
A Notation555

For two vectors p, q 2 Rd we denote by p · q =
Pd

i=1 piqi their inner product. We use p ⇤ q to denote556

their element-wise product, i.e., (p ⇤ q)i = piqi. We use the notation maxi p to denote the i-th largest557

element of the vector p. We use margin(p) to denote the difference between the top-2 elements of p,558

i.e., margin(p) = max1 p�max2 p. Moreover, we use margink(p) to denote the top-k margin, i.e.,559

margink(p) =
Pk

i=1 maxi p�maxk+1 p. Given a function f(w) : Rd 7! R we denote by @wf(w)560

the gradient of f with respect to the parameter w.561

B Detailed Description of SLaM562

B.1 Estimating the Teacher’s Accuracy Parameters: ↵(x), k(x)563

Estimating the Teacher’s Accuracy ↵(x) via Isotonic Regression We now turn our attention to564

the problem of estimating ↵(x) for each x of dataset B, i.e., the dataset labeled by the teacher model.565

In [27] the authors empirically observed that ↵(x) correlates with metrics of teacher’s confidence566

such as the “margin”, i.e., the difference between the probabilities assigned in the top-1 class and567

the second largest class according to the teacher’s soft label ys. In particular, the larger the margin568

is the more likely is that the corresponding teacher label is correct. We exploit (and enforce) this569

monotonicity by employing isotonic regression on a small validation dataset to learn the mapping570

from the teacher’s margin at an example x to the corresponding teacher’s accuracy ↵(x).571

To perform this regression task we use a small validation dataset V with correct labels that the572

teacher has not seen during training. For every example x 2 V we compute the corresponding573

soft-teacher label ys(x) and compute its margin margin(x) = max1(ys(x)) �max2(ys(x)). For574

every x 2 V we also compute the hard-prediction of the teacher and compare it with the ground-575

truth, i.e., for every x the covariate and responce pair is (margin(x), 1 � err(g(x), y(x))). We576

then use isotonic regression to fit a piecewise constant, increasing function to the data. Sorting577

the regression data {(margin(x), 1� err(g(x), y(x)))x 2 V } by increasing margin to obtain a list578

(c(1), . . . , r(1)), . . . , (c(m)
, r

(m)), isotonic regression solves the following task579

min
r̂(1),...,r̂(m)

mX

i=1

(r(i) � r̂
(i))2

subject to lb  r̂
(i)  r̂

(i+1)  1,

where the parameter lb is a lower bound on the values r̂(i) and is a hyper-parameter that we tune.580

On the other hand, the upper bound for the values can be set to 1 since we know that the true value581

↵(x) is at most 1 for every x (since it corresponds to the probability that the teacher-label is correct).582

After we compute the values r̂(1), . . . , r̂(m) for any given c 2 [0, 1] the output of the regressor is the583

value of r̂(i) corresponding to the smallest c(i) that is larger-than or equal to c. This is going to be584

our estimate for ↵(x). We remark that finding the values r(i) can be done efficiently in O(n) time585

after sorting the data (which has a runtime of O(n log n)) so the whole isotonic regression task can586

be done very efficiently.587

Estimating k(x). We now describe our process for estimating the values of ↵(x) and k(x) for588

every example of dataset B. Similarly to the binary classification setting, we estimate the accuracy589

probability ↵(x) using isotonic regression on a small validation dataset. The value of k(x) can be set590

to be equal to a fixed value of k for all data, so that the top-k accuracy of the teacher on the validation591

data is reasonable (say above 60%). For example, in our ImageNet experiments, we used k = 5. We592

also provide a data-dependent method to find different values k(x) for every example x. To do this593

we adapt the method for estimating the top-1 accuracy ↵(x) of the teacher from the validation dataset.594

For every value of k = 2, . . . , L� 1 we compute the top-k margin of the teacher’s predictions on the595

validation data which is equal to the sum of the top-k probabilities of the teacher soft-label minus the596

probability assigned to the k + 1-th class, i.e.,597

margink(ys(x)) =
⇣ kX

i=1

max
i

ys(x)
⌘
�max

k+1
ys(x) .
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Using the top-k margin as the covariate and the top-k accuracy as the response we solve the cor-598

responding regression task using isotonic regression to obtain the value ↵k(x) representing the599

probability that the true label belongs in the top-k predictions of the teacher soft-label. For some600

threshold, say 90%, for every x we set k(x) to be the smallest value of k so that ↵k(x) � 90%. We601

empirically observed that using larger thresholds for the top-k accuracy (e.g., 90% or 95%), is better.602

We remark that while using the top-k margin as the covariate in the regression task is reasonable, our603

method can be used with other “uncertainty metrics” of the teacher’s soft-labels, e.g., the entropy of604

the distribution of ys(x) after grouping together the top-k elements. The higher this entropy metric is605

the more likely that the top-k accuracy probability ↵(x)k of the teacher is low.606

B.2 SLaM for Distillation with Unlabeled Examples: Pseudocode607

In this section we present pseudo-code describing the distillation with unlabeled examples setting608

and the SLaM method, Algorithm 1.609

Remark B.1. We remark that in our experiments, we observed that not normalizing the mixing610

operation with k(x)� 1 resulted in better results overall. Therefore, the mixing operation used in our611

experimental evaluation of SLaM is mix(f(x;w);↵(x), k(x)) = ↵(x)f(x;w) + (1 � ↵(x))(1 �612

f(x;w)) ⇤ top(ys(x); k(x)). For more details we refer the reader to the code provided in the613

supplementary material.614

Algorithm 1 Student Label Mixing (SLaM) Distillation
Input: Labeled Dataset A, Labeled Validation dataset V, Unlabeled Dataset U
Output: A trained Student model f(x;w)

Train Teacher model on Labeled Dataset A
Pre-train Student model on Labeled Dataset A

