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Abstract

As more non-AI experts use complex AI systems for daily tasks, there has been
an increasing effort to develop methods that produce explanations of AI decision
making that are understandable by non-AI experts. Towards this effort, leveraging
higher-level concepts and producing concept-based explanations have become a
popular method. Most concept-based explanations have been developed for clas-
sification techniques, and we posit that the few existing methods for sequential
decision making are limited in scope. In this work, we first contribute a desiderata
for defining “concepts” in sequential decision making settings. Additionally, in-
spired by the Protégé Effect which states explaining knowledge often reinforces
one’s self-learning, we explore how concept-based explanations of an RL agent’s
decision making can in turn improve the agent’s learning rate, as well as improve
end-user understanding of the agent’s decision making. To this end, we contribute
a unified framework, State2Explanation (S2E), that involves learning a joint em-
bedding model between state-action pairs and concept-based explanations, and
leveraging such learned model to both (1) inform reward shaping during an agent’s
training, and (2) provide explanations to end-users at deployment for improved
task performance. Our experimental validations, in Connect 4 and Lunar Lander,
demonstrate the success of S2E in providing a dual-benefit, successfully inform-
ing reward shaping and improving agent learning rate, as well as significantly
improving end user task performance at deployment time.

1 Introduction

Black-box AI systems are increasingly being deployed to help end-users with everyday tasks. Exam-
ples include doctors leveraging decision support systems to aid in diagnosis [39], warehouse managers
relying on robots for goods transportation [8], and drivers using autonomous vehicles for assisted
driving [18]. To increase the transparency of these black-box models, researchers have developed
numerous techniques to provide explanations of agent decision making [45, 2, 23, 51, 14, 9, 30, 15].

A popular method towards non-expert friendly explanations has been to attribute higher-level “con-
cepts” to an agent’s decision making, and these concepts have primarily been used to explain
classification-based AI systems [30, 33, 54, 19]. An example of a concept-based explanation for
a classification model includes, “wing color” for a bird class label [19]. In sequential decision
making, concept-based explanations have been less widely explored, and existing works leverage
preconditions of states and action costs [48] or logical formulas [22] as “concepts”.
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In this work, we posit that concept-based explanations may not only benefit the end-user but also
benefit the AI agent. Our claim is loosely motivated by the Psychological phenomenon, the Protégé
Effect, that states explaining material to another student also helps the explainer learn and reinforce
material [7, 24, 17]. Thus the objective of our work is to demonstrate the dual-benefit of concept-based
explanations to both the end-user for improved understanding, as well as the AI agent for improved
learning rate. Note, prior works, typically in Reinforcement Learning (RL), have explored various
methods to improve agent learning, a common approach including the use of human feedback and
natural language commands as a method of reward shaping to improve RL agent sample efficiency
and learning rate [38, 50, 20]. However, these methods have focused on leveraging language as a
one-way benefit to the agent, not considering how language provided to the agent during training may
also benefit end-user understanding at deployment. Therefore in our work, we explore the following
research question: Can concept-based explanations have a two-way benefit to both the user and
agent, such as to improve end-user understanding of a deployed agent’s decision making, while also
improving the agent’s learning rate via reward shaping?" As a solution, we contribute a unified
framework, State2Explanation (S2E), that learns a single joint embedding model between agent
states and associated concept-based explanations and leverages such learned model to (1) inform
reward shaping for agent learning, and (2) improve end-user understanding of the agent’s decision
making at deployment.

Additionally, we contribute a desiderata of what entails a “concept” in a concept-based explanation
for sequential decision making systems. Given that sequential decision making agents engage in long-
term interaction with their environment, we posit that the scope of concept-based explanations should
span beyond representing preconditions and action cost [48], and control logic [22]. Specifically,
we believe concept-based explanations in sequential decision making should function at a much
higher-level of abstraction, highlighting knowledge that are applicable across multiple states, and
most importantly, expressing a positive or negative influence towards the agent’s goal. Our claim is
motivated by the importance of the agent’s goal in a sequential decision making formulation [44, 49].

Contributions. (1) We provide desiderata for what constitutes a “concept” in concept-based ex-
planations of sequential decision making. (2) We introduce a novel framework, State2Explanation
(S2E) which learns a joint embedding model between agent states-action pairs and concept-based
explanations to provide a benefit to both the agent, by informing reward shaping, as well as the end
user by providing explanations that improve user task performance. We perform both model and user
evaluations of our S2E framework in two complex RL domains, Connect 4 and Lunar Lander.

Our model evaluations demonstrate that S2E can successfully inform reward shaping, comparable
to expert-defined reward functions. Additionally, our user evaluations demonstrate that S2E can
successfully provide meaningful concept-based explanations to end users such that exposure to our
explanations significantly improve user task performance.

2 Related Work

In this work, we explore the utility of concept-based explanations in providing a two way benefit to
both the AI agent during training, via reward shaping, as well as end user at deployment time, via
improved user task performance. Below, we highlight related prior work.

Reward Shaping using Language Many prior works have focused on improving an agent’s
learning rate or sample efficiency [35, 21]. Closely related to our work are methods providing reward
shaping via language. Specifically, [38] propose ELLA, which leverages a relevance classifier to
associate a lower level instruction to a higher level task for providing a subtask shaping reward. In
[20], the authors leverage natural language instruction to derive potential-based shaping rewards
that encourage an RL agent to more frequently select relevant actions in the game of Montezuma’s
Revenge. Similarly, [50] learn a joint embedding model between subgoal language commands and
agent states to provide shaping rewards for completing subtasks in StarCraft II. Specifically, [50]
demonstrate that their model can generalize to unseen, semantically similar language commands,
and improve agent learning rate. In our work, we take inspiration from [50], and learn a joint
embedding model between agent states and associated natural language commands to inform agent
reward shaping. However, our work differs in that our natural language commands are concept-based
explanations of the associated state, and not subgoal descriptions required for task completion. By
learning a common embedding space between state explanations and state representations, our work
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provides a two-way benefit to both the RL agent for learning as well as end-user for improved
understanding.
Explanations for non-AI Experts Prior works have established that concept-based explanations
for classification tasks provide explanations that are meaningful to end-users [30, 33, 54, 19]. Methods
for concept-based explanations have included Concept Activation Vectors [30], Concept Bottleneck
Models [33], and Concept Embedding Models [54]. For classification tasks, “concepts" have primarily
represented human-interpretable features that a model’s prediction is sensitive to (i.e. ‘wing color’
for image classification.) [33]. Related to sequential decision making, [26] provide concept-based
explanations of 3D action recognition CovNets by clustering learned, human-interpretable features
(i.e. “grass” or “hand”) from segmented videos. In [48], concept-based explanations for sequential
decision making are formulated in relation to state preconditions (e.g. “the action move-left failed in
the state as the precondition skull-not-on-left was false in the state”) and action costs (e.g., “executing
the action attack in the presence of the concept skull-on-left, will cost at least 500”). Specifically,
in [48], concepts have represented any factual statement a user associates to a given state, such
as "skull-on-left" in the previous example. Similarly, in [22], concepts have represented logical
formulas for summarizing RL policies. Additionally, [29] propose a prototype wrapper network for
training interpretable RL policies with user-defined prototypes. Similar to [48], the authors in [29]
define prototypes as factual observations about a state, such as “turn right” or “turn left”. Other
explanation generation methods have demonstrated that end user understanding is improved when
explanations are presented in natural language rather than features or labels [14, 5, 9, 10]. Inspired by
these findings, our work contributes the first method for producing natural language concept-based
explanations, where we define a general desiderata of concepts that goes beyond action costs and
preconditions to capture goal-driven decision making.

