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B Public Accessibility + Licenses

B.1 Dataset

We release EHRSHOT under a research data use agreement. The dataset is available here:
https://ehrshot.stanford.edu/. Access is gated by a researcher data use agreement due to the sensitive
nature of the dataset. We do not upload our dataset to another data repository due to these concerns.

In order to ensure we do not reveal Protected Health Information (PHI) in our dataset, we take
several precautions. First, we only release deidentified data. The deidentification process has been
previously described in [5]. Second, on top of this deidentification process, we also apply additional
privacy-protecting transformations following the best practices of the MIMIC-III dataset [16], which
are detailed in Section C.5. Third, we do not publish any clinical notes. Fourth, we release our dataset
under a data usage agreement that requires researchers to register with their identity and gain approval
before accessing the dataset.

License: The license for the dataset is the standard Stanford University Dataset Research Use
Agreement, and is reproduced below:

By registering for downloads from the EHRSHOT Dataset, you are agreeing to this Research Use Agreement, as well as to the Terms of
Use of the Stanford University School of Medicine website as posted and updated periodically at http://www.stanford.edu/site/terms/.
Permission is granted to view and use the EHRSHOT Dataset without charge for personal, non-commercial research purposes only. Any
commercial use, sale, or other monetization is prohibited.
Other than the rights granted herein, the Stanford University School of Medicine (“School of Medicine”) retains all rights, title, and
interest in the EHRSHOT Dataset. You may make a verbatim copy of the EHRSHOT Dataset for personal, non-commercial research use
as permitted in this Research Use Agreement. If another user within your organization wishes to use the EHRSHOT Dataset, they must
register as an individual user and comply with all the terms of this Research Use Agreement. YOU MAY NOT DISTRIBUTE, PUBLISH,
OR REPRODUCE A COPY of any portion or all of the EHRSHOT Dataset to others without specific prior written permission from the
School of Medicine. YOU MAY NOT SHARE THE DOWNLOAD LINK to the EHRSHOT Dataset to others. If another user within your
organization wishes to use the EHRSHOT Dataset, they must register as an individual user and comply with all the terms of this Research
Use Agreement. You must not modify, reverse engineer, decompile, or create derivative works from the EHRSHOT Dataset. You must not
remove or alter any copyright or other proprietary notices in the EHRSHOT Dataset.
The EHRSHOT Dataset has not been reviewed or approved by the Food and Drug Administration, and is for non-clinical, Research
Use Only. In no event shall data or images generated through the use of the EHRSHOT Dataset be used or relied upon in the
diagnosis or provision of patient care. THE EHRSHOT Dataset IS PROVIDED "AS IS," AND STANFORD UNIVERSITY AND
ITS COLLABORATORS DO NOT MAKE ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY
LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS EHRSHOT Dataset. You will not make any attempt to re-identify any of
the individual data subjects. Re-identification of individuals is strictly prohibited. Any re-identification of any individual data subject
shall be immediately reported to the School of Medicine. Any violation of this Research Use Agreement or other impermissible use shall
be grounds for immediate termination of use of this EHRSHOT Dataset. In the event that the School of Medicine determines that the
recipient has violated this Research Use Agreement or other impermissible use has been made, the School of Medicine may direct that
the undersigned data recipient immediately return all copies of the EHRSHOT Dataset and retain no copies thereof even if you did not
cause the violation or impermissible use. In consideration for your agreement to the terms and conditions contained here, Stanford grants
you permission to view and use the EHRSHOT Dataset for personal, non-commercial research. You may not otherwise copy, reproduce,
retransmit, distribute, publish, commercially exploit or otherwise transfer any material.
Limitation of Use: You may use EHRSHOT Dataset for legal purposes only. You agree to indemnify and hold Stanford harmless from any
claims, losses or damages, including legal fees, arising out of or resulting from your use of the EHRSHOT Dataset or your violation
or role in violation of these Terms. You agree to fully cooperate in Stanford’s defense against any such claims. These Terms shall be
governed by and interpreted in accordance with the laws of California.