# Label examples of Dataset U using the Teacher

B  ;
for each x 2 U do

Add (x, ys(x)) to B # For hard-distillation use y(x)
end for

# Learn Teacher Accuracy Statistics ↵(x), k(x) Algorithm 2

↵̂(x), k̂(x) LearnAccuracyStatistics(y(·), V, B)
Train student f(x;w) using the SLaM loss:

X

(x,y)2A[V

`(y, f(x;w)) +
X

(x,y)2B

`(y,mix(f(x;w); â(x), k̂(x)))

C SLaM Consistency615

In the following proposition we show that any minimizer of the SLaM loss over the noisy teacher-data616

must agree with the ground-truth for all x (that have positive density). To keep the presentation617

simple and avoid measurability issues (e.g., considering measure zero sets under X) in the following618

we will assume that the example distribution X is supported on a finite set. We remark that one619

can easily adapt the proof to hold for any distribution X (but the result will hold after excluding620

measure-zero sets under X).621

Proposition C.1 (SLaM Consistency). Let D be the distribution of the teacher-labeled examples622

of dataset B, i.e., we first draw x ⇠ X and then label it using the noisy teacher of Definition 3.2.623

Moreover, assume that there exists some parameter w
⇤ 2 W such that the ground-truth g(x) =624

f(x;w⇤). Denote by LSLaM(w) = E(x,y)⇠D[`(y,mix(f(x;w);↵(x), k(x))]. the SLaM objective.625

The following hold true.626

1. w
⇤

minimizes the SLaM objective.627
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Algorithm 2 Estimating Teacher’s Accuracy Statistics ↵(x), k(x)
Input: (Noisy) Teacher Model ys(x), Labeled Validation dataset V,
Isotonic-Regression lower-bound lb 2 [0, 1], and top-k accuracy threshold t 2 [0, 1].
Output: Estimates ↵̂(x), k̂(x) of the actual ↵(x), k(x).

Create Soft-labels for the Validation dataset using the teacher model {ys(x) : x 2 V }.
for j = 1 to L� 1 do

# Map ys(x) to top-j margin and accuracy pairs on the Validation V

C  
( 

jX

r=1

max
r

ys(x)�max
j+1

ys(x), 1� err(ys(x), z)

!
: (x, z) 2 V

)
.

Set ↵̂j(x) to be the output of Isotonic-Regression with lower-bound lb on the (covariate,
responce) pairs in C. # See Appendix B.1

end for
â(x) â1(x)
âL(x) 1 # The top-L accuracy is always (trivially) equal to 1

Given example x for some threshold t set k̂(x) to be the smallest integer r 2 {1, . . . , L} so that
ar(x) � t.

2. Assuming further that for all x it holds that ↵(x)k(x) 6= 1, we have that any minimizer w of628

the SLaM objective satisfies: f(x;w) = g(x) for all x.629

Proof. Fix any example x 2 X . By Definition 3.2 we have that the corresponding teacher label y is630

correct with probability ↵(x) and a uniformly random incorrect label out of the top-k labels according631

to the teacher soft-label ys(x). Recall for an L-dimension score vector p, by top(p; k) 2 {0, 1}L we632

denote the vector that has 1 on the positions of the top-k elements of p, e.g., top((1, 2, 3, 4, 5); 2) =633

(0, 0, 0, 1, 1). Conditional on x, the corresponding expected noisy teacher label is634

E[y | x] = P[y = g(x) | x]g(x) +P[y 6= g(x)]E[y | x, y 6= g(x)]

= ↵(x)g(x) + (1� ↵(x))E[y | y 6= g(x), x] .

We know that the expected teacher label conditional on it being wrong E[y | y 6= g(x), x] is a635

uniformly random incorrect label from the top-k labels of the corresponding teacher soft-label ys(x).636

Assume first that k = L, since the ground-truth is represented by a one-hot vector, the distribution637

of uniformly random incorrect labels conditional on x can be written as (1 � g(x))/(L � 1). For638

example, if the ground-truth label is g(x) = (1, 0, 0, 0, 0) then a uniformly random incorrect label639

has probability distribution (0, 1/4, 1/4, 1/4, 1/4). Assume now that k(x) = 3 and top(ys(x); 3) =640

(1, 1, 1, 0, 0). Then the distribution of the (incorrect) teacher label becomes (0, 1/2, 1/2, 0, 0). Using641

⇤ to denote element-wise multiplication of two vectors, we have642

E[y | x, y 6= g(x)] =
1� g(x)

k(x)� 1
⇤ top(ys(x); k(x))

Therefore, we obtain643

E[y | x] = ↵(x)g(x) + (1� ↵(x))
1� g(x)

k(x)� 1
⇤ top(ys(x); k(x)) = mix(g(x);↵(x), k(x)) .

Therefore, by using the fact that Cross-Entropy is linear in its first argument, we obtain that the644

expected SLaM loss on some example x is645

E[ce(y,mix(f(x;w);↵(x), k(x))) | x] = ce(E[y | x],mix(f(x;w);↵(x), k(x)))

= ce(mix(g(x;w);↵(x), k(x)),mix(f(x;w);↵(x), k(x))) .

We first have to show that there exist some parameter w 2 W that matches the (expected) ob-646

served labels E[y | x]. Observe first that by using the realizability assumption, i.e.,that there647

exists w
⇤ so that f(x;w⇤) = g(x) we obtain that, for every x, it holds mix(g(x);↵(x), k(x)) =648

mix(f(x;w⇤);↵(x), k(x)). In fact, by Gibb’s inequality (convexity of Cross-Entropy) we have that649

w
⇤ is a (global) minimizer of the SLaM objective.650
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We next show that any (global) minimizer of the SLaM objective must agree with the ground-truth651

for every x. Since we have shown that w⇤ is able to match the (expected) labels E[y | x] any652

other minimizer w must also satisfy mix(g(x);↵(x), k(x)) = mix(f(x;w);↵(x), k(x))). Assume653

without loss of generality that g0 = 1, i.e., the ground-truth label is 0. We observe that by using that654

mix(g(x;w);↵(x), k(x)) = ↵(x)g(x) + (1� ↵(x)) 1�g(x)
k(x)�1 ⇤ top(ys(x); k(x)) and the fact that the655

ground-truth belongs in the top-k(x) of the teacher’s predictions conditional that the teacher’s top-1656

prediction is incorrect (thus top(ys(x))0 = 1), we obtain that657

↵(x)g0(x)+(1�↵(x))(1�g0(x))/(1�k(x)) = ↵(x)f(x;w)0+(1�↵(x))(1�f(x;w)0)/(k(x)�1) .

