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Abstract

While deep reinforcement learning (RL) has been demonstrated effective in solving
complex control tasks, sample efficiency remains a key challenge due to the large
amounts of data required for remarkable performance. Existing research explores
the application of representation learning for data-efficient RL, e.g., learning predic-
tive representations by predicting long-term future states. However, many existing
methods do not fully exploit the structural information inherent in sequential state
signals, which can potentially improve the quality of long-term decision-making
but is difficult to discern in the time domain. To tackle this problem, we propose
State Sequences Prediction via Fourier Transform (SPF), a novel method that
exploits the frequency domain of state sequences to extract the underlying patterns
in time series data for learning expressive representations efficiently. Specifically,
we theoretically analyze the existence of structural information in state sequences,
which is closely related to policy performance and signal regularity, and then
propose to predict the Fourier transform of infinite-step future state sequences to
extract such information. One of the appealing features of SPF is that it is simple
to implement while not requiring storage of infinite-step future states as prediction
targets. Experiments demonstrate that the proposed method outperforms several
state-of-the-art algorithms in terms of both sample efficiency and performance.2

1 Introduction

Deep reinforcement learning (RL) has achieved remarkable success in complex sequential decision-
making tasks, such as computer games [1], robotic control [2], and combinatorial optimization [3].
However, these methods typically require large amounts of training data to learn good control, which
limits the applicability of RL algorithms to real-world problems. The crucial challenge is to improve
the sample efficiency of RL methods. To address this challenge, previous research has focused on
representation learning to extract adequate and valuable information from raw sensory data and
train RL agents in the learned representation space, which has been shown to be significantly more
data-efficient [4–8]. Many of these algorithms rely on auxiliary self-supervision tasks, such as
predicting future reward signals [4] and reconstructing future observations [5], to incorporate prior
knowledge about the environment into the representations.
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A state sequence under 

Figure 1: State Sequence Generation Pro-
cess. The top row displays a sample of state
sequences generated from MDPM. The bot-
tom two rows visualize two state sequences in
the time and frequency domains respectively.
Each column corresponds to a state sequence
generated from a different policy.

Due to the sequential nature of RL tasks, multi-step
future signals inherently contain more features that
are valuable for long-term decision-making than im-
mediate future signals. Recent work has demon-
strated that leveraging future reward sequences as su-
pervisory signals is effective in improving the gener-
alization performance of visual RL algorithms [9, 10].
However, we argue that the state sequence provides a
more informative supervisory signal compared to the
sparse reward signal. As shown in the top portion of
Figure 1, the sequence of future states essentially de-
termines future actions and further influences the se-
quence of future rewards. Therefore, state sequences
maximally preserve the influence of the transition
intrinsic to the environment and the effect of actions
generated from the current policy.

Despite these benefits of state sequences, it is chal-
lenging to extract features from these sequential data
through long-term prediction tasks. A substantial ob-
stacle is the difficulty of learning accurate long-term
prediction models for feature extraction. Previous methods propose making multi-step predictions
using a one-step dynamic model by repeatedly feeding the prediction back into the learned model [11–
13]. However, these approaches require a high degree of accuracy in the one-step model to avoid
accumulating errors in multi-step predictions [13]. Another obstacle is the storage of multi-step
prediction targets. For instance, some method learns a specific dynamics model to directly predict
multi-step future states [14], which requires significant additional memory to store multi-step future
states as prediction targets.

To tackle these problems, we propose utilizing the structural information inherent in the sequential
state signals to extract useful features, thus circumventing the difficulty of learning an accurate
prediction model. In Section 4, we theoretically demonstrate two types of sequential dependency
structures present in state sequences. The first structure involves the dependency between reward
sequences and state sequences, where the state sequences implicitly reflect the performance of
the current policy and exhibit significant differences under good and bad policies. The second
structure pertains to the temporal dependencies among the state signals, namely the regularity patterns
exhibited by the state sequences. By exploiting the structural information, representations can focus
on the underlying critical features of long-term signals, thereby reducing the need for high prediction
accuracy and improving training stability [13].

Building upon our theoretical analyses, we propose State Sequences Prediction via Fourier Transform
(SPF), a novel method that exploits the frequency domain of state sequences to efficiently extract the
underlying structural information of long-term signals. Utilizing the frequency domain offers several
advantages. Firstly, it is widely accepted that the frequency domain shows the regularity properties
of the time-series data [15–17]. Secondly, we demonstrate in Section 5.1 that the Fourier transform
of state sequences retains the ability to indicate policy performance under certain assumptions.
Moreover, Figure 1 provides an intuitive understanding that the frequency domain enables more
effective discrimination of two similar temporal signals that are difficult to differentiate in the time
domain, thereby improving the efficiency of policy performance distinction and policy learning.

Specifically, our method performs an auxiliary self-supervision task that predicts the Fourier transform
(FT) of infinite-step state sequences to improve the efficiency of representation learning. To facilitate
the practical implementation of our method, we reformulate the Fourier transform of state sequences
as a recursive form, allowing the auxiliary loss to take the form of a TD error [18], which depends only
on the single-step future state. Therefore, SPF is simple to implement and eliminates the requirements
for storing infinite-step state sequences when computing the labels of FT. Experiments demonstrate
that our method outperforms several state-of-the-art algorithms in terms of both sample efficiency
and performance on six MuJoCo tasks. Additionally, we visualize the fine distinctions between the
multi-step future states recovered from our predicted FT and the true states, which indicates that our
representation effectively captures the inherent structures of future state sequences.
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2 Related Work

Learning Predictive Representations in RL. Many existing methods leverage auxiliary tasks
that predict single-step future reward or state signals to improve the efficiency of representation
learning [2, 5, 19]. However, multi-step future signals inherently contain more valuable features for
long-term decision-making than single-step signals. Recent work has demonstrated the effectiveness
of using future reward sequences as supervisory signals to improve the generalization performance of
visual RL algorithms [9, 10]. Several studies propose making multi-step predictions of state sequences
using a one-step dynamic model by repeatedly feeding the prediction back into the learned model,
which is applicable to both model-free [11] and model-based [12] RL. However, these approaches
require a high degree of accuracy in the one-step model to prevent accumulating errors [13]. To tackle
this problem, the existing method learned a prediction model to directly predict multi-step future
states [14], which results in significant additional storage for the prediction labels. In our work, we
propose to predict the FT of state sequences, which reduces the demand for high prediction accuracy
and eliminates the need to store multi-step future states as prediction targets.

Incorporating the Fourier Features. There existing many traditional RL methods to express the
Fourier features. Early works have investigated representations based on a fixed basis such as Fourier
basis to decompose the function into a sum of simpler periodic functions [20, 18]. Another research
explored enriching the representational capacity using random Fourier features of the observations.
Moreover, in the field of self-supervised pre-training, neuro2vec [16] conducts representation learning
by predicting the Fourier transform of the masked part of the input signal, which is similar to our
work but needs to store the entire signal as the label.

