
A General Framework for Robust G-Invariance
in G-Equivariant Networks

Sophia Sanborn
sanborn@ucsb.edu

Nina Miolane
ninamiolane@ucsb.edu

Department of Electrical and Computer Engineering
UC Santa Barbara

Abstract

We introduce a general method for achieving robust group-invariance in group-
equivariant convolutional neural networks (G-CNNs), which we call the G-triple-
correlation (G-TC) layer. The approach leverages the theory of the triple-correlation
on groups, which is the unique, lowest-degree polynomial invariant map that is
also complete. Many commonly used invariant maps—such as the max—are
incomplete: they remove both group and signal structure. A complete invariant,
by contrast, removes only the variation due to the actions of the group, while
preserving all information about the structure of the signal. The completeness of
the triple correlation endows the G-TC layer with strong robustness, which can
be observed in its resistance to invariance-based adversarial attacks. In addition,
we observe that it yields measurable improvements in classification accuracy over
standard Max G-Pooling in G-CNN architectures. We provide a general and
efficient implementation of the method for any discretized group, which requires
only a table defining the group’s product structure. We demonstrate the benefits
of this method for G-CNNs defined on both commutative and non-commutative
groups—SO(2), O(2), SO(3), and O(3) (discretized as the cyclic C8, dihedral
D16, chiral octahedral O and full octahedral Oh groups)—acting on R2 and R3 on
both G-MNIST and G-ModelNet10 datasets.

1 Introduction

The pooling operation is central to the convolutional neural network (CNN). It was originally
introduced in the first CNN architecture—Fukushima’s 1980 Neocognitron [17]—and remained a
fixture of the model since. The Neocognitron was directly inspired by the canonical model of the
visual cortex as a process of hierarchical feature extraction and local pooling [25, 1]. In both the
neuroscience and CNN model, pooling is intended to serve two purposes. First, it facilitates the
local-to-global coarse-graining of structure in the input. Second, it facilitates invariance to local
changes—resulting in network activations that remain similar under small perturbations of the input.
In this way, CNNs construct hierarchical, multi-scale features that have increasingly large extent and
increasing invariance.

The pooling operation in traditional CNNs, typically a local max or average, has remained largely
unchanged over the last forty years. The variations that have been proposed in the literature [40, 56]
mostly tackle its coarse-graining purpose, improve computational efficiency, or reduce overfitting,
but do not seek to enhance its properties with respect to invariance. Both max and avg operations are
reasonable choices to fulfill the goal of coarse-graining within CNNs and G-CNNs. However, they
are excessively imprecise and lossy with respect to the goal of constructing robust representations
of objects that are invariant only to irrelevant visual changes. Indeed, the max and avg operations
are invariant to many natural image transformations such as translations and rotations, but also

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

= 1 3 0 2 0 1 30

g0 g1 g2 g3 g4 g5 g6 g7

Input-ConvG Feature Vector Filter

3 1 3 02 0 1 0

300 0 10

=
22

= Θϕ fi*

=

-Conv G -Invariant Map G
Θ1

Θ2

Θ3

3μ1
3μ2
3μ3

6 42 27 24 32 64 1530 9 11 30 7 2 36T1
6 42 27 24 32 64 1530 9 11 30 7 2 36T2

T3 0 0 0 2 32 44 0 340

-Triple-Correlation (Ours)G

Max -Pooling (Standard)G

Max -Pooling is incomplete:
It loses information
G

The -Triple-Correlation is complete:
It separates orbits

G

Domain G

*

*

*

4 6 17 11 18 4

Figure 1: Achieving Robust G-Invariance in G-CNNs with the G-Triple-Correlation. The output of a
G-Convolutional layer is equivariant to the actions of G on the domain of the signal. To identify signals that are
equivalent up to group action, the layer can be followed by a G-Invariant map that eliminates this equivariance.
In G-CNNs, Max G-Pooling is a commonly used for this purpose. Taking the maximum of the G-Convolutional
equivariant output is indeed invariant to the actions of the group. However, it is also lossy: many non-equivalent
output vectors have the same maximum. Our method—the G-Triple-Correlation is the lowest-order polynomial
invariant map that is complete [46]. As a complete invariant, it preserves all information about the signal
structure, removing only the action of the group. Our approach thus provides a new foundation for achieving
robust G-Invariance in G-CNNs.

to unnatural transformations, including pixel permutations, that may destroy the image structure.
This excessive invariance has been implicated in failure modes such as vulnerability to adversarial
perturbations [20, 26], and a bias towards textures rather than objects [4]. To overcome these
challenges and enable robust and selective invariant representation learning, there is a need for novel
computational primitives that selectively parameterize invariant maps for natural transformations.

Many of the transformations that occur in visual scenes are due to the actions of groups. The
appreciation of this fact has led to the rise of group-equivariant convolutional networks (G-CNNs)
[8] and the larger program of Geometric Deep Learning [6]. While this field has leveraged the
mathematics of group theory to attain precise generalized group-equivariance in convolutional
network layers, the pooling operation has yet to meet its group theoretic grounding. Standardly,
invariance to a group G is achieved with a simple generalization of max pooling: Max G-Pooling [8]
—see Fig. 1 (top-right). However, this approach inevitably suffers from the lossiness of the max
operation.

Here, we unburden the pooling operation of the dual duty of invariance and coarse-graining, by un-
coupling these operations into two steps that can be performed with precision. We retain the standard
max and avg pooling for coarse-graining, but introduce a new method for robust G-invariance via the
group-invariant triple correlation —see Fig. 1 (bottom-right). The group-invariant triple correlation is
the lowest-order complete operator that can achieve exact invariance [32]. As such, we propose a
general framework for robust G-Invariance in G-Equivariant Networks. We show the advantage of
this approach over standard max G-pooling in several G-CNN architectures. Our extensive experi-
ments demonstrate improved scores in classification accuracy in traditional benchmark datasets as
well as improved adversarial robustness.

2 Background

We first cover the fundamentals of group-equivariant neural networks—also known as G-CNNs, or
G-Equivariant Networks—before introducing the framework for G-Invariant Pooling.

2.1 Mathematical Prerequisites

The construction of G-CNNs requires mathematical prerequisites of group theory, which we recall
here. The interested reader can find details in [23].

Groups. A group (G, ·) is a setG with a binary operation ·, which we can generically call the product.
The notation g1 · g2 denotes the product of two elements in the set; however, it is standard to omit

2

the operator and write simply g1g2—a convention we adopt here. Concretely, a group G may define
a class of transformations. For example, we can consider the group of two-dimensional rotations
in the plane—the special orthogonal group SO(2)—or the group of two-dimensional rotations and
translations in the plane—the special euclidean group SE(2). Each element of the group g ∈ G
defines a particular transformation, such as one rotation by 30◦ or one rotation by 90◦. The binary
operation · provides a means for combining two particular transformations—for example, first rotating
by 30◦ and then rotating by 90◦. In mathematics, for a set of transformations G to be a group under
the operation ·, the four axioms of closure, associativity, identity and inverse must hold. These axioms
are recalled in Appendix A.

Group Actions on Spaces. We detail how a transformation g can transform elements of a space,
for example how a rotation of 30◦ indeed rotates a vector in the plane by 30◦. We say that the
transformations g’s act on (the elements of) a given space. Specifically, consider X a space, such as
the plane. A group action is a function L : G×X → X that maps (g, x) pairs to elements of X . We
say a group G acts on a space X if the following properties of the action L hold:

1. Identity: The identity e of the group G “does nothing”, i.e., it maps any element x ∈ X to
itself. This can be written as: L(e, x) = x.

2. Compatibility: Two elements g1, g2 ∈ G can be combined before or after the map L to yield
the same result, i.e., L(g1, L(g2, x)) = L(g1g2, x). For example, rotating a 2D vector by
30◦ and then 40◦ yields the same result as rotating that vector by 70◦ in one time.

For simplicity, we will use the shortened notation Lg(x) to denote L(g, x) the action of the transfor-
mation g on the element x.

Some group actions L have additional properties and turn the spaces X on which they operate
into homogeneous spaces. Homogeneous spaces play an important role in the definition of the
G-convolution in G-CNNs, so that we recall their definition here. We say that X is a homogeneous
space for a group G if G acts transitively on X—that is, if for every pair x1, x2 ∈ X there exists an
element of g ∈ G such that Lg(x1) = x2. The concept can be clearly illustrated by considering the
surface of a sphere, the space S2. The sphere S2 is a homogeneous space for SO(3), the group of
orthogonal 3× 3 matrices with determinant one that define 3-dimensional rotations. Indeed, for every
pair of points on the sphere, one can define a 3D rotation matrix that takes one to the other.

Group Actions on Signal Spaces. We have introduced essential concepts from group theory, where
a group G can act on any abstract space X . Moving towards building G-CNNs, we introduce how
groups can act on spaces of signals, such as images. Formally, a signal is a map f : Ω → Rc, where
Ω is called the domain of the signal and c denotes the number of channels. The space of signals itself
is denoted L2(Ω,Rc). For example, Ω = R2 or R3 for 2D and 3D images. Gray-scale images have
one channel (c = 1) and color images have the 3 red-green-blue channels (c = 3).

