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Abstract

Learning binary classifiers from positive and unlabeled data (PUL) is vital in many
real-world applications, especially when verifying negative examples is difficult.
Despite the impressive empirical performance of recent PUL methods, challenges
like accumulated errors and increased estimation bias persist due to the absence
of negative labels. In this paper, we unveil an intriguing yet long-overlooked
observation in PUL: resampling the positive data in each training iteration to
ensure a balanced distribution between positive and unlabeled examples results in
strong early-stage performance. Furthermore, predictive trends for positive and
negative classes display distinctly different patterns. Specifically, the scores (output
probability) of unlabeled negative examples consistently decrease, while those of
unlabeled positive examples show largely chaotic trends. Instead of focusing
on classification within individual time frames, we innovatively adopt a holistic
approach, interpreting the scores of each example as a temporal point process (TPP).
This reformulates the core problem of PUL as recognizing trends in these scores.
We then propose a novel TPP-inspired measure for trend detection and prove its
asymptotic unbiasedness in predicting changes. Notably, our method accomplishes
PUL without requiring additional parameter tuning or prior assumptions, offering
an alternative perspective for tackling this problem. Extensive experiments verify
the superiority of our method, particularly in a highly imbalanced real-world
setting, where it achieves improvements of up to 11.3% in key metrics. The code
is available at https://github.com/wxr99/HolisticPU.

1 Introduction

Positive and Unlabeled Learning (PUL) is a binary classification task that involves limited positive
labeled data and a large amount of unlabeled data [36]. This learning scenario naturally arises in
many real-world applications like matrix completion[25], deceptive reviews detection[45], fraud
detection[35] and medical diagnosis[56]. It also serves as a key component of more complex machine
learning problems, such as out-of-distribution detection[63] and adversarial training[18]. Two main
categories of PUL methods are cost-sensitive methods and sample-selection methods. However, both
approaches face their challenges. The cost-sensitive methods rely on the negativity assumption, which
may introduce estimation bias due to the mislabeling of positive examples as negative[49]. This bias
can be accumulated and even worsen during later training stages, making its elimination challenging.
The sample-selection methods struggle with distinguishing reliable negative examples, particularly
during the initial stage, which also results in error accumulation during the training process[23; 57].

As a basic component for various PUL methods, resampling the positive labeled data shows its
potential in alleviating the bias brought by negative assumption [49; 52; 30; 33; 61]. For example,
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Figure 1: Averaged predicting scores (output probability) of positive (left) and negative (right)
examples in an unlabeled dataset during the first 15,360 iterations of training (30 epochs).

[30] resamples positive examples according to the given class prior and assumed label mechanism
to achieve decent performance. In this paper, we dive deeper into this class of strategies. Instead of
relying on one single-step prediction which is prone to model uncertainty, we take a holistic view
and examine the predictive trend of unlabeled data during the training process. Specifically, we treat
the unlabeled data as negative. In each training epoch, we resample over the labeled positive data to
ensure a balanced class distribution. We evaluate the model’s performance on CIFAR10 and FMNIST
datasets[32; 55] with 4 experimental settings. Our pilot experiments show that this resampling
method achieves comparable or even state-of-the-art test performance at the outset, but underperforms
soon after. Furthermore, the averaged predicting scores (output probability) of unlabeled negative
examples exhibit a consistent decrease, whereas those of unlabeled positive examples display an
initial increase before subsequent decreasing or oscillating. Conclusively, the averaged predictive
trends for different classes exhibit significant differences, as depicted in Figure 1. One possible
explanation for these observations is the model’s early focus on learning simpler patterns, which
aligns with the early learning theory of noisy labels [37]. Although the resampling strategy enjoys
these advantages, selecting an appropriate model can be more challenging than the classification task
itself due to the lack of a precise validation set.