B.2 Pretrained Foundation Model (CLMBR-T-base)

We release CLMBR-T-base, a foundation model pre-trained on the structured EHR data of roughly
2.5 million patients at Stanford Medicine [41]. The model’s weights can be found at our website here:
https://ehrshot.stanford.edu/. Access is gated by a researcher data use agreement due to the sensitive
nature of the training dataset.

A concern with the release of such a model is the lack of solid theoretical privacy assurances, thus
creating the possibility of the model revealing medical data. To mitigate these concerns, we implement
several additional precautions. First, the model is trained exclusively on deidentified data to eliminate
the chance of any Protected Health Information (PHI) seeping into the model. Second, all unique
text strings released as part of our CLMBR-T-base model’s dictionary (e.g. terms such as "Yes" or
"No" that serve as categorical variables) were manually reviewed to ensure they do not reveal any
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PHI. Third, we make our model available under a data usage agreement that requires researchers to
register with their identity and gain approval before accessing the model.

License: The license for the code for the model is here: https://github.com/som-
shahlab/femr/blob/main/LICENSE. The license for the model weights is here:
https://huggingface.co/StanfordShahLab/clmbr-t-base.

C Dataset Details

C.1 EHRSHOT Cohort

Demographics of the EHRSHOT cohort are included below.

Table 4: EHRSHOT: Patient demographics in the train, validation, and test splits.

Attribute Train Val Test All Splits

Gender Male 1122 1090 1086 3298
Female 1173 1142 1126 3441

Age

19-20 8 3 2 13
21-40 412 457 431 1300
41-60 648 597 576 1821
61-80 916 892 905 2713
81-88 311 283 298 892

Race

American Indian 14 7 4 25
Asian 356 347 340 1043
Black 98 105 95 298
Pacific Islander 23 21 30 74
White 1286 1222 1228 3736
Unknown 518 530 515 1563

Ethnicity Hispanic 374 342 322 1038
Non-Hispanic 1921 1890 1890 5701

Total 2295 2232 2212 6739

C.2 Pretraining Dataset

The pretraining dataset for CLMBR-T-base contains a total of 3.67 million patient records, of
which 2.57 million are used to train the model. We include summary statistics of these patients’
demographics in Table 5 and Table 6.

C.3 Task Definitions

Here, we detail the precise definitions for each of the 15 tasks for which we provide labels in our
benchmark dataset.

Operational Outcomes. These tasks are related to hospital operations. They are all binary classifica-
tion tasks, and are defined as follows:

• Long Length of Stay: Predict whether a patient’s total length of stay during a visit to the
hospital will be at least 7 days. The prediction time is at 11:59pm on the day of admission,
and visits that last less than one day (i.e. discharge occurs on the same day of admission)
are ignored.

• 30-day Readmission: Predict whether a patient will be re-admitted to the hospital within
30 days after being discharged from a visit. The prediction time is at 11:59pm on the day of
admission, and admissions where a readmission occurs on the same day as the corresponding
discharge are ignored.
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Figure 4: Histograms of EHRSHOT patient timeline characteristics

(a) Total number of events per patient, broken down by train/val/test split. Note that the x-axis is clamped at
40000 for clarity (i.e. along the x-axis we plot min(x, 40000))

.

(b) Total number of visits per patient, broken down by train/val/test split. Note that the x-axis is clamped at 1000
for clarity (i.e. along the x-axis we plot min(x, 1000))

.

(c) Total length of each patient timeline (i.e. difference in time between birth date and last recorded event),
broken down by train/val/test split.

• ICU Transfer: Predict whether a patient will be transferred to the ICU during a visit to the
hospital. The prediction time is at 11:59pm on the day of admission, and ICU transfers that
occur on the same day as admission are ignored.

Anticipating Lab Test Results. These tasks are related to lab value prediction. They are all multiclass
classification tasks. The prediction time is immediately before the lab result is recorded. They are
defined as follows:

• Thrombocytopenia: Predict whether a thrombocytopenia lab comes back as normal (>=150
109/L), mild (>=100 and <150 109/L), moderate (>=50 and <100 109/L), or severe (<50
109/L),. We consider all lab results coded as LOINC/LP393218-5, LOINC/LG32892-8, or
LOINC/777-3.