Any action of a group of transformations G on a domain Ω yields an action of that same group on the
spaces of signals defined on that domain, i.e., on L2(Ω,Rc). For example, knowing that the group of
2D rotations SO(2) acts on the plane Ω = R2 allows us to define how SO(2) rotates 2D gray-scale
images in L2(R2,Rc). Concretely, the action L of a group G on the domain Ω yields the following
action of G on L2(Ω,Rc):

Lg[f](u) = f(Lg−1(u)), for all u ∈ Ω and for all g ∈ G. (1)

We use the same notation Lg to refer to the action of the transformation g on either an element u of
the domain or on a signal f defined on that domain, distinguishing them using [.] for the signal case.
We note that the domain of a signal can be the group itself: Ω = G. In what follows, we will also
consider actions on real signals defined on a group, i.e., on signals such as Θ : G→ R.

Invariance and Equivariance. The concepts of group-invariance and equivariance are at the core of
what makes the G-CNNs desirable for computer vision applications. We recall their definitions here.
A function ψ : X 7→ Y is G-invariant if ψ(x) = ψ(Lg(x)), for all g ∈ G and x ∈ X . This means
that group actions on the input space have no effect on the output. Applied to the group of rotations
acting on the space of 2D images X = L2(Ω,Rc) with Ω = R2, this means that a G-invariant
function ψ produces an input that will stay the same for any rotated version of a given signal. For
example, whether the image contains the color red is invariant with respect to any rotation of that

3

image. A function ψ : X 7→ Y is G-equivariant if ψ(Lg(x)) = L′
g(ψ(x)) for all g ∈ G and x ∈ X ,

where L and L′ are two different actions of the group G, on the spaces X and Y respectively. This
means that a group action on the input space results in a corresponding group action of the same
group element g on the output space. For example, consider ψ that represents a neural network
performing a foreground-background segmentation of an image. It is desirable for ψ to be equivariant
to the group of 2D rotations. This equivariance ensures that, if the input image f is rotated by 30◦,
then the output segmentation ψ(f) rotates by 30◦ as well.

2.2 G-Equivariant Networks

G-CNNs are built from the following fundamental building blocks: G-convolution, spatial pooling,
and G-pooling. The G-convolution is equivariant to the action of the group G, while the G-pooling
achieves G-invariance. Spatial pooling achieves coarse-graining. We review the group-specific
operations here. The interested reader can find additional details in [8, 10], which include the
definitions of these operations using the group-theoretic framework of principal bundles and associated
vector bundles.

2.2.1 G-Convolution

In plain language, a standard translation-equivariant convolutional neural network layer sweeps filters
across a signal (typically, an image), translating the filter and then taking an inner product with the
signal to determine the similarity between a local region and the filter. G-CNNs [8] generalize this
idea, replacing translation with the action of other groups that define symmetries in a machine learning
task—for example, rotating a filter, to determine the presence of a feature in various orientations.

Consider a signal f defined on a domain Ω on which a group G acts. A neural network filter is a map
ϕ : Ω → Rc defined with the same domain Ω and codomain Rc as the signal. AG-convolutional layer
is defined by a set of filters {ϕ1, ..., ϕK}. For a given filter k, the layer performs a G-convolution
with the input signal f :

Θk(g) = (ϕk ∗ f)(g) =
∫
u∈Ω

ϕk(Lg−1(u))f(u)du, ∀g ∈ G, (2)

by taking the dot product in Rc of the signal with a transformed version of the filter. In practice, the
domain Ω of the signal is discretized, such that the G-convolutional layer becomes:

Θk(g) =
∑
u∈Ω

ϕk(Lg−1(u))f(u), ∀g ∈ G. (3)

The output of one filter k is therefore a map Θk : G→ R, while the output of the whole layer with
K filters is Θ : G→ RK defined as Θ(g) = [Θ1(g), . . . ,ΘK(g)] for all g ∈ G. The G-convolution
therefore outputs a signal Θ whose domain has necessarily become the group Ω = G and whose
number of channels is the number of convolutional filters K.

The G-convolution is equivariant to the action of the group on the domain of the signal f [8]. That
is, the action of g on the domain of f results in a corresponding action on the output of the layer.
Specifically, consider a filter ϕk, we have:

ϕk ∗ Lg[f] = L′
g[ϕk ∗ f], ∀g ∈ G, (4)

where Lg and L′
g represent the actions of the same group element g on the functions f and ϕk ∗ f

respectively. This property applies for the G-convolutions of the first layer and of the next layers [8].

2.2.2 G-Pooling

Invariance to the action of the group is achieved by pooling over the group (G-Pooling) [8]. The
pooling operation is typically performed after the G-convolution, so that we restrict its definition to
signals Θ defined over a group G. In G-pooling, a max typically is taken over the group elements:

µk = max
g∈G

Θk(g). (5)

G-pooling extracts a single real scalar value µk from the full feature vector Θk, which has |G|
values, with |G| the size of the (discretized) group G as shown in Fig. 1. When the group G is a grid

4

discretizing Rn, max G-Pooling is equivalent to the standard spatial max pooling used in translation-
equivariant CNNs, and it can be used to achieve coarse-graining. More generally, G-Pooling is
G-invariant, as shown in [8]. However, we argue here that it is excessively G-invariant. Although
it achieves the objective of invariance to the group action, it also loses substantial information.
As illustrated in Fig. 1, many different signals Θ may yield same result µ through the G-pooling
operation, even if these signals do not share semantic information. This excessive invariance creates
an opportunity for adversarial susceptibility. Indeed, inputs f can be designed with the explicit
purpose of generating a µk that will fool a neural network and yield an unreasonable classification
result. For this reason, we introduce our general framework for robust, selective G-invariance.

3 The G-Triple-Correlation Layer for Robust G-Invariance

We propose a G-Invariant layer designed for G-CNNs that is complete—that is, it preserves all
information about the input signal except for the group action. Our approach leverages the theory of
the triple correlation on groups [32] and applies it to the design of robust neural network architectures.
Its theoretical foundations in signal processing and invariant theory allows us to generally define the
unique G-invariant maps of lowest polynomial order that are complete, hence providing a general
framework for selective, robust G-invariance in G-CNNs [46].

3.1 The G-Triple-Correlation Layer

The G-Triple-Correlation (G-TC) on a real signal Θ : G→ R is the integral of the signal multiplied
by two independently transformed copies of it [32]:

τΘ(g1, g2) =

∫
g∈G

Θ(g)Θ (gg1)Θ (gg2) dg. (6)

This definition holds for any locally compact group G on which we can define the Haar measure dg
used for integration purposes [28]. This definition above is applicable to the G-CNNs where Θ is a
collection of scalar signals over the group. We show in Appendix B that we can extend the definition
to steerable G-CNNs where Θ can be an arbitrary field [9].

In the equation above, the G-TC is computed for a pair of group elements g1, g2. In practice, we
sweep over all pairs in the group. Appendix C illustrates the triple correlation on three concrete
groups. Importantly, the G-triple-correlation is invariant to the action of the group G on the signal
Θ [28], as shown below.
Proposition 1. Consider a signal Θ : G 7→ Rc. The G-Triple-Correlation τ is G-invariant:

τLg [Θ] = τΘ, for all g ∈ G, (7)

where Lg denotes an action of a transformation g on the signal Θ.

The proof is recalled in Appendix D. We propose to achieve G-invariance in a G-CNN by applying
the G-Triple-Correlation (G-TC) to the output Θ of a G-convolutional layer. Specifically, we apply
the G-TC to each real scalar valued signal Θk that comes from the G-convolution of filter ϕk, for
k ∈ {1, ...,K}. We only omit the subscript k for clarity of notations. In practice, we will use the
triple correlation on discretized groups, where the integral is replaced with a summation:

TΘ(g1, g2) =
∑
g∈G

Θ(g)Θ(gg1)Θ(gg2), (8)

for Θ a scalar valued function defined over G. While it seems that the layer computes TΘ(g1, g2) for
all pairs of group elements (g1, g2), we note that the real scalars Θ(gg1) and Θ(gg2) commute so
that only half of the pairs are required. We will see that we can reduce the number of computations
further when the group G possesses additional properties such as commutativity.

We note that the triple correlation is the spatial dual of the bispectrum, which has demonstrated
robustness properties in the context of deep learning with bispectral neural networks [42]. The
goal of bispectral neural networks is to learn an unknown group G from data. The bispectral layer
proposed in [42] assumes an MLP architecture. Our work is the first to generalize the use of bispectral
invariants to convolutional networks. Here, we assume that the group G is known in advance, and

5

exploit the theoretical properties of the triple correlation to achieve robust invariance. One path for
future extension may be to combine our approach with the learning approach of [42], to parameterize
and learn the group G that defines a G-Equivariant and G-Invariant layer.

3.2 Selective Invariance through Completeness

We show here that the proposed G-triple-correlation is guaranteed to preserve all information aside
from any equivariant component due to the group action on the input domain. This crucial property
distinguishes our proposed layer from standard G-Pooling methods, which collapse signals and
lose crucial information about the input (Figure 1). In contrast with standard, excessively invariant
G-pooling methods, we show here that our G-TC layer is instead selectively G-invariant thanks to its
completeness property [54, 29, 31], defined here:
Proposition 2. Every integrable function with compact support G is completely identified—up to
group action—by its G-triple-correlation. We say that the G-triple-correlation is complete.

Mathematically, an operator T is complete for a group action L if the following holds: for every pair
of signals Θ1 and Θ2, if T (Θ1) = T (Θ2) then the signals are equal up to the group action, that is:
there exists a group element h such that Θ2 = Lh[Θ1].