To break the above limitation, we propose a novel approach that treats the predicting scores of
each unlabeled training example as a temporal point process (TPP). It takes a holistic view and
surpasses existing methods that focus on examining loss values or tuning confidence thresholds
based on a limited history of predictions. By centering on the difference in trends of predicting
scores, our approach provides a more comprehensive understanding of deep neural network training
in PUL. To further investigate whether this difference in trends is prevalent in individual unlabeled
examples, we apply the Mann-Kendall Test, a non-parametric statistical test used to detect trends in
the temporal point process [20], to the continuously predicting scores of each example. These scores
are classified into three types: Decreasing, Increasing, and No Trend. The statistical test reveals a
clear distinction in the trends of predicted scores for each positive and negative example, supporting
our observation. Our findings suggest that utilizing the model’s classification ability in the early
stages may be sufficient for successfully classifying unlabeled examples. This discovery offers us a
new perspective on reformulating the problem of distinguishing positive and negative examples in the
unlabeled set as identification of their corresponding predictive trends.

We then propose a novel TPP-inspired measure, called trend score to quantify the distinctions in
predictive trends. It is obtained by applying a robust mean estimator [3] to the expected value of the
ordered difference in a TPP (sequence of predicting scores for each example)[19]. Subsequently,
we introduce a modified version of Fisher’s Natural Break to distinguish these predictive trends,
identifying a natural break point in the distribution of trend score. This approach divides examples
into two groups: the group with high trend score represents positive examples, while the group with
low trend score corresponds to negative examples. Our approach simplifies the training process
by circumventing threshold selection when assigning pseudo-labels. Once the unlabeled data is
classified, the remaining problem becomes a binary supervised learning task, and issues such as
estimating class priors can be easily addressed. In summary, our main contributions are:
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• We demonstrate the effectiveness of the proposed resampling strategy. It is also observed
that predictive trends for each example can serve as an important metric for discriminating
the categories of unlabeled data, providing a novel perspective for PUL.

• We propose a new measure, trend score, which is proved to be asymptotically unbiased in
the change of predicting scores. We then introduce a modified version of Fisher’s Natural
Break with lower time complexity to identify statistically significant partitions. This process
does not require additional tuning efforts and prior assumptions.

• We evaluate our proposed method with various state-of-the-art approaches to confirm its
superiority. Our method also achieves a significant performance improvement in a highly
imbalanced real-world setting.

2 Our Intuition and Method
2.1 Preliminary

We first revisit some important notations in PUL. Formally, let x ∈ Rd be the input data with
d dimensions and y ∈ {0, 1} be the corresponding label. Different from the traditional binary
classification, PUL dataset is composed of a positive set P = {xi, yi = 0}np

i=1 and an unlabeled set
U = {xi}nu

i=1, where the unlabeled set U contains both positive and negative data. Throughout the
paper, we denote the positive class prior as π = P(y = 0).

2.2 Resampling Strategies for Positive and Unlabeled Learning
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Figure 2: The accuracy of our resampling method (first 30 epochs). The horizontal line represents
the accuracy of the state-of-the-art methods. Early stopping and Leave Zero Out represent different
model selection strategies.

Resampling strategies have long been a baseline for dealing with imbalanced data or limited labels,
which naturally fits PUL since its key challenge lies in limited labels and potentially imbalanced
data distribution[5]. Different from popular resampling strategies applied in PUL[30], we follow the
training scheme as [47; 58] to independently sample positive and unlabeled data as different data
batches and the loss function is defined accordingly.

L =
1

|Bp|
∑

(xi,yi)∈Bp

ℓ(ŷi, yi) +
1

|Bu|
∑
xi∈Bu

ℓ(ŷi, 1), ŷi = f(xi). (1)

