s) per class) in Tab. 1 and Tab. 2. We have the following
observations from Tab. 1: (i) When the sample size is small (e.g., 1 image per class), both Random
and heuristic Forgetting sample selection perform poorly, significantly lower than Herding’s method,
because the latter samples best represent the class centers. As the sample size of each class increases,
Herding’s advantage becomes less obvious. (ii) The dataset condensation methods are significantly
better than the coreset methods. For example, in CIFAR10 (10 images per class), Random and
Herding only achieve 26.0% and 31.6% accuracy, while DD achieves 36.8% accuracy, DC, DM,
and DSA achieve 44.9%, 48.9%, and 51.1%, respectively. (iii) Our method condenses dataset in a
low-rank manifold, effectively reducing memory cost (or the number of parameters to be optimized
per image). Therefore, by utilizing the same memory, our low-rank LoDM can represent a more
significant number of images, which is significantly better than other SOTA dataset compression
methods, especially when the sample size of each class is small. For example, when using one image
per class, our LoDM achieved accuracies of 43.8%, 25.6%, and 10.3% on CIFAR10, CIFAR100, and
TinyImageNet, respectively, while the best baseline achieved only 28.8%, 13.9%, and 3.9%.

In Tab. 2, we compare the performance of our methods (LoDC, LoDSA, LoDM) in the low-rank
manifold with traditional dataset distillation methods (DC, DSA, DM) using the same number of
images (SI) or the same memory consumption (SM). It can be observed that: (i) Our method (rank
r = 2) reduces storage consumption by 7×, 8×, and 8× under MNIST, CIFAR10, CIFAR100
datasets, respectively, when the number of images is the same. However, the performance is still
relatively close to the traditional DC method. We further explain the correspondence between rank
size and memory cost in the appendix. (ii) Under the same memory consumption, our method
can condense the large dataset into a smaller dataset with more samples, thereby preserving more
information from the original large datasets. Therefore, compared to traditional condensing methods,
our method exhibits a significant improvement. For example, on the CIFAR10 (10 Img/Cls) dataset,
LoDSA and LoDM have shown an improvement of 8.9% and 13.8% compared to DSA and DM,
respectively. Furthermore, as shown in Fig. 2(a), our LoDM method can achieve a higher final
performance than DM after only 2,000 iterations, compared to 20,000 iterations.

4.1.2 Ablation Study

Cross-architecture Transferability Analysis. We verify that the condensed dataset learned in the
low-rank manifold still has good cross-architecture transfer ability. We learn condensed dataset on a
particular architecture (i.e., AlexNet/ConvNet), and then use the learned small dataset to train five
different architectures (use Batch Normalization [21] as DM) from scratch, and finally verify on the
test set of CIFAR10 dataset. As shown in Tab. 3, we observe that in each method (DSA, DM or
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Figure 2: Ablation study on CIFAR10 (10 images per class): (a) Accuracy changes during DM, LoDM(SI) and
LoDM(SM) iterations, (b) rank size of synthetic datasets, and (c) learning rate of synthetic datasets (r = 2).

(a) real (b) DM (c) LoDM (d) LoDM
Figure 3: Visualization of (a) real and (b) DM synthetic, and (c) LoDM(Ours) synthetic images on CIFAR10
dataset (10 images per class) and (d) LoDM(Ours) on MNIST dataset (10 images per class).

LoDM), the condensed data on AlexNet and ConvNet perform very similarly when training different
architectures, so they have cross-architecture versatility. Furthermore, our LoDM method achieves
the best performance in almost all architectures, benefiting from its ability to hold more images in
low-rank space at the same memory cost.

Data Distribution Analysis. We verify that the condensed data learned in the low-rank manifold
can also capture the characteristics of the original data distribution. We first train a ConvNet model
using all the original data as a feature extractor. Then, we input the original images, DC, DM,
LoDC, and LoDM learned data (50 images per class) into the network to extract features and perform
dimensionality reduction through T-SNE [54] to visualize. As shown in Fig. 1, we observe that
both DC and LoDC cannot capture the distribution of raw data well, since they aim to perform
dataset distillation with the goal of gradient matching. DM considers distribution matching as the
distillation goal, which captures the data distribution effectively. LoDM inherits the properties of DM,
particularly when the rank increases, e.g., in Fig. 1(d) and Fig. 1(e), the rank is 2 and 8, respectively.

Hyper-parameter Analysis. We analyze the effect of two hyperparameters, rank size r ∈ {1, 2, 4, 8}
and learning rate ηdc ∈ {0.1, 0.5, 1, 2, 5}, on CIFAR10 based on the LoDM method. Fig. 2(b) shows
that when using the same number of images as DM, LoDM(SI) gradually achieves similar accuracy
to DM in the high-dimensional pixel space, as the rank size increases. When the rank is 8, the
performance is nearly identical to that of DM. We found that LoDM(SM) consistently outperforms
DM when using the same memory, and the rank equal to 2 is a good choice based on empirical
evidence. We also provide image visualizations generated by different ranks in the appendix. Fig. 2(c)
shows that updating the generated data with a relatively large learning rate, such as 1 or 5, yields
better results.