Using the fact that g0 = 1 we can simplify the above expression to658

(1� f(x;w)0)

✓
↵(x)� 1� ↵(x)

k(x)� 1

◆
= 0 .

Using the assumption that a(x)k(x) 6= 1 we obtain that the term
⇣
↵(x)� 1�↵(x)

k(x)�1

⌘
is not vanishing659

and therefore it must hold that f(x;w)0 = 1 = g0, i.e., the student model must be equal to the660

ground-truth.661

662

D Extended Experimental Evaluation663

We implemented all algorithms in Python and used the TensorFlow deep learning library [1]. We ran664

our experiments on 64 Cloud TPU v4s each with two cores.665

D.1 Implementation Details: Vision Datasets666

Here we present the implementation details for the vision datasets we considered.667

Remark D.1. We note that in all our experiments, “VID” corresponds to the implementation of the668

loss described in equation (2), (4) and (6) of [2] (which requires appropriately modifying the student669

model so that we have access to its embedding layer).670

Experiments on CIFAR-{10/100} and CelebA For the experiments on CIFAR-10/100 and CelebA671

we use the Adam optimizer with initial learning rate lr = 0.001. We then proceed according to the672

following learning rate schedule (see, e.g., [25]):673

lr 

8
>><

>>:

lr · 0.5 · 10�3
, if #epochs > 180

lr · 10�3
, if #epochs > 160

lr · 10�2
, if #epochs > 120

lr · 10�1
, if #epochs > 80

Finally, we use data-augmentation. In particular, we use random horizontal flipping and random674

width and height translations with width and height factor, respectively, equal to 0.1.675

The hyperparameters of each method are optimized as follows. For SLaM we always use 0.5 as676

the lower bound for isotonic regression (i.e., the parameter lb in Algorithm 2). As CelebA is677

a binary classification benchmark k(x) is naturally set to 2 for all examples. For CIFAR-10/10678

we used the data-dependent method for estimating k(x) (see Algorithm 2) with threshold pa-679

rameter t = 0.9. For weighted distillation we do a grid search over updating the weights ev-680

ery {1, 25, 50, 100, 200} epochs and we report the best average accuracy achieved. Finally, for681

VID we search over {0.001, 0.1, 0.2, 0.5, 0.8, 1.0, 2.0, 10.0, 50.0, 100.0} for the coefficient of the682

VID-related term of the loss function, and for the PolyLoss we optimize its hyperparameter over683

{�1.0,�0.8,�0.6,�0.4,�0.2, 0.5, 1.0, 2.0, 50.0, 100.0}.684

Experiments on ImageNet For the ImageNet experiments we use SGD with momentum 0.9 as the685

optimizer. For data-augmentation we use random horizontal flipping and random cropping. Finally,686

the learning rate schedule is as follows. For the first 5 epochs the learning rate lr is increased from687

17



Figure 3: Comparison of distillation methods on ImageNet. On the horizontal axis we plot the size
of Dataset A as a percentage of the whole training dataset. On the vertical axis we plot the accuracy
of the trained student-model on the test dataset.

Table 5: Experiments on CIFAR-10 (hard-distillation). See Section 4.2 for details.
Labeled Examples 5000 7500 10000 12500 15000 17500

Teacher 61.30 68.98 72.42 73.92 76.63 78.63

Vanilla 62.26 ± 0.45 69.07 ± 0.11 72.09 ± 0.11 73.43 ± 0.16 75.93 ± 0.25 77.43 ± 0.15

Taylor-CE [20] 63.14 ± 0.07 69.98 ± 0.11 72.72 ± 0.36 73.77 ± 0.28 76.26 ± 0.29 77.88 ± 0.20

UPS [48] 64.27 ± 0.08 70.93 ± 0.26 73.78 ± 0.16 74.66 ± 0.29 77.38 ± 0.37 78.95 ± 0.08

VID [3] 61.95 ± 0.22 66.91 ± 0.21 69.59 ± 0.24 72.16 ± 0.47 74.83 ± 0.11 75.55 ± 0.21

Weighted [27] 63.22 ± 0.45 71.04 ± 0.26 72.84 ± 0.12 74.20 ± 0.16 76.56 ± 0.24 78.23 ± 0.15

SLaM (Ours) 66.40 ± 0.31 72.44 ± 0.17 74.77 ± 0.13 75.64 ± 0.19 77.99 ± 0.36 79.26 ± 0.26

0.0 to 0.1 linearly. After that, the learning rate changes as follows:688

lr =

8
<

:

0.01, if #epochs > 30
0.001, if #epochs > 60
0.0001, if #epochs > 80 .