Here, we denote f ∈ F as a binary classifier, ℓ(·, ·) as the loss function, Bp and Bu as the positive
and unlabeled training batches respectively. We ensure that |Bp| = |Bu| to achieve a balanced
class prior during the training process. This approach emphasizes the labeled data and mitigates the
imbalance of positive and pseudo-negative labels, which also provides a good theoretical explanation
when dealing with high-dimensional data conforming to different Gaussian distributions. As shown
in AppendixA.1, an optimal decision hyperplane can be attained when |P|/|U| equals 1. Figure2
details the performance of our resampling baseline on two datasets under four different settings. It
can be observed that the proposed method performs comparably or even better than state-of-the-art
methods (P3MIX[33] and DistPU[61]) in the early stages of training, as demonstrated by its test
performance at certain epochs. However, the method’s performance quickly degrades in all 4 settings
as the estimation bias worsens during training due to the false negatives introduced by the negativity
assumption. We also explore alternative model selection strategies, such as holding out a validation
set from given labeled examples or using different versions of augmented data for model selection, as
inspired by prior studies [34; 39]. In addition to the common practice of selecting the model from an
additional positive validation set, we also implement LZO[34], which selects the model based on the
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mixup-induced validation set. As shown in Table1, the performance gap persists, especially when
most of the unlabeled data belongs to the positive class.

Table 1: Classification accuracy (Recall rate is reported on Credit Card) on unlabeled training data.
Resampling-P represents the model selected on an extra positive validation set. Resampling-LZO
represents the model selected through LZO. Resampling* represents the best model selected on the
test set which is an ideal case.

Dataset F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2 Credit Card Alzheimer

Resampling-P 89.93 84.29 81.06 72.93 - - 60.75 70.09
Resampling-LZO 93.37 92.04 84.87 82.98 - - 67.24 74.11

Resampling* 94.92 94.57 89.56 85.46 - - 87.54 76.30
P3MIX-C 91.59 87.65 86.05 88.14 - - 76.21 68.01

To tackle the above issues, some denoising-based semi-supervised PUL methods, such as [8; 52; 49],
have leveraged some threshold tuning or sample selection techniques to achieve acceptable empirical
performance. These techniques have been criticized in [54] for relying solely on prediction scores or
loss values, as they do not account for uncertainty in the selection process. This becomes even more
problematic in PUL, where the noise ratio is typically higher when making a negativity assumption[2].

To break the above limitations, we record the whole predicting process of each unlabeled training
example to take a holistic view of the training. It is evident that averaged model-predicting scores
for positive and negative data display two distinct trends when implementing the above resampling
strategy in the early training stages. Meanwhile, the standard deviation of predictions for positive
examples increases rapidly during training, making it increasingly difficult to select an appropriate
threshold for distinguishing between positive and negative examples. The appropriate threshold
interval for discriminating positive and negative examples quickly shrinks as training progresses,
indicating that existing denoising techniques cannot fundamentally alleviate the issues of accumulated
errors and increased estimation bias. Therefore, a more robust evaluation measure is necessary beyond
relying on raw model-predicted scores or loss values. Implementation details in model selection and
visualizations of threshold tuning are provided in AppendixA.

2.3 Identifying Predictive Trends: A Key to Successful Classification
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Figure 3: The Mann-Kendall Test is performed on 4 settings of CIFAR10 and FashionMnist datasets.
The figure reports the fractions of positive and negative examples in an unlabeled dataset exhibiting
different predictive trends during the early training stage (first 30 epochs).

While deep neural networks have strong learning capabilities, they are at risk of overfitting all
provided labels, regardless of their correctness. This can result in all unlabeled examples being
predicted as negative [1; 59]. We expect the predictive scores of negative examples in the unlabeled set
to consistently decrease because all negative examples are given true negative labels by the negativity
assumption. On the other hand, the predictive scores of positive examples in the unlabeled training
set may not decrease initially because the resampled labeled examples are consistently emphasized
from the start of training. To provide more evidence, we use the Mann-Kendall test to analyze the
model-predicted scores of each example [20]. This test categorizes the prediction sequence into three
situations: Decreasing, Increasing, and No Trend. The calculation process of the Mann-Kendall
Test is detailed in AppendixB. Figure 3 shows a contrast between the trends of predicted scores
for positive and negative examples. Even when certain positive and negative examples exhibit a
similar trend of decreasing prediction scores during training, we observed significant differences in
the significance index γ across different classes.
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Our next objective is to measure the differences between positive and negative examples. To
accomplish this, we require an evaluation measure that captures the significance of the observed
trends in model-predicted scores. Before developing our own measure, an important notation in the
TPP is first introduced, E[∆p], which represents the expected value of the ordered difference in a
series of predicting scores.