3 Preliminaries

3.1 MDP Notation

In RL tasks, the interaction between the environment and the agent is modeled as a Markov decision
process (MDP). We consider the standard MDP framework [21], in which the environment is
given by the tuple M := ⟨S,A, R, P, µ, γ⟩, where S is the set of states, A is the set of actions,
R : S × A × S → [−Rmax, Rmax] is the reward function, P : S × A × S → [0, 1] is the transition
probability function, µ : S −→ [0, 1] is the initial state distribution, and γ ∈ [0, 1) is the discount factor.
A policy π defines a probability distribution over actions conditioned on the state, i.e. π(a|s). The
environment starts at an initial state s0 ∼ µ. At time t ≥ 0, the agent follows a policy π and selects
an action at ∼ π(·|st). The environment then stochastically transitions to a state st+1 ∼ P (·|st, at)
and produces a reward rt = R(st, at, st+1). The goal of RL is to select an optimal policy π∗ that
maximizes the cumulative sum of future rewards. Following previous work [22, 23], we define the
performance of a policy π as its expected sum of future discounted rewards:

J(π,M) := Eτ∼(π,M)

[ ∞∑
t=0

γtR(st, at, st+1)

]
, (1)

where τ := (s0, a0, s1, a1, · · · ) denotes a trajectory generated from the interaction process and
τ ∼ (π,M) indicates that the distribution of τ depends on π and the environment modelM. For
simplicity, we write J(π) and τ ∼ π as shorthand since our environment is stationary. We also interest
about the discounted future state distribution dπ , which is defined by dπ(s) = (1−γ)

∑∞
t=0 γ

tP (st =
s|π,M). It allows us to express the expected discounted total reward compactly as

J(π) =
1

1− γ
Es∼dπ

a∼π
s′∼P

[R(s, a, s′)] . (2)

The proof of (2) can be found in [24] or Section A.1 in the appendix.

Given that we aim to train an encoder that effectively captures the useful aspects of the environment,
we also consider a latent MDPM =

〈
S,A, R, P , µ, γ,

〉
, where S ⊂ RD for finite D and the action

spaceA is shared byM andM. We aim to learn an embedding function ϕ : S → S , which connects
the state spaces of these two MDPs. We similarly denote π∗ as the optimal policy inM. For ease of
notation, we use π(·|s) := π(·|ϕ(s)) to represent first using ϕ to map s ∈ S to the latent state space
S and subsequently using π to generate the probability distribution over actions.
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3.2 Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) is a powerful way to decompose a time-domain signal
into different frequency components. It converts a real or complex sequence {xn}+∞

n=−∞ into a
complex-valued function F (ω) =

∑∞
n=−∞ xne

−jωn, where ω is a frequency variable. Due to the
discrete-time nature of the original signal, the DTFT is 2π-periodic with respect to its frequency
variable, i.e., F (ω + 2π) = F (ω). Therefore, all of our interest lies in the range ω ∈ [0, 2π] that
contains all the necessary information of the infinite-horizon time series.

It is important to note that the signals considered in this paper, namely state sequences, are real-valued,
which ensures the conjugate symmetry property of DTFT, i.e., F (2π − ω) = F ∗(ω). Therefore, in
practice, it suffices to predict the DTFT only on the range of [0, π], which can reduce the number of
parameters and further save storage space.

4 Structural Information in State Sequences

In this section, we theoretically demonstrate the existence of the structural information inherently in
the state sequences. We argue that there are two types of sequential dependency structures present in
state sequences, which are useful for indicating policy performance and capturing regularity features
of the states, respectively.

4.1 Policy Performance Distinction via State Sequences

In the RL setting, it is widely recognized that pursuing the highest reward at each time step in a greedy
manner does not guarantee the maximum long-term benefit. For that reason, RL algorithms optimize
the objective of cumulative reward over an episode, rather than the immediate reward, to encourage
the agent to make farsighted decisions. This is why previous work has leveraged information about
future reward sequences to capture long-term features for stronger representation learning [9].

Compared to the sparse reward signals, we claim that sequential state signals contain richer infor-
mation. In MDP, the stochasticity of a trajectory derives from random actions selected by the agent
and the environment’s subsequent transitions to the next state and reward. These two sources of
stochasticity are modeled as the policy π(a|s) and the transition p(s′, r|s, a), respectively. Both of
them are conditioned on the current state. Over long interaction periods, the dependencies of action
and reward sequences on state sequences become more evident. That is, the sequence of future
states largely determines the sequence of actions that the agent selects and further determines the
corresponding sequence of rewards, which implies the trend and performance of the current policy,
respectively. Thus, state sequences not only explicitly contain information about the environment’s
dynamics model, but also implicitly reveal information about policy performance.

We provide further theoretical justification for the above statement, which shows that the distribution
distance between two state sequences obtained from different policies provides an upper bound on the
performance difference between those policies, under certain assumptions about the reward function.

Theorem 1. Suppose that the reward function R(s, a, s′) = R(s) is related to the state s, then the
performance difference between two arbitrary policies π1 and π2 is bounded by the L1 norm of the
difference between their state sequence distributions:

|J(π1)− J(π2)| ≤
Rmax

1− γ
· ∥P (s0, s1, s2, . . . |π1,M)− P (s0, s1, s2, . . . |π2,M)∥1 , (3)

where P (s0, s1, s2, . . . |π,M) means the joint distribution of the infinite-horizon state sequence
S = {s0, s1, s2, . . . } conditioned on the policy π and the environment modelM.

The proof of this theorem is provided in Appendix A.1. The theorem demonstrates that the greater
the difference in policy performance, the greater the difference in their corresponding state sequence
distributions. When we adjust the ratio Rmax

1−γ to take a relatively small value by scaling the reward,
the theorem indicates that good and bad policies generate significantly different state sequence
distributions. Furthermore, it confirms that learning via state sequences can significantly influence
the search for policies with good performance.
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4.2 Asymptotic Periodicity of States in MDP

Many tasks in real scenarios exhibit periodic behavior as the underlying dynamics of the environment
are inherently periodic, such as industrial robots, car driving in specific scenarios, and area sweeping
tasks. Take the assembly robot as an example, the robot is trained to assemble parts together to create
a final product. When the robot reaches a stable policy, it executes a periodic sequence of movements
that allow it to efficiently assemble the parts together. In the case of MuJoCo tasks, the agent also
exhibits periodic locomotion when reaching a stable policy. We provide a corresponding video in the
supplementary material to show the periodic locomotion of several MuJoCo tasks.

Inspired by these cases, we provide some theoretical analysis to demonstrate that, under some
assumptions about the transition probability matrices, the state sequences in finite state space may
exhibit asymptotically periodic behaviors when the agent reaches a stable policy.

Theorem 2. Suppose that the state space S is finite with a transition probability matrix P ∈ R|S|×|S|

and S has α recurrent classes. Let R1, R2, . . . , Rα be the probability submatrices corresponding
to the recurrent classes and let d1, d2, . . . , dα be the number of the eigenvalues of modulus 1 that
the submatrices R1, R2, . . . , Rα has. Then for any initial distribution µ0, Pnµ0 is asymptotically
periodic with period d = lcm(d1, d2, . . . , dα).

The proof of the theorem is provided in Appendix A.2. The above theorem demonstrates that there
exist regular and highly-structured features in the state sequences, which can be used to learn an
expressive representation. Note that in an infinite state space, if the Markov chain contains a recurrent
class, then after a sufficient number of steps, the state will inevitably enter one of the recurrent classes.
In this scenario, the asymptotic periodicity of the state sequences can be also analyzed using the
aforementioned theorem. Furthermore, even if the state sequences do not exhibit a strictly periodic
pattern, regularities still exist within the sequential data that can be extracted as representations to
facilitate policy learning.

5 Method

In the previous section, we demonstrate that state sequences contain rich structural information which
implicitly indicates the policy performance and regular behavior of states. However, such information
is not explicitly shown in state sequences in the time domain. In this section, we describe how to
effectively leverage the inherent structural information in time-series data.

5.1 Learning via Frequency Domain of State Sequences

In this part, we will discuss the advantages of leveraging the frequency pattern of state sequences for
capturing the inherent structural information above explicitly and efficiently.