• Hyperkalemia: Predict whether a hyperkalemia lab comes back as normal (<=5.5 mmol/L),
mild (>5.5 and <=6mmol/L), moderate (>6 and <=7 mmol/L), or severe (>7 mmol/L). We
consider all lab results coded as LOINC/LG7931-1, LOINC/LP386618-5, LOINC/LG10990-
6, LOINC/6298-4, or LOINC/2823-3.

• Hypoglycemia: Predict whether a hypoglycemia lab comes back as normal (>=3.9
mmol/L), mild (>=3.5 and <3.9 mmol/L), moderate (>=3 and <3.5 mmol/L), or severe
(<3 mmol/L). We consider all lab results coded as SNOMED/33747003, LOINC/LP416145-
3, or LOINC/14749-6.
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Table 5: Pretraining Dataset: Patient demographics in the train, validation, and test splits.

Attribute Train Val Test All Splits

Gender Male 1186614 255179 254733 1696526
Female 1380836 295126 296127 1972089

Age

0-20 625949 135045 134684 895678
21-40 671018 143607 144045 958670
41-60 617519 131996 132432 881947
61-80 502842 107299 107746 717887
81-88 150122 32358 31953 214433

Race

American Indian 7229 1509 1516 10254
Asian 371065 79638 80418 531121
Black 83624 17895 17919 119438
Pacific Islander 20959 4350 4435 29744
White 987676 211262 211429 1410367
Unknown 1096897 235651 235143 1567691

Ethnicity Hispanic 325037 69912 69689 464638
Non-Hispanic 2242413 480393 481171 3203977

Total 2567450 550305 550860 3668615

Table 6: Pretraining Dataset: Summary statistics on the number of events, visits, and length of patient
timelines.

Attribute Train Val Test All Splits

Number of Events
Min 1 1 1 1
Mean 707 706 704 706
Max 191369 213133 214400 214400

Number of Visits
Min 0 0 0 0
Mean 28 28 28 28
Max 3701 4305 3109 4305

Timeline Length (yrs)
Min 0 0 0 0
Mean 40 40 40 40
Max 92 90 90 92

• Hyponatremia: Predict whether a hyponatremia lab comes back as normal (>=135 mmol/L),
mild (>=130 and <135 mmol/L), moderate (>=125 and <130 mmol/L), or severe (<125
mmol/L). We consider all lab results coded as LOINC/LG11363-5, LOINC/2951-2, or
LOINC/2947-0.

• Anemia: Predict whether an anemia lab comes back as normal (>=120 g/L), mild (>=110
and <120 g/L), moderate (>=70 and <110 g/L), or severe (<70 g/L). We consider all lab
results coded as LOINC/LP392452-1.

Please note that for the results of our baseline experiments in Section 5, we reframe these lab value
tasks as binary classification tasks, where a label is "negative" if the result is normal and "positive"
otherwise.

Assignment of New Diagnoses. These tasks are related to predicting the first diagnosis of a disease.
They are all binary classification tasks. The prediction time is at 11:59pm on the day of discharge
from an inpatient visit, and we count any diagnosis that occurs within 365 days post-discharge as a
positive outcome. We ignore all discharges in which the patient already has an existing diagnosis of a
disease. The tasks are defined as follows:
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Table 7: Task Prediction Windows. Prediction Time is the precise time point (up to minute precision)
in a patient’s timeline when the prediction is made. Time Horizon is the length of time considered after
the prediction time to determine whether an event occurs, i.e. we only consider a patient "positive" for
a new diagnosis of pancreatic cancer if she receives that diagnosis within a year of being discharged.