E[∆p] = lim
t→∞

2

t(t− 1)

t∑
i<j

∆pij , ∆pij = pj − pi. (2)

where pi is the predicting score (output probability) at i-th epoch, t is the number of training epochs.

S̃ =
2

t(t− 1)

t−1∑
i=1

t∑
j=i+1

∆pij , ∆pij = pj − pi. (3)

While S̃ is the empirical mean and unbiased estimation of E[∆p], it can be unreliable for non-
Gaussian examples and may not handle outliers or heavy-tailed data distributions well as illustrated
in[3]. To address these issues, we propose a robust mean estimator inspired by[54; 20], called the
trend score S, which measures the difference between each ordered pair of prediction scores:

Ŝ =
2

t(t− 1)

t−1∑
i=1

t∑
j=i+1

ψ(α∆pij), ∆pij = pj − pi. (4)

ψ(∆pij) = sign(∆pij) · log(1 + |∆pij |+∆p2ij/2). (5)

in which α > 0 is a scaling parameter, and sign() is the sign function that returns −1 if its argument
is negative, 0 if its argument is zero, and 1 if its argument is positive. The function ψ(·) can result
in a more robust estimation by flattening the values of ∆pij and reducing the influence of minority
outlier points on the overall estimation. Besides, we also provide a simplified version as:

Ṡ =
1

t− 1

t−1∑
i=1

ψ(α∆pij), ∆pij = pj − pi. (6)

Notably, S̃, Ŝ, Ṡ are all calculated on each example. Experiments show that both Ŝ, Ṡ exhibit better
empirical results than S̃ in Section3. For choosing the stopping epoch t, we implement the LZO[34]
algorithm as described in Section2.2. We also derive a concentration inequality between our trend
score Ŝ and the expected value of the ordered difference E[∆p].
Theorem 2.1. Let P = {pij |1 ≤ i ≤ t − 1, 2 ≤ j ≤ t, i < j} be an observation set of changes
in predictions in which E[∆p] is the expected values of the ordered difference in a temporal point
process and σ2 is the variance of P . By exploiting the non-decreasing influence function ψ(·), for
any ϵ > 0, we have the following bound with probability at least 1− 2ϵ:

|Ŝ − αE[∆p]| <
2ασ

√
2log(ϵ−1)
t(t−1)

1−
√

2log(ϵ−1)
t(t−1)α2σ2

= O
((
log(ϵ−1)

) 1
2 t−1

)
. (7)

It illustrates that the measure we propose is an asymptotically unbiased estimation with a linear
weighting of E[∆p]. The proof is provided in AppendixC. It is also proved in [3] that the deviations of
this robust mean estimator can be of the same order as the deviations of the empirical mean computed
from a Gaussian statistical sample, which further verifies the advantage of this estimator.

2.4 Clustering Unlabeled Data by the Fisher Criterion
The topic of accurately labeling unlabeled data is widely discussed in various fields, including
PUL. In the existing literature, threshold-based criteria and small loss criteria are the two primary
approaches used for selecting reliable or clean examples, as seen in studies such as [47; 58; 29; 49].
However, previous works generally select examples based solely on current predictions, ignoring the
inherent uncertainty in training examples, leading to longer training times and poor generalization
ability[54; 41]. Besides, they often require extensive hyperparameter tuning efforts to choose
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appropriate thresholds or ratios for data selection. In this section, we introduce a new labeling
approach based on our proposed trend score tackling the above issues.

Our proposed trend score is the naturally comparable one-dimensional data and allows the Fisher
Criterion to be a viable choice. It identifies a natural break point in the trend score distribution, which
could be used to divide the data into two groups: one with high trend scores and one with low trend
scores representing positive and negative examples respectively. Specifically, the objective function
of finding this Fisher’s natural break point can be formed as follows:

min
C1,C2

∑
x∈C1

(Ŝx − µ1)
2

|C1|
+

∑
x∈C2

(Ŝx − µ2)
2

|C2|
s.t. C1 ∩ C2 = ∅, C1 ∪ C2 = x1, x2, . . . , xN .