The proof of the completeness of the G-triple-correlation is only valid under a precise set of assump-
tions [32] (Theorem 2). As we seek to integrate the G-triple-correlation to enhance robustness in
neural networks, we investigate here the scope of these assumptions. First, the assumptions are not
restrictive on the type of groups G that can be used. Indeed, the proof only requires the groups to be
Tatsuuma duality groups and the groups of interest in this paper meet this condition. This includes
all locally compact commutative groups, all compact groups including the groups of rotations, the
special orthogonal groups SO(n), and groups of translations and rotations, the special euclidean
groups SE(n). Second, the assumptions are not restrictive on the types of signals. Indeed, the signal
only needs to be such that any of its Fourier transform coefficients are invertible. For example, when
the Fourier transform coefficients are scalar values, this means that we require these scalars to be
non-zero. In practical applications on real image data with noise, there is a probability 0 that the
Fourier transform coefficients of the input signal will be exactly 0 (scalar case) or non-invertible
(matrix case). This is because the group of invertible matrices is dense in the space of matrices.
Therefore, this condition is also verified in the applications of interest and more generally we expect
the property of completeness of our G-TC layer to hold in practical neural network applications.

3.3 Uniqueness

The above two subsections prove that our G-Triple Correlation layer is selectively G-invariant. Here,
we note that our proposed layer is the lowest-degree polynomial layer that can achieve this goal.
In invariant theory, it is observed that the G-Triple Correlation is the only third-order polynomial
invariant (up to change of basis) [46]. Moreover, it is the lowest-degree polynomial invariant that is
also complete. It thus provides a unique and minimal-complexity solution to the problem of robust
invariance within this function class.

3.4 Computational Complexity

TheG-Triple Correlation enjoys some symmetries that we can leverage to avoid computing it for each
pair of group elements (which would represent |G|2 computations), hence making the feedforward
pass more efficient. We summarize these symmetries here.
Proposition 3. Consider two transformations g1, g2 ∈ G. The G-Triple Correlation of a real signal
Θ has the following symmetry:

TΘ(g1, g2) = TΘ(g2, g1).

IfG is commutative, theG-Triple Correlation of a real signal has the following additional symmetries:

TΘ(g1, g2) = TΘ(g
−1
1 , g2g

−1
1) = TΘ(g2g

−1
1 , g−1

1) = TΘ(g
−1
2 , g1g

−1
2) = TΘ(g1g

−1
2 , g−1

2).

The proofs are given in [39] for the group of translations. We extend them to any locally compact
group G in Appendix E. In practice, these symmetries mean that even if there are theoretically

6

|G|2 computations, this number immediately reduces to |G|(|G|+1)
2 and further reduces if the group

G of interest is commutative. In addition, more subtle symmetries can be exploited to reduce the
computational cost to linear |G|+1 for the case of one-dimensional cyclic groups [34] by considering
the spectral dual of the G-TC: the bispectrum. We provide a computational approach to extend
this reduction to more general, non-commutative groups in Appendix F. The theory supporting our
approach has yet to be extended to this general case. Thus, there is an opportunity for new theoretical
work that further increases the computational efficiency of the G-Triple-Correlation.

4 Related Work

The Triple Correlation. The triple correlation has a long history in signal processing [48, 5, 39]. It
originally emerged from the study of the higher-order statistics of non-Gaussian random processes,
but its invariance properties with respect to translation have been leveraged in texture statistics [53]
and data analysis in neuroscience [13], as well as early multi-layer perceptron architectures in the
1990’s [12, 33]. The triple correlation was extended to groups beyond translations in [32], and
its completeness with respect to general compact groups was established in [30]. To the best of
our knowledge, the triple correlation has not previously been introduced as a method for achieving
invariance in convolutional networks for either translation or more general groups.

Pooling in CNNs. Pooling in CNNs typically has the dual objective of coarse graining and achieving
local invariance. While invariance is one desiderata for the pooling mechanism, the machinery of
group theory is rarely employed in the computation of the invariant map itself. As noted in the
introduction, max and average pooling are by far the most common methods employed in CNNs and
G-CNNs. However, some approaches beyond strict max and average pooling have been explored.
Soft-pooling addresses the lack of smoothness of the max function and uses instead a smooth
approximation of it, with methods including polynomial pooling [49] and learned-norm [22], among
many others [15, 14, 43, 44, 3, 45, 11, 35]. Stochastic pooling [57] reduces overfitting in CNNs
by introducing randomness in the pooling, yielding mixed-pooling [55], max pooling dropout [51],
among others [47, 58, 21]

Geometrically-Aware Pooling. Some approaches have been adopted to encode spatial or structural
information about the feature maps, including spatial pyramid pooling [24], part-based pooling [59],
geometric Lp pooling [16] or pooling regions defined as concentric circles [41]. In all of these
cases, the pooling computation is still defined by a max. These geometric pooling approaches are
reminiscent of the Max G-Pooling for G-CNNs introduced by [8] and defined in Section 2.2.2,
without the explicit use of group theory.

Higher-Order Pooling. Average pooling computes first-order statistics (the mean) by pooling from
each channel separately and does not account for the interaction between different feature maps
coming from different channels. Thus, second-order pooling mechanisms have been proposed to
consider correlations between features across channels [38, 19], but higher-orders are not investigated.
Our approach computes a third-order polynomial invariant; however, it looks for higher-order
correlations within the group rather than across channels and thus treats channels separately. In
principle, these approaches could be combined.

5 Experiments & Results

Implementation

We implement the G-TC Layer for arbitrary discretized groups with an efficient implementation
built on top of the ESCNN library [7, 50], which provides a general implementation of E(n)-
Equivariant Steerable Convolutional Layers. The method is flexibly defined, requiring the user only
to provide a (Cayley) table that defines the group’s product structure. The code is publicly available
at https://github.com/sophiaas/gtc-invariance. Here, we demonstrate the approach on
the groups SO(2), and O(2), SO(3), and O(3), discretized as the groups Cn (cyclic), Dn (dihedral),
O (chiral octahedral), and Oh (full octahedral), respectively. ESCNN provides implementations for
G-Conv layers on all of these E(n) subgroups.

7

https://github.com/QUVA-Lab/escnn
https://github.com/sophiaas/gtc-invariance
https://github.com/QUVA-Lab/escnn

ℝ3
O(3)

ℝ2
O(2)

π 0

π
2

3π
2

Rotation Reflection

Space GroupSignal Dataset

Rotation Reflection

Figure 2: Datasets. The O(2)-MNIST (top) and O(3)-ModelNet10 (bottom) datasets are generated by applying
a random (rotation, reflection) pair to each element of the original datasets. Although we visualize the continuous
group here, in practice, we discretize the group O(3) as the full octahedral group Oh to reduce computational
complexity. SO(2) and SO(3) datasets are generated similarly, by applying a random rotation to each datapoint.

Experimental Design

We examine the performance of the G-TC over Max G-Pooling in G-Equivariant Networks defined
on these groups and trained on G-Invariant classification tasks. For the groups SO(2) and O(2)
acting on R2, we use the MNIST dataset of handwritten characters [37], and for the groups SO(3)
and O(3) acting on R3, we use the voxelized ModelNet10 database of 3D objects [52]. We generate
G-MNIST and G-ModelNet10 datasets by transforming the domain of each signal in the dataset by a
randomly sampled group element g ∈ G (Figure 2).

In these experiments, we train pairs of models in parameter-matched architectures, in which only the
G-Pooling method differs. Note that the purpose of these experiments is to compare differences in
performance between models using Max G-Pooling vs. the G-TC—not to achieve SOTA accuracy.
Thus, we do not optimize the models for overall performance. Rather, we fix a simple architecture
and set of hyperparameters and examine the change in performance that arises from replacing Max
G-Pooling with the G-TC Layer (Figure 3).

G-ConvG-Conv

Max G-Pool G-TC Layer

MLP MLP

SoftmaxSoftmax

Figure 3: Models. We compare two simple architectures comprised of a single G-Conv block followed by either
a Max G-Pool layer or a G-TC Layer and an MLP Classifier.

To isolate the effects of the G-Pooling method, all models are comprised of a single G-Conv block
followed by G-Pooling (Max or TC) and an MLP Classifier. Notably, while many G-Conv models
in the literature use the semi-direct product of G with Rn—i.e. incorporating the actions of the
group G into a standard translational convolutional model—here, we perform only pure G-Conv,
without translation. Thus, we use filters the same size as the input in all models. The G-Conv
block is comprised of a G-Conv layer, a batch norm layer, and an optional nonlinearity. For the

8

Max G-Pool model, ReLU is used as the nonlinearity. Given the third-order nonlinearity of the
TC, we omit the nonlinearity in the G-Conv block in the TC Model. The G-TC layer increases the
dimensionality of the output of the G-Conv block; consequently the input dimension of the first layer
of the MLP is larger and the weight matrix contains more parameters than for the Max G-Pool model.
To compensate for this, we increase the dimension of the output of the first MLP layer in the Max
Model, to match the overall number of parameters.