3 Concept Based Explanations for Sequential Decision Making

We posit that the objective of a concept-based explanation, in sequential decision making settings,
is to communicate higher-level knowledge that aids the agent and/or user in reasoning about the
utility of taking a given action from a specific state. In this section, we provide a general definition of
concept-based explanations and “concepts", in sequential decision making, that extends beyond prior
usage of state preconditions and action-costs [48], and control logic [22]. Specifically, we define a
concept-based explanation, E iCi

, as one that presents, in natural language form, the set of concepts,
Ci = {cj ..cm}, that can describe a particular state-action pair (si, ai) in the context of goal G. This
naturally poses the question of: "What is a concept cj?" Below are several desiderata for defining a
concept in sequential decision making settings:

1. A concept should be grounded in human domain knowledge. A concept, cj , should be
contextualized in the overall task domain. For example, although an agent’s goal may be to
optimize its Q-function, we posit that "higher Q-value" is not a valid concept. Instead, a
concept should represent a higher-level abstraction of what the “higher Q-value” relates to
in the domain. For example, in Chess, an agent receiving a “higher Q-value” for a particular
state-action pair may be translated by a domain expert to “capturing a queen”.

2. A concept should relate to the task goal. A concept, cj , is an abstracted representation
of (si, ai) that encompasses how (si, ai) may lead to or inhibit the agent’s goal G. This
claim is motivated by the general objective of a sequential decision making agent, that is
to perform a sequence of actions 〈a1, a2, ..., an〉, ai ∈ A, defined via a plan or policy π,
that transforms the agent’s current state I to its goal state G [44, 49]. For example, we do
not consider the description “Knight in A4” as a valid concept, since, by itself, it does not
provide relation to the game’s objective. However, we would consider “king safety” as a
valid concept, since it relates to game’s objective of checkmate.

3. A concept should be generalizable. A concept, cj , should generalize across multiple
(si, ai) pairs. This means that a concept is typically not a unique description of a single
(si, ai). For example, a valid concept in Chess is "checkmate" since the abstraction of
"checkmate" can generalize to many different (si, ai). An invalid concept involves detailing
the entire game board by piece position.

Note, above we define a concept, cj ∈ Ci, in the context of describing a single state-action pair,
(si, ai). However, in many domains a meaningful concept cj can only be defined in terms of a
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sequence of state-action pairs. This is especially true in domains in which state-action pairs are
sampled at high-frequency, such as robotics and video games [40, 56]. For example, concepts such
as “rotate wrist” or “bend arm” can only be defined by a series of state-action pairs, as opposed to a
single state-action pair. As a result, we define concept-based explanation in these domains as E [i,i+n]

Ci
,

which presents the set of concepts Ci = {cj ..cm}, for a series of (s[i,i+n], a[i,i+n]) pairs.

Finally, we highlight that some (si, ai) or (s[i,i+n], a[i,i+n]) pairs may not have a concept-based
explanation associated with them. In other words, Ci = ∅ for some (si, ai) pair or (s[i,i+n], a[i,i+n])
pairs. This is especially true in long horizon tasks, in which a (si, ai) may not relate directly to G but
is important for another, future (si+n, ai+n) pair which then leads to G. For example, “Move the
pawn to D5 so that two moves from now you may capture the rook”. Our definition of concept-based
explanations do not consider these cases, and is an opportunity for future work.

Figure 1: Our S2E framework involves (a) learning a joint embedding model M from which a E iCi
is

extracted and utilized (b) during agent training to inform reward shaping and benefit agent learning,
and (c) at deployment to provide end-users with E iCi

for agent actions.

4 State2Explanation (S2E) Framework

Figure 1 introduces our State2Explanation (S2E) framework which includes a three-step process to
provide a benefit to both the RL agent and the end-user. Specifically, S2E learns a joint embedding
model M to align agent state-action pair (si, ai) to concept-based explanations E iCi

(Fig. 1a). S2E
then leverages the learned M to inform reward shaping during agent training (Fig. 1b). Finally, S2E
leverages the learned M to provide E iCi

about the trained agent’s decision making to end-users at
deployment (Fig. 1c). Below, we further detail S2E.

4.1 Joint Embedding Model M
A core component of S2E is learning a joint embedding model, M , to align an agent state-action
pair, (si, ai) with an associated concept-based explanation E iCi

. The motivation for learning M is
to explicitly map an agent’s representation, si, into a representation understandable by our non-AI
expert users, E iCi

. Joint embedding models have been leveraged in many applications, such as in
image captioning [55, 34], knowledge-graph generation [28, 43], and RL [42, 41, 50] to improve task
learning. In the context of S2E, we demonstrate that joint embedding M can provide the dual benefit
to i) agent learning, and ii) improved end user understanding of agent actions. Our M is inspired by
[50] who learn an embedding space in the context of hierarchical RL tasks. However, unlike in [50],
our M is not constrained to hierarchical RL tasks, and we consider domains in which multiple states
can be associated to multiple, non-unique concepts.

The input to our joint embedding model, M , is defined by 〈[si, si−1], gi, E iCi
, yi〉, which includes

an agent’s current state si, previous state si−1, other contextual game information (i.e., player in a
multiplayer game, whether game is over) gi, associated concept-based explanation E iCi

, and yi which
defines if si and E iCi

are aligned or misaligned. Note, including si and si−1 implicitly encodes the
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action ai taken to transition from si−1 to si. Our contrastive loss function (Eq. 1) is adapted from
[50], in which θ represents the model’s parameters, and i ∈ N represents the ith training sample.
Specifically, M minimizes the L2-norm of the difference between the embedding vectors when siembed
and expiembed are aligned (y = 0) and maximize the L2-norm of the difference when siembed and
expiembed are misaligned (y = 1).

L(θ) =
1

N

N∑
i

(‖siembed − E iembed‖ − y)2 (1)

To train M , we leverage a dataset D = {Da, Dm}, in which Da and Dm denote the set of aligned
and misaligned data samples, respectively. To collect Da, we leverage domain knowledge to annotate
relevant si with its aligned concept setCi. The concept setCi is then produced into a natural language
explanation, E iCi

, manually via fixed, expert-defined templates. That is, each Ci has one templated
E iCi

. The list of concepts for our evaluation domains are in Section 5.1. To collect Dm, each si is
paired with z concepts not present in concept set Ci. Section 5.2 provides more details on D.
Explanation Retrieval Given M , for any (si, ai), we extract the closest explanation embedding
expiembed for corresponding siembed, and decode expiembed to an E iCi

similar to image-to-text retrieval
[31, 6]. Specifically, we rank the set of possible explanation embeddings, {expiembed..exp

k
embed}, by

their L2-norm distance to si. The decoding of the best ranked expiembed to E iCi
is then a vocabulary

look-up. It is possible to utilize large language models (LLMs), and generate E iCi
from expiembed

which we consider future work. Instead, in this work, we focus on validating the dual utility of
embedding-based E iCi

retrieval to both the RL agent as well as end-user.

4.2 Reward Shaping in RL via Joint Embedding Model M
During agent learning, we utilizeM to retrieve the closest E iCi

associated with a (si, ai) for informing
reward shaping. Prior work has shown that reward shaping can improve agent learning rate and sample
efficiency [11, 25, 32]. However, designing an effective dense reward function is not trivial [16, 12],
often requiring a two-stage trial-and-error procedure to 1) determine when a state-action pair deserves
an intermediate reward, and 2) determine what reward value such state-action pair should be attributed.
Many methods, such as inverse reinforcement learning, utilize learned, black box reward functions to
minimize the trial-and-error process [37, 1, 57]. However, with black-box reward functions, we lose
transparency of why a (si, ai) is rewarded. To balance the design-transparency trade-off of dense
reward functions, we leverage M to inform when a (si, ai) pair should be rewarded based on the
retrieved E iCi

, and as a result, remove the first step of the trial-and-error process. Specifically, if
M returns a meaningful E iCi

for a (si, ai) (e.g.,concept set Ci 6= ∅), then such (si, ai) represents
concepts that influence the agent’s goal, and should receive an intermediate reward.