The hyperparameters of each method are optimized as follows. For SLaM we do a hyperparameter689

search over {0.55, 0.60, 0.65, 0.70} for the lower bound for isotonic regression, and we keep the best690

performing value for each potential size of dataset A. We used the fixed value 5 for k(x), as the691

top-5 accuracy of the teacher model was satisfactory (much higher than its top-1 accuracy) on the692

validation dataset. For Taylor-CE we did a hyper-parameter search for the Taylor series truncation693

values in {1, 2, 3, 4, 5, 6, 10, 20, 50, 80, 100}. For weighted distillation we compute the weights in a694

one-shot fashion using the pre-trained student (as in the ImageNet experiments in [27]). For VID we695

search over {0.1, 0.3, 0.5} for the coefficient of the VID-related term of the loss function, and for the696

PolyLoss we optimize its hyperparameter over {1.0, 2.0, 50.0, 100.0}.697

D.2 Hard-Distillation698

Here we present results on hard-distillation. The hyper-parameters of all methods are chosen the699

same way as in our soft-distillation experiments, see Appendix D.1. Tables 5, 6 and 7 contain700

our results on CIFAR-10, CIFAR-100 and CelebA, respectively. We observe that in almost all701

cases, SLaM consistently outperforms the other baselines. Moreover, for CIFAR-10 and CIFAR-100702

hard-distillation performs worse than soft-distillation (as it is typical the case) but in CelebA hard-703

distillation seems to be performing on par with (sometimes even outperforming) soft-distillation. A704

plausible explanation for the latter outcome is that in our CelebA experiments the teacher and student705

have different architectures (MobileNet and ResNet, respectively) so that soft-labels from the teacher706

are not so informative for the student. (This is also a binary classification task where the information707

passed from the teacher to the student through its soft-labels is limited.)708
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Table 6: Experiments on CIFAR-100 (hard-distillation). See Section 4.2 for details.
Labeled Examples 5000 7500 10000 12500 15000 17500

Teacher 35.97 44.65 49.62 55.68 59.19 62.05
Vanilla 36.36 ± 0.04 44.15 ± 0.10 50.22 ± 0.07 55.55 ± 0.24 58.85 ± 0.1 61.43 ± 0.19

Taylor-CE [20] 39.12 ± 0.14 46.87 ± 0.10 52.64 ± 0.22 57.19 ± 0.28 59.95 ± 0.11 62.36 ± 0.21

UPS [48] 39.49 ± 0.13 48.36 ± 0.44 53.95 ± 0.10 57.95 ± 0.10 60.59 ± 0.29 62.09 ± 0.28

VID [3] 37.19 ± 0.09 44.67 ± 0.16 50.63 ± 0.35 54.78 ± 0.07 59.27 ± 0.14 62.01 ± 0.05

Weighted [27] 38.04 ± 0.29 46.45 ± 0.22 52.33 ± 0.18 57.43 ± 0.13 60.81 ± 0.09 63.02 ± 0.06

SLaM (Ours) 42.01 ± 0.29 49.08 ± 0.14 54.49 ± 0.17 58.53 ± 0.04 61.12 ± 0.15 63.21 ± 0.18

Table 7: Experiments on CelebA (hard-distillation). See Section 4.2 for details.
Labeled Examples 2% 3% 4% 5% 6% 7%

Teacher 86.19 88.25 88.95 91.31 92.09 92.62

Vanilla 89.73 ± 0.08 91.61 ± 0.09 92.05 ± 0.11 93.41 ± 0.13 94.02 ± 0.15 94.05 ± 0.04

Taylor-CE [20] 90.62 ± 0.05 92.19 ± 0.02 92.66 ± 0.11 93.60 ± 0.14 94.00 ± 0.04 94.38 ± 0.10

UPS [48] 89.35 ± 0.04 91.30 ± 0.04 91.95 ± 0.12 93.18 ± 0.07 93.71 ± 0.04 94.18 ± 0.03

VID [3] 89.92 ± 0.21 91.60 ± 0.11 92.20 ± 0.12 93.51 ± 0.15 94.08 ± 0.15 94.27 ± 0.10

Weighted [27] 90.06 ± 0.06 91.97 ± 0.13 92.45 ± 0.10 93.60 ± 0.07 93.94 ± 0.12 94.25 ± 0.16

SLaM (Ours) 90.43 ± 0.05 92.25 ± 0.11 92.71 ± 0.08 93.96 ± 0.17 94.39 ± 0.21 94.52 ± 0.12

Figure 4: Comparison of distillation methods on CIFAR-10,100 and CelebA. On the horizontal axis
we plot the size of Dataset A as a percentage of the whole training dataset. On the vertical axis we
plot the accuracy of the trained student-model on the test dataset.

D.3 Large Movies Reviews Dataset Results709

Here we present the results and the implementation details regarding the experiments on the Large710

Movies Reviews dataset. Recall that we use an ALBERT-large model as a teacher, and an ALBERT-711

base model as a student. We also use 2%, 4%, 8%, 40% percent (or 500, 1000, 2000, 10000 examples)712

from the training dataset and split the remaining data in a validation dataset of 500 examples and713

an unlabeled dataset U. We compare the methods on the soft-distillation. For each trial we train the714

student model for 40 epochs and keep the best test accuracy over all epochs. We perform 3 trials and715

report the average of each method and the variance of the achieved accuracies over the trials. The716

results of our experiments can be found in Table 8. We remark that we did not implement the UPS717

method for this dataset as the data-augmentation method for estimating the teacher’s accuracy could718

not be readily used for this NLP dataset. Moreover, using dropout and Monte Carlo estimation for719

the uncertainty was also not compatible with the Albert model used in this experiment.720

Since we are dealing with ALBERT-models (which are already pre-trained), we do not pre-train the721

student model on dataset A except in the case of “weighted-distillation” [27], where we pre-train the722

student model on dataset A just for 1 epoch. The teacher model is trained using the Adam optimizer723

for 20 epochs with initial learning rate 10�6. The student model is trained also using the Adam724

optimizer but for 40 epochs and with learning rate 10�7.725

The hyperparameters of each method are optimized as follows. For SLaM we do a hyperparameter726

search over {0.5, 0.6, 0.7, 0.8, 0.9} for the lower bound for isotonic regression, and we keep the best727

performing value for each potential size of dataset A. As this is a binary classification benchmark we728

naturally set k(x) = 2 for all examples. For weighted distillation we do a grid search over updating729

the weights every {1, 10, 20, 40} epochs and, similarly, we report the best average accuracy achieved.730

Finally, for VID (recall also Remark D.1) we search over {0.1, 0.5, 1.0, 2.0} for the coefficient of731
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Table 8: Experiments on the Large Movies Reviews Dataset (soft-distillation). See Section D.3 for
details.