Evaluation Methods

We evaluate the models in two ways. First, we examine differences in the raw classification accuracy
obtained by replacing Max G-Pooling with the G-TC Layer. Second, we assess the completeness
of the model by optimizing “metameric” stimuli for the trained models—inputs that yield the
same pre-classifier representation as a target input, but are perceptually distinct. The completeness
evaluation is inspired by a recent paper that incorporates the bispectrum—the spectral dual of the
triple correlation—into a neural network architecture trained to yield G-invariant representations for
G-transformed data [42]. In this work, two inputs are considered “perceptually distinct” if they are
not in the same group orbit. They find that all inputs optimized to yield the same representation in
the bispectral model are identical up to the group action. By contrast, many metameric stimuli can
be found for E(2)-CNN [50], a G-Equivariant CNN that uses Max G-Pooling. Given the duality of
the bispectrum and the triple correlation, we expect to observe similar “completeness” for G-CNNs
using the G-TC Layer.

5.1 Classification Performance

We train G-TC and Max G-Pooling models on the SO(2) and O(2)-MNIST and chiral (O) and full
(Oh) octahedral voxelized ModelNet10 training datasets and examine their classification performance
on the test set. Full training details including hyperparameters are provided in Appendix G. Table
1 shows the test classification accuracy obtained by the Max-G and G-TC architectures on each
dataset. Accuracy is averaged over four random seeds, with confidence intervals showing standard
deviation. We find that the model equipped with G-TC obtains a significant improvement in overall
classification performance—an increase of 1.3, 0.89, 1.84 and 3.49 percentage points on SO(2)-
MNIST, O(2)-MNIST, O-ModelNet10 and Oh-ModelNet10 respectively.

C8-CNN on SO(2)-MNIST D16-CNN on O(2)-MNIST
Method Accuracy Parameters Accuracy Parameters

Max G-Pool 95.23 ± 0.15 32,915 92.17% ± 0.23 224,470
G-TC 96.53 ± 0.16 35,218 93.06 % ± 0.09 221,074

O-CNN on O-ModelNet10 Oh-CNN on Oh-ModelNet10
Method Accuracy Parameters Accuracy Parameters

Max G-Pool 72.17% ± 0.95 500,198 71.73% ± 0.23 1,826,978
G-TC 74.01% ± 0.48 472,066 75.22% ± 0.62 1,817,602

Table 1: Classification Accuracy & Parameter Counts for Models Trained on G-MNIST and G-
ModelNet10. Confidence intervals reflect standard deviation over four random seeds per model. The model
equipped with G-TC rather than Max G-Pooling obtains significantly improved classification performance on
all datasets.

5.2 Completeness

Following the analysis of [42], we next evaluate the completeness of the models trained on the
G-MNIST Dataset. Figure 4 shows inputs optimized to yield the same pre-classifier representation
as a set of target images. In line with similar findings from [42], we find that all inputs yielding
an identical representations and classifications in the G-TC Model are within the same group orbit.
Notably, the optimized images are identical to the targets, up to the group action. This reflects
exactly the completness of the G-TC: the G-TC preserves all signal structure up to the group action.

9

Thus, any rotated version of the a target will yield the same G-TC Layer output. By contrast, many
“metameric” misclassified stimuli can be found for the Max G-Pool Model, a consequence of the
lossiness of this pooling operation.

-M
N

IS
T

SO
(2)

-M
N

IS
T

O
(2)

Max -Pool ModelG
Targets Optimized Metamers

-Triple-Correlation ModelG
Targets Optimized Metamers

Figure 4: Optimized Model Metamers. For each model, 100 targets from the MNIST dataset were randomly
selected. 100 inputs were randomly initalized and optimized to yield identical pre-classifier model presentations.
All inputs optimized for the G-TC Model converge to the orbit of the target. By contrast, metamers that bear no
semantic relationship to the targets are found for every target in the Max G-Pooling model.

6 Discussion
In this work, we introduced a new method for achieving robust group-invariance in group-equivariant
convolutional neural networks. Our approach, the G-TC Layer, is built on the triple correlation
on groups, the lowest-degree polynomial that is a complete group-invariant map [32, 46]. Our
method inherits its completeness, which provides measurable gains in robustness and classification
performance as compared to the ubiquitous Max G-Pooling.

This improved robustness comes at a cost: the G-TC Layer increases the dimension of the output of a
G-Convolutional layer from G to |G|(|G|+1)

2 . While the dimension of the discretized groups used in
G-CNNs is typically small, this increase in computational cost may nonetheless deter practitioners
from its use. However, there is a path to further reduction in computational complexity provided
that we consider its spectral dual: the bispectrum. In [34], an algorithm is provided that exploits
more subtle symmetries of the bispectrum to demonstrate that only |G| + 1 terms are needed to
provide a complete signature of signal structure, for the one-dimensional cyclic group. In Appendix
F, we extend the computational approach from [34] to more general groups and provided a path for
substantial reduction in the complexity of the G-TC Layer, thus expanding its practical utility. Novel
mathematical work that grounds our proposed computations in group theory is required to quantify
the exact complexity reduction that we provide.

As geometric deep learning is applied to increasingly complex data from the natural sciences [18,
2, 27], we expect robustness to play a critical role in its success. Our work is the first to introduce
the general group-invariant triple correlation as a new computational primitive for geometric deep
learning. We expect the mathematical foundations and experimental successes that we present
here to provide a basis for rethinking the problems of invariance and robustness in deep learning
architectures.

10

Acknowledgments

The authors thank Christopher Hillar, Bruno Olshausen, and Christian Shewmake for many conversa-
tions on the bispectrum and triple correlation, which have helped shape the ideas in this work. Thanks
also to the members of the UCSB Geometric Intelligence Lab and to four anonymous reviewers for
feedback on earlier versions. Lastly, the authors acknowledge financial support from the UC Noyce
Initiative: UC Partnerships in Computational Transformation, NIH R01 1R01GM144965-01, and
NSF Grant 2134241.

References
[1] Edward H Adelson and James R Bergen. “Spatiotemporal energy models for the perception of

motion”. In: Josa a 2.2 (1985), pp. 284–299.
[2] Kenneth Atz, Francesca Grisoni, and Gisbert Schneider. “Geometric deep learning on molecu-

lar representations”. In: Nature Machine Intelligence 3.12 (2021), pp. 1023–1032.
[3] Florentin Bieder, Robin Sandkuhler, and Philippe C Cattin. “Comparison of methods general-

izing max-and average-pooling”. In: arXiv preprint arXiv:2103.01746 (2021).
[4] Wieland Brendel and Matthias Bethge. “Approximating cnns with bag-of-local-features models

works surprisingly well on imagenet”. In: arXiv preprint arXiv:1904.00760 (2019).
[5] D Brillinger. “Some history of higher-order statistics and spectra”. In: Stat. Sin. 1 (1991),

pp. 465–476.
[6] Michael M Bronstein et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,

and Gauges”. In: arXiv preprint arXiv:2104.13478 (2021).
[7] Gabriele Cesa, Leon Lang, and Maurice Weiler. “A Program to Build E(N)-Equivariant

Steerable CNNs”. In: International Conference on Learning Representations. 2022. URL:
https://openreview.net/forum?id=WE4qe9xlnQw.

[8] Taco Cohen and Max Welling. “Group equivariant convolutional networks”. In: International
conference on machine learning. PMLR. 2016, pp. 2990–2999.

[9] Taco S Cohen and Max Welling. “Steerable cnns”. In: arXiv preprint arXiv:1612.08498 (2016).
[10] Taco S. Cohen, Mario Geiger, and Maurice Weiler. “A general theory of equivariant CNNs on

homogeneous spaces”. In: Advances in Neural Information Processing Systems 32.NeurIPS
(2019). ISSN: 10495258.

[11] Wojciech Czaja et al. “Maximal function pooling with applications”. In: Excursions in Har-
monic Analysis, Volume 6: In Honor of John Benedetto’s 80th Birthday (2021), pp. 413–
429.

[12] Anastasios Delopoulos, Andreas Tirakis, and Stefanos Kollias. “Invariant image classification
using triple-correlation-based neural networks”. In: IEEE Transactions on Neural Networks
5.3 (1994), pp. 392–408.

[13] Sarita S Deshpande, Graham A Smith, and Wim van Drongelen. “Third-order motifs are
sufficient to fully and uniquely characterize spatiotemporal neural network activity”. In:
Scientific Reports 13.1 (2023), p. 238.

[14] Hayoung Eom and Heeyoul Choi. Alpha-Integration Pooling for Convolutional Neural Net-
works. 2020. arXiv: 1811.03436 [cs.LG].

[15] Joan Bruna Estrach, Arthur Szlam, and Yann LeCun. “Signal recovery from pooling represen-
tations”. In: International conference on machine learning. PMLR. 2014, pp. 307–315.

[16] Jiashi Feng et al. “Geometric Lp-norm feature pooling for image classification”. In: CVPR
2011. IEEE. 2011, pp. 2609–2704.

[17] K. Fukushima. “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of
Pattern Recognition Unaffected by Shift in Position”. In: Biological Cybernetics 36 (1980),
pp. 193–202.

[18] Pablo Gainza et al. “Deciphering interaction fingerprints from protein molecular surfaces using
geometric deep learning”. In: Nature Methods 17.2 (2020), pp. 184–192.

[19] Zilin Gao et al. “Global second-order pooling convolutional networks”. In: Proceedings of the
IEEE/CVF Conference on computer vision and pattern recognition. 2019, pp. 3024–3033.