Based on the following theorem, we find that the FT of the state sequences preserves the property in
the time domain that the distribution difference between state sequences controls the performance
difference between the corresponding two policies, but is subject to some stronger assumptions.
Theorem 3. Suppose that S ⊂ RD the reward function R(s, a, s′) = R(s) is an nth-degree
polynomial function with respect to s ∈ S, then for any two policies π1 and π2, their performance
difference can be bounded as follows:

|J(π1)− J(π2)| ≤
√
D

1− γ
·

n∑
k=1

∥∥R(k)(0)
∥∥
D

k!
· max
1≤i≤D

sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ , (4)

where F (k)
π (ω) denotes the DTFT of the time series S(k) = {s0k, s1k, s2k, . . . } for any integer

k ∈ [1, n] and S(k) means the kth power of the state sequence produced by the policy π. The
dimensionality of ω is the same as s.

We provide the proof in Appendix A.1. Similar to the analysis of Theorem 1, the above theorem
shows that state sequences in the frequency domain can indicate the policy performance and can
be leveraged to enhance the search for optimal policies. Furthermore, the Fourier transform can
decompose the state sequence signal into multiple physically meaningful components. This operator
enables the analysis of time-domain signals in a higher dimensional space, making it easier to
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distinguish between two segments of signals that appear similar in the time domain. In addition,
periodic signals have distinctive characteristics in their Fourier transforms due to their discrete spectra.
We provide a visualization of the DTFT of the state sequences in Appendix E, which reveals that the
DTFT of the periodic state sequence is approximately discrete. This observation suggests that the
periodic information of the signal can be explicitly extracted in the frequency domain, particularly for
the periodic cases provided by Theorem 2. For non-periodic sequences, some regularity information
can still be obtained by the frequency range that the signals carry.

In addition to those advantages, the operation of the Fourier transforms also yields a concise auxiliary
objective similar to the TD-error loss [18], which we will discuss in detail in the following section.

5.2 Learning Objective of SPF

In this part, we propose our method, State Sequences Prediction via Fourier Transform (SPF), and
describe how to utilize the frequency pattern of state sequences to learn an expressive representation.
Specifically, our method performs an auxiliary self-supervision task by predicting the discrete-time
Fourier transform (DTFT) of infinite-step state sequences to capture the structural information in the
state sequences for representation learning, hence improving upon the sample efficiency of learning.

Now we model the auxiliary self-supervision task. Given the current observation st and the current
action at, we define the expectation of future state sequence s̃t over infinite horizon as

[s̃t]n = [s̃(st, at)]n =

{
γnEπ,p

[
st+n+1

∣∣st, at] n = 0, 1, 2, . . .

0 n = −1,−2,−3 . . . . (5)

Then the discrete-time Fourier transform of s̃t is F s̃t(ω) =
∑+∞

n=0 [s̃t]n e
−jωn, where ω represents

the frequency variable. The discount factor γ in (5) is used to ensure the convergence of the Fourier
transform and also serves as the contraction factor in the following Theorem 4. Since the state
sequences are discrete-time signals, the corresponding DTFT is 2π-periodic with respect to ω. Based
on this property, a common practice for operational feasibility is to compute a discrete approximation
of the DTFT over one period, by sampling the DTFT at discrete points over [0, 2π]. In practice, we
take L equally-spaced samples of the DTFT. Then the prediction target is a matrix with size L ∗D,
where D is the dimension of the state space. We can derive that the DTFT functions at successive
time steps are related to each other in a recursive form:

Fπ,p(st, at) = S̃t + ΓEπ,p [F (st+1, at+1)] . (6)

The detailed derivation and the specific form of S̃t and Γ is provided in Appendix A.3.

Based on the recursive formula (6), we can obtain the prediction loss by computing the difference
between the estimated Fourier value Fπ,p(st, at) and the better estimate S̃t+ΓEπ,p [F (st+1, at+1)],
just like the TD error. Similar to the TD-learning of value functions, the recursive relationship
can be reformulated as contraction mapping T , as shown in the following theorem (see proof in
Appendix A.3). Due to the properties of contraction mappings, we can iteratively apply the operator
T to compute the target DTFT function of long-term state sequences until convergence in tabular
settings. When calculating the prediction loss, we only need to utilize the current state st, the current
action at, and the next state st+1. Therefore, one notable advantage of SPF is that there is no need to
store multi-step future states as labels for predicting future state sequences.
Theorem 4. Let F denote the set of all functions F : S ×A → CL∗D and define the norm on F as

∥F∥F := sup
s∈S
a∈A

max
0≤k<L

∥∥[F (s, a)]
k

∥∥
D
,

where
[
F (s, a)

]
k

represents the kth row vector of F (s, a). We show that the mapping T : F → F
defined as

T F (st, at) = S̃t + ΓEπ,p [F (st+1, at+1)] (7)

is a contraction mapping, where S̃t and Γ are defined in Appendix A.3.

As the Fourier transform of the real state signals has the property of conjugate symmetry, we only
need to predict the DTFT on a half-period interval [0, π]. Therefore, we reduce the row size of the
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Figure 2: The network architecture of SPF. The online encoder ϕ outputs the representations used
in the RL task and the predictor F predicts complex-valued Fourier transform of the state sequences
starting from the state-action pair (st, at). During training, (st, at, st+1) are previously experienced
states and actions sampled from a replay buffer. The dashed line show how gradients flow back to
model weights. We prevent the gradient of RL losses from updating the online encoder and prevent
the gradient of prediction loss from updating the target encoder.

prediction target to half for reducing redundant information and saving storage space. In practice, we
train a parameterized prediction model F to predict the DTFT of state sequences. Note that the value
of the prediction target is on the complex plane, so the prediction network employs two separate
output modules FRe and FIm as real and imaginary parts respectively. Then we define the auxiliary
prediction loss function as:

Lpred(ϕ,F) = d
(
S̃t +

[
ΓReFRe(st+1, π(st+1))− ΓImFIm(st+1, π(st+1))

]
, FRe(st, at)

)
+ d

([
ΓImFRe(st+1, π(st+1)) + ΓReFIm(st+1, π(st+1))

]
, FIm(st, at)

)
,

where st = ϕ(st) means the representation of the state, ΓRe and ΓIm denote the real and imaginary
parts of the constant Γ, and d denotes an arbitrary similarity measure. We choose d as cosine similarity
in practice. The algorithm pseudo-code is shown in Appendix B.

5.3 Network Architecture of SPF

Here we provide more details about the network architecture of our method. In addition to the
encoder and the predictor, we use projection heads ψ [25] that project the predicted values onto a
low-dimensional space to prevent overfitting when computing the prediction loss directly from the
high-dimensional predicted values. In practice, we use a loss function called freqloss, which preserves
the low and high-frequency components of the predicted DTFT without the dimensionality reduction
process (See Appendix C for more details). Furthermore, when computing the target predicted value,
we follow prior work [26, 11] to use the target encoder, predictor, and projection for more stable
performance. We periodically overwrite the target network parameters with an exponential moving
average of the online network parameters.

In the training process, we train the encoder ϕ, the predictor F , and the projection ψ to minimize the
auxiliary prediction loss Lpred(ϕ,F , ψ), and alternately update the actor-critic models of RL tasks
using the trained encoder ϕ. We illustrate the overall architecture of SPF and the gradient flows
during training in Figure 2.

6 Experiments

We quantitatively evaluate our method on a standard continuous control benchmark—the set of
MuJoCo [27] environments implemented in OpenAI Gym.