Note, M does not remove the trial-and-error process needed to determine what values each reward
component should receive. Instead, we perform a hyperparameter sweep to assign shaping values to
each concept component when an expert-determined, continuous shaping function is not derivable.
Thus, the “Explanation-to-reward-shaping” module in S2E performs a look-up to assign a reward
value based on the retrieved E iCi

. In Section 5.3 we validate how leveraging M to inform reward
shaping can improve an agent’s learning rate comparable to expert-defined shaping functions.

4.3 Concept-Based Explanations to End Users via Joint Embedding Model M
Once an RL agent is trained and deployed, we leverage M to provide E iCi

about an agent’s decision-
making to non AI expert end-users. Recall from Section 3 that E iCi

can include multiple concepts (i.e.
|Ci| > 1). We posit that in some cases, E iCi

with too many concepts may become ineffective in aiding
end-user understanding. In fact, prior works discuss the challenge of presenting information at the
“right” level of abstraction to end-users [46, 53]. To the best of our knowledge, there are no explicit
guidelines for what information abstractions are beneficial in sequential decision making settings.
From analyzing prior end-user friendly explanation techniques [9, 14], we infer two important
dimensions to consider for explanation abstraction in sequential decision making: Information
Filtering (InF), and Temporal Grouping (TeG).
Information Filtering (InF) InF filters out concepts within E iCi

to only include those that imme-
diately influence the goal. For example, consider a E iCi

in Lunar Lander, “Fire left engine because
it brings lander closer to the center, decreases lander velocity to avoid crashing, and decreases tilt”.
Applying InF may produce a filtered explanation, “Fire left engine because it brings lander closer to
the center and decreases tilt” given a (si, ai) when the lander needs to immediately correct its tilt and
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Figure 2: The tables present concepts for Connect 4, derived from [3], and Lunar Lander, derived
from [4], with accompanying example E iCi

.

position to avoid a trajectory path leading to a crash. While the other concepts are important, they are
filtered out since they do not effect the immediate chance of meeting G.

To perform InF, we leverage domain knowledge and expert-defined thresholding to determine which
concepts in Ci for (si, ai) critically contribute towards the agent’s ability to reach goal G. Thresholds
are determined via qualitative analysis of an RL agent’s policy. In continuous domains, these threshold
values are extracted by finding the values in the agent’s state space that determine turning points in
the agent’s ability to reach goal G. For example, qualitative analysis may produce that an agent’s
posx > 0.15 is a critical turning point for the agent’s ability to land close to the center, and if
posx > 0.15, the agent’s action is crucially linked with decreasing its posx. Thus, Ciw/InF represents
the concept set after thresholding is applied, in which concepts c ∈ Ci that do not meet the determined
thresholds are filtered out. As a result, an abstracted explanation, using InF, templates Ciw/InF into a
natural language explanation E iCiw/InF

. In Appendix A, we provide more details on how concepts are
filtered via qualitative analysis in InF and include an ablation study analyzing the sensitivity of chosen
thresholds. Note, while we qualitatively determine thresholds, the InF method can be automated in
future work.

Temporal Grouping (TeG) TeG automatically groups explanations over a sequence of time that
represents a consecutive pattern. For example, if in Lunar Lander, E iCi

and E i+2
Ci

is “Fire left engine
because it decreases tilt” and E i+1

Ci
and E i+3

Ci
is “Fire right engine because it decreases tilt”, applying

TeG produces “For the next 4 steps, alternate firing left and right engine to decrease tilt”.

To perform TeG, we analyze an agent’s rollout at deployment to extract series of (s[i,i+n], a[i,i+n])
with a repeated pattern of concept sets C[i,i+n]. Therefore, a grouped explanation provides a single
E iCiw/TeG

, that templates the repeated pattern within C[i,i+n] across the n state-action pairs. We posit
that TeG is likely to be important in domains where actions are sampled at high frequency (e.g. Lunar
Lander or Robotics), requiring an abstraction over actions to provide meaningful explanations for
consecutively alike state-action pairs.

Overall, the “Explanation Abstraction” component in S2E (see Fig. 1c) determines whether InF, TeG
or both should be applied to E iCi

for providing an abstracted, concept-based explanation. In Section 6
we demonstrate the effectiveness of InF and TeG in high frequency domains, such as Lunar Lander,
for improved end user understanding.

5 Model Evaluations

In this section, we perform quantitative evaluations to validate the joint embedding model M in
S2E by evaluating M ’s explanation retrieval accuracy (Sec. 5.2), and M ’s ability to inform reward
shaping during agent training (Sec. 5.3).

5.1 Evaluation Domains
Connect 4 is an adversarial board game in which the objective is to achieve a four-in-a-row, in any
direction. The state space is a discrete, 2D array representation of token positions. Also, the action
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space is discrete and each player selects the column to place a token in. Lunar Lander is a trajectory
optimization problem in which the lander must land on a landing pad. We utilize LunarLander-v2
from OpenAI Gym [4]. The state space is a continuous 1D array including the lander’s linear position
and velocity, angular velocity, angle, and leg contact. The game has four discrete actions: fire left
engine, fire right engine, do nothing, and fire main engine.
Concept Collection Concepts for a domain may be extracted from expert players or commentators.
However for Lunar Lander and Connect 4, there are no existing datasets for mining concepts. Thus,
we leverage expert domain knowledge to attribute concepts to state-action pairs. Figure 2 lists the
set of concepts we consider when attributing concepts to a (si, ai) in Connect 4 and Lunar Lander,
as well as provides example E iCi

. Concepts for Connect 4 are derived from the strategies outlined
in [3]. Note, "NULL" describes all other (si, ai) that are not attributed to a concept. Alternatively,
concepts for Lunar Lander are derived from the domain’s existing reward function [4]. In this domain,
the existing dense reward function includes the primary concepts important towards successful task
completion. In Appendices B.1 and B.2, we provide an an expanded list of example E iCi

, spanning all
concepts derived for Connect 4 and Lunar Lander.

Note, for both domains, the concepts are defined via mathematical or logical representations of the
state. For example, in Connect 4, the concept of “BW”, blocking an opponent win, can explicitly
be encoded by board representations where any three-in-a-row pattern is blocked with a token
from the opponent player. Similarly, in Lunar Lander, the “POS”, position concept, is modelled by
mathematical representation of the agent’s position over time. Deriving concepts via mathematical or
logical representations allow us to automatically collect concepts from states, as well as use such
mathematical or logical rules to evaluate that concepts and states are accurately paired. In many
applications, it may be infeasible to derive mathematical or logical rules from a state representation.
In these scenarios, concepts can be collected via crowd sourcing, [20], or obtained via “think-aloud”
procedures [14].

5.2 Evaluation of Joint Embedding Models

(a)

(b)
Figure 3: (a) recall@k of
MC4 and MLL, and (b) con-
fusion matrix forMC4’s ECi

retrievals.