[20] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing
adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

11

https://gi.ece.ucsb.edu/
https://openreview.net/forum?id=WE4qe9xlnQw
https://arxiv.org/abs/1811.03436

[21] Benjamin Graham. “Fractional max-pooling”. In: arXiv preprint arXiv:1412.6071 (2014).
[22] Caglar Gulcehre et al. “Learned-norm pooling for deep feedforward and recurrent neural net-

works”. In: Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part I 14. Springer.
2014, pp. 530–546.

[23] Brian C Hall. “Lie groups, Lie algebras, and representations”. In: Quantum Theory for Mathe-
maticians. Springer, 2013, pp. 333–366.

[24] Kaiming He et al. “Spatial pyramid pooling in deep convolutional networks for visual recog-
nition”. In: IEEE transactions on pattern analysis and machine intelligence 37.9 (2015),
pp. 1904–1916.

[25] David H Hubel and Torsten N Wiesel. “Receptive fields of single neurones in the cat’s striate
cortex”. In: The Journal of physiology 148.3 (1959), pp. 574–591.

[26] Jörn-Henrik Jacobsen et al. “Excessive invariance causes adversarial vulnerability”. In: arXiv
preprint arXiv:1811.00401 (2018).

[27] Xiangyang Ju et al. “Performance of a geometric deep learning pipeline for HL-LHC particle
tracking”. In: The European Physical Journal C 81 (2021), pp. 1–14.

[28] R. Kakarala. “A group theoretic approach to the triple correlation”. In: IEEE Workshop on
higher order statistics. 1993, pp. 28–32.

[29] Ramakrishna Kakarala. “A group-theoretic approach to the triple correlation”. In: [1993
Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics. IEEE. 1993,
pp. 28–32.

[30] Ramakrishna Kakarala. “Completeness of bispectrum on compact groups”. In: arXiv preprint
arXiv:0902.0196 1 (2009).

[31] Ramakrishna Kakarala. “The bispectrum as a source of phase-sensitive invariants for Fourier
descriptors: a group-theoretic approach”. In: Journal of Mathematical Imaging and Vision 44.3
(2012), pp. 341–353.

[32] Ramakrishna Kakarala. “Triple correlation on groups”. PhD thesis. University of California,
Irvine, 1992.

[33] Stefanos D Kollias. “A multiresolution neural network approach to invariant image recogni-
tion”. In: Neurocomputing 12.1 (1996), pp. 35–57.

[34] R. Kondor. Group theoretical methods in machine learning. Columbia University, PhD Thesis,
2008.

[35] Ashwani Kumar. “Ordinal pooling networks: for preserving information over shrinking feature
maps”. In: arXiv preprint arXiv:1804.02702 (2018).

[36] Y LeCun, C Cortes, and C Burges. “The MNIST Dataset of Handwritten Digits (Images)”. In:
NYU: New York, NY, USA (1999).

[37] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun.
com/exdb/mnist/ (1998).

[38] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. “Bilinear CNN models for fine-
grained visual recognition”. In: Proceedings of the IEEE international conference on computer
vision. 2015, pp. 1449–1457.

[39] Chrysostomos L Nikias and Jerry M Mendel. “Signal processing with higher-order spectra”.
In: IEEE Signal processing magazine 10.3 (1993), pp. 10–37.

[40] Rajendran Nirthika et al. “Pooling in convolutional neural networks for medical image analysis:
a survey and an empirical study”. In: Neural Computing and Applications 34.7 (Feb. 2022),
pp. 5321–5347. DOI: 10.1007/s00521-022-06953-8. URL: https://doi.org/10.
1007/s00521-022-06953-8.

[41] Kunlun Qi et al. “Concentric circle pooling in deep convolutional networks for remote sensing
scene classification”. In: Remote Sensing 10.6 (2018), p. 934.

[42] Sophia Sanborn et al. “Bispectral Neural Networks”. In: International Conference on Learning
Representations (2023).

[43] Arash Shahriari and Fatih Porikli. “Multipartite pooling for deep convolutional neural net-
works”. In: arXiv preprint arXiv:1710.07435 (2017).

[44] Zenglin Shi, Yangdong Ye, and Yunpeng Wu. “Rank-based pooling for deep convolutional
neural networks”. In: Neural Networks 83 (2016), pp. 21–31.

12

https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1007/s00521-022-06953-8

[45] Alexandros Stergiou, Ronald Poppe, and Grigorios Kalliatakis. “Refining activation downsam-
pling with SoftPool”. In: Proceedings of the IEEE/CVF international conference on computer
vision. 2021, pp. 10357–10366.

[46] Bernd Sturmfels. Algorithms in invariant theory. Springer Science & Business Media, 2008.
[47] Zhiqiang Tong, Kazuyuki Aihara, and Gouhei Tanaka. “A hybrid pooling method for convolu-

tional neural networks”. In: Neural Information Processing: 23rd International Conference,
ICONIP 2016, Kyoto, Japan, October 16–21, 2016, Proceedings, Part II 23. Springer. 2016,
pp. 454–461.

[48] J. Tukey. “The spectral representation and transformation properties of the higher moments
of stationary time series”. In: Reprinted in The Collected Works of John W. Tukey 1 (1953),
pp. 165–184.

[49] Zhen Wei et al. “Building detail-sensitive semantic segmentation networks with polynomial
pooling”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 7115–7123.

[50] Maurice Weiler and Gabriele Cesa. “General E(2)-Equivariant Steerable CNNs”. In: Confer-
ence on Neural Information Processing Systems (NeurIPS). 2019.

[51] Haibing Wu and Xiaodong Gu. “Max-pooling dropout for regularization of convolutional
neural networks”. In: Neural Information Processing: 22nd International Conference, ICONIP
2015, Istanbul, Turkey, November 9-12, 2015, Proceedings, Part I 22. Springer. 2015, pp. 46–
54.

[52] Zhirong Wu et al. “3d shapenets: A deep representation for volumetric shapes”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015, pp. 1912–1920.

[53] John I Yellott. “Implications of triple correlation uniqueness for texture statistics and the Julesz
conjecture”. In: JOSA A 10.5 (1993), pp. 777–793.

[54] JI Yellott Jr and GJ Iverson. “Uniqueness theorems for generalized autocorrelations”. In:
Journal of the Optical Society of America 9 (1992), pp. 388–404.

[55] Dingjun Yu et al. “Mixed pooling for convolutional neural networks”. In: Rough Sets and
Knowledge Technology: 9th International Conference, RSKT 2014, Shanghai, China, October
24-26, 2014, Proceedings 9. Springer. 2014, pp. 364–375.

[56] Afia Zafar et al. “A Comparison of Pooling Methods for Convolutional Neural Networks”. In:
Applied Sciences 12.17 (Aug. 2022), p. 8643. DOI: 10.3390/app12178643. URL: https:
//doi.org/10.3390/app12178643.

[57] Matthew D Zeiler and Rob Fergus. “Stochastic pooling for regularization of deep convolutional
neural networks”. In: arXiv preprint arXiv:1301.3557 (2013).

[58] Shuangfei Zhai et al. “S3pool: Pooling with stochastic spatial sampling”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 4970–4978.

[59] Ning Zhang, Ryan Farrell, and Trever Darrell. “Pose pooling kernels for sub-category recogni-
tion”. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2012,
pp. 3665–3672.

13

https://doi.org/10.3390/app12178643
https://doi.org/10.3390/app12178643
https://doi.org/10.3390/app12178643

Appendices

A Group Axioms

For a set of transformations G to be a group under the operation ·, these four axioms must hold:

1. Closure: The product of any two elements of the group is also an element of the group, i.e.,
for all g1, g2 ∈ G, g1g2 ∈ G.

2. Associativity: The grouping of elements under the operation does not change the outcome,
so long as the order of elements is preserved, i.e., (g1g2)g3 = g1(g2g3).

3. Identity: There exists a “do-nothing” identity element e that such that the product of e with
any other element g returns g, i.e., ge = eg = g for all g ∈ G.

4. Inverse: For every element g, there exists an inverse element g−1 such that the product of g
and g−1 returns the identity, i.e. gg−1 = g−1g = e.

B The Case of Steerable G-CNNs

We consider the framework of Steerable G-CNNs defined in [9]. Consider a group G that is the
semi-direct product G = Z2 ⋉H of the group of translations Z2 and a group H of transformations
that fixes the origin 0 ∈ Z2. Consider the feature map Θ : Z2 → RK that is the output of a steerable
G-CNN. Here, Θ is a field that transforms according to a representation π induced by a representation
ρ of H on the fiber RK .

The G-TC can be defined on Θ by replacing the regular representation by the induced representation.
Specifically, replace any Θ(g), i.e. the scalar value of the feature map at group element g by
π(g)(Θ)(x), i.e., the vector value of the feature map at x after a group element g has acted on it via
the representation π :

τΘ(g1, g2) =

∫
G

π(g)(Θ)(x)† · π (g1g) (Θ)(x) · π (g2g) (Θ)(x)dg.

Instead of computing the G-TC for each scalar coordinate k of Θ as in the main text, we directly
compute it as a vector. The formulation does not depend on the choice of x by homogeneity of
the domain Z2 for the group G. Importantly, this G-TC is invariant to the action of the induced
representation, see Appendix D.