(8)

where Ŝx is our derived trend score for example x, C1 and C2 are the two clusters, µi is the mean
of cluster Ci, and N is the total number of data points. We utilize the Fisher natural break point
method to automatically determine a threshold value that divided the trend score distribution into
two distinct groups. Our implementation introduces an improved algorithm, which reduces the time
complexity from O

(
N2

)
to O

(
Nlog(N)

)
, as explained in AppendixD. This method eliminates the

need for manual threshold selection or hyperparameter tuning, both of which can be time-consuming
and error-prone. Furthermore, the data-driven approach we used optimizes the threshold value for the
specific dataset under analysis, rather than relying on arbitrary or pre-defined values.

Once the unlabeled data is classified, the remaining task becomes a straightforward supervised
learning problem. We directly train by a cross-entropy loss on the estimated labels given by Eq.8
on the backbone network given in Table4. Besides, issues such as estimating class priors can be
addressed easily when unlabeled data are classified.

3 Experiments
3.1 Classification on Unlabeled Training Set
In this subsection, we first evaluate the performance of our method on the unlabeled training set
compared with some state-of-the-art methods. As shown in Table2, our method demonstrates excellent
classification performance on the unlabeled training data (the true labels of unlabeled data are not
available in STL10). Moreover, a comparison with state-of-the-art prior estimation methods in PUL is
conducted to further verify the effectiveness of our approach, and the results are presented in Table3.

Table 2: Classification accuracy (Recall rate is reported on Credit Card) on unlabeled training data.

Dataset F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2 Credit Card Alzheimer

nnPU 85.31 82.46 83.11 83.23 - - 62.53 64.01
PGPU 92.02 90.17 85.67 88.38 - - 42.12 75.09

Self-PU 94.04 91.59 84.06 83.77 - - 71.00 70.05
P3MIX-C 91.59 87.65 86.05 88.14 - - 76.21 68.01

Ours 95.41 96.00 91.42 91.17 - - 98.90 75.13

Table 3: Absolute estimation error with the true positive prior in the first row. We implement an
oracle early stopping for the extant methods as defined in [15]. Our method significantly reduces
estimation error when compared with existing methods.

Algorithm F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2 Credit Card Alzheimer

π 0.40 0.60 0.40 0.60 0.50 0.50 0.05 0.50
KM2 0.146 0.106 0.115 0.164 0.096 0.101 0.236 0.094
BBE* 0.082 0.073 0.034 0.059 0.046 0.064 0.112 0.026

(TED)n 0.026 0.020 0.042 0.044 0.024 0.021 0.018 0.014
Ours 0.014 0.021 0.016 0.031 0.018 0.009 0.004 0.011

3.2 Test Performance

We use three synthetic prevalent benchmark datasets including FashionMnist (F-MNIST) [55],
CIFAR10 [32] and STL10 [10] and two real-world datasets on fraud detection1 and Alzheimer

1https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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Table 4: Dataset description and corresponding backbones.

Dataset #Trainset #Testset Input size Backbone

F-MNIST 60,000 10,000 28×28 LeNet-5
CIFAR-10 50,000 10,000 3×32×32 7-Layer CNN

STL-10 105,000 8,000 3×96×96 7-Layer CNN
Alzheimer 5,890 1,279 3×224×224 ResNet-50

Credit Fraud 8,392 2098 30 6-Layer MLP

diagnosis2 as our test set. We provide the dataset description and corresponding backbones in Table4,
and the positive priors of each setting are given in Table3. More detailed description of benchmark
datasets, dataset split and implementation details are given in AppendixF. For each dataset, we run
our method for 5 times with different random seeds and report the averaged classification accuracy.
We follow the settings in [52; 61] when making the comparison: randomly select 769 positive
examples in Alzheimer dataset, 100 positive examples in Credit Fraud dataset and 1000 positive
examples in others as the labeled set in training. Classification accuracy on test sets is reported as the
main criterion. For highly imbalanced distributed (Credit Fraud) and biasedly selected (Alzheimer)
datasets, we provide additional metrics such as Recall, F1 score and AUC on test sets for a more
comprehensive comparison.