6.1 Comparative Evaluation on MuJoCo

To evaluate the effect of learned representations, we measure the performance of two traditional RL
methods SAC [28] and PPO [29] with raw states, OFENet representations [19], and SPF represen-
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Table 1: Mean and standard error results on six MuJoCo tasks at 500K step and 1M step. All
means and standard errors are calculated over 10 seeds. The highest mean scores are marked in blue.
SPF outperforms other SOTA methods in 5 out of 6 settings with an average 19.5% boost.

Environment SAC-SPF SAC-OFE SAC-raw PPO-SPF PPO-OFE PPO-raw
50

0K
st

ep

HalfCheetah 12739 ± 139 (+7%) 11932 ± 75 9004 ± 150 2448 ± 357 (+1%) 2419 ± 296 1475 ± 238
Hopper 3443 ± 24 (+15%) 2983 ± 123 2343 ± 183 2923 ± 98 (+36%) 1529 ± 157 2156 ± 245

Walker2d 4868 ± 53 (+29%) 3762 ± 162 2023 ± 269 1203 ± 211 (+45%) 339 ± 32 827 ± 156
Ant 6531 ± 175 (+17%) 5587 ± 253 2691 ± 76 867 ± 34 696 ± 47 929 ± 15

Swimmer 45 ± 0 45 ± 0 42 ± 0 90 ± 11 (+15%) 78 ± 12 66 ± 6
Humanoid 4613 ± 118 (+13%) 4071 ± 172 2953 ± 136 395 ± 10 405 ± 18 383 ± 9

1M
st

ep

HalfCheetah 15822 ± 109 (+10%) 14425 ± 112 10745 ± 159 3154 ± 1358 (+3%) 3066 ± 326 2259 ± 344
Hopper 3517 ± 20 (+10%) 3197 ± 147 3056 ± 91 3152 ± 137 (+16%) 2370 ± 258 2721 ± 222

Walker2d 5158 ± 69 (+7%) 4833 ± 59 3367 ± 110 2229 ± 299 1080 ± 236 2302 ± 158
Ant 7241 ± 85 (+7%) 6738 ± 150 4220 ± 164 1053 ± 79 (+15%) 913 ± 18 867 ± 17

Swimmer 45 ± 0 45 ± 0 43 ± 0 99 ± 13 (+19%) 73 ± 10 83 ± 9
Humanoid 5633 ± 112 6241 ± 98 4618 ± 118 441 ± 17 448 ± 17 439 ± 18
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Figure 3: Results on six MuJoCo tasks. The solid curves denote the means and the shaded regions
denote the minimum and maximum returns over 10 seeds. Each checkpoint is evaluated by 10
episodes in evaluated environments. Curves are smoothed for visual clarity.

tations. We train our representations via the Fourier transform of infinite-horizon state sequences,
which means the representations learn to capture the information of infinite-step future states. Hence,
we compare our representation with OFENet, which uses the auxiliary task of predicting single-
step future states for representation learning. For a fair comparison, we use an encoder with the
same network structure as that of OFENet. See Appendix C and D for more details about network
architectures and hyperparameters setting.

As described above, our comparable methods include: 1) SAC-SPF: SAC with SPF representations;
2) SAC-OFE: SAC with OFENet representations; 3) SAC-raw: SAC with raw states; 4) PPO-SPF:
PPO with SPF representations; 5) PPO-OFE: PPO with OFENet representations; 6) PPO-raw: PPO
with raw states. Figure 3 shows the learning curves of the above methods. As our results suggest, SPF
shows superior performance compared to the original algorithms, SAC-raw and PPO-raw, across all
six MuJoCo tasks and also outperforms OFENet in terms of both sample efficiency and asymptotic
performance on five out of six MuJoCo tasks. According to the results in Table 1, SPF achieves an
average gain of +19.5% over other methods at 500K step and 1M step. These results indicate that our
approach learns more quickly than other methods when the number of interactions is limited. One
possible explanation for the comparatively weaker performance of our method on the Humanoid-v2
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Figure 4: Results of additional trials. (a) Ablation study: training curves of five variant methods
of SPF on SAC. Each method is evaluated over 5 seeds on HalfCheetah-v2. (b) Comparison of
prediction targets: training curves of SAC with different auxiliary prediction tasks. Each method is
evaluated over 5 seeds on HalfCheetah-v2. (c) Visualization of recovered states from the predicted
DTFT. The blue line represents the true state sequence, while the red line represents the recovered
state sequence. The lighter red line corresponds to predictions made by historical states from a more
distant time step. The four subfigures represent four dimensions of the state space on Walker2d.

task is that its state contains the external forces to bodies, which show limited regularities due to their
discontinuous and sparse.

6.2 Ablation Study

In this part, we will verify that just predicting the FT of state sequences may fall short of the expected
performance and that using SPF is necessary to get better performance. To this end, we conducted an
ablation study to identify the specific components that contribute to the performance improvements
achieved by SPF. Figure 4(a) shows the ablation study over SAC with HalfCheetah-v2 environment.

notarg removes all target networks of the encoder, predictor, and projection layer from SPF. Based
on the results, the variant of SPF exhibits significantly reduced performance when target estimations
in the auxiliary loss are generated by the online encoder without a stopgradient. Therefore, using
a separate target encoder is vital, which can significantly improve the stability and convergence
properties of our algorithm.

nofreqloss computes the cosine similarity of the projection layer’s outputs directly without any
special treatment to the low-frequency and high-frequency components of our predicted DTFT. The
reduced convergence rate of nofreqloss suggests that preserving the complete information of low and
high-frequency components can encourage the representations to capture more structural information
in the frequency domain.

noproj removes the projection layer from SPF and computes the cosine similarity of the predicted
values as the objective. The performance did not significantly deteriorate after removing the projection
layer, which indicates that the prediction accuracy of state sequences in the frequency domain may
not have a strong impact on the quality of representation learning. Therefore, it can be inferred
that SPF places a greater emphasis on capturing the underlying structural information of the state
sequences, and is capable of reconstructing the state sequences with a low risk of overfitting.

mlp changes the lay block of the encoder from MLP-DenseNet to MLP. The much lower scores of
mlp indicate that both the raw state and the output of hidden layers contain important information
that contributes to the quality of the learned representations. This result underscores the importance
of leveraging sufficient information for representation learning.

mlp-cat uses a modified block of MLP as the layer of the encoder, which concat the output of MLP
with the raw state. The performance of mlp-cat does increase compared to mlp, but is still not as good
as SPF in terms of both sample efficiency and performance.

6.3 Comparison of Different Prediction Targets

This section aims to test the effect of our prediction target—infinite-step state sequences in the
frequency domain—on the efficiency of representation learning. We test five types of prediction
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targets: 1) Sta1: single-step future state; 2) StaN: N-step state sequences, where we choose N =
2, 3, 5; 3) SPF: infinite-step state sequences in frequency domain; 4) Rew1: single-step future reward;
5) RewFT: infinite-step reward sequences in frequency domain.

As shown in Figure 4(b), SPF outperforms all other competitors in terms of sample efficiency, which
indicates that infinite-step state sequences in the frequency domain contain more underlying valuable
information that can facilitate efficient representation learning. Since Sta1 and SPF outperform Rew1
and RewFT respectively, it can be referred that learning via states is more effective for representation
learning than learning via rewards. Notably, the lower performance of StaN compared to Sta1 could
be attributed to the model’s tendency to prioritize prediction accuracy over capturing the underlying
structured information in the sequential data, which may impede its overall learning efficiency.