Task Name Task Type Prediction Time Time Horizon
Operational Outcomes
Long Length of Stay Binary 11:59pm on day of admission Admission duration
30-day Readmission Binary 11:59pm on day of discharge 30 days post-discharge
ICU Transfer Binary 11:59pm on day of admission Admission duration

Anticipating Lab Test Results
Thrombocytopenia 4-way

multiclass
Immediately before result Next result

Hyperkalemia 4-way
multiclass

Immediately before result Next result

Hypoglycemia 4-way
multiclass

Immediately before result Next result

Hyponatremia 4-way
multiclass

Immediately before result Next result

Anemia 4-way
multiclass

Immediately before result Next result

Assignment of New Diagnoses
Hypertension Binary 11:59pm on day of discharge 1 year post-discharge
Hyperlipidemia Binary 11:59pm on day of discharge 1 year post-discharge
Pancreatic Cancer Binary 11:59pm on day of discharge 1 year post-discharge
Celiac Binary 11:59pm on day of discharge 1 year post-discharge
Lupus Binary 11:59pm on day of discharge 1 year post-discharge
Acute MI Binary 11:59pm on day of discharge 1 year post-discharge

Anticipating Chest X-ray Findings
Chest X-Ray Findings 14-way

multilabel
24hrs before report is recorded Next report

• Hypertension: Predict whether the patient will have her first diagnosis of essential hy-
pertension within the next year. We define hypertension as an occurrence of the code
SNOMED/59621000, as well as its children codes in our ontology.

• Hyperlipidemia: Predict whether the patient will have her first diagnosis of hyperlipi-
demia within the next year. We define hyperlipidemia as an occurrence of the code
SNOMED/55822004, as well as its children codes in our ontology.

• Pancreatic Cancer: Predict whether the patient will have her first diagnosis of pancreatic
cancer within the next year. We define pancreatic cancer as an occurrence of the code
SNOMED/372003004, as well as its children codes in our ontology.

• Celiac: Predict whether the patient will have her first diagnosis of celiac disease within the
next year. We define celiac disease as an occurrence of the code SNOMED/396331005, as
well as its children codes in our ontology.

• Lupus: Predict whether the patient will have her first diagnosis of lupus within the next year.
We define lupus as an occurrence of the code SNOMED/55464009, as well as its children
codes in our ontology.

• Acute MI: Predict whether the patient will have her first diagnosis of an acute myocardial
infarction within the next year. We define myocardial infarction as an occurrence of the
code SNOMED/57054005, as well as its children codes in our ontology.

Anticipating Chest X-ray Findings. The chest X-ray findings task is a multilabel classification task
to identify which of 14 possible findings were included in a chest X-ray report. The prediction time
is 24 hours before the radiology report is recorded. The labels are derived by running the CheXpert
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NLP labeler on the unstructured text of the corresponding radiology report [14]. We do not release
this unstructured text as part of our dataset due to patient privacy concerns.

The possible findings are as follows: "No Finding", "Enlarged Cardiomediastinum", "Cardiomegaly",
"Lung Lesion", "Lung Opacity", "Edema", "Consolidation", "Pneumonia", "Atelectasis", "Pneumoth-
orax", "Pleural Effusion", "Pleural Other", "Fracture", "Support Devices".

C.4 Dataset Format

Our dataset is comprised of two main sets of tabular files: (A) Events files which contain all of the
clinical events associated with every patient in our dataset, and (B) Labels files which contain the
labels associated with all of our benchmark tasks for every patient in our dataset.

(A) Events is as a set of CSV files containing every clinical event that happened to the patients in our
dataset. Every row is a unique clinical event. Each CSV file shares the same column schema, which
is as follows:

• Patient ID - Integer - Unique identifier for patient
• Start - Datetime - Start time of event
• End - Datetime (optional) - End time of event
• Code - String - Name of the clinical event (e.g. "SNOMED/3950001" or "ICD10/I25.110")
• Value - Float/String (optional) - Either a numerical value associated with an event (e.g. a

lab test result) or a string associated with a categorical variable (e.g. "Yes/No" questions)
• Unit - String (optional) - Unit of measurement for Value
• Visit ID - Integer (optional) - Unique identifier for the visit during which this event occurred
• OMOP-CDM Table - String - Name of the source OMOP-CDM table where this event was

recorded

Every event is associated with the OMOP-CDM table in the source STARR database from which it
was taken (OMOP-CDM Table) [34]. Researchers unfamiliar with the OMOP-CDM can simply
ignore this column.