Below we demonstrate high recall rates of the joint embedding models
in S2E in both the Connect 4 and Lunar Lander domain.
Datasets Recall from Section 4.1 that to train M we utilize a dataset
D = {Da, Dm}. For Connect 4, DC4 includes approximately 3
million samples, and for Lunar Lander, DLL includes approximately
2 million samples. We randomly sample Da

C4 and Da
LL from an

expert RL policy. We obtain Dm
C4 and Dm

LL, by selecting z incorrect
concepts from CC4 and CLL, as replacement for each sample in Da

C4
and Da

LL(more detailed numbers in Appendix C).
Model Architectures & Training MC4 and MLL denote the joint
embedding models for Connect 4 and Lunar Lander, respectively.
The model architectures for MC4 and MLL leverage LSTMs to learn
explanation embedding expiembed for a given E iCi

. For Connect 4, to
learn siembed for (si, ai), we leverage Convolutional Neural Networks
to learn local and spatial relationships between tokens on a 2D game
board. For Lunar Lander, we leverage Fully Connected Networks to
learn siembed. More details (split, learning rate, etc) are in Appendix C.
Results Similar to image-to-text retrieval [31, 6], we evaluate MC4

and MLL via recall rate, at k = {1, 2, 3}, which evaluates whether the
retrieved E iCi

is ranked in the top k. Figure 3a provides the average
recall rates of MC4 and MLL, across 5 random seeds. We observe that
MLL performs with near 100% accuracy, whereasMC4 has an average
recall rate of 88%. Given the lower recall rates by MC4, in Figure 3b
we examine the false positive and false negative explanation retrievals.
We see that MC4 has greatest challenge in correctly retrieving E iCi

with “BW” and “3IR_BL”. We posit that “BW” and “3IR_BL” may occur in board states with greater
variation in comparison to other concepts, leading to higher incorrect retrievals. Additional analyses
of MC4 and MLL are in Appendix C.4.

Note, incorrect retrievals of E iCi
for a given (si, ai) can have a negative downstream impact within

S2E. Specifically, when S2E is leveraged during the RL agent’s training, incorrect retrievals of
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(a) (b) (c)

Figure 4: MC4 improves agent learning rate by ∼200 training steps compared to SoTA agent
without reward shaping (a), while MLL maintains similar agent learning rate to SoTA agent with
expert-defined reward shaping (b and c).

E iCi
can incorrectly providing shaping rewards to the agent and in return impacting learned agent

policy. Similarly, when S2E is leveraged at deployment to provide end-user understanding, incorrect
retrievals of E iCi

can confuse end-users and hinder their understanding of the agent’s behavior.
However, in Section 5.3 our results demonstrate that the percentage of incorrect retrievals from the
joint embedding models do not significantly impact the RL agent’s learned policy. Similarly, in
Section 6, we demonstrate that the percentage of incorrect explanation retrievals are not significantly
detrimental to user performance. Nevertheless, it is important that the joint embedding models within
S2E have high recall rate, especially when applied in high-stakes or mission critical scenarios.

5.3 Evaluation of M for Reward Shaping in Agent Training

We validate that both joint embedding models in S2E,MC4 and MLL, inform reward shaping
comparable to expert-defined dense, reward functions.

RL Agent & Shaping Rewards Our S2E framework is model agnostic and M does not make any
assumptions on the type of RL model utilized. Given our domains are complex games, we leverage a
state-of-the-art (SoTA) RL algorithm MuZero [47] to evaluate M ’s ability to inform reward shaping.
We use the open-source version of MuZero available in [52] (details in Appendix D.1).

Recall from Section 4 that MC4 and MLL inform when to provide shaping rewards, but the shaping
values are expert determined. For Lunar Lander, there exists a SoTA dense, reward function [4].
In Connect 4, to our knowledge, there is no SoTA dense, reward function. Thus, we perform a
hyperparameter sweep to assign shaping values for each concept (values provided in Appendix D.2).

Results To evaluate the efficacy of MC4 and MLL in informing reward shaping, we measure the
agents’ Reward and Win%. In Lunar Lander, we evaluate MLL’s ability to inform reward shaping
(MuZero+S2E-RS) in comparison to a baseline MuZero agent that is informed by an existing
expert-defined reward shaping (MuZero+E-RS). Figure 4b and Figure 4c demonstrate that both
the MuZero+S2E-RS and MuZero+E-RS agents achieve comparable Reward and Win%. While
performance is comparable between both agents, in MuZero+S2E-RS, MLL provides an automated
method to determine when a reward value should be presented, which otherwise has to be manually
encoded, such as in MuZero+E-RS via an expert-defined function.

In Connect 4, since there does not exist a SoTA reward shaping function, we compare MC4’s ability
to inform reward shaping (MuZero+S2E-RS) against a baseline MuZero agent with sparse rewards
(MuZero+No-RS). Figure 4a shows that MuZero+S2E-RS has improved learning rate and requires
∼200k less training samples to achieve similar Win% in comparison to MuZero+No-RS. We also
evaluate MuZero+S2E-RS against an upper bound in which we provide expert-defined reward
shaping (MuZero+E-RS) to analyze how incorrect retrievals from MC4 may affect the agent’s
learning rate. Although MC4 retrieves incorrect explanations 13.9% of times (see Appendix C.4), we
observe that MuZero+S2E-RS’s learning rate is not significantly affected (Fig. 4a).

Overall, these results demonstrate the joint embedding models’ ability to effectively inform reward
shaping. In Connect 4, we demonstrate that, even with an imperfect joint embedding model, S2E can
inform reward shaping and improve the agent’s learning rate compared to the SoTA agent trained on
sparse rewards. Similarly, in Lunar Lander, we demonstrate that our S2E informs reward shaping
comparably to the existing SoTA agent that is trained with an expert-defined dense, reward function.
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6 User Evaluation

In this section, we validate S2E with end-users, demonstrating that our retrieved ECi
significantly

improve user task performance in both Connect 4 and Lunar Lander.
Study Procedure Participants performed an online study in which they played several games
from the domains in four stages. Specifically, 1) Practice included playing 2 practice games, 2)
Pre-Test included playing 3 scored games, 3) Explanation included interacting with an expert player
(well-trained RL agent) with exposure to explanations from an assigned study condition, if applicable
and 4) Post-Test included playing 3 more scored games. Details about the the study procedures are in
Appendix E.1.
Metrics We measure the difference between participant Pre-Test and Post-Test Adjusted Task Score
(ATS) to analyze any task improvement with exposure to the study conditions. Participant ATS is
defined by the expert-defined reward functions utilized by the RL agents during training (evaluated
in Sec. 5.3, detailed in Appendix D.2). If R(s, a) denotes the reward associated with a given (s, a)
and N defines the total actions taken by the user in a game, then ATS is defined as a normalized
aggregation of user rewards received in a game: ATS =

∑N
n R(sn, an)/N .

6.1 Connect 4 Study Specifics

Figure 5: User adjusted task
scores (ATS) in Connect 4. Sta-
tistical significance: * p < 0.05,
** p < 0.01, and *** p < 0.001;
Details in Appendix E.3.

Study Conditions We conducted a five-way between-subjects
study with the following conditions. Participants could receive:
1) None (Baseline): no information about the agent’s action to be
played, 2) EA (Baseline): action-based explanation that contains
the action to be played, 3) EV (Baseline): value-based explana-
tion stating the action to be played along with the action’s value
in comparison to the values of all other actions for a given state,
4) GT ECi : concept-based explanation using expert-defined,
ground-truth concepts for a state-action pair, and 5) S2E ECi : a
concept-based explanation from S2E for a state-action pair. Note,
given that Connect 4 has a discrete state space, and actions are
sampled at low frequency, the domain does not need further ab-
stracted ECi

via InF and TeG. Additionally, EV is similar to the
action-cost condition in [48], as well as the Q-values presented
per action in [27]. Note, precondition-based explanations in [48]
require hierarchical domains, and causal-based explanations in [36] require a learned structured
causal model which prevent direct comparison with our framework and domains.
Results The following results are from an IRB-approved study with participants recruited via
Amazon Mechanical Turk (n=75, details in Appendix E.2). Our data is analyzed with a one-way
ANOVA and a Tukey HSD post-hoc test, given that the assumptions of homoscedasticity (Levene’s
Test, p>0.3), and normality (Shapiro-Wilke, p>0.1) are met. Figure 5 shows a significant effect
of explanation type on ATS (F(4, 70)=8.56, p<0.001). Specifically, we observe improvement in
participant’s ATS with exposure to our S2E ECi

, in comparison to None (t(70) = 3.08, p<0.05),
EA (t(70)=-3.25, p<0.05) and EV (t(70)=4.03, p<0.01). Additionally, we observe similar ATS
improvement when exposed to S2E ECi

in comparison to GT ECi
. These results indicate the benefit

of our S2E produced ECi
in helping participants better understand Connect 4 and improve their ATS.