Labeled Examples 2% 4% 8% 40%

Teacher 77.52 84.04 85.44 88.3

Vanilla 80.93 ± 0.10 85.12 ± 0.29 85.99 ± 0.08 87.50 ± 0.6

Taylor-CE [20] 79.5 ± 0.38 85.14 ± 0.13 85.98 ± 0.14 87.57 ± 0.3

VID [3] 81.76 ± 0.32 85.33 ± 0.35 86.17 ± 0.06 87.71 ± 0.01

Weighted [27] 81.1 ± +0.1 85.2 ± 0.05 86.13 ± 0.17 87.8 ± 0.25

SLaM (Ours) 81.88 ± 0.23 85.5 ± 0.09 86.23 ± 0.13 87.73 ± 0.38

Figure 5: Composability the fidelity-based weighting scheme of [17]. The x-axis shows the different
values of the fidelity hyper-parameter � and the size of dataset A. From left to right we increase
the size of dataset A from 10% to 35% and for each size we try different values of �. We observe
that SLaM on its own (shown in green) is usually much better than the fidelity weighting scheme
(shown in orange). Moreover, using SLaM on top of the fidelity weighting scheme (shown in blue)
consistently improves its performance.

the VID-related term of the loss function, and for the PolyLoss we opitmize its hyperparameter over732

{�1.0,�0.8,�0.6,�0.4,�0.2, 0.5, 1.0, 2.0}.733

D.4 Combining with Teacher-Uncertainty-Based Reweighting Techniques734

As we discussed in Section 2, our method can in principle be combined with teacher-uncertainty filter-735

ing and weighting schemes as these can be seen as preprocessing steps. To demonstrate this, we com-736

bine our method with the so-called fidelity-based weighting scheme of [17]. The fidelity weighting737

scheme reweights examples using some uncertainty measure for teacher’s labels, e.g., by performing738

random data-augmentations and estimating the variance of the resulting teacher labels or using dropout739

and Monte Carlo estimation. More precisely, for every example x in the teacher-labeled dataset B, the740

fidelity-weighting scheme assigns the weight wFid(x) = exp(�� uncertaintyteacher(x)) for some741

hyper-parameter � > 0. In our experiments we performed 10 random data augmentations (random742

crop and resize), estimated the coordinate-wise variance of the resulting teacher soft-labels, and743

finally computed the average of the variances of the k-classes, as proposed in [17]. We normalized744

the above uncertainty of each example by the total uncertainty of the teacher over the whole dataset745

B. The weights of examples in dataset A are set to 1 and the reweighted objective is optimized over746

the combination of the datasets A,B.747

Lfid(w) =
1

|A [B|

 
X

(x,y)2A

`(y, f(x;w)) +
X

(x,y)2B

w
Fid(x) `(y, f(x;w))

!
. (3)

To demonstrate the composability of our method with such uncertainty-based weighting schemes,748

we use CIFAR100 and the percentage of the labeled dataset A (as a fraction of the whole training749

set) is 10%, 15%, 20%, 25%, 30%, 35%, similar to the setting of Section 4.2. The teacher is a750

ResNet110 and the student is a ResNet56. We first train the student using only the fidelity weighting751

scheme, i.e., optimize the loss function of Equation (4) using different values for the hyperparameter752

� 2 {0.1, 0.2, 1.0, 1.2, 2.0, 5.0, 10.0, 20.0}, i.e., ranging from mildly reweighting the examples of753
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Figure 6: CIFAR100: Temperature Ablation. On the x-axis we have the size of the labeled dataset (as
a percentage of the whole training dataset) that the teacher model uses for training.

dataset B to more agressively “removing” examples where the teacher’s entropy is large. For the754

same values of � we then train the student using the reweighted SLaM objective:755

LFid+SLaM(w) =
1

|A [B|

 
X

(x,y)2A

`(y, f(x;w)) +
X

(x,y)2B

w
fid(x) `(y,mix(f(x;w);↵(x), k(x))

!
.

(4)

For the combined SLaM + Fidelity method we did not perform hyper-parameter search and used756

the same parameters for the isotonic regression as we did in the “standard” SLaM experiment in757

CIFAR100 of Appendix D.1. We present our comprehensive results for all sizes of dataset A and758

values of the hyper-parameter � in Figure 5. Our results show that, regardless of the value of759

the hyperparameter � and the size of the labeled dataset A, using SLaM together with the fidelity760

weighting scheme provides consistent improvements. Moreover, in Figure 5, we observe that by761

using SLaM the achieved accuracy depends less on the hyper-parameter �: since SLaM takes into762

account the fact that some of the teacher’s predictions are incorrect, it is not crucial to down-weight763

them or filter them out.764

D.5 Using Distillation Temperature765

In this section we show that our approach can be effectively combined with temperature-scaling [26].766

Choosing the right distillation temperature often provides significant improvements. In our setting,767

the teacher provides much more confident predictions (e.g., soft-labels with high-margin) on dataset768

A (where the teacher was trained) compared to the teacher soft-labels of dataset B where the769

teacher is, on average, less confident. Given this observation, it is reasonable to use different770

distillation temperatures for dataset A and dataset B. We try different temperatures for dataset A771

and dataset B and perform vanilla distillation with temperature and also consider applying the772

temperature scaling before applying SLaM. For each size of dataset A we try pairs of temperatures773

tA, tB 2 {0.01, 0.1, 0.5, 0.8, 1., 2., 5., 10., 100.} and report the best accuracy achieved by vanilla774

distillation and the best achieved by first applying temperature scaling and then SLaM. In Figure 6775

we observe that SLaM with temperature scaling consistently improves over vanilla distillation with776

temperature.777

D.6 Using SLaM with other loss functions beyond cross-entropy778

In this section, we demonstrate that our method can be successfully applied when the student loss779

function comes from the families of losses introduced in [20] and [35]. We perform experiments on780

CIFAR-100 and ImageNet following the setting of Section 4.2. In particular, we compare vanilla781

distillation with unlabeled examples using the Taylor-CE loss of [20] and the PolyLoss of [35], with782

combining SLaM with these losses. For the Taylor-CE loss we set the “degree” hyperparameter to783

be 2 (as suggested in [20]) and we set the hyperparameter of the PolyLoss to be 2.0 (as suggested784

in [35]). The corresponding results can be found in Figure 7.785

21



Figure 7: Using SLaM with PolyLoss [35] and Taylor CE [20]. On the x-axis we have the size of the
labeled dataset (as a percentage of the whole training dataset) that the teacher model uses for training.
See Appendix D.6 for more details.