Table 5: Results of classification accuracy (%) on 3 generic datasets with 6 settings (mean±std).

Algorithm F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2

uPU 81.6±1.2 85.7±2.6 76.5±2.5 71.6±1.4 76.7±3.8 78.2±4.1
nnPU 91.4±0.6 90.2±0.7 84.7±2.4 83.7±0.6 77.1±4.5 80.4±2.7

Self-PU 90.8±0.4 89.1±0.7 85.1±0.8 83.9±2.6 78.5±1.1 80.8±2.1
PAN 87.7±2.4 89.9±3.2 87.0±0.3 82.8±1.0 77.7±2.5 79.8±1.4
vPU 92.6±1.2 90.5±0.8 86.8±1.2 82.5±1.1 78.4±1.1 82.9±0.7

MIXPUL 90.4±1.2 89.6±1.2 87.0±1.9 87.0±1.1 77.8±0.7 78.9±1.9
PULNS 91.0±0.5 89.1±0.8 87.2±0.6 83.7±2.9 80.2±0.8 83.6±0.7
Dist-PU 94.7±0.4 92.4±0.4 86.8±0.7 87.2±0.9 79.8±0.6 82.9±0.4

P3MIX-E 92.6±0.4 91.8±0.2 88.2±0.4 84.7±0.5 80.2±0.9 83.7±0.7
P3MIX-C 92.8±0.6 90.4±0.1 88.7±0.4 87.9±0.5 80.7±0.7 84.1±0.3

Ours 95.8±0.3 96.0±0.3 91.1±0.2 90.3±0.1 83.7±0.3 85.3±0.6

3.2.1 Sythetic datasets

Our proposed method consistently outperforms all PUL baselines by 1% to 4% on all generic
benchmark datasets and settings, as shown in Table 5, demonstrating its superior performance.
Furthermore, many existing PUL methods rely on a given positive prior or make various assumptions
that are not available in real-world settings, whereas our method does not require any of them.
To avoid inherent challenges such as accumulated errors and estimation bias, we transform the
above challenges into a much simpler task of discerning the trend of the model-predicting scores.
Considering we can achieve outstanding classification accuracy in unlabeled data, it is natural
to expect our method to outperform existing PUL methods. While using some tricks for label
noise learning like Co-teaching[22] and large loss criterion[28] could possibly further improve the
performance of our method, we believe that in most scenarios, our method can effectively solve
existing PUL problems with simplicity.

3.2.2 Real-world datasets

This subsection presents experimental results on two real-world datasets, including one highly
imbalanced Credit Fraud dataset. In fraud detection, recall is typically more important than precision
or accuracy, as the consequences of missing a fraudulent transaction can be much more severe
than flagging a legitimate transaction as fraudulent. As shown in Table 6, our proposed method
achieves significantly higher recall rates and F1 scores, as well as comparable accuracy and precision,
indicating its ability to better handle highly imbalanced scenarios. Our approach offers a novel
perspective compared to traditional prediction-based methods, as the model’s predictive trends are not
affected by the positive prior, as long as the observation outlined in Section 2.3 holds. Furthermore,

2https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
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Table 6: Comparative results(%) on Credit Card Fraud dataset (mean±std).