6.2 Lunar Lander Study Specifics

Figure 6: User ATS in Lunar Lan-
der; * p < 0.05, ** p < 0.01

The underlying physics needed for Lunar Lander results in agent
(si, ai) being sampled at high frequency and multiple, repetitive
concepts being attributed to (si, ai) pairs. For example, “decrease
velocity" is a valid concept for every (si, ai) until the end of a
game. Recall from Section 4.3 that ECi

may need to be further ab-
stracted in these scenarios to provide meaningful explanations to
end-users. Therefore, to evaluate the utility of abstracted concept-
based explanations, we introduce 3 more study conditions that
utilize our InF and TeG methods outlined in Section 4.3.
Study Conditions We perform a seven-way between-subjects
user study. Similar to Connect 4, we include None, EA, EV ,
and S2E ECi . Unique to our Lunar Lander study participants
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could receive 1) S2E ECiw/ TeG: a concept-based explanation from S2E with additional abstractions
performed using the TeG method, 2) S2E ECiw/ InF: a concept-based explanation from S2E with
additional abstractions performed using the InF method, and 3) S2E ECiw/ InF, TeG: a concept-based
explanation from S2E with additional abstractions performed using both TeG and InF.

Results The following results are from an IRB-approved study with participants recruited via
Amazon Mechanical Turk (n=105, details in Appendix E.2). Our data is analyzed with a one-way
ANOVA and a Tukey HSD post-hoc test, given that the assumptions of homoscedasticity (Levene’s
Test, p>0.7), and normality (Shapiro-Wilke, p>0.1) are met. Figure 6 shows a significant effect
of explanation type on participant ATS (F(6,98)=3.67; p<0.01). Specifically, we see significant
improvement in participant’s ATS with exposure to S2E ECiw/ InF, TeG, in comparison to None (t(98) =
3.15, p <0.05)), EA (t(98)=-3.35, p<0.05), EV (t(98)=3.59, p<0.01) and ECi (t(98)=-3.19, p<0.05).
These results demonstrate the need of our S2E abstraction methods when providing concept-based
explanations to end-users, and that usage of both InF and TeG in high-frequency RL domains are
crucial for ATS improvement.

7 Discussion and Conclusions

Our work introduces a unified framework, S2E, that involves learning a joint embedding model
between agent state-action pairs and concept-based explanations to provide a dual benefit to the
agent and end-user. We additionally outline a desiderata for what may constitute as a “concept” in
sequential decision making problems, beyond the scope of prior concept-based explanations for
sequential decision making. Our model evaluations demonstrate that the joint embedding model
in S2E provides an automatic method for determining when reward shaping should be provided to
improve agent learning rates. Our user evaluations demonstrate that concept-based explanations can
significantly improve user task performance (Connect 4), but when considering high-frequency RL
domains (Lunar Lander), the additional abstraction methods from S2E are important for producing
abstracted concept-based explanations that significantly improve user task performance.

Limitations: We present several areas of future work that aims to improve the generalizability
of S2E. For instance, the concept-based explanations in our work are derived from mathematical
representations and expert knowledge in each domain (see Sec. 5.1). To expand the generalizability
of the S2E method to other complex domains, such as Robotics or open-world games, future work
should explore how to collect and extract concepts in scenarios where mathematical representations
of concepts may be infeasible. A future direction may include collecting expert commentary [20]
or think-aloud [14] sessions from which concepts are automatically derived. Additionally, in many
real-world applications, having access to large amounts of data for a domain may be infeasible. Thus,
future work should also explore how to adapt the joint embedding model within S2E for few shot
learning. Additionally, for application to high-stakes domain, future work should explore how to
remediate incorrect explanation retrievals from the joint embedding model within S2E. While the
small percentage of incorrect explanation retrievals do not significantly impact user task performance
and agent learning in our tested domains, inaccurate explanation retrievals may have significant effects
in mission-critical tasks. It is also important to highlight that our current concept-based explanations
follow a fixed template for each unique concept set (see Appendices B.1, B.2). However, there are
multiple ways of explaining the same concept, and future work includes learning a joint embedding
model with greater language variety in the explanations combined with automatically generating such
templates using language models. Furthermore, the InF method within S2E utilizes manually defined
thresholds to produce abstracted concept-based explanations, and future work entails developing an
automated InF method.

Broader Impacts: S2E shows promise in applying the Protégé Effect to Human-AI Interaction,
and that explanations of agent behavior are beneficial to both agents and users. These insights
may promote AI agent architects to consider the utility of self-explaining agents in accelerating
learning as well as providing transparency. Additionally, our work shows promise in using concept-
based explanations of well-trained AI agents as a teaching tool, helping users improve their task
performance. A potential risk of S2E is purposely training a joint embedding model to associate
misleading concept-based explanations with state-action pairs. This could lead to a badly performing
agent, and the agent providing deceitful explanations of its actions. Future work in explaining
black-box AI systems should explore how to detect and prevent deceptive explanations.
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A Information Filtering (InF) Details

Recall from Section 4.3 that we utilize expert-defined thresholding and domain knowledge to
determine which concepts within Ci for a (si, ai) critically contribute towards the agent’s ability
to reach goal G. Specifically, these thresholds are expert-defined upper and lower bounds on the
agent’s state values that denote the agent’s ability to succeed or fail in its goal. In our InF method,
these thresholds are not mathematically derived, but are derived from RL-expert analysis. For a given
domain, an RL expert visualizes multiple policy rollouts and analyze the different state values over
time to manually determine the upper and lower bounds (turning points) that influence the agent’s
ability to reach G. Below we demonstrate how thresholds in InF for one of our evaluation domains,
Lunar Lander.

The concepts relevant to Lunar Lander include, position, velocity, tilt, side and main fuel, right and
left leg contacts, and landing, and these concepts are derived from the existing, expert-defined, dense
reward function [4] (see Section 5.1). Within the dense, reward function, binary concept components
are rewarded via constant shaping values, while the continuous concepts are rewarded through a
continuous shaping function (see Appendix D.2). In our work, we consider applying thresholding to
concepts defined via a continuous function since these scenarios typically result in multiple concepts
being rewarded over multiple time steps, and are more likely to warrant information filtering.

In the context of Lunar Lander, Figure 7 and Figure 8 show the two concepts on which thresholding
is applied when examining a well trained agent’s policy, specifically the lander’s x-position and tilt.
Recall that thresholds for InF can be determined by examining an agent’s state values to identify
turning points in the agent’s ability to reach G. In Figure 7, we extract that a suitable threshold for
the x-position concept is 0.15. We identify that such x-position value corresponds to the time step at
which the agent starts firing its left engine to critically correct its increasing position value. Similarly,
in Figure 8, we extract that suitable thresholds for the tilt concept are 0.01 and -0.05. We find that
such tilt values correspond with frequently alternating firing of left and right engine to critically
correct an increasing tilt value. We do not perform a thresholding analysis on velocity, as with domain
analysis we observe that decreasing the agent’s velocity is directly associated with firing the main
engine and is performed to prevent crashing. Additionally, we do not consider the agent’s y-position
for thresholding as the agent follows a steady, downward linear trajectory, and visible turning points
cannot be extracted by qualitative analysis. While we qualitatively determine thresholds, the InF
method can be automated in future work.