6.4 Visualization of Recovered State Sequences

This section aims to demonstrate that the representations learned by SPF effectively capture the
structural information contained in infinite-step state sequences. To this end, we compare the true state
sequences with the states recovered from the predicted DTFT via the inverse DTFT (See Appendix E
for more implementation details). Figure 4(c) shows that the learned representations can recover
the true state sequences even using the historical states that are far from the current time step. In
Appendix E, we also provide a visualization of the predicted DTFT, which is less accurate than the
results in Figure 4(c). Those results highlight the ability of SPF to effectively extract the underlying
structural information in infinite-step state sequences without relying on high prediction accuracy.

We further provide a comparison table that measures the distance between the real DTFT and
the predicted DTFT using cosine similarity. The results provided in Appendix F indicate that
the prediction module F exhibits moderate predictive accuracy in approximating the real Fourier
transform, with an average cosine similarity value of −0.6.

7 Conclusion

In this paper, we theoretically analyzed the existence of structural information in state sequences,
which is closely related to policy performance and signal regularity, and then introduced State
Sequences Prediction via Fourier Transform (SPF), a representation learning method that predicts the
FT of state sequences to extract the underlying structural information in state sequences for learning
expressive representations efficiently. SPF outperforms several state-of-the-art algorithms in terms
of both sample efficiency and performance. Our additional experiments and visualization show that
SPF encourages representations to place a greater emphasis on capturing the underlying pattern of
time-series data, rather than pursuing high accuracy of prediction tasks.

Limitations One of the main limitations of our paper is that we have only evaluated our method on
tasks where the state sequences exhibit strong asymptotic periodicity. Considering that the Fourier
transform converts non-periodic signals into a continuous frequency domain, it is more difficult to
extract meaningful frequency features of non-periodic signals compared to periodic signals that have
a discrete frequency domain. Moreover, the frequency features extracted by our approach inherently
depend on the policy and task, which limits their reusability across multiple tasks. Further research
is needed to analyze the applicability of our approach to non-periodic tasks and the potential for
generalization across multiple tasks.
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A Proof

A.1 Proof of Performance Difference Distinction via State Sequences

Following the previous work [22], our analysis will make use of the discounted future state distribution,
dπ , which is defined as

dπ(s) = (1− γ)
∞∑
t=0

γtP (st = s|π,M)

It allows us to express the expected discounted total reward compactly as

J(π) =

∞∑
t=0

γtEst,at,st+1 [R(st, at, st+1)|π,M]

=

∞∑
t=0

γt
∫
S
Rπ(s)P (st = s|π,M) ds

=

∫
S
Rπ(s)

∞∑
t=0

γtP (st = s|π,M) ds (1)

=
1

1− γ

∫
S
Rπ(s)dπ(s) ds

=
1

1− γ
Es∼dπ

a∼π
s′∼P

[R(s, a, s′)] , (2)

where we define Rπ(s) := Ea∼π,s′∼P [R(s, a, s
′)]. It should be clear from a ∼ π(·|s) and s′ ∼

P (·|s, a) that a and s′ depend on s. Thus, the reward function Rπ is only related to s when the policy
π is fixed.

Firstly, we prove that the distance between two state sequence distributions obtained from two distinct
policies serves as an upper bound on the performance difference between those policies, provided
that certain assumptions regarding the reward function hold.

Theorem 1. Suppose that the reward function R(s, a, s′) = R(s) is related to the state s, then the
performance difference between two arbitrary policies π1 and π2 is bounded by the L1 norm of the
difference between their state sequence distributions:

|J(π1)− J(π2)| ≤
Rmax

1− γ
· ∥P (s0, s1, s2, . . . |π1,M)− P (s0, s1, s2, . . . |π2,M)∥1 , (3)

where P (s0, s1, s2, . . . |π,M) means the joint distribution of the infinite-horizon state sequence
S = {s0, s1, s2, . . . } conditioned on the policy π and the environment modelM.

Proof. According to the equation (1), the difference in performance between two policies π1, π2 can
be bounded as follows.

|J(π1)− J(π2)| ≤ Rmax ·
∞∑
t=0

γt
∫
S

∣∣P (st = s|π1,M)− P (st = s|π2,M)
∣∣ds

≤ Rmax ·
T∑

t=0

γt
∫
S

∣∣∣∣ ∫
ST

P (s0, . . . , st−1, s, st+1, . . . , sT |π1,M)

− P (s0, . . . , st−1, s, st+1 . . . , sT |π2,M) ds0 · · · dst−1dst+1 · · · dsT
∣∣∣∣ds

+Rmax · 2
∞∑

t=T+1

γt, ∀T ≥ 1
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≤ Rmax

T∑
t=0

γt
∫
ST+1

∣∣P (s0, . . . , sT |π1,M)− P (s0 . . . , sT |π2,M)
∣∣ds0 · · · dsT

+Rmax · 2
∞∑

t=T+1

γt, ∀T ≥ 1

=
Rmax

1− γ
·
∫
ST+1

∣∣P (s0, . . . , sT |π1,M)− P (s0 . . . , sT |π2,M)
∣∣ds0 · · · dsT

+Rmax · 2
∞∑

t=T+1

γt, ∀T ≥ 1.

Let T →∞, then we obtain the bound proposed by (3).

We are further interested in bounding the performance difference between two policies by their
state sequences in the frequency domain. Benefiting from the properties of the discrete-time Fourier
transform (DTFT), we can constrain the performance difference using the Fourier transform over the
interval [0, 2π], instead of using the distribution functions of the state sequences in unbounded space.
Theorem 2. Suppose that S ⊂ RD the reward function R(s, a, s′) = R(s) is an nth-degree
polynomial function with respect to s ∈ S, then for any two policies π1 and π2, their performance
difference can be bounded as follows:

|J(π1)− J(π2)| ≤
√
D

1− γ
·

n∑
k=1

∥∥R(k)(0)
∥∥
D

k!
· max
1≤i≤D

sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ , (4)

where F (k)
π (ω) denotes the DTFT of the time series S(k) = {s0k, s1k, s2k, . . . } for any integer

k ∈ [1, n] and S(k) means the kth power of the state sequence produced by the policy π. The
dimensionality of ω is the same as s.

Proof. For sake of simplicity, we define pt(s|πi) = P (st = s|πi,M) for i = 1, 2. We denote εt as

εt =

∫
S
R(s)

[
pt(s|π1)− pt(s|π2)

)
] ds. (5)

Based on the Taylor series expansion, we can rewrite the reward function asR(s) =
∑n

k=0
R(k)(0)T

k! sk,
then for any integer k ∈ [1, n], we have

|εt| ≤
n∑

k=0

∥∥R(k)(0)
∥∥
D

k!
·
∥∥∥∥∫

S

[
skpt(s|π1)− skpt(s|π2)

]
ds

∥∥∥∥
D

=

n∑
k=0

∥∥R(k)(0)
∥∥
D

k!