Algorithm F1 score Recall Accuracy Precision AUC

uPU 89.5±3.1 83.4±1.3 97.0±0.2 96.5±3.6 93.4±3.1
nnPU 89.9±1.0 83.4±1.3 98.4±0.1 97.4±1.1 94.2±0.9

nnPU+mixup 89.0±2.8 82.9±1.6 98.1±0.1 96.0±3.2 93.8±2.9
Self-PU 89.0±2.4 85.8±2.0 99.2±0.1 92.4±3.4 95.6±2.8

PAN 91.5±0.9 85.4±1.3 99.1±0.1 98.5±1.0 96.6±1.1
VPU 91.7±3.9 84.9±5.7 98.6±0.5 99.7±0.6 96.9±3.1

MIXPUL 82.9±2.8 86.6±1.3 98.4±0.3 79.2±3.5 91.3±0.7
PULNS 89.0±2.0 83.2±2.1 99.0±0.1 95.6±1.9 94.5±0.7
Dist-PU 87.9±3.4 80.2±4.1 98.8±0.4 97.2±1.6 96.5±2.7

P3MIX-E 91.9±2.1 87.7±2.0 99.0±0.1 96.5±1.8 97.5±0.9
P3MIX-C 90.2±1.4 86.5±1.8 98.8±0.1 94.1±1.2 97.3±1.2

Our Method 99.1±0.2 99.0±0.2 99.1±0.1 99.3±0.1 99.7±0.1

Table 7: Comparative results(%) on Alzheimer dataset (mean±std).

Algorithm F1 score Recall Accuracy Precision AUC

uPU 67.6±2.8 66.1±6.1 68.5±2.2 69.7±3.5 73.8±2.9
nnPU 68.6±3.2 69.5±7.2 68.3±2.1 68.0±2.3 72.9±2.8

RP 62.1±5.6 64.6±15.9 61.6±3.2 61.9±4.5 66.1±3.3
PUSB 69.2±2.4 69.3±2.4 69.2±2.4 69.2±2.4 74.4±2.4
PUbN 70.4±3.2 72.0±8.4 70.0±1.3 69.4±2.5 70.0±1.3

Self-PU 72.1±1.1 75.4±5.1 70.9±0.7 69.3±2.5 75.9±1.8
aPU 70.5±3.4 75.7±8.2 68.5±1.8 66.2±0.9 70.7±3.7
VPU 70.2±1.1 76.7±3.6 67.4±0.7 64.7±1.1 73.1±0.9

ImbPU 68.8±1.9 70.6±6.5 68.2±0.8 67.5±2.5 73.8±0.7
Dist-PU 73.7±1.6 80.1±5.1 71.6±0.6 68.5±1.2 77.1±0.7

Our Method 74.5±2.4 79.5±5.8 72.8±0.9 70.2±1.6 77.1±2.3

our method also demonstrates comparable performance on the Alzheimer dataset to the state-of-
the-art method DistPU, which employs various regularization techniques and data augmentation
strategies. In both two real-world settings, our method achieves a balanced good performance on all
evaluation metrics which further illustrates its effectiveness.
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Figure 4: Sensitivity analysis was performed on two parameters: α (left) and stopping iteration (right).
The stopping iteration of LZO (also the one we use) is denoted by ’∗’ on the right.

3.2.3 Ablation Study

To investigate the specific effects of different components (Resampling, trend score, and Fisher
Natural Break Partition) in our method, we conducted a series of ablation studies and compared
them with some popular alternatives. From Table 8, we can draw several observations: (1) The
resampling strategy plays a crucial role in our method as it maximizes the discrepancy of the trends
in different classes of examples, particularly in the Credit Fraud dataset. It serves as an important
factor in amplifying the model’s early success, which is the foundation of our further approach
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Table 8: Ablation results (%) on CIFAR-10 (acc), Credit Fraud (recall) and Alzheimer (f1 score).
"✓" indicates the enabling of the corresponding components.

Trend Measure Clustering Dataset
Resampling TS Simplified TS MK Natural break k-means CIFAR10-1 Credit Fraud Alzheimer

✓ ✓ 84.1 88.6 69.2
✓ ✓ ✓ 89.4 99.3 70.5
✓ ✓ ✓ 90.2 99.0 69.7
✓ ✓ ✓ 90.7 99.2 73.9
✓ ✓ ✓ 91.1 99.1 74.5

towards achieving better performance. (2) Our proposed trend score provides a better evaluation
metric than the statistic S̃ used in the standardized Mann-Kendall test, and the simplified trend
score also shows competitive performance. (3) Fisher Natural Break Partition derives deterministic
optimal partitions with better statistical properties and empirical performance compared to heuristic
k-means. Moreover, it is unrelated to initialization and less time-consuming than the original version,
as detailed in AppendixD.