E Distilling Linear Models and Learning Noisy Halfspaces786

In this section we state and prove our convergence result for the SLaM method when applied787

to linear models. Our assumption is that the ground-truth g(x) corresponds to a halfspace, i.e.,788

g(x) = (1{w⇤ · x > 0},1{w⇤ · x  0}) for some unknown weight vector w⇤. We show that789

using SLaM with a linear model as the student will recover the ground truth classifier. We make the790

standard assumption that the ground-truth halfspace has �-margin, i.e., that kw⇤k2 = 1 and that it791

holds |w⇤ · x| � � for all examples x. For a fixed example x, the observed noisy teacher-label y792

satisfies Definition 3.2, i.e., y = g(x) w.p. ↵(x) and y = 1� g(x) w.p. 1� ↵(x) (since k = 2 for793

binary classification). Our approach consists of using the standard cross-entropy loss ce(p, q) and794

training a student-model consisting of a linear layer plus a soft-max activation, i.e.,795

f(x;w) = (f0(x;w), f1(x;w)) =

✓
1

1 + e�w·x ,
e
�w·x

1 + e�w·x

◆
.

Recall, that for binary classification, we define the mixing operation as796

mix(f(x;w);↵(x)) = ↵(x)f(x;w) + (1� ↵(x))(1� f(x;w)) .

Algorithm 3 SLaM for Linear Models
Initialiaze weight vector of student w(0)  0
for t = 1, . . . , T do

Draw example x
(t) ⇠ X .

Label x(t) with (noisy) teacher to obtain y
(t)

Compute the gradient of the SLaM loss at (x(t)
, y

(t)):

g
(t)  @wce(y

(t)
,mix(f(x(t));w(t�1)),↵(x(t))) |w=w(t�1)

Compute step size: �(t)  1/r(f(x(t);w(t�1)),↵(x(t))) (see Lemma E.3 for the definition of
r(·, ·)).
Update the student model: w(t)  w

(t�1) � �
(t)

g
(t)

end for

Theorem E.1 (Student Label Mixing Convergence). Let X be a distribution on Rd
and g(x) be797

the ground-truth halfspace with normal vector w
⇤ 2 Rd

. Let D be the distribution over (noisy)798

teacher-labeled examples (x, y) whose x-marginal is X . We denote by ↵(x) the probability that the799

teacher label y 2 [0, 1]2 is correct, i.e., ↵(x) = P(x,y)⇠D[argmax(y) = g(x) | x]. Assume that800

there exist �, � > 0 such that for all examples x in the support of X it holds that |w⇤ · x| � � and801

|1/2 � ↵(x)|  �. Let ✏ > 0. After T = O(1/(�2
�
2
✏
2)) iterations of SLaM (Algorithm 3), with802

probability at least 99%, there exists an iteration t  T where Px⇠X [err(f(x;w(t)), g(x))]  ✏.803

Remark E.2 (High-Probability Result). We remark that even though our learner succeeds with804

constant probability (at least %99) we can amplify its success probability to 1 � � by standard805

amplification techniques (i.e., by repeating the algorithm O(log(1/�)) times and keeping the best806

result). To achieve success probability 1� � the total sample complexity is O(log(1/�)/(✏2�2
�
2)).807
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Proof. We first provide simplified expressions for the gradient of the SLaM objective and the update808

vectors �(t)
g
(t) used in Algorithm 3. In what follows we remark that for any binary classification809

model f(x;w) = (f0(x;w), f1(x;w)) we have the following identities: (i) (mix(f(x;w);↵(x)))0 =810

mix(f0(x;w);↵(x)), where to simplify notation we overload the mixing operation to also act on811

the scalar f0(x;w), i.e., mix(f0(x;w);↵(x)) = ↵(x)f0(x;w) + (1� ↵(x))(1� f0(x;w)); and (ii)812

f1(x;w) = 1� f0(x;w).813

Lemma E.3 (SLaM Gradient). The gradient of the SLaM objective is equal to814

@wce(y,mix(f(x;w);↵(x)) = r(f0(x;w);↵(x)) sgn(2↵(x)� 1) ((mix(f0(x;w);↵(x))� y0)x,

where815

r(f(x;w);↵(x)) =
f0(x;w)(1� f0(x;w))

mix(f0(x;w);↵(x))(1�mix(f0(x;w),↵(x)))
|2↵(x)� 1|

Let L(x;w) = E(x,y)⇠D[ce(y,mix(f(x;w),↵(x)) | x] be the expected student label mixing loss con-816

ditional on some example x 2 Rd
. It holds @wL(x;w) = r(f(x;w),↵(x)) |2↵(x)� 1| (f0(x;w)�817

g0(x)) x .818

Proof. We first show the formula819

@wce(y,mix(f(x;w),↵(x)) = r(f0(x;w),↵(x)) sgn(2↵(x)� 1) ((mix(f0(x;w),↵(x))� y0)x .
(5)

Using the chain rule, we obtain820

@wce(y,mix(f(x;w);↵(x)) =

� y0

mix(f0(x;w),↵(x))
@w(mix(f0(x;w);↵(x))

� y1

mix(f1(x;w),↵(x))
@w(mix(f1(x;w);↵(x)) .