(B) Labels is a set of CSV files containing the labels for every task for every patient. Every row is a
unique label associated with a specific patient, task, and time point. Each CSV file shares the same
column schema, which is as follows:

• Patient ID - Integer - Unique identifier for patient
• Prediction Time - Datetime - Time at which the prediction for this label is made
• Value - Boolean / Integer - Value for this label. Boolean if task is binary classification.

Integer if task is multiclass or multilabel classification.
• Label Type - String - Type of task associated with this label. Can be "boolean" (binary clas-

sification), "numeric" (regression), "survival" (time-to-event), or "categorical" (multilabel or
multiclass classification).

C.5 Data Preprocessing

The source dataset we use, the Stanford STARR research database [5], is an Observational Medical
Outcomes Partnership Common Data Model (OMOP-CDM) [12] compliant transformation of data
extracted from Stanford’s production EHR system (Epic). We do not alter any of the transformations
or deidentifiation steps in the ETL used to generate this OMOP-CDM extract described in [5].

Following the best practices of the MIMIC-III dataset, we apply several additional custom trans-
formations to prevent data leakage and add an additional layer of patient privacy protections [16].
First, we jitter all dates within each patient timeline by the same random amount (to a random year
between 2100 and 2200). Second, we remove all patients <= 18 or >= 89 years of age. Third, we
remove all instances of free form text (i.e., notes and narratives). For the clinical events which take
on categorical values specified as strings (e.g. a questionnaire which can be answered "Yes" or "No"),
we select the top-100 most representative such categorical text strings, manually verify that they do
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not contain any PHI, and remove the rest of the text strings from our model release by replacing them
with blank strings. This preserves roughly 65% of all categorical values in our dataset. Fourth, we
remove any patients with less than 10 clinical events in their record. Fifth, we adjust the timing of
certain events to more realistically reflect the chronology of care delivery. Specifically, we move
any events recorded before a patient’s birth to after their time of birth; we set the start times of visits
equal to the start time of the first event in each visit; we move billing codes recorded during a visit to
the end of the visit; we move any event coded at midnight to 11:59pm of that day; we remove all
duplicate codes that occur sequentially on the same day; and we remove all codes with ‘None‘ values
that occur on the same day as an identical code with a non-‘None‘ value associated with it. These
transformations are all specified in code in our Github repo.

C.6 Cohort Selection Process

We selected a cohort of 6,739 patients for EHRSHOT from the larger STARR source dataset of
3.67M patients. Per the motivation of this project, we were primarily interested in few-shot evaluation
of models across diverse tasks. Several of the tasks that would be of interest to a health system,
however, have fairly low prevalence within the general patient population. Thus, we needed to
construct our cohort in a way that preserved sufficient positive labels to enable downstream models
to conduct few-shot learning. We aimed to have at least k = 128 positive and negative examples in
each of the train/val/test splits for every task that we considered in order to allow for a broad range of
few-shot learning scenarios, and at least k = 128 positive examples for each label within a multiclass
or multilabel classification task. Where this was not possible (e.g. the Celiac task), we included as
many positive labels in each split as possible.

We began with our set of 15 tasks of interest. For each task, we labeled all patients within our source
database per that task’s definition. For tasks that have a low prevalence (which we consider as a 1:5
ratio of positive to negative labels), we subsample negative labels to bring the prevalence of positive
labels up to that ratio. We then subsample further for few-shot evaluation, selecting 128 unique
patients for each split who have at least one positive label for the task. We then sample sufficient
negative labels to maintain the chosen prevalence. We repeat this process for all tasks to arrive at our
final cohort of patients. For each successive task, we prioritize selecting patients that have already
been sampled into our cohort to reduce the total number of patients added to our cohort (since some
patients have positive labels for multiple tasks).

D Results Details

In order to fully reproduce our results, please follow the instructions at our Github repo here:
https://github.com/som-shahlab/ehrshot-benchmark.