∥∥∥∥ E
s∼pt(·|π1)

[
sk
]
− E

s∼pt(·|π2)

[
sk
]∥∥∥∥

D

. (6)

Since the inverse DTFT of F (k)
π (ω) is the original time series S(k), we have

E
si∼pt(·|π)

[
ski
]
=

1

2π

∫ 2π

0

F (k)
π (ωi)e

jωit dωi, ∀i = 1, 2, . . . , D. (7)

Then we have∣∣∣∣ E
si∼pt(·|π1)

[
ski
]
− E

si∼pt(·|π2)

[
ski
]∣∣∣∣ ≤ 1

2π

∫ 2π

0

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ · ∣∣ejωit

∣∣ dωi

≤ sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ . (8)

Substituting (8) into (6), then we obtain

|εt| ≤
√
D ·

n∑
k=1

∥∥R(k)(0)
∥∥
D

k!
· max
1≤i≤D

sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ .
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For the sake of DTFT, the upper bound of ϵt is independent of t, then we could derive the performance
difference bound as follows.

|J(π1)− J(π2)| ≤
∞∑
t=0

γt · |εt|

≤ 1

1− γ
·
√
D ·

n∑
k=1

∥∥R(k)(0)
∥∥
D

k!
· max
1≤i≤D

sup
ωi∈[0,2π]

∣∣∣F (k)
π1

(ωi)− F (k)
π2

(ωi)
∣∣∣ ,

and so we immediately achieve the desired bound in (4).

A.2 Proof of the Asymptotic Periodicity of States in MDP

This section focuses on analyzing the asymptotic behavior of the state sequences generated from an
MDP. We begin by discussing the limiting process of MDP with a finite state space S. Let P be the
transition probability matrix and let µi be the probability distribution of the states at time ti. Then we
have µi+1 = Pµi for any i ≥ 0. If the sequence {µi}∞i=0 splits into d subsequences with d cyclic
limits {µr

∞}d−1
r=0 that follow the cycle:

µ0
∞ → µ1

∞ → · · · → µd−1
∞ → µ0

∞,

then we say that the states of the MDP exhibit asymptotic periodicity. Such cyclic asymptotic behavior
implies that the limiting distribution of the states eventually repeats in a specific period after a certain
number of steps.

We begin by providing some essential definitions in the field of stochastic processes [30], which will
be utilized in the following proof. Let P be a transition probability matrix corresponding to n states
(n ≥ 1). Two states i and j are said to intercommunicate if there exist paths from i to j as well as
from j to i. The matrix P is called irreducible if any two states intercommunicate. A set of states is
called irreducible if any two states in the set intercommunicate. Moreover, a state i is called recurrent
if the probability of eventual return to i, having started from i, is 1. If this probability is strictly less
than 1, the state i is called transient.

Note that if the whole state space S is irreducible, then its transition matrix P is also irreducible. The
following lemma demonstrates that if the state space is irreducible, then its asymptotical periodicity
is determined by the eigenvalues with modulus 1 of its transition matrix.

Lemma 1. Suppose that the state space S is finite with a transition probability matrix P ∈ R|S|×|S|.
If P is an irreducible matrix with d eigenvalues of modulus 1, then for any initial distribution µ0,
Pnµ0 is asymptotically periodic with a period of d when d > 1 and asymptotically aperiodic when
d = 1.

Proof. According to the Perron-Frobenius theorem for irreducible non-negative matrices, all eigen-
values of P of modulus 1 are exactly the d complex roots of the equation λd − 1 = 0. They can
be formulated as λ0 = 1, λ1 = ξ1, . . . , λd−1 = ξd−1, where ξ = e

2πj
d . Each of them is a simple

root of the characteristic polynomial of the matrix P . Since P is a transition probability matrix, the
remaining eigenvalues λd, . . . , λs satisfy |λr| < 1. Therefore, the Jordan matrix of P has the form

J =



λ0
λ1

. . .
λd−1

Jd
. . .

Js


,where Jk =


λk 1

λk 1
. . . . . .

λk 1
λk

 .

We refer to Jk as Jordan cells.

Let |S| = D, we can rewrite P in its Jordan canonical form P = XJX−1 where

X = [x⃗0, x⃗1, . . . , x⃗D−1].
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Note that for k < d, xk is the eigenvector corresponding to λk. Since the column vectors of X are

linearly dependent, there exist c⃗ = [c0, c1, . . . , cD−1] not all zero, such that µ0 =
D−1∑
k=0

ckx⃗k = Xc⃗.

Thus, we have

Pnµ0 =

d−1∑
k=0

ckλ
n
k x⃗k +

D−1∑
k=d

ckP
nx⃗k. (9)

For any Jordan cell Jk, let αk be the multiplicity of λk, then

Jn
k =


λk 1

λk 1
. . . . . .

λk 1
λk


n

αk×αk

=


λnk Cn−1

n λn−1
k · · · Cn−αk+1

n λn−αk+1
k

λnk · · · Cn−αk+2
n λn−αk+2

k
. . .

...
λnk

 .
Since αk is fixed for matrix P , we have lim

n→∞
Jn
k = 0 for each k = d, . . . ,D − 1. Then the limiting

vector of (9), denoted by P∞µ0, satisfies:

P∞µ0 = lim
n→∞

XJnX−1Xc⃗ = lim
n→∞

d−1∑
k=0

ckλ
n
k x⃗k = lim

n→∞
µ(n),

where we denote µ(n) =
d−1∑
k=0

ck(e
j 2πk

d )nx⃗k. Let r = n (mod d), then we have

µ(n) = µ(r) =

d−1∑
k=0

ck(ξ
k)rx⃗k, ∀n ≥ 1.

Therefore, the probability sequence {Pnµ0}n≥1 will split into d converging subsequences and has d
cyclic limiting probability distributions when n→∞, denoted as

µr
∞ =

d−1∑
k=0

ck(ξ
k)rx⃗k, r = 0, 1, . . . , d− 1.

Thus, Pnµ0 is asymptotically periodic with period d if d > 1 and asymptotically aperiodic if
d = 1.

We now consider a more general state space that may not necessarily be irreducible. According to
the Decomposition theorem of the Markov chain [30], the finite state space S can be partitioned
uniquely as a set of transient states and one or several irreducible closed sets of recurrent states.
According to [31], after performing an appropriate permutation of rows and columns, we can rewrite
the transition probability matrix P in its canonical form:

P =



R1 0 · · · 0 0
0 R2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Rα 0

T1 T2 · · · Tα Q

 ,

where R1, . . . , Rα represent the probability submatrices corresponding to the recurrent classes, Q
represents the probability submatrix corresponding to the transient states, and T1, . . . , Tα represent
the probability submatrices corresponding to the transitions between transient and recurrent classes
R1, . . . , Rα respectively.

Theorem 3. Suppose that the state space S is finite with a transition probability matrix P ∈ R|S|×|S|

and S has α recurrent classes. Let R1, R2, . . . , Rα be the probability submatrices corresponding
to the recurrent classes and let d1, d2, . . . , dα be the number of the eigenvalues of modulus 1 that
the submatrices R1, R2, . . . , Rα has. Then for any initial distribution µ0, Pnµ0 is asymptotically
periodic with period d = lcm(d1, d2, . . . , dα) when d > 1 and asymptotically aperiodic when d = 1.
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Proof. Since P is a block upper-triangular, it can be shown that the eigenvalues of P are equal to
the union of the eigenvalues of the diagonal blocks R1, . . . , Rα, Q. Note that the nth-power of P
satisfies the following expression:

Pn =



Rn
1 0 · · · 0 0
0 Rn

2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Rn
α 0

T
(n)
1 T

(n)
2 · · · T

(n)
α Qn


,

where T (n)
r is related to the (n− 1)-th or the lower power of Rr and Q. From Theorem 4.3 of [31],

we obtain that lim
n→∞

Qn = 0, which implies that all eigenvalues of Q have modulus less than 1.

On the other hand, note that the sum of every row in matrix Rr is equal to 1, which means λ = 1 is
an eigenvalue of Rr and all eigenvalues of Rr satisfy |λ| ≤ 1. Thus, the spectral radius of P is equal
to 1.