Now we observe that that for binary classification, it holds that y1 = 1� y0, mix(f1(x;w);↵(x)) =821

1�mix(f0(x;w);↵(x)), and therefore, also @wmix(f(x;w);↵(x))1) = �@wmix(f(x;w);↵(x))0)822

to obtain the simplified expression:823

@wce(y,mix(f(x;w);↵(x)) =

� y0

mix(f0(x;w),↵(x))
@w(mix(f0(x;w);↵(x))

+
1� y0

1�mix(f0(x;w),↵(x))
@w(mix(f0(x;w);↵(x)) .

Further simplifying the above expression, we obtain:824

@wce(y,mix(f(x;w);↵(x)) =

=
mix(f0(x;w),↵(x))� y0

mix(f0(x;w),↵(x)) (1�mix(f0(x;w),↵(x)))
@w(mix(f0(x;w);↵(x)) .

Using again the chain rule we obtain that825

@w(mix(f0(x;w);↵(x)) = ↵(x)@w(f0(x;w))+(1�↵(x))@w(1�f0(x;w)) = (2↵(x)�1) @wf0(x;w) .
Using the fact that the derivative of the sigmoid function r(t) = 1/(1 + e

�t), is r0(t) = e
�t
/(1�826

e
�t)2 = r(t)(1� r(t)), and the chain rule, we obtain that @wf0(x;w) = f0(x;w)(1� f0(x;w))x.827

Putting everything together we obtain the claimed formula for @wce(y,mix(f(x;w);↵(x))).828

To obtain the gradient formula for the expected loss conditional on some fixed example x, we can829

use the fact that @w E[ce(y,mix(f(x;w);↵(x))) | x] = E[@wce(y,mix(f(x;w);↵(x))) | x]. Now830

using the formula of Equation (5) and the fact that E[y0 | x] = mix(g0(x);↵(x)) by the definition of831

our noise model, we obtain that832

@wL(x;w) = r(f0(x;w);↵(x))sgn(2↵(x)� 1)(mix(f0(x;w);↵(x))�mix(g0(x);↵(x)))

= r(f0(x;w);↵(x))(2↵(x)� 1)(f0(x;w)� g0(x))

833
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We first show the following claim proving that after roughly T = 1/(�2
�
2
✏
2) gradient iterations the834

student parameter vector w(t) will have good correlation with the ground-truth vector w⇤.835

Claim 1. Fix any T larger than a sufficiently large constant multiple of log(1/�)/(✏2�2
�
2), and836

assume that for all t  T it holds that Px⇠X [err(f(x;w(t)), g(x))] > ✏. Then, we have w(T ) ·w⇤ =837

⌦(��✏) T , with probability at least 1� �.838

Proof. Denote by u
(t) = ��(t)

g
(t) the update vector used in Algorithm 3. We observe that the839

weight vector at round T is equal to w
(T ) =

PT
t=1 u

(t). In what follows we denote by F (t) the840

filtration corresponding to the randomness of the updates of Algorithm 3. We define the martingale841

q
(T ) =

PT
t=1(E[u(t) | F (t�1)]� u

(t)) with q
(0) = 0. We first show that under the assumption that842

Px⇠X [argmax(f(x;w(t))) 6= g(x)] > ✏, for all t  T , it holds that
PT

t=1 E[u(t) | F (t�1)] · w⇤ �843

(✏��/2) T . Using the SLaM gradient expression of Lemma E.3 and the definition of the step size �(t)844

we obtain that E[u(t) | F (t�1)] = Ex⇠X [|2↵(x) � 1| (g0(x) � f0(x;w(t�1))) x]. Take any step t.845

We have that846

E[u(t) | F (t�1)] · w⇤ = Ex⇠X [|2↵(x)� 1| (g0(x)� f0(x;w
(t�1))) (x · w⇤)]

= Ex⇠X [|2↵(x)� 1| |g0(x)� f0(x;w
(t�1)) |x · w⇤|] ,

where we used the fact that (g0(x) � f0(x;w(t�1))) sgn(x · w⇤) = |g0(x) � f0(x;w(t�1))|. Now,847

using the �-margin assumption of the distribution D and the fact that |2↵(x)� 1| � � we obtain848

E[u(t) | F (t�1)] · w⇤ � �� Ex⇠X [|g0(x)� f0(x;w
(t�1))|]

� �� Ex⇠X [|g0(x)� f0(x;w
(t�1))| err(g(x), f(x;w(t�1)))]

� (��/2) Px⇠X [err(g(x), f(x;w(t�1)))] � ��✏/2 ,

where for the penultimate inequality we used the fact that when g(x) and f(x;w(t�1)) disagree it849

holds that |g0(x) � f0(x;w(t�1))| � 1/2. Take, for example, the case where g0(x) = 1. Then850

f0(x;w(t�1)) must be smaller than 1/2 otherwise the prediction of the model argmax f(x;w(t�1))851

would also be 0 (and would agree with the prediction of g(x)). Finally, for the last inequality we used852

the fact that, by our assumption, it holds that Px⇠X [err(g(x), f(x;w(t�1)))] � ✏. Therefore, we853

conclude that
PT

t=1 E[u(t) | F (t�1)] ·w⇤ � (✏��/2) T . Next, we shall show that w(T ) also achieves854

good correlation with the optimal direction w
⇤ with high probability. We will use the fact that q(t) is855

a martingale and the Azuma-Hoeffding inequality to show that w(T ) ·w⇤ will not be very far from its856

expectation.857

Lemma E.4 (Azuma-Hoeffding). Let ⇠
(t)

be a martingale with bounded increments, i.e., |⇠(t) �858

⇠
(t�1)| M . It holds that P[⇠(T ) � ⇠

(0) + �]  e
��2/(2M2T )

.859

Recall that from Lemma E.3 we have that E[u(t) | F (t�1)] = Ex⇠X [|2↵(x) � 1| (g0(x) �860

f0(x;w(t�1))) x] and861

u
(t) = sgn(2↵(x(t))� 1) (y(t)0 �mix(f0(x

(t);w(t�1)),↵(x(t))) x(t)
.