Visualization of Images. We visualize in Fig. 3 the condensed images generated by our LoDM
method (rank r = 2) for the CIFAR10 and MNIST datasets, ten images per class. We observe that
compared to the images condensed by DM in high-dimensional pixel space, the images we recover
under the low-dimensional manifold will be sharper, but still capture the main features of the class,
especially on the MNIST dataset. This further verifies that images are locally connected and have
lower intrinsic dimensions, so dataset condensation in traditional pixel space may be inefficient.

4.2 Data Condensation for Continual Learning

In this section, we apply the low-rank dataset distillation plugin to continual learning tasks. We
perform class-incremental learning with strict memory constraints, specifically using 10 images per
class for the CIFAR10 dataset and 20 images per class for the CIFAR100 dataset. Based on Sec. 3.4,
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Figure 4: Test accuracy on the class-incremental learning task.

we combine the coreset method (Random, Herding) and various dataset distillation methods (DSA,
DM, and our LoDM) into a simple and effective CL method GDumb [41]. We conduct experiments
on two benchmark datasets, CIFAR10 and CIFAR100, where the CIFAR10 dataset is divided into
5 tasks, and the CIFAR100 dataset is divided into 5 tasks and 10 tasks, respectively. Based on
Fig. 4, we observe that in the three subfigures (a-c), GDumb+LoDM achieves the best results. For
example, on CIFAR100 with 5 tasks, the final accuracies of GDumb+Random, GDumb+Herding,
GDumb+DSA, GDumb+DM, and GDumb+LoDM are 27.9%, 27.0%, 30.0%, 33.81%, and 37.92%,
respectively. This suggests that our condensed data in a low-rank manifold is also meaningful for
continual learning with limited memory.

5 Conclusion and Future Works

In this work, inspired by natural images that are locally connected and have low intrinsic dimensions,
we propose a simple yet effective plugin that condenses a large dataset into a smaller dataset in a low-
dimensional manifold. We apply this plugin to the existing dataset condensation methods and observe
significant performance improvements while maintaining the same memory cost. Additionally,
the analysis revealed that the dataset condensed in the low-dimensional manifold exhibits similar
characteristics to the traditional high-dimensional pixel space dataset condensing method, such as
matching the distribution of the large dataset and cross-architecture transferability. Furthermore, the
plugin effectively addresses the issue of catastrophic forgetting in continual learning tasks. Our work
has two directions for further improvement in the future: (i) Rank is a manually tuned hyperparameter
in this paper. Therefore, how to adaptively assign the best rank to each dataset in the future is a
feasible direction. (ii) We plan to apply the proposed dataset distillation plugin to more downstream
tasks in the future, such as network architecture search, federated learning, and meta-learning.
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A Implementation Details

Experiment Details. We train a model using condensed synthetic images and measure the Top-1
accuracy on raw testing images. For a fair comparison, our main experimental settings follow the
settings of DC, DSA and DM. Experiments are conducted on a 3-layer convolutional network [46]
(ConvNet-3) with 128 filters, without any specific emphasis. The batch size of the raw images is set
to 256 during the matching process. For the DC [66], DSA [64], LoDC, and LoDM methods, the
outer loop is set to 1 and the inner loop is set to 1 when using 1 image per class in all experimental
datasets. When using 10 images per class, the outer loop is set to 10 and the inner loop is set to 50.
In the MNIST and CIFAR10 datasets, when using 50 images per class, the outer loop is set to 50
and the inner loop is set to 10. For the DM [65] and LoDM methods, the loop is set to 20,000 in all
experiments. The optimizers all use SGD. When optimizing the condensed data, the learning rate for
DC/DSA/LoDC/LoDSA is set to 0.1 by default, and the learning rate for DM/LoDM is set to 1.0 by
default. When using condensed data to train the network, the update times of the network are set to
1,000, and the learning rate is set to 0.01.

Relationship between Memory and Rank. Suppose the shape of each channel of a real image is
(H,W ), where H and W are the height and width of the image, respectively. The memory consumed
by traditional dataset distillation can be recorded as N×D×H×W , where N and D represent the
number of images and the number of channels. The memory consumed by our low-rank dataset
distillation method is N×D×(H×r+ r×W ), where r is the rank size. For example, in the CIFAR10
dataset, both H and W are 32, and our r is generally set to 2, which means that it can save 8 times
the storage compared to traditional dataset distillation methods (i.e., DC, DSA and DM).

B Additional Experimental Results

B.1 Experimental Analysis

Compare with Other Adavanced Methods. In our main paper, the low-rank plugin is mainly
used in the traditional DC [66]/DSA [64] based on gradient matching and DM [65] based on
distribution matching. Recently, a research work (i.e., MTT [8]) shows that better dataset condensation
performance can be obtained based on finer-grained gradient trajectory matching. This is strictly
orthogonal to our work. As shown in the Tab. 4, when our low-rank plugin is further applied to
the MTT, our work achieved 58.7% accuracy on CIFAR10 (Img/Cls=1) and 31.0% on CIFAR100
(Img/Cls=1). This is a significant improvement compared to MTT, which is 46.3% and 24.3%.