D.1 Problem Formulation

Our dataset and models can be formulated as follows. Our dataset D = ({(Xp,Yp)}|P|
p=1 contains the

full coded medical timeline (Xp) and task-specific set of labels (Yp) for each patient p 2 P , for a total
of |P| patients. Each patient p is defined by a sequence of clinical events Xp = {xp1, xp2, ..., xpn},
where xpi denotes the ith code in the timeline of patient p. Note that a code xpi can be any form
of structured data taken from the patient’s EHR, including a diagnosis, procedure, medication
prescription, lab test, etc. We define X(t)

p to be the patient timeline up to time t – i.e. if event xpj

occurs before or at t but xp(j+1) occurs after t, then if Xp = {xp1, ..., xpj , xp(j+1), ..., xpn} we have
that X(t)

p = {xp1, ..., xpj}.

In addition to the timeline of each patient, our dataset also contains labels for each task and patient.
We define benchmark tasks b 2 B, where |B| = 15 for our dataset. Each patient has a set of labels
Yp = {y(t1)pb1

, y(t2)pb1
, ..., y(tL)

pb|B|
}, where L is the total number of labels for patient p, and the expression

y
(tj)
pbi

represents the label for patient p for task bi at time point tj .

We are interested in making predictions of the following format: Given a patient p’s entire medical
history up to and including time point t (i.e. X(t)

p ), predict the value of y(t)pb for each corresponding
benchmark task b 2 B where such a label exists.
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Please note that this prediction task is at the level of individual clinical events rather than vis-
its/encounters.

D.2 Count-Based GBM

We train a LightGBM model as one of our baseline models. In order to train such a model on a
patient’s timeline, we must first featurize the timeline into a vector. We follow best practices for
competitive baseline models by using count-based featurization, in which a patient is transformed into
a vector containing the counts of how many times each clinical event has occurred in that patient’s
timeline prior to the prediction time point [31, 41].

Let C be the set of all unique medical codes in our dataset. Let us consider making a prediction
for patient p at time t. Then the count-based featurization for p at time t is given by the vector
p(t) 2 N|C|, where each element is defined as p(t)

i =
P

xj2X(t)
p

I(xj = i), i.e. the count of medical
code i recorded for patient p before the prediction time t. Stacking these patient vectors results in
a count matrix M 2 N|Y|⇥|C|. As there are hundreds of thousands of unique codes, most of which
occur infrequently among patients, this results in a very high-dimensional and sparse matrix.

To help address the sparseness of M, we use a technique called ontology expansion [4], in which
we count each occurrence of a code once for the code itself, and once for every parent node of that
code in the OMOP ontology up to the root node of our ontology. Consider the ICD10 code E10.1
(Type 1 diabetes mellitus). Any occurrence of this code in a patient’s timeline should also give the
patient "credit" for having the parent codes of E10.1 – E10 (Type 1 diabetes mellitus) and E08–E13
(Diabetes mellitus). This is because having E10.1 implies that the patient has E10 and E08-E13. We
leverage existing OMOP ontology tools for ontology expansion and map codes to their ancestors.
Then, when constructing our count matrix M, we count each occurrence of a code for both that code
and all of its parent codes. We refer to this ontology-expanded version of our count matrix as M0.

Once the ontology-expanded count matrix M0 is generated, a LightGBM model is trained on this
input to predict the target label for each task [17]. Hyperparameter tuning is performed on a validation
set following the schedule described in Table 9.

D.3 CLMBR-T-base

For CLMBR-T-base, each unique medical code c 2 C is associated with a d-dimensional embedding
ec 2 Rd. Each medical code xpi = c in patient p’s timeline is associated with both a code embedding
ec and a position embedding es which is defined using rotary positions embeddings [42]. Thus, the
input to the model for xpi is given by the concatenation of these vectors, i.e. ec k es. For our model,
the code embeddings ec are generated using a standard embedding layer with a vocabulary size of
|C| = 65, 536. Though there are more unique codes in our dataset, we only keep the top 65,536 codes
with the highest contribution to the overall entropy of the dataset – the rest of the codes occurring in
our dataset are discarded in order to keep the size of our model’s dictionary tractable.

Lab values were discretized by computing decile statistics over the entire dataset and then creating
tokens for each lab / decile pair. For example, if the 40th percentile of weight is 180 pounds and
the 50th percentile is 190 pounds, we would create one token for “Weight/180-190” which would
represent all events with values in that range.