Note that the proof of Lemma 1 implies that the asymptotic periodicity of Pnµ0 depends on the
eigenvalues of P that have modulus 1. Since Rr is non-negative irreducible with spectral radius 1,
based on the Perron-Frobenius theorem used in Lemma 1, we can express the eigenvalues of Rr in
modulus 1 as:

λr,k = ej
2πk
dr , , k = 0, 1, . . . , dr − 1.

Based on the above discussion, it is easy to check that
α⋃

r=1
{λr,0, . . . , λr,dr−1} is the set of all

eigenvalues of modulus 1 of P . Rewrite P in its Jordan canonical form P = XJX−1, where

J =



λ1,0
. . .

λ1,d1−1

λ2,0
. . .

λα,dα−1

Jd1+···+dα

. . .
Js


and X = [x⃗0, x⃗1, . . . , x⃗D−1] is an invertible matrix. Similar to the proof in Lemma 1, we get

P∞µ0 = lim
n→∞

α∑
r=1

dr−1∑
k=0

ck(e
j 2πk

dr )nx⃗k := lim
n→∞

µ(n).

Let d = lcm(d1, d2, . . . , dα) and r = n (mod d), then we have

µ(n) = µ(r), ∀n ≥ 1.

Therefore, the probability sequence {Pnµ0}n≥1 will split into d converging subsequences and has d
cyclic limiting probability distributions when n→∞, denoted as

µr
∞ =

α∑
r=1

dr−1∑
k=0

cke
j 2πkr

dr x⃗k, r = 0, 1, . . . , d− 1.

Thus, Pnµ0 is asymptotically periodic with period d if d > 1 and asymptotically aperiodic if d = 1.
This completes the proof.
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A.3 Proof of the Convergence of Our Auxiliary Loss

In this section, we provide a detailed derivation of the learning objective of SPF. As the DTFT of
discrete-time state sequences is a continuous function that is difficult to compute, we practically
sample the DTFT at L equally-spaced points.

[F s̃t]k =

+∞∑
n=0

[s̃t]n e
−j 2πk

L n, k = 0, 1, . . . , L− 1. (10)

As a result, the prediction target takes the form of a matrix with dimensions of L∗D, whereD denotes
the dimension of the state space. The auxiliary task is designed to encourage the representation
to predict the Fourier transform of the state sequences using the current state-action pair as input.
Specifically, we define the prediction target Fπ,p(st, at) as follows:

Fπ,p(st, at) = F s̃(st, at) =

{
+∞∑
n=0

[s̃(st, at)]n e
−j 2πk

L n

}L−1

k=0

, (11)

For simplicity of notation, we substitute F (st, at) for Fπ,p(st, at) in the following. We can derive
that the DTFT functions at successive time steps are related to each other in a recursive form:

[F (st, at)]k =

+∞∑
n=0

γn · e−j 2πk
L n · Eπ,p

[
st+n+1

∣∣st = s, at = a
]

= Ep

[
st+1

∣∣st = s, at = a
]
+ γ · e−j 2πk

L ·

Est+1∼p,at+1∼π

[
+∞∑
n=0

γn · e−j 2πk
L n · Ep

[
st+n+2

∣∣st+1, at+1

]]
= [s̃t]0 + γ · e−j 2πk

L · Eπ,p [[F (st+1, at+1)]k] , ∀ k = 0, 1, . . . L− 1.

We can further express the above equation as a matrix-form recursive formula as follows:

F (st, at) = S̃t + ΓEπ,p [F (st+1, at+1)] , (12)

where
S̃t = [[s̃t]0, . . . , [s̃t]0]

T ∈ RL×D,

Γ = γ


1

e−j 2π
L

e−j 4π
L

. . .

e−j
(L−1)π

L

 .

Similar to the TD-learning of value functions, we can prove that the above recursive relationship (12)
can be reformulated as a contraction mapping T . Due to the properties of contraction mappings, we
can iteratively apply the operator T to compute the target DTFT function until convergence in tabular
settings.

Theorem 4. Let F denote the set of all functions F : S ×A → CL∗D and define the norm on F as

∥F∥F := sup
s∈S
a∈A

max
0≤k<L

∥∥[F (s, a)]
k

∥∥
D
,

where
[
F (s, a)

]
k

represents the kth row vector of F (s, a). We show that the mapping T : F → F
defined as

T F (st, at) = S̃t + ΓEπ,P [F (st+1, at+1)] (13)

is a contraction mapping, where S̃t and Γ are defined as above.
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Proof. For any F1, F2 ∈ F , we have

∥T F1 − T F2∥F = sup
s∈S
a∈A

max
0≤k<L

∥∥∥∥∥s+ γe−j 2πk
L Es′∼P (·|s,a)

a′∼π(·|s′)

[[
F1(s

′, a′)
]
k

∣∣s, a]

− s− γe−j 2πk
L Es′∼P (·|s,a)

a′∼π(·|s′)

[[
F2(s

′, a′)
]
k

∣∣s, a]∥∥∥∥∥
D

≤ γ · max
0≤k<L

sup
s∈S
a∈A

∥∥∥∥∥Es′∼P (·|s,a)
a′∼π(·|s′)

[[
F1(s

′, a′)
]
k
−

[
F2(s

′, a′)
]
k

∣∣s, a]∥∥∥∥∥
D

≤ γ · max
0≤k<L

sup
s′∈S
a′∈A

∥∥[F1(s
′, a′)− F2(s

′, a′)
]
k

∥∥
D

= γ · ∥F1 − F2∥F .
Note that γ ∈ [0, 1), which implies that T is a contraction mapping.

B Pseudo-code of SPF

The training procedure of SPF is shown in the pseudo-code as follows:

Algorithm 1 State Sequences Prediction via Fourier Transform (SPF)
Denote parameters of the online encoder (ϕs, ϕs,a), predictor F , and projection ψ as θaux

Denote parameters of the target encoder (ϕ̂s, ϕ̂s,a), predictor F̂ , and projection ψ̂ as θ̂aux
Denote parameters of actor model π and critic model Q for RL agents as θRL
Denote the smoothing coefficient and update interval for target network updates as τ and K
Initialize replay buffer D and parameters θaux, θRL
for each environment step t do
at ∼ π(·|ϕs(st))
st+1, rt+1 ∼ p(·|st, at)
D ← D ∪ (st, at, st+1, rt+1)
sample a minibatch of {(st, at, st+1, rt+1)} from D
θaux ← θaux − αaux∇θauxLpred(θaux, θ̂aux)
resampling a minibatch of {(st, at, st+1, rt+1)} from D
st ← ϕs(st)
zst,at

← ϕs,a(ϕs(st), at)
update the RL agent parameters θRL with the representations st, zst,at

update parameters of target networks with θ̂aux ← τθaux + (1− τ)θ̂aux every K steps
end for

C Network Details

The encoders ϕs and ϕs,a share the same architecture. Each layer of the encoders uses MLP-
DenseNet [19], a slightly modified version of DenseNet. For each MuJoCo task, the incremental
number of hidden units per layer is selected from {30, 40}, while the number of layers is selected
from {6, 8} (see Table 2). Both the predictor F and the projection ψ apply a 2-layer MLP. We
divide the last layer of the predictor into two heads as the real part FRe and the imaginary part FIm,
respectively, since the prediction target of our auxiliary task is complex-valued. With respect to the
projection module, we add an additional 2-layer MLP (referred to as Projection2) after the original
online projection to perform a dimension-invariant nonlinear transformation on the predicted DTFT
that has been projected to a lower-dimensional space. We do not apply this nonlinear operation to the
target projection. This additional step is carried out to prevent the projection from collapsing to a
constant value in the case where the online and target projections share the same architecture.