In addition, related to our work are recent works on efficient dataset distillation [23, 67, 33, 13].
Among them, (i) IDC-I/IDC [23] and IDM [67] consider the local similarity of image pixels, and
they partition and expand the synthetic image to obtain more images. This is orthogonal to our work,
i.e., we can perform partitioning and expansion operations on images reconstructed by our low-rank
plugin to further increase the number of images under the same memory constraints. For example, on
the CIFAR10 dataset, compared with IDC-I/IDC, our low-rank versions (i.e., LoIDC-I/LoIDC) bring
performance improvements of 12.5% and 6.6%, respectively. (ii) HaBa [33] inputs the bases into
the Hallucinator networks to reconstruct condensed images, while RememberThePast [13] shares
bases among all classes and constructs condensed images by addressing matrices. We note that their
basis is also equal to the original image size. Therefore, under the same memory cost, we can use our
low-rank plugin on their bases to obtain more images. For example, on the CIFAR10 dataset, our
LoHaBa and LoRememberThePast improved by 17.8% and 4.0%, respectively, compared to Haba
and RememberThePast in Tab. 4.

Table 4: Compare with other advanced dataset condensation methtods.

CIFAR10 (Img/Cls=1)

MTT IDC-I IDC HaBa RememberThePast
46.3% 36.7% 50.6% 48.3% 66.4%

LoMTT LoIDC-I LoIDC LoHaBa LoRememberThePast
58.7% 49.2% 57.2% 66.1% 68.4%

CIFAR100 (Img/Cls=1)

MTT IDC-I IDC HaBa RememberThePast
24.3% 16.6% 24.9% 33.4% -

LoMTT LoIDC-I LoIDC LoHaBa LoRememberThePast
31.0% 26.9% 33.1% 36.1% -
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Principal Component Analysis of Images. In this section, we verify that both original images
and images condensed by traditional dataset distillation methods (e.g., DSA [64] and DM [65])
have low-rank properties. Therefore, it is inefficient to perform dataset condensation directly in
high-dimensional pixel space. Specifically, we randomly sample some images from the CIFAR10
dataset and further perform singular value decomposition (SVD) on each channel of these images.
As shown in Fig. 5, the diagonal matrix represents the distribution of the average eigenvalues on
all channels of all selected images. We can observe that both the original images (Fig. 5(a)) and
the images synthesized by the traditional data distillation methods (e.g., DSA [64] in Fig. 5(b) and
DM [65] in Fig. 5(c)) can be approximated by low rank, that is, the first few eigenvalues on the
diagonal dominate. Therefore, it is reasonable to perform low-rank dataset distillation in this paper.
Fig. 5(d) shows the distribution of eigenvalues of images produced by the proposed LoDM.

(a) Real (b) DSA

(c) DM (d) LoDM
Figure 5: Principal component analysis of images on CIFAR10 dataset: (a) Real images; (b) Synthetic images
of DSA; (c) Synthetic images of DM; and (d) Synthetic images of LoDM(r = 2).

B.2 Image Visualization

Training Process of Synthetic Data. Fig. 6 and Fig. 7 illustrate the intermediate state images of
different ranks (r = {2, 8}) of our LoDM during the iterative process of synthesizing images on
the CIFAR10 dataset. In addition, Fig. 10 and Fig. 11, we visualize the intermediate state images
of different ranks (r = {2, 4}) of our LoDM in the iterative process of synthesizing images on the
MNIST dataset. Visualization of Real and Synthetic Images. We provide more visualizations of
the synthetic images from the different datasets: MNIST in Fig. 8, and CIFAR10 in Fig. 9. As the
rank size increases, the synthesized image captures increasingly detailed features.

(a) 0-th It (b) 1000-th It (c) 5000-th It (d) 20000-th It

Figure 6: Visualization of the synthetic image process of LoDM(r=2) on the CIFAR10 dataset.
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(a) 0-th It (b) 1000-th It (c) 5000-th It (d) 20000-th It

Figure 7: Visualization of the synthetic image process of LoDM(r=8) on the CIFAR10 dataset.

(a) DC (b) DSA (c) DM

(d) Our LoDC(r=2) (e) Our LoDSA(r=2) (f) Our LoDM(r=2)

(g) Our LoDM(r=4) (h) LoDM(r=8) (i) Real

Figure 8: Visualization on the MNIST dataset (10 Img/Cls).
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(a) Real (b) DM (c) Our LoDM(r=1)

(d) Our LoDM(r=2) (e) Our LoDM(r=4) (f) Our LoDM(r=8)

Figure 9: Visualization on the CIFAR10 dataset (10 Img/Cls).

(a) 0-th It (b) 1000-th It (c) 5000-th It (d) 20000-th It

Figure 10: Visualization of the synthetic image process of LoDM(r=2) on the MNIST dataset.

(a) 0-th It (b) 1000-th It (c) 5000-th It (d) 20000-th It

Figure 11: Visualization of the synthetic image process of LoDM(r=4) on the MNIST dataset.
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