Overall, in our InF method, if Ci denotes the original concept set for a given (si, ai), then Ciw/InF
represents the concept set after thresholding is applied, in which concepts c ∈ Ci that do not meet
the threshold are filtered out. As a result, an abstracted explanation, using InF, templates Cti into a
natural language explanation E iCiw/InF

.

A.1 Thresholding Sensitivity Analysis

As stated above, the thresholds are manually derived from RL-expert analysis. Specifically, an
RL expert visualizes multiple policy rollouts and analyzes the different state values over time to
determine approximate upper and lower bounds (turning points) that influence the agent’s ability to
reach G. Given the thresholding approach in InF, different threshold values can result in filtering of
different concepts and therefore produce different abstracted, concept-based explanations. To study
the sensitivity of our chosen thresholds in Lunar Lander, we analyze how different threshold values
for each concept affect the number of concepts filtered in a policy rollout.

Figure 9 demonstrate what fraction of concepts are filtered (y-axis) as the threshold values change
(x-axis). When looking at Figure 9a, analyzing threshold values for the x-position concept, we see
our chosen value is within the elbow of the curve, denoting that the rate of filtration of the concept
slows down after 0.15. Similarly, when analyzing the threshold values for the tilt concept in Figure
9b and Figure 9c, we see the lower and upper bound of the tilt thresholds are also within the “elbow”
of each curve. Note, when analyzing the upper bound threshold for the tilt concept (Figure 9b),
the lower bound tilt threshold is fixed. Similarly, when analyzing the lower bound threshold for
the tilt concept (Figure 9c), the upper bound tilt threshold is fixed. Overall, our threshold values
being within the elbow of each curve provide some validation on their soundness. However, to study
the complete impact of varying thresholding values for each concept, additional user studies with
abstracted concept-based explanations produced from varying threshold values are required. We
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Figure 7: The position (top) and corresponding actions (bottom) of a trajectory sampled from a
well-trained Lunar Lander agent policy.

Figure 8: The tilt angle (top) and corresponding actions (bottom) of a trajectory sampled from a
well-trained Lunar Lander agent policy.

(a)

(b) (c)

Figure 9: Sensitivity analysis on how the rate of concept filtration changes across various threshold
values for Lunar Lander concepts of x-position (a) and tilt (b and c).

consider such analyses beyond the scope of our work, and one to further explore when considering
future methods on automating the information filtering submodule within our S2E framework.
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B Concept-Based Explanations for Experimental Domains

Below we present an exhaustive list of the different E iCi
, utilized for each domain, paired with an

instance of a (si, ai) pair for context. Note, the rows denote the possible concept sets Ci, and
their corresponding fixed, templated explanations starting with “because”. The action ai is always
appended to the beginning of the explanation.

B.1 Connect 4
(si, ai) Ci Corresponding E iCi

{3IR} "Play column 4 because it creates a three-in-a-
row."

{3IR_BL}
"Play column 7 as a neutral move, it creates a three-
in-a-row that is blocked by the opponent from a
win."

{3IR, CD} "Play column 4 because it provides center domi-
nance and creates a three-in-a-row."

{BW} "Play column 6 because it blocks the opponent
from a win"

{BW, 3IR} "Play column 5 because it creates a three-in-a-row
and blocks the opponent from a win."

{BW, CD} "Play column 4 because it provides center domi-
nance and blocks the opponent from a win."

{CD} "Play column 4 because it provides center domi-
nance"

{W} "Play column 7 because it leads to a four-in-a-row
win"

{NULL} "Play column 6 as a generic move not tied to a
particular strategy"

Table 1: Example state action pairs with associated concept lists and concept-based explanations for
the Connect 4 domain.

17



B.2 Lunar Lander

(si, ai) Ci Corresponding E iCi

{POS, VEL,
TILT, SF}

"Fire main engine because it moves lander closer to
the center, decreases lander speed to avoid crashing,
decreases tilt of lander, and conserves side fuel
usage."

{POS, VEL,
TILT, MF}

"Fire side engine because it moves lander closer to
the center, decreases lander speed to avoid crashing,
decreases tilt of lander, and conserves main fuel
usage."

{POS, VEL,
TILT}

"Do nothing because it moves lander closer to the
center, decreases lander speed to avoid crashing,
and decreases tilt of lander."

{POS, VEL,
TILT, LLEG,
SF}

"Fire main engine because it moves lander closer to
the center, decreases lander speed to avoid crashing,
decreases tilt of lander, encourages left leg contact,
and conserves side fuel usage."

{POS, VEL,
TILT, LLEG,
MF}

"Fire side engine because it moves lander closer to
the center, decreases lander speed to avoid crashing,
decreases tilt of lander, encourages left leg contact,
and conserves main fuel usage."

{POS, VEL,
TILT, LLEG}

"Do nothing because it moves lander closer to the
center, decreases lander speed to avoid crashing,
decreases tilt of lander and encourages left leg con-
tact."

{POS, VEL,
TILT, RLEG,
SF}

"Fire main engine because it moves lander closer to
the center, decreases lander speed to avoid crashing,
decreases tilt of lander and encourages right leg
contact, and conserves side fuel."

{POS, VEL,
TILT, RLEG,
MF}

"Fire side engine because it moves lander closer to
the center, decreases lander speed to avoid crash-
ing, decreases tilt of lander, encourages right leg
contact, and conserves main fuel."

{POS, VEL,
TILT, RLEG}

"Do nothing because it moves lander closer to the
center, decreases lander speed to avoid crashing,
decreases tilt of lander, and encourages right leg
contact."

{POS, VEL,
TILT, LLEG,
RLEG, SF}

"Fire main engine because it moves lander closer to
the center, decreases lander speed to avoid crashing,
decreases the tilt of the lander, encourages left and
right leg contact and conserves side fuel."

{POS, VEL,
TILT, LLEG,
RLEG, MF}

"Fire side engine because it moves lander closer
to the center, decreases the lander speed to avoid
crashing, decreases the tilt of the lander, encour-
ages left and right leg contact, and conserves main
fuel."
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{POS, VEL,
TILT, LLEG,
RLEG}

"Do nothing because it moves lander closer to the
center, decreases the lander speed to avoid crashing,
decreases the tilt of the lander, encourages left and
right leg contact."

{L} "Do nothing because it results in a land."

Table 2: Example state action pairs with associated concept lists and concept-based explanations for
the Connect 4 domain.

C Joint Embedding Model Details

C.1 Dataset Details

MisAligned and Aligned Data Breakdown Recall from Section 5 that DC4 represents the dataset
used for training and evaluatingM in Connect 4. Specifically,DC4 includes 2, 948, 742 total samples,
in which Da

C4 = 327, 638 aligned samples and Dm
C4 = 2, 621, 104 misaligned samples. Similarly,

DLL represents the dataset used for training and evaluating M in Lunar Lander. Specifically,
DLL includes 1, 941, 042 total samples, in which Da

LL = 323, 507 aligned samples and Dm
LL =

1, 617, 535 misaligned samples. Recall that to create the misaligned dataset, Dm, we utilize z
incorrect concept sets available in each domain as replacement for the existing correct concepts
utilized in E iCi

for each di ∈ Da. Specifically, for Connect 4, z = 8 and we leverage all possible
non-aligned concept sets for perturbation. In Lunar Lander, z = 5 and we randomly choose five
non-aligned concept sets for perturbation. We randomly choose 5 of 13 possible concept sets to
generate misaligned sample pairs per state to avoid a larger than necessary dataset. As a refresher, the
list of possible concept sets for each domain are presented in Figure 2.