Observe that since kxk2  1 for all x it holds that ku(t)k2  1. Therefore, the difference kE[u(t) |862

F (t�1)]� u
(t)k  2 with probability 1. Since kw⇤k2 = 1, using Cauchy-Schwarz, we also obtain863

that |E[u(t) · w⇤ | F (t�1)]� u
(t) · w⇤|  2.864

Using Lemma E.4, and the fact that q
(0) = 0 we obtain that P[q(t) · w⇤ � (��✏/4) T ] 865

e
��2�2✏2T/128

. Therefore we conclude that for any T larger than 128 log(1/�)/(�2
�
2
✏
2), with866

probability at least 1� �, it holds that q(T ) ·w⇤ � (��✏/4)T or equivalently w
(T ) ·w⇤ � (��✏/4) T ,867

where we used our previously obtained bound for the expected updates
PT

t=1 E[u(t) | F (t�1)] ·w⇤ �868

(��✏/2) T .869

870

Claim 2. Fix any T � 1. Then, we have kw(T )k2 = O(
p
T ), with probability at least 99%.871
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Proof. We have that kw(T )k22 = kw(T�1)k22 + 2u(T ) · w(T�1) + ku(T )k22. Unrolling the iteration,872

we obtain that873

kw(T )k22 = 2
TX

t=1

u
(t) · w(t�1) +

TX

t=1

ku(t)k22  2
TX

t=1

u
(t) · w(t�1) + T , (6)

where we used the fact that, since kx(t)k2  1, it holds that ku(t)k2  1 (see the proof of Claim 1).874

We first show that
PT

t=1 E[u(t) | F (t�1)] · w(t�1) = O(T ). We have875

E[u(t) | F (t�1)] · w(t�1) = Ex⇠X [|2↵(x)� 1| (g0(x)� f0(x;w
(t�1))) (x · w(t�1))]

 Ex⇠X [(g0(x)� f0(x;w
(t�1))) (x · w(t�1))] .

We will show that for x it holds that876

g0(x)� f(x;w(t�1))(x · w(t�1))  1

e
.

Fix some x and let s = w
(t�1) · x. Assume first that g0(x) = 1. Then, we have877

g0(x)� f(x;w(t�1))(x · w(t�1)) =

✓
1� 1

1 + e�s

◆
s = s

e
�s

1 + e�s
 1

e
,

where we used the fact that s e�s

1+e�s  0 for s  0 and s
e�s

1+e�s  se
�s  1/e for s � 0 (using the878

elementary inequality ze
�z  1/e for all z 2 R). When g0(x) = 0 we similarly have that879

g0(x)� f(x;w(t�1))(x · w(t�1)) = � s

1 + e�s
 1

e
,

where we used the fact that when s � 0 it holds that � s
1+e�s  0 and when s  0, � s

1+e�s 880

�s/e�s = �ses. For the final inequality, we used again the inequality ze
�z  1/e for all z 2 R881

(where we replaced z with �s).882

Therefore, we obtain that E[u(t) | F (t�1)] ·w(t�1)  1/e and
PT

t=1 E[u(t) | F (t�1)] ·w(t�1)  T/e.883

Using the decomposition of Equation (6), linearity of expectation, and the tower rule for conditional884

expectations, we conclude that E[kw(T )k22]  (2/e+1)T . Using Markov’s inequality we obtain that885

with probability at least 99% it holds that kw(T )k22 = O(T ) or equivalently kw(T )k2 = O(
p
T ).886

887

We can now finish the proof of Theorem 5.1. Assume, in order to reach a contradiction, that888

for all t  T it holds that Px⇠X [err(f(x;w(t)), g(x))] > ✏. Now picking T to be larger than a889

sufficiently large constant multiple of 1/(✏2�2
�
2) and using Claim 1 and Claim 2 we obtain that,890

with probability at least 99%, it holds that w(T ) · w⇤
/kw(T )k2 � ⌦(��✏

p
T ), which can be made to891

be larger than 1 by our choice of T . However, this is a contradiction as by Cauchy-Schwarz we have892

w
(T ) · w⇤

/kw(T )k2  kw⇤k2  1. Therefore, with probability at least 99%, it must be that for some893

t  T it holds that Px⇠X [err(f(x;w(t)), g(x))]  ✏.894

895
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Figure 8: The landscape and gradient field of the population student label mixing loss for a simple 2
dimensional feature problem with a ground truth corresponding to a halfspace. We observe that the
landscape is non-convex; however we can see that the corresponding gradient field “points towards
the optimal direction” and therefore gradient descent converges to the global minimizer. A potential
issue is the fact that the landscape contains regions where the gradients may almost vanish and this
could lead to the gradient iteration of the student getting trapped there. To handle this issue, in
Algorithm 3 we multiply the gradient of SLaM with an appropriate step-size.

26


	Introduction
	Related Work
	SLaM: Student-Label Mixing Distillation
	Experimental Evaluation
	The Setup
	Comparison with Previous Approaches

	Distilling Linear Models and Learning Noisy Halfspaces
	Conclusion, Limitations, and Broader Impact
	Notation
	Detailed Description of SLaM
	Estimating the Teacher's Accuracy Parameters: (x), k(x)
	SLaM for Distillation with Unlabeled Examples: Pseudocode

	SLaM Consistency
	Extended Experimental Evaluation
	Implementation Details: Vision Datasets
	Hard-Distillation
	Large Movies Reviews Dataset Results
	Combining with Teacher-Uncertainty-Based Reweighting Techniques
	Using Distillation Temperature
	Using SLaM with other loss functions beyond cross-entropy 

	Distilling Linear Models and Learning Noisy Halfspaces