3.2.4 Sensitivity Analysis

In this subsection, we investigate the impact of two hyperparameters, namely the scaling parameter
α and the stopping iteration (we do not need to manually tune it), on the evaluation of predictive
trends for each example. To facilitate comparisons, we set α to 2 and employ the LZO algorithm [34]
discussed in Section 2.2 for selecting the stopping epoch in our experiments involving mixed labeled
data. As depicted in Figure 4, our approach consistently delivers robust outcomes across diverse
hyperparameter values. Moreover, the model tends to perform better when α > 1 and demonstrates
basically consistent performance. Figure 4 confirms the effectiveness of the LZO strategy which is
free of manual intervention in the stopping epoch.

4 Related Works
For a long time, learning with limited supervision has been a striking task in the machine learning
community and PUL is an emerging paradigm of weakly supervised learning [64; 17]. Despite its
close relations with some similar concepts, the term PUL is generally accepted from [36; 12; 14].
Currently, the mainstream PUL methods cast this problem as a cost-sensitive classification task
through importance reweighting, among which uPU [13] is the widely known one. Later, the authors
of nnPU [31] suggest that uPU gets overfitting when using flexible and complex models such as Deep
Neural Networks and thus propose a non-negative risk estimator. Some recent studies attempt to
combine the cost-sensitive method with model’s capability to calibrate and distill the labeled set with
various techniques like denoise [49], self-paced curriculum [8] and heuristic mix up [33; 52].

Parallel with the cost-sensitive methods, another branch of PUL methods adopts a heuristic two-step
method. The early trials of two-step methods mainly focus on the sample-selection task to form a
reliable negative set and further yield the semi-supervised learning framework [57; 35; 23; 6; 27].
Other two-step methods are mainly derived from the large margin principle to correct the bias caused
by unreliable negative data such as Loss Decomposition [46], Large margin based calibration and
label disambiguation [16; 60]. Plus, different techniques have been employed to assign labels for
unlabeled data in PUL like Graph-based models [4; 62], GAN [24; 27] and Reinforcement learning
[38] in recent years. Plus, decision tree based PU methods are also investigated in [53].

Most PUL methods are oriented from a SCAR (selected completely at random) assumption or
established on a given class prior. In this respect, there emerges some class prior estimation algorithms
specially designed for PUL. PE attempts to minimize the Pearson divergence between the labeled and
unlabeled distribution, PEN-L1 [9] and MPE [15] are then proposed to modify PE by using a simple
Best Bin Estimation (BBE) technique. Unfortunately, most class prior estimation algorithms still rely
on specific assumptions and the estimates will be unreliable otherwise[40]. Regarding the possibility
of selection bias in the labeling process, the SCAR assumption is relaxed in [30]. VAE-PU is the
first generative PUL model without a supposed labeling mechanism like SCAR assumption [42] and
further investigated in [51]. For more details about PUL, readers are referred to a recent survey for a
comprehensive understanding of this subject [2].
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5 Conclusion
This study introduces a novel method for Positive-Unlabeled Learning (PUL) that takes a fresh
perspective by identifying the unique characteristics of each example’s predictive trend. Our approach
is based on two key observations: Firstly, resampling positive examples to create a balanced training
distribution can achieve comparable or even superior performance to existing state-of-the-art methods
in the early stages of training. Secondly, the predicting scores of negative examples tend to exhibit
a consistent decrease, while those of positive examples may initially increase before ultimately
decreasing or oscillating. These insights lead us to reframe the central challenge of PUL as a task
of discerning the trend of the model predicting scores. We also propose a novel labeling approach
that uses statistical methods to identify significant partitions, circumventing the need for manual
intervention in determining confidence thresholds or selecting ratios. Extensive empirical studies
demonstrate the effectiveness of our method and its potential to contribute to related fields, such as
learning from noisy labels and semi-supervised learning.
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