Concept Breakdown in Aligned Data Table 3 and Table 4 provide a breakdown of the occurrences
of each concept set within the training data for the joint embedding models, MC4 (Connect 4) and
MLL (Lunar Lander). We specifically show the breakdown in the aligned datasets, Da

C4 and Da
LL,

given that such data is the raw data collected via rollout simulations in each domain. Recall that
the additional misaligned data in the training set, Dm

C4 and Dm
LL, are synthetically generated via

perturbations, and used for the contrastive learning. When the misaligned data is included in
the training set, given the perturbations, the number of occurrences of each concept (aligned or
misaligned) become equal.

Concept Set # of Samples in Daligned
C4

{3IR} 43,896
{3IR_BL} 21,911
{3IR, CD} 6,901
{BW} 25,352
{BW, 3IR} 10,668
{BW, CD} 4,940
{CD} 30,591
{W} 23,137
{NULL} 160,242

Table 3: Concept set occurrence analysis of the aligned data within the training set used to train MC4.

C.2 Model Architectures

Figure 10 shows the model architecture for MC4. Recall that the inputs to MC4 includes
〈[si, si−1], gi, E iCi

, yi〉. In the diagram, we don’t explicitly show yi but it is used to denote whether
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Concept Set # of Samples in Daligned
LL

{POS, VEL, TILT, MF} 136,917
{POS, VEL, TILT, SF} 62,140
{POS, VEL, TILT} 53,944

{POS, VEL, TILT, LLEG, MF} 1,610
{POS, VEL, TILT, LLEG, SF} 2,981
{POS, VEL, TILT, LLEG} 4,219

{POS, VEL, TILT, RLEG, MF} 1,523
{POS, VEL, TILT, RLEG, SF} 2,399
{POS, VEL, TILT, RLEG} 3,228

{POS, VEL, TILT, LLEG, RLEG, MF} 1,730
{POS, VEL, TILT, LLEG, RLEG, SF} 12,026
{POS, VEL, TILT, LLEG, RLEG} 39,981

{L} 809
Table 4: Concept set occurrence analysis of the aligned data within the training set used to train MLL.

si and E iCi
are aligned or misaligned (see Section 4). The game boards (si and si−1) in Connect 4

are represented as 6x7 2D array which are passed into two consecutive CNNs after padding to 7x7
2D arrays. The first set of CNNs (CNN1 and CNN3) for si and si−1 have the following parameters:
input_channels=1, output_channels=4, kernel_size= (3,3), stride=1. The second set of CNNs (CNN2
and CNN4) have the following parameters: input_channels=4, output_channels=6, kernel_size=
(3,3), stride=1. The embedding outputs of CNN2 and CNN4 are then concatenated with the game
information gi, which includes boolean representations of the player/opponent as well as whether the
game is over. The concatenated embedding is then passed through three FCNs. Specifically, FCN1’s
output dimension is 64. FCN2’s output dimension is 32. FCN3’s output dimension is 16. The output
of FCN3 represents our final state embedding, siembed. The concept-based explanation E iCi

is first
passed through an embedding layer and then passed to a LSTM network to produce our expiembed.
The input size to the LSTM is of dimension 32, and output dimension is 16.

Figure 11 shows the model architecture for MLL. The inputs to MLL includes 〈[si, si−1], gi, E iCi
, yi〉.

In the diagram, we don’t explicitly show yi, but it is used to denote whether si and E iCi
are aligned

or misaligned (see Section 4). The game boards (si and si−1) in Lunar Lander are represented as
1x10 arrays which are passed into two consecutive FCNs. Specifically, the game board representation
includes the 1x8 game state representation from OpenAI Gym [4], along with an inclusion of whether
the side fuel or main fuel is in use. The first set of FCNs (FCN1 and FCN3) for si and si−1 have an
output dimension of 64. The second set of FCNs (FCN2 and FCN4) have an output dimension of
32. The embedding outputs of FCN2 and FCN4 are then concatenated with the game information gi,
which includes a boolean representation of whether the game is over. The concatenated embedding is
then passed through three more FCNs Specifically, FCN5 has an output dimension of 16. FCN6 has
an output dimension of 8. Similar to the architecture for MC4, the concept-based explanation E iCi

is
first passed through an embedding layer and then passed to a LSTM network to produce our expiembed.
The input size to the LSTM is of dimension 32, and output dimension is 8.

C.3 Training Details

To train and evaluate MC4 and MLL, we utilize a 60%-20%-20% train-valid-test split on DC4 and
DLL (see total dataset size in Appendix C.1). The models are trained with learning rate of 0.001,
batch size of 128, Adam Optimizer, and trained with 10 epochs. To train MC4 and MLL, we utilize a
desktop computer with a NVIDIA GTX 1060 6GB GPU and an Intel i7 processor. The runtime for
training and testing MC4 and MLL takes approximately 30 minutes. See link to code in Appendix F.

C.4 Additional Evaluations

Learned Embedding Spaces of MC4 and MLL In Figure 12a and Figure 12b, we provide a
visualization of our learned joint embedding models, MC4 and MLL. The TSN-E visualizations is
created using the models’ training dataset. We do not draw any conclusions via these visualizations,
but present them as an intuitive way to interpret our high dimensional, learned embedding spaces.
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Figure 10: Joint Embedding Model M Architecture for Connect 4.

Figure 11: Joint Embedding Model M Architecture for Lunar Lander.

(a) (b)

Figure 12: (a) and (b) demonstrate visualizations of the learned embedding spaces of the joint
embedding models learned for Connect 4,MC4, and Lunar Lander, MLL.

In the “Wild” Evaluation of MC4 and MLL We performed an evaluation of how well MC4 and
MLL continue to perform when utilized during an RL agent’s training to inform reward shaping.
Specifically, we analyzed the model’s Recall@1, examining how often E iCi

was incorrectly retrieved
for a given (si, ai). For Lunar Lander, MLL’s average Recall@1, across the 5 seeds, during the
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Figure 13: Evaluation of MC4’s ability to retrieve correct E iCi
during the RL agent’s training.

agent’s training continued to be 100%. Figure 13 provides an analysis of the Connect 4 joint
embedding model’s, MC4, average Recall@1. We see on average, MC4 has an average Recall@1 of
86.1%, with 13.9% incorrect retrievals. As mentioned in Section 5.3 results, these incorrect retrievals
do not significantly affect MC4’s ability to inform reward shaping and the agent’s learning rate.

D RL Agent Details

D.1 RL Model Training

We utilized the open-source version of MuZero from [52], and utilize the provided hyperparameters.
Please see Muzero’s Github Repo from [52] 1, as well as our code linked in Appendix F, for more
details. To train and validate our MuZero agents we leverage an NVIDIA GTX 1060 6GB GPU and
an Intel i7 processor. The runtime for training a Connect 4 MuZero agent to around 400k training
steps takes approximately 30 hours. The runtime for training a Lunar Lander MuZero agent to around
400k training steps takes approximately 9 hours.

D.2 Shaping Rewards Per Concepts

For Lunar Lander, we utilize the existing dense reward function to determine the relevant concepts
as well as their shaping values. Therefore each c ∈ CLL has an expert-defined shaping value. The
existing shaping values can be found in the LunarLander.py provided by OpenAI Gym [4]. Table 5
summarizes the continuous functions outlined in [4] that we use to reward each concept c ∈ CLL.
Alternatively, there are no existing SoTA reward shaping values for the game of Connect 4. Therefore
we perform a hyperparameter sweep to determine an optimal set of shaping values, and Table 6
summarizes our utilized shaping values for each concept c ∈ CC4.

Lunar Lander Concept Shaping Values
POS (position) −100(

√
(posx)2 + (posy)2)

VEL (velocity) −100(
√

(velx)2 + (vely)2)
TILT (tilt) −100(|anglelander|)

RLEG (right leg contact) 10(boolRLEG)
LLEG (left leg contact) 10(boolLLEG)

MF (main fuel) −0.3(boolmain)
SF (side fuel) −0.03(boolside)

L (land) 100
Table 5: Corresponding shaping values from [4] for each Lunar Lander concept.