C The G-Triple Correlation: Concrete Examples

We show how to compute the G-Triple Correlation (G-TC) on three concrete groups. We start with
the G-TC for the group R2 of 2D translations.
Example 1. Consider the group of 2D translations G = (R2,+) with the addition as the group law.
Consider a signal Θ that is a real function defined over R2 and can therefore be identified with an
image. For any x1, x2 ∈ R2, the G-TC is given by:

τΘ(x1, x2) =

∫
x∈R2

Θ(x)Θ (x+ x1)Θ (x+ x2) dx. (9)

Next, we consider the special orthogonal group SO(2) of 2D rotations.
Example 2. Consider the group of 2D rotations G = (SO(2), ·) where SO(2) is parameterized by
[0, 2π] and the composition of rotations · is the addition of angles modulo 2π:

θ1 · θ2 ≡ θ1 + θ2[2π]. (10)

For a real signal Θ defined over G, we have:

τΘ(θ1, θ2) =

∫
θ∈SO(2)

Θ(θ)Θ (θ + θ1)Θ (θ + θ2) dθ, (11)

for any θ1, θ2 ∈ SO(2) and the addition is taken modulo 2π.

14

Finally, we compute theG-TC for the special euclidean group SE(2) of 2D rotations and translations,
i.e., of 2D rigid-body transformations.
Example 3. Consider the group of 2D rigid body transformations G = SE(2) = (SO(2)× R2, ·)
equipped with the group composition law:

(θ1, x1) · (θ2, x2) ≡ (θ1 + θ2, Rθ1 .x2 + x1), (12)

where Rθ1 =

[
cos θ1 − sin θ1
sin θ1 cos θ1

]
is the 2D rotation matrix associated with rotation θ1 and the

addition of angles θ1 + θ2 is taken module 2π.

For a real signal defined on SE(2) we have:

τΘ((θ1, x1), (θ2, x2)) =

∫
(θ,x)∈SE(2)

Θ(θ, x)Θ ((θ, x) · (θ1, x1))Θ ((θ, x) · (θ2, x2)) dθdx

=

∫
(θ,x)∈SE(2)

Θ(θ, x)Θ (θ + θ1, Rθ.x1 + x)Θ (θ + θ2, Rθ.x2 + x) dθdx,

for any θ1, θ2 ∈ SO(2) and x1, x2 ∈ R2.

D Invariance of the G-Triple Correlation

Consider a real signal Θ defined over a group G. The G-Triple Correlation is invariant to group
actions on the domain of the signal Θ as shown in [28].
Proposition 4. Consider two real signals Θ1,Θ2 defined over a group G. If there exists h ∈ G such
that one signal is obtained from the other by a group action, i.e., Θ2 = Lh[Θ1], then τΘ1

= τΘ2
.

We recall the proof of [28] below.

Proof. Consider two real signals Θ1,Θ2 defined over a group G, such that Θ2 = Lh[Θ1] for a group
action Lh of group element h. We show that this implies that τΘ1

= τΘ2
.

Taking g1, g2 ∈ G, we have:

τΘ2
(g1, g2) =

∫
g∈G

Θ2(g)Θ2 (gg1)Θ2 (gg2) dg

=

∫
g∈G

Lh[Θ1](g)Lh[Θ1] (gg1)Lh[Θ1] (gg2) dg

=

∫
g∈G

Θ1(hg)Θ1 (hgg1)Θ1 (hgg2) dg

=

∫
g∈G

Θ1(g)Θ1 (gg1)Θ1 (gg2) dg

= τΘ1(g1, g2).

where we use the change of variable hg → g.

This proves the invariance of the G-TC with respect to group actions on the signals.

E Symmetries of the G-Triple Correlation

The G-Triple Correlation (G-TC) enjoys some symmetries that we can leverage to avoid computing
it for each pair of group elements (which would represent |G|2 computations), hence making the
feedforward pass more efficient.

These symmetries are given in the main text. We recall them here for completeness.
Proposition 5. Consider two transformations g1, g2 ∈ G. The G-Triple Correlation of a signal Θ
has the following symmetry:

(s1) TΘ(g1, g2) = TΘ(g2, g1).

15

IfG is commutative, theG-Triple Correlation of a real signal has the following additional symmetries:

(s2) TΘ(g1, g2) = TΘ(g
−1
1 , g2g

−1
1) = TΘ(g2g

−1
1 , g−1

1) = TΘ(g1g
−1
2 , g−1

2) = TΘ(g
−1
2 , g1g

−1
2).

Our proof extends the proof given in [39] for the group of translations.

Proof. Consider two transformations g1, g2 ∈ G.

Symmetry (s1) relies on the fact that Θ(gg2) and Θ(gg1) are scalar values that commute:

TΘ(g2, g1) =
1

|G|
∑
g∈G

Θ(g)Θ(gg2)Θ(gg1) =
1

|G|
∑
g∈G

Θ(g)Θ(gg1)Θ(gg2) = TΘ(g2, g1).

For symmetry (s2), we assume that G is commutative. We prove the first equality:

TΘ(g
−1
1 , g2g

−1
1) =

1

|G|
∑
g∈G

Θ(g)Θ(gg−1
1)Θ(gg2g

−1
1)

=
1

|G|
∑
g′∈G

Θ(g′g1)Θ(g′)Θ(g′g1g2g
−1
1) (with g′ = gg−1

1 , i.e., g = g′g1)

=
1

|G|
∑
g′∈G

Θ(g′g1)Θ(g′)Θ(g′g2) (G commutative: g2g−1
1 = g−1

1 g2)

=
1

|G|
∑
g∈G

Θ(gg1)Θ(g)Θ(gg2)

=
1

|G|
∑
g∈G

Θ(g)Θ(gg1)Θ(gg2) (Θ takes on real values that commute)

= TΘ(g2, g1)

The second equality of symmetry (s2) follows using (s1). The third and fourth equality of symmetry
(s2) have the same proof.

This result and its proof are also valid for the extension of the G-TC that we propose in Appendix B.
They naturally emerge by replacing the regular representation by the induced representation in the
proof above.

Specifically, consider a signal Θ2 = π (g0) [Θ1] obtained from the action of g0 on a signal Θ1. We
want to show that τΘ1 = τΘ2 . The key ingredient of the proof is the change of variable within the
integral

∫
G′ , which follows the semi-direct product structure of G :

h′ = hh0 and t′ = ϕ(h)t0 + t

where ϕ(h) is a matrix representing h that acts on Z2 via matrix multiplication: e.g., a rotation matrix
R = ϕ(r) in the case of SE(n). This concludes the adaptation of the proof for the steerable case.

F Algorithmic Reduction

In this section, we show that we can reduce the complexity of the G-Triple Correlation of a real
signal. This computational reduction requires that we consider, instead, the spectral dual of the G-TC,
the bispectrum [31]. In what follows, we consider a signal Θ defined over a finite group G. The
signal can be real or complex valued.

F.1 Reduction for Commutative Groups

Consider a commutative group G. The bispectrum for a signal Θ is defined over a pair of irreducible
representations ρ1, ρ2 of the group G as:

β(Θ)ρ1,ρ2
= F(Θ)†ρ1

F(Θ)†ρ2
F(Θ)ρ1ρ2

∈ C, (13)

16

where F(Θ) is the Fourier transform of Θ that generalizes the classical Fourier transformation to
signals defined over a group. We note that, in group theory, the irreducible representations (irreps) of
commutative groups map to scalar values. Hence, the bispectrum is a complex scalar in this case.

For a discrete commutative group, the number of irreps is equal to the size of the group.
[KondorThesis] proved that, for cyclic groups, it is enough to compute |G| + 1 bispectral co-
efficients to fully describe the signal Θ up to group action, instead of the |G|2 that would otherwise
be required from its definition.

F.2 Reduction for Non-Commutative Groups

Consider a non-commutative group G. The bispectrum of a signal Θ is defined over a pair of
irreducible representations ρ1, ρ2 of G as:

β(Θ)ρ1,ρ2 = [F(Θ)ρ1 ⊗F(Θ)ρ2]
†Cρ1,ρ2

[⊕
ρ∈ρ1⊗ρ2

F(Θ)ρ

]
C†

ρ1,ρ2
∈ CD1D2×D1D2 ,

where ⊗ is the tensor product, and ⊕ is a direct sum over irreps. The unitary Clebsch-Gordan matrix
Cρ1,ρ2

is analytically defined for each pair of representations ρ1, ρ2 as:

(ρ1 ⊗ ρ2)(g) = C†
ρ1,ρ2

[⊕
ρ∈ρ1⊗ρ2

ρ(g)
]
Cρ1,ρ2

. (14)

We note that the irreps of non-commutative groups map to matrices, hence the bispectrum is a
complex matrix in this case.

We provide an algorithmic approach reducing the computational complexity of the bispectrum for
non-commutative finite groups. We show that we can recover the signal Θ from a small subset of its
bispectral coefficients. That is, we can recover Θ from coefficients β(Θ)ρ1,ρ2 computed for a few,
well-chosen irreps ρ1, ρ2. In practice, we only need to compute a few bispectral coefficients to have a
complete invariant of the signal Θ —hence reducing the computational complexity of the layer.

Generalizing [28], we will show that a subset of bispectral coefficients allows us to recover the Fourier
transform of the signal Θ for every irreducible representation ρ of the group. This will show that we
can recover the signal Θ itself by applying the inverse Fourier transform.