Given this fixed dictionary, a classification task is defined to predict the next code in a patient’s timeline
given their preceding codes. We use a transformer as our classification model. Our transformer uses
a local attention mechanism with a fixed context window of 496 tokens (i.e. clinical events) per
layer. As our CLMBR model contains 12 stacked layers, this gives our model an effective context
window of 496 * 12 = 5,952 clinical events, on which it conditions to generate its output at each step
i. Sequences longer than that were truncated.

The output at step i is a d-dimensional vector representation of the cumulative information up to and
including event xpi. We stack these representations for patient p into a matrix Rp 2 R|Xp|⇥d such
that Rpi is the cumulative d-dimensional representation of all events up to and including event i for
patient p. We then take the dot product of each row in this matrix with every code embedding ej for
all j 2 C in order to calculate a logit for each code j at each event i, thus yielding: logitpij = Rpi ·e

j .
The model is then trained end-to-end using standard cross-entropy classification log-likelihood loss,
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employing an indicator variable Ipij to mark if the next event for patient p after event i is an event
with code j.

The overall loss function, L(I|logit), is computed as:

L(I|logit) =
Y

p,i,j

Ipij · softmax(logitpi)j

For training our model, we use the best hyperparameters identified in [8] and perform a limited
hyperparameter search as defined in 8.

Figure 5: Aggregated AUPRC across all subtasks within each of the 4 task categories for k 2
{1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 128} shots. We also show performance on the full training set as All.
The bolded lines are the Macro-AUPRC for each model, averaged across all subtasks within a task
category for each value of k. The blurred lines are the average AUPRC across 5 replicates for each
subtask within a task category. Similar to the case with AUROC, the pretrained foundation model
CLMBR-T-base (blue) performs better across all k on the Operational Outcomes, Anticipating Lab
Test Results, and Anticipating Chest X-ray Findings tasks, while the count-based GBM model (red)
performs slightly better at higher k on the Assignment of New Diagnoses tasks.
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Figure 6: AUROC scores for each model across k 2 {1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 128} shots. We
also show performance on the full training set as All. The pretrained foundation model CLMBR-T-
base (blue) shows stronger performance on Operational Outcomes and Anticipating Lab Test Results
tasks, while the count-based GBM model (red) exhibits competitive performance at higher values of
k for the Assignment of New Diagnoses tasks. For Chest X-ray Findings, each blurred line represents
one of the 14 individual labels, and the bolded line is macro-AUROC across all labels.

Table 8: CLMBR-T-base Hyperparameters

Name Values Best Value
Learning Rate 0.0001, 0.00001 0.00001
Context Window Size 496 496
Internal Dropout 0, 0.2, 0.4 0
# of Layers 6, 12 12
LR Head Learning Rate 1e-6, 1e-5, ..., 1e5, 1e6 Task dependent
Hidden dimension 768 768
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Figure 7: AUPRC scores for each model across k 2 {1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 128} shots. We
also show performance on the full training set as All. CLMBR-T-base is in blue, count-based GBM
model is in red. For Chest X-ray Findings, each blurred line represents one of the 14 individual labels,
and the bold line is macro-AUPRC across all labels.

Table 9: GBM Hyperparameters

Name Values Best Value
Learning Rate 0.02, 0.1, 0.5 Task-dependent
Max Depth 3, 6, -1 Task-dependent
Number of Leaves 10, 25, 100 Task-dependent
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Figure 8: Difference in AUROC between each k-shot model replicate and a model trained on the full
dataset. The pretrained foundation model CLMBR-T-base (blue) closes the gap with the full data
model faster than does the count-based GBM model (red).
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Figure 9: Difference in AURPC between each k-shot model replicate and a model trained on the full
dataset. The pretrained foundation model CLMBR-T-base (blue) closes the gap with the full data
model faster than does the count-based GBM model (red).
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Figure 10: Replication of Figure 3 for aggregated AUROC, but including the following baseline
models: CLMBR-T-base (blue), GBM (red), Random Forest (yellow), and Logistic Regression
(green).
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Figure 11: Replication of Figure 5 for aggregated AUPRC, but including the following baseline
models: CLMBR-T-base (blue), GBM (red), Random Forest (yellow), and Logistic Regression
(green)
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