1https://github.com/werner-duvaud/muzero-general
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Connect 4 Concept Shaping Values
3IR (Three-in-Row) 1

3IR_BL (Three-in-Row Blocked from Win) 0
CD (Center Dominance) 1

BW (Block Win) 5
W (Win) 10

NULL (Neutral State) 0
Table 6: Corresponding shaping values determined from hyperparameter sweep for each Connect 4
concept.

E User Study Details

E.1 Procedure Details

Participants performed an online study in which they were asked to play several games from the
domain. The user studies for each domain were was broken into the following four stages: Practice,
Pre-Test, Explanation, Post-Test. First, prior to the Practice stage, participants were introduced
to the game including background information, game rules, and their task. Then in the Practice,
participants played 2 practice games to get further acquainted with the specified domain. In Pre-Test,
participants played 3 more games, this time being aware that their games were being scored. In
Explanation, participants interacted with an expert player (well-trained RL agent) and were exposed
to explanations about the player’s actions via their assigned study condition. Note, participants in the
“None” study condition did not receive any accompanying explanations during the Explanation stage.
Specific to Connect 4, this stage consisted of observing the expert player (RL agent) play 3 games. In
Lunar Lander, the Explanation stage consisted of observing the expert player (RL agent) play 1 game.
In the Post-Test, participants played 3 more scored games, similar to the Pre-Test. After the Post-Test
stage, participants completed a post-questionnaire survey that collected demographics data as well as
their perceived task performance and their perceived utility of their explanation condition.

Some specifics unique to each domain include that for Connect 4, participants always played first, and
their opponent player was a well-trained MuZero agent. Additionally, for Lunar Lander, to reduce the
impact of learning effects, the starting position and initial force applied to the lander was randomized
across all 8 games; however, the random combinations remained fixed across participants. Also,
participants played the version of Lunar Lander implemented by OpenAI Gym [4].

E.2 Participant Information

Connect 4 We recruited 84 participants from Amazon Mechanical Turk, for an IRB-approved
study and participants were required to be novice players of Connect 4. Of the 84 participants, 9
were filtered out for not finishing the study. The remaining 75 participants, 15 per study condition,
included 40 males and 35 females, all over the age of 18 (M=31.57, SD=7.12). The study took on
average 20 minutes, and participants were compensated $5.00.

Lunar Lander We recruited 118 participants from Amazon Mechanical Turk, for an IRB-approved
study. Participants were required to be novice players of Lunar Lander. Of the 118 participants, 13
were filtered out for not finishing the study or demonstrating no effort. The remaining 105 participants,
15 per study condition, included 50 males and 55 females, all over the age of 18 (M=30.57, SD=6.75).
The study took on average 20 minutes, and participants were compensated $5.00.

E.3 Additional Evaluation Details

Participant ATS Note, the adjusted task score (ATS) adjusts participant’s Post-Test average task
performance by their Pre-Test average task performance. Note, this adjustment does not change any
of the results or statistical analyses and is purely for visualization purposes. Specifically, we perform
the adjustment to visualize the relative changes among participant ATS using a common starting
point.
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Figure 14: Analysis of perceived performance Perf shows participants across all conditions believed
their performances improved after exposure to the expert player and assigned explanations.

Figure 15: Analysis of perceived explanation utility EU shows participants across all explanation
conditions believed their assigned study condition improved task understanding.

Additionally, to keep the ATS graphs legible, we present the mean and standard deviations for each
study condition here, as opposed to including error bar lines on the graphs. The following are the mean
and standard deviations in the Connect 4 user study conditions. Specifically, (1) None (Baseline):
M=-0.039, SD=0.222, (2) EA (Baseline): M=-0.041, SD=0.114 (3) EV (Baseline): M=-0.104, SD=
0.346 (4) GT ECi : M=0.256, SD=0.318 (5) S2E ECi : M=0.215, SD=0.194. The following are
the mean and standard deviations in the Lunar Lander user study conditions. Specifically (1) None
(Baseline): M=-0.051, SD=0.191, (2) EA (Baseline): M=-0.049, SD=0.136 (3) EV (Baseline):
M=-0.067, SD=0.211 (4) S2E ECi : M=-0.043, SD=0.192, (5) S2E ECiw/ TeG: M=0.100, SD=0.154
(6) S2E ECiw/ InF: M=0.034, SD=0.190, (7) S2E ECiw/ InF, TeG: M=0.156, SD=0.182.

User Perception Analyses Below we present additional evaluations performed on user responses in
our questionnaire. Specifically, we present participant’s perceived performance Perf and participant’s
perceived explanation utility EU. Note, Perf is measured on a 5-point Likert scale to the following
question “I believe my game performance improved after witnessing the expert play and seeing the
expert’s provided reasoning”. The EU metric is measured on a 5-point Likert scale to the following
question “I believe the expert’s provided reasoning helped improve my understanding of the game”,
and is only measured for the explanation conditions. From both Figure 14 and Figure 15 we observe
that participants across all study conditions had high agrees for Perf and EU, despite their being
significant differences in their objective task performance. These qualitative results demonstrate the
Dunning-Krunger Effect [13], in that users with low expertise in an area often overestimate their own
performance or knowledge.
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(a) (b)

Figure 16: Participants saw the following as introductions to the task for (a) Connect 4 and (b) Lunar
Lander.

(a) (b)

Figure 17: Participants saw the following as introductions to the game for (a) Connect 4 and (b)
Lunar Lander.

E.4 Visuals of User Study

In this section, we provide visuals of the user interface for each user study.

Introduction Stage In both user studies, after receiving consent of participation, all participants
were given an introduction to both the user study as well as the specific domain of the study. Figure
16a(a)and Figure 16b(b) show the introductions participants received for Connect 4, while Figure
17a(a) and Figure 17b(b) show the introductions participants received for Lunar Lander. Note the
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(a) (b)

Figure 18: Visualizations of the game interface participants utilized during the Practice, Pre-Test and
Post-Test stages for both Connect 4 (a) and Lunar Lander (b).

(a) (b)

Figure 19: Visualizations of the Explanation stage for both (a) Connect 4 and (b) Lunar Lander.

introduction to the task was first presented to the users, and then the introduction to the domain was
presented.

Game-Playing Stages During the study, participants played various games during the Practice,
Pre-Test and Post-Test stages. These games were in real-time; users clicked the action to play via
a button, and saw the game interface update accordingly. Figure 18a(a) and Figure 18b(b) present
visuals on how participants played games in each domain.

Explanation Stage During the Explanation stage, participants interacted with an expert player
(expert RL agent) and stepped through the expert player’s actions while being exposed to explanations
from a given study condition. The participants were not told that the expert player was an RL agent
to limit the confounding effect of user biases towards AI agents in study. Figure 19a(a) and Figure
19b(b) provide an example of the explanation stage for Connect 4 and Lunar Lander. Specifically, in
Figure 19a(a), a ECi is provided, and in Figure 19b(b), a ECiw/ InF, TeG is provided.

Survey At the end of the user study, participants were asked to fill out a short survey including
demographic questions, as well as additional Likert questions to gauge user experiences with comput-
ers, the domain, as well as their perceived performance and explanation utility. Figure 20 provides
a visual of what the survey looked liked in the domain of Connect 4. The survey for Lunar Lander
participants was identical, except making an reference to Lunar Lander as opposed to Connect 4.

F Github Repo

https://anonymous.4open.science/r/S2E/README.md
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Figure 20: Visualization of the survey questions participants received at the end of the Connect 4
Study; questions were identical for the Lunar Lander study.
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