We first show relationships between the bispectral coefficients and the Fourier coefficients of the
signal Θ in the following Lemma. We denote ρ0 the trivial representation of the group G, which is
the representation that sends every group element to the scalar 1.
Lemma 1. Consider ρ0 the trivial representation of the group G. Consider ρ any other irreducible
representation of dimension D. The bispectral coefficients write:

βρ0,ρ0
= |F(Θ)ρ0

|2F(Θ)ρ0
∈ C

βρ,ρ0
= F(Θ)†ρ0

F(Θ)†ρF(Θ)ρ ∈ CD×D.

Here, and in what follows, we denote β the bispectrum of Θ, i.e., we omit the argument Θ for clarity
of notations.

Proof. For ρ0 the trivial representation, and ρ an irreps, the Clebsh-Jordan (CJ) matrix Cρρ0
is the

identity matrix, and the matrix Cρρ0
is the scalar 1.

We compute the bispectral coefficient βρ0,ρ0
:

βρ0,ρ0
= (F(Θ)ρ0

⊗F(Θ)ρ0
)†Cρ0ρ0

[⊕
ρ∈ρ0⊗ρ0

F(Θ)ρ

]
C†

ρ0ρ0

= (F(Θ)ρ0
⊗F(Θ)ρ0

)†Cρ0ρ0
F(Θ)ρ0

C†
ρ0ρ0

(ρ0 ⊗ ρ0 = ρ0 which is irreducible)

= (F(Θ)2ρ0
)†Cρ0ρ0

F(Θ)ρ0
C†

ρ0ρ0
(F(Θ)ρ0

is a scalar for which tensor product is multiplication)

= |F(Θ)ρ0
|2F(Θ)ρ0

(CJ matrices are equal to 1.)

17

Take any irreducible representation ρ of dimension D, we have:

βρ,ρ0 = (F(Θ)ρ ⊗F(Θ)ρ0)
†Cρρ0

[⊕
ρ∈ρ⊗ρ0

F(Θ)ρ

]
C†

ρρ0

= F(Θ)†ρ0
F(Θ)†ρCρρ0F(Θ)ρC

†
ρρ0

(F(Θ)ρ0 is a scalar and ρ⊗ ρ0 = ρ)

= F(Θ)†ρ0
F(Θ)†ρF(Θ)ρ (CJ matrices are identity matrices).

Next, we summarize our main result.
Proposition 6. We can recover the Fourier coefficients of a signal Θ from only L bispectral coeffi-
cients, where L is a number computed from the Kronecker product table of the group G.

In the proof, we propose an algorithmic method that iteratively computes bispectral coefficients until
the Fourier coefficients of the signal are all recovered. We note that, for arbitrary groups and their
representations, Clebsch–Gordan (CJ) matrices are not known in general, yet they can be computed
numerically. Thus, the proof below assumes that the CJ matrices are given for the group G of interest.

Proof. Algorithmic Approach.

First, we show how we can recover the first Fourier coefficient (DC component), i.e., the Fourier
transform of the signal at the trivial representation ρ0, from a single bispectral coefficient.

F(Θ)ρ0
= f̂ρ0

=

∫
G

Θ(g)ρ0(g)dg =

∫
G

Θ(g)dg ∈ C. (15)

Using Lemma 1, we can recover this Fourier component from the bispectral coefficient βρ0,ρ0
, as:

|F(Θ)ρ0 | = (|βρ0,ρ0 |)
1/3

, arg(F(Θ)ρ0) = arg(βρ0,ρ0). (16)

Next, consider an irreducible representation ρ1 of dimension D. We seek to recover the Fourier
coefficient F(Θ)ρ1

. This Fourier coefficient is a matrix in CD×D. Using Lemma 1, we can recover it
from a single bispectral coefficient:

F(Θ)†ρF(Θ)ρ =
βρ,ρ0

F(Θ)†ρ0

∈ CD×D, (17)

since we have already recovered the Fourier coefficient F(Θ)ρ0
. The matrix F(Θ)†ρF(Θ)ρ is

hermitian, and thus admits a square-root, that we denote F(Θ)′ρ:

F(Θ)′ρ =

(
βρ,ρ0

F(Θ)†ρ0

)1/2

. (18)

The square-root F(Θ)′ρ only corresponds to F(Θ)ρ up to a matrix factor. This is an unidentifiability
similar to the commutative case [28]. Specifically, consider the singular value decomposition (SVD)
of F(Θ)ρ:

F(Θ)ρ = U.Σ.V †

⇒ F(Θ)†ρF(Θ)ρ = (U.Σ.V †)†.U.Σ.V † = V Σ2V †

⇒ F(Θ)′ρ = V ΣV †.

Thus, we have: F(Θ)ρ = UV †.F(Θ)′ρ where U, V are unitary matrices that come from the (un-
known) SVD decomposition of the (unknown) F(Θ)ρ. By recovering F(Θ)ρ as F(Θ)′ρ, we fix
UV † = I . This is similar to the same way in which [28] fixed ϕ = 0 (rotation of angle 0, i.e., the
identity) in the commutative case.

Next, we seek to find the remaining Fourier coefficients of the signal Θ, from a limited subset of the
bispectral coefficients. To this aim, we denote R the set of irreducible representations of the group

18

G. We recall that, for a finite group G, the set R is also finite, with its size equal to the number of
conjugacy classes of G.

We consider the following bispectral coefficient:

βρ1,ρ1
= (F(Θ)ρ1

⊗F(Θ)ρ1
)†Cρ1ρ1

[⊕
ρ∈ρ1⊗ρ1

F(Θ)ρ

]
C†

ρ1ρ1

= (F(Θ)ρ1
⊗F(Θ)ρ1

)†Cρ1ρ1

⊕
ρ∈R

F(Θ)
nρ,ρ1
ρ

C†
ρ1ρ1

,

where nρ,ρ1
is the multiplicity of irreps ρ in the decomposition of ρ1, ρ1. This multiplicity is known

as it only depends on the group, not on the signal Θ.

We get an equation that allows us to recover additional Fourier coefficients of the signal Θ:⊕
ρ∈R

F(Θ)
nρ,ρ1
ρ = C−1

ρ1ρ1
(F(Θ)ρ1 ⊗F(Θ)ρ1)

−†βρ1,ρ1C
−†
ρ1ρ1

, (19)

where everything on the right hand side is known. Therefore, every Fourier coefficient F(Θ)ρ that
appears in the decomposition of ρ1 ⊗ ρ1 into irreducible irreps ρ can be computed, by reading off the
elements of the block diagonal matrix defined by the direct sum. We recover the Fourier coefficients
F(Θ)ρ for which nρ,ρ1

̸= 0.

We assume that this procedure provides at least one other Fourier coefficient, for an irreps ρ2, that we
fix. We can then compute the following bispectral coefficient:

βρ1,ρ2
= (F(Θ)ρ1

⊗F(Θ)ρ2
)†Cρ1ρ2

[⊕
ρ∈ρ1⊗ρ2

F(Θ)
nρ,ρ2
ρ

]
C†

ρ1ρ2
,

to get a novel equation:⊕
ρ∈R

F(Θ)
nρ,ρ2
ρ = C−1

ρ1ρ2
(F(Θ)ρ1 ⊗F(Θ)ρ2)

−†βρ1,ρ2C
−†
ρ1ρ2

, (20)

where everything on the right-hand side is known. Thus, every Fourier coefficient F(Θ)ρ that appears
in the decomposition of ρ1 ⊗ ρ1 into irreducible irreps can be recovered, by reading off the elements
of the block diagonal matrix. We get the F(Θ)ρ for which nρ,ρ2

̸= 0. We iterate this procedure to
recover more Fourier coefficients.

Number of bispectral coefficients.

Now, we show that our procedure can indeed recover all of the Fourier coefficients of the signal Θ.
Additionally, we show that it only requires a limited number L of bispectral coefficients, where L
depends on the group G. Specifically, it depends on the Kronecker product table of G, which is the
|R| × |R| table of the decomposition of the tensor product of two irreducible representations into
a direct sum of elementary irreps. In this table, the element at row i and column j lists all of the
multiplicity of the irreps that appear in the decomposition of ρi ⊗ ρj .

The Kronecker table, i.e., any multiplicity mk = nρk
of ρk in the decomposition ρ̃ = ρi ⊗ ρj can be

computed with a procedure inspired by [9] and described below.

The procedure relies on the character χρ̃(g) = Tr(ρ̃(g)) of the representation ρ̃ to be decomposed.
From group theory, we know that the characters of irreps ρi, ρj are orthogonal, in the following sense:〈

χρi,, χρj

〉
≡ 1

|G|
∑
h∈G

χρi
(h)χρj

(h) = δij . (21)

Thus, we can obtain the multiplicity of irrep ρk in ρ̃ by computing the inner product with the k-th
character:

⟨χρ̃, χρk
⟩ = ⟨χ⊕lmlρl

, χρk
⟩ =

〈∑
l

mlχρl
, χρk

〉
=
∑
l

ml ⟨χρl
, χρk

⟩ = mk,

19

⊗ A1 A2 B1 B2 E
A1 (1, 0, 0, 0, 0) (0, 1, 0, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 0, 0, 1)
A2 (0, 1, 0, 0, 0) (1, 0, 0, 0, 0) (0, 0, 0, 1, 0) (0, 0, 1, 0, 0) (0, 0, 0, 0, 1)
B1 (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (1, 0, 0, 0, 0) (0, 1, 0, 0, 0) (0, 0, 0, 0, 1)
B2 (0, 0, 0, 1, 0) (0, 0, 1, 0, 0) (0, 1, 0, 0, 0) (1, 0, 0, 0, 0) (0, 0, 0, 0, 1)
E (0, 0, 0, 0, 1) (0, 0, 0, 0, 1) (0, 0, 0, 0, 1) (0, 0, 0, 0, 1) (1, 1, 1, 1, 0)

Table 2: Kronecker table for the dihedral group D4 which has 5 irreps called A1, A2, B1, B2 and E.

using the fact that the trace of a direct sum equals the sum of the traces (i.e. χρ⊕ρ′ = χρ + χρ′).
Thus, we can determine the Kronecker product table of interest. For example, the Kronecker product
table for the dihedral group D4 is shown in Table 2.