In Fourier analysis, the low-frequency components of the DTFT contain information about the
long-term trends of the signal, with higher signal energy, while the high-frequency components of the
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Table 2: Detailed setting of the encoder for six MuJoCo tasks.

Environment Number of Layers Number of Units per Layer Activation Function
HalfCheetah-v2 8 30 Swish
Walker2d-v2 6 40 Swish
Hopper-v2 6 40 Swish
Ant-v2 6 40 Swish
Swimmer-v2 6 40 Swish
Humanoid-v2 8 40 Swish

DTFT reflect the amount of short-term variation present in the state sequences. Therefore, we attempt
to preserve the overall information of the low and high-frequency components of the predicted DTFT
by directly computing the cosine similarity distance without undergoing the dimensionality reduction
process. For the remaining frequency components of the predicted DTFT, we first utilize projection
layers to perform dimensionality reduction, followed by calculating the cosine similarity distance.
The sum of these three distances is used as the final loss function, which we call freqloss.

D Hyperparameters

Table 3: Hyperparameters of auxiliary prediction tasks.

Hyperparameter Setting
Optimizer Adam
Discount γ 0.99
Learning rate 0.0003
Number of batch size 256
Predictor: Number of hidden layers 1
Predictor: Number of hidden units per layer 1024
Predictor: Activation function ReLU
Projection: Number of hidden layers 1
Projection: Number of hidden units per layer 512
Projection: Activation function ReLU
Projection2: Number of hidden layers 1
Projection2: Number of hidden units per layer 512
Projection2: Activation function ReLU
Number of discrete points for sampling the DTFT L 128
The dimensionality of the output of projection 512
Replay buffer size 100,000
Pre-training steps 10000
Target smoothing coefficient τ 0.01
Target update interval K 1000

Hyperparameters of SPF-SAC
Each module: Normalization Layer BatchNormalization
Random collection steps before pre-training 10,000

Hyperparameters of SPF-PPO
Each module: Normalization Layer LayerNormalization
Random collection steps before pre-training 4,000
θaux update interval K2

HalfCheetah-v2 5
Walker2d-v2 2
Hopper-v2 150
Ant-v2 150
Swimmer-v2 200
Humanoid-v2 1

20



We select L = 128 as the number of discrete points sampled over one period of DTFT. In practice, due
to the symmetry conjugate of DTFT, the predictor F only predicts L

2 +1 points on the left half of our
frequency map, as mentioned in Section 5.2. The projection module described in Section 5.3 projects
the predicted value, a matrix with the dimension of L ∗D, into a 512-dimensional vector. To update
target networks, we overwrite the target network parameters with an exponential moving average of
the online network parameters, with a smoothing coefficient of τ = 0.01 for every K = 1000 steps.

In order to eliminate dependency on the initial parameters of the policy, we use a random policy to
collect transitions into the replay buffer [32] for the first 10K time steps for SAC, and 4K time steps
for PPO. We also pretrain the representations with the aforementioned random collected samples to
stabilize inputs to each RL algorithm, as described in [19].

The network architectures, optimizers, and hyperparameters of SAC and PPO are the same as those
used in their original papers, except that we use mini-batches of size 256 instead of 100. As for PPO,
we perform K2 gradient updates of θaux for every K2 steps of data sampling. The update interval K2

is set differently for six MuJoCo tasks and can be found in Table 3.

E Visualization

To demonstrate that the representations learned by SPF effectively capture the structural information
contained in infinite-step state sequences, we compare the true state sequences with the states
recovered from the predicted DTFT via the inverse DTFT.

Specifically, we first generate a state sequence from the trained policy and select a goal state st at a
certain time step. Next, we choose a historical state st−k located k steps past the goal state and select
an action at−k based on the trained policy π(·|st−k) as the inputs of our trained predictor. We then
obtain the DTFT Ft−k := Fπ(st−k, at−k) of state sequences starting from the state st−k+1. Next,
we compute the kth element of the inverse DTFT of Ft−k and obtain a recovered state ŝt, which
represents that we predict the future goal state using the historical state located k steps past the goal
state. By selecting a sequence of states over a specific time interval as the goal states and repeating
the aforementioned procedures, we will obtain a state sequence recovered by k-step prediction. In
Figure 5(b), 6(b), 7(b), 8(b), 9(b) and 10(b), we visualize the true state sequence (the blue line) and
the recovered state sequences (the red lines) via k-step predictions for k = 1, 2, 3, 4, 5. Note that
the lighter red line corresponds to predictions made by historical states from a more distant time
step. We conduct the visualization experiment on six MuJoCo tasks using the representations and
predictors trained by SPF-SAC or SPF-PPO. Due to the large dimensionality of the states in Ant-v2
and Humanoid-v2, which contain many zero values, we have chosen to visualize only six dimensions
of their states, respectively. The fine distinctions between the true state sequences and the recovered
state sequences from our trained representations and predicted FT indicates that our representation
effectively captures the inherent structures of future state sequences.

Furthermore, we provide a visualization that compares the true DTFT and the predicted DTFT in
Figure 5(a), 6(a), 7(a), 8(a), 9(a) and 10(a). To accomplish this, we use our trained policies to interact
with the environments and select the state sequences of the 200 last steps of an episode. The blue
lines represent the true DTFT of these state sequences, while the orange line represents the predicted
DTFT using the online encoder and predictor trained by our learned policies. It is evident that the true
DTFT and the predicted DTFT exhibit significant differences. These results demonstrate the ability
of SPF to effectively extract the underlying structural information in infinite-step state sequences
without relying on high prediction accuracy.

F Cosine Similarity Results

We present a comparison table between the real discrete-time Fourier transform (DTFT) and the
predicted DTFT. To obtain these results, we use our trained policies to interact with six MuJoCo
environments and record the states and the actions for the 201 last steps of an episode, denoted as
{st}200t=0 and {at}200t=0, respectively. The real DTFT of the state sequence {s1, s2, . . . , s200} over a
200-step horizon is computed using the formulation of the discrete-time Fourier transform. For the
predicted DTFT, we employ our trained encoder and prediction module, with the state s0 and the
action a0 serving as inputs. The output of the prediction module represents the predicted DTFT of
the state sequence {s1, s2, . . . , s200}. We compute the cosine similarity between A and B with the
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formula − A·B
∥A∥∥B∥ , where values closer to −1 indicate greater similarity while the values closer to 1

indicate greater dissimilarity. The cosine similarity between the real DTFT and the predicted DTFT
is listed in Table 4 below.

Table 4: Cosine similarity distance between the real DTFT and the predicted DTFT.

Environment Cosine similarity distance
HalfCheetah −0.655

Hopper −0.660
Walker2d −0.651

Ant −0.351
Swimmer −0.557
Humanoid −0.651

G Code

Codes for the proposed method are available at https://github.com/MIRALab-USTC/RL-SPF/.
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Figure 5: Predicted values via representations trained by SPF-SAC on HalfCheetah-v2
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(b) True and recovered state sequences

Figure 6: Predicted values via representations trained by SPF-SAC on Walker2d-v2
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(b) True and recovered state sequences

Figure 7: Predicted values via representations trained by SPF-SAC on Humanoid-v2
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(b) True and recovered state sequences

Figure 8: Predicted values via representations trained by SPF-PPO on Hopper-v2
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(b) True and recovered state sequences

Figure 9: Predicted values via representations trained by SPF-PPO on Ant-v2
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Figure 10: Predicted values via representations trained by SPF-PPO on Swimmer-v2
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