The Kronecker product table shows us how many bispectral coefficients we need to complete our
algorithmic procedure. Our procedure essentially uses a breadth-first search algorithm on the space
of irreducible representations, starting with ρ1 and using the tensor product with ρ1 as the mechanism
to explore the space. Whether this procedure succeeds in including all the irreps in R might on the
group and its Kronecker (tensor) product table. Specifically, consider all the irreps that appear in the
row corresponding to ρ1 in the Kronecker product table. If these irreps do not cover the set R of all
possible irreps, then the approach will need more than the tensor products of the form ρ1 ⊗ ρj to get
all of the Fourier coefficients of the signal Θ.

We observe in our experiments that this procedure does indeed succeed in computing all of the
Fourier coefficients of the signal Θ for most of the groups of interest. We provide detailed examples
of these computations on our github repository, for the diedral groups D4, D16 and for the chiral
octahedral group O. The procedure does not succeed in the case of the full octahedral group Oh does
not succeed.

For the diedral group D4, which has R = 5 irreps, our approach allows us to recover a signal on D4

from only 3 bispectral coefficients, instead of 52 = 25. For the diedral group D16, which has R = 11
irreps, we recover the signal from 9 bispectral coefficients instead of 112 = 121. For the octahedral
group, which has R = 5 irreps, we use 4 bispectral coefficients instead of 52 = 25. This represent a
substantial complexity reduction. More theoretical work is needed to prove that our approach applies
to a wide range of discrete groups, or to further generalize it for groups such as Oh.

G Training and Implementation Details

The code to implement all models and experiments in this paper can be found at
github.com/sophiaas/gtc-invariance.

For all experiments, we use near-identical, parameter-matched architectures in which only the type of
invariant map differs. To isolate the effects of the invariant map, all models are comprised of a single
G-Conv block followed by either Max G-Pooling or the G-TC layer, and an MLP Classifier. Here,
we perform only pure G-Conv, without translation. Thus, we use filters the same size as the input in
all models. The G-Conv block is comprised of a G-Conv layer, a batch norm layer, and an optional
nonlinearity. For the Max G-Pool model, ReLU is used as the nonlinearity. Given the third-order
nonlinearity of the G-TC, we omit the nonlinearity in the G-Conv block in the G-TC Model. The
G-TC layer increases the dimensionality of the output of the G-Conv block; consequently the input
dimension of the first layer of the MLP is larger and the weight matrix contains more parameters than
for the Max G-Pool model. To compensate for this, we increase the dimension of the output of the
first MLP layer in the Max Model, to match the overall number of parameters.

All models are trained with a cross-entropy loss, using the Adam optimizer, a learning rate of 0.00005,
weight decay of 0.00001, betas of [0.9, 0.999], epsilon of 10−8, a reduce-on-plateau learning rate
scheduler with a factor of 0.5, patience of 2 epochs, and a minimum learning rate of 0.0.0001. Each
model is trained with four random seeds [0, 1, 2, 3], and results are averaged across seeds.

20

https://github.com/sophiaas/gtc-invariance

G.1 MNIST Experiments: SO(2) and O(2) on R2

G.1.1 Datasets

The SO(2)-MNIST dataset is generated by applying a random 2D planar rotation to each digit in
the MNIST [36] training and test datasets. This results in training and test sets with the standard
sizes of 60, 000 and 10, 000. For the O(2)-MNIST, each image is randomly flipped and rotated—i.e.
transformed by a random element of the group O(2). A random 20% of the training dataset is set
aside for model validation and is used to tune hyperparameters. The remaining 80% is used for
training. Images are additionally downsized with interpolation to 16× 16 pixels.

G.1.2 Models and Training

C8-CNN

TC. The G-Conv block consists of an C8-Conv block using 24 filters followed by Batch Norm. Next,
the G-TC Layer is applied. The output is raveled and passed to a three-layer MLP using 1d Batch
Norm and ELU nonlinearity and after each linear layer, with all three layers having output dimension
64. Finally a linear layer is applied, with output dimension 10, for the 10 object categories.

Max. The G-Conv block consists of an C8-Conv block using 24 filters followed by Batch Norm and
a ReLU nonlinearity. Next, a Max G-Pooling Layer is applied. The output is raveled and passed to a
three-layer MLP using 1d Batch Norm and ELU nonlinearity and after each linear layer. The first
layer has output dimension 275, to compensate for the difference in output size of the G-TC Layer.
The remaining two layers having output dimension 64. Finally a linear layer is applied, with output
dimension 10, for the 10 object categories.

D16-CNN

TC. The G-Conv block consists of an D16-Conv block using 24 filters followed by Batch Norm.
Next, the G-TC Layer is applied. The output is raveled and passed to a three-layer MLP using 1d
Batch Norm and ELU nonlinearity and after each linear layer, with all three layers having output
dimension 64. Finally a linear layer is applied, with output dimension 10, for the 10 object categories.

Max. The G-Conv block consists of an D16-Conv block using 24 filters followed by Batch Norm
and a ReLU nonlinearity. Next, a Max G-Pooling Layer is applied. The output is raveled and passed
to a three-layer MLP using 1d Batch Norm and ELU nonlinearity and after each linear layer. The
first layer has output dimension 2, 380, to compensate for the difference in output size of the G-TC
Layer. The remaining two layers having output dimension 64. Finally a linear layer is applied, with
output dimension 10, for the 10 object categories.

G.2 ModelNet10 Experiments: O and Oh acting on R3

G.2.1 Datasets

The ModelNet10 dataset is downsampled and voxelized to a 10×10×10 grid. for theO-ModelNet10
Dataset, each datapoint is transformed by a random cubic rotation. For the Oh-ModelNet10 Dataset,
each datapoint is transformed by a random cubic rotation and flip. The standard training and testing
sets are used. A random 20% of the training dataset is set aside for model validation and is used to
tune hyperparameters. The remaining 80% is used for training.

G.2.2 Models and Training

O-CNN

TC. The G-Conv block consists of an O-Conv block using 24 filters followed by a IID 3D Batch
Norm Layer. Next, the G-TC Layer is applied. The output is raveled and passed to a three-layer MLP
using 1d Batch Norm and ELU nonlinearity and after each linear layer, with all three layers having
output dimension 64. Finally a linear layer is applied, with output dimension 10, for the 10 object
categories.

Max. The G-Conv block consists of an O-Conv block using 24 filters followed by a IID 3D Batch
Norm Layer and a ReLU nonlinearity. Next, a Max G-Pooling Layer is applied. The output is raveled
and passed to a three-layer MLP using 1d Batch Norm and ELU nonlinearity and after each linear

21

layer. The first layer has output dimension 5, 420, to compensate for the difference in output size
of the G-TC Layer. The remaining two layers having output dimension 64. Finally a linear layer is
applied, with output dimension 10, for the 10 object categories.

Oh-CNN

TC. The G-Conv block consists of an Oh-Conv block using 24 filters followed by a IID 3D Batch
Norm Layer. Next, the G-TC Layer is applied. The output is raveled and passed to a three-layer
MLP, with all three layers having output dimension 64. Finally a linear layer is applied, with output
dimension 10, for the 10 object categories.

Max. The G-Conv block consists of an Oh-Conv block using 24 filters followed by a IID 3D Batch
Norm Layer and a ReLU nonlinearity. Next, a Max G-Pooling Layer is applied. The output is raveled
and passed to a three-layer MLP. The first layer has output dimension 20, 000, to compensate for the
difference in output size of the G-TC Layer. The remaining two layers having output dimension 64.
Finally a linear layer is applied, with output dimension 10, for the 10 object categories.

22

	Introduction
	Background
	Mathematical Prerequisites
	G-Equivariant Networks
	G-Convolution
	G-Pooling

	The G-Triple-Correlation Layer for Robust G-Invariance
	The G-Triple-Correlation Layer
	Selective Invariance through Completeness
	Uniqueness
	Computational Complexity

	Related Work
	Experiments & Results
	Classification Performance
	Completeness

	Discussion
	Group Axioms
	The Case of Steerable G-CNNs
	The G-Triple Correlation: Concrete Examples
	Invariance of the G-Triple Correlation
	Symmetries of the G-Triple Correlation
	Algorithmic Reduction
	Reduction for Commutative Groups
	Reduction for Non-Commutative Groups

	Training and Implementation Details
	MNIST Experiments: SO(2) and O(2) on R2
	Datasets
	Models and Training

	ModelNet10 Experiments: O and Oh acting on R3
	Datasets
	Models and Training

