
Appendix A Classical simulation task

It should be needed to sample one million samples, achieving the required XEB.

Fig. 3 shows a corresponding circuit example. It has n = 2 qubits for the initial state |ψ0〉 and
m = 2 cycles. The sampling process using the quantum circuit is computed as follows,

1. In the first cycle, random selected single-qubit quantum gates are first applied to all the
four qubits of |ψ0〉; Then, the double-qubit quantum gates are applied to R0

1 |ψ0〉0,1 and
R2

1 |ψ0〉2,3, respectively, and obtain |ψ1〉;
2. In the second cycle, random selected single-qubit quantum gates are first applied to all the

four qubits of |ψ1〉; Then, the double-qubit quantum gates are applied to R1
2 |ψ1〉1,2, and

obtain |ψ2〉;
3. Next, random selected single-qubit quantum gates are first applied to all the four qubits of
|ψ2〉, and obtain Rj

2 |ψ1〉j , j = 0, 1, 2, 3;

4. Last, we have a measurement αi1i2i3i4 = 〈i1i2i3i4 |ψ3〉. The sampled output is a bit-string
αi1i2i3i4 .

Algorithm 1 Random circuit sampling
1: Input: initial state |ψ0〉, number of cycles m, single-qubit quantum gate {

√
X,
√
Y ,
√
W }, double-qubit

quantum gate Ui,
2: for i = 1, ...,m do
3: for j = 0, ..., n− 1
4: Rj

i ← randomly select from {
√
X,
√
Y ,
√
W },

5: |ψi〉j = Rj
i |ψi−1〉j ,

6: end for
7: for j = (i+ 1)%2, ..., n/2− 1
8: p← compute the manipulate quantum bit index 2j + (i+ 1)%2
9: |ψi〉p,p+1 = Up

i |ψi−1〉p,p+1,
10: end for
11: end for
12: for j = 0, ..., n− 1
13: Rj

m+1← randomly select from {
√
X,
√
Y ,
√
W },

14: |ψm+1〉j = Rj
m+1 |ψm〉j ,

15: end for
16: Obtain a measurement by αi1i2...in = 〈i1i2...in |ψm+1〉,
17: Output: a bit-string αi1i2...in .

Quantum circuits: There have been many quantum circuits proposed as follows,

• Sycamore quantum [3]: It consists of 53 qubits and 20 cycles. For the Boson sampling
problem, it only needs 200 seconds to finish this task, while it needs 10, 000 years for
classical simulation.

• Jiu Zhang [60]: It consists of 74 qubits. For the Gaussian Boson Sampling problem, it can
use 200s to finish up to a million times compared with classical simulations.

• Zuchongzhi [61]: It has 60 qubits with the number of 24. The achieved sampling task is
about 6 orders of magnitude more difficult than that of Sycamore in the classic simulation.

Appendix B Data Generators and Reinforcement Learning Environments.

B.1 Tensor Network Representations

We use the unidirectional graph to represent the tensor network. Specifically, for a given tensor net-
work with n tensors, we use a symmetric n×nmatrix M to represent the dimensional relationships
between tensors, which is named the dimension matrix. Specifically, if the tensors with index i and
j are connected with a shared dimension as dij , then we set Mij = Mji = dij , otherwise, it is
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Figure 8: Example of the tensor network contraction environment.

set as 0. We also denote a connection matrix C, where Cij = Cji = 1 indicates the connection
between the i-th tensor and j-th tensor.

B.2 Tensor Network Contraction

We employ tensor network contraction as the underlying computational framework in our quantum
circuit simulation. Given a specific tensor network structure and a specified contraction order, the
environment is designed to provide the number of multiplications required during the tensor con-
traction process.

Specifically, as illustrated in Figure 8, we consider a tensor network comprising 4 tensors connected
in a grid structure. When performing a tensor contraction between tensors C and D, it is necessary
to compute the number of multiplications involved. From the unidirectional graph representation,
tensor C has dimensions M × J , tensor D has dimensions S × I ×M , and a shared edge with
dimension M exists.

To contract tensorsC andD along the edge with dimensionM , the number of multiplications can be
computed as (MJ)×(SIM)

M . This expression takes into account the multiplication of the dimensions
MJ from tensor C and SIM from tensor D, divided by the shared dimension M .

Upon completing the contraction, it is essential to update the unidirectional graph representation.
The contracted tensor formed by the contraction of C and D retains an independent edge with di-
mension M (M33 = M34 = M43 = M44 = M ). The connected edges between the contracted
tensor (C or D) and other tensors are determined by multiplying the original edge dimensions be-
tween them (M23 = M24 = M32 = M42 = IJ). This update to the unidirectional graph ensures
accuracy and reflects the changes resulting from the contraction step.

By incorporating the update of the unidirectional graph and computing the number of multiplica-
tions, we complete the current simulation step.

B.3 Verification

Unified representation: We use a tuple consisting of the contracted tensor indices to represent the
tensor contraction order. The resulting tensor is labeled as a new index. As shown for example in
Fig. 5, we first write down (3, 4) for the first contraction operation. We label the generated tensor 34
as 5. Next, we use (1, 2) to label the second tensor contraction operation and 6 to label the resulting
tensor 12. Last, we contract the tensor 12 and 34, where we use (5, 6) to represent the contraction
record. Thus, we have the contraction order {(3, 4), (1, 2), (12, 34)}
Calculating the number of multiplications: Given the tensor contraction order, we will compute
the number of involved multiplications. In Fig. 5, using different optimizers, we can get a specific
contraction order, like {(3, 4), (1, 2), (12, 34)}. We first contract the 3-th and 4-th tensor, of which
the number of multiplication is IJMS. Then, for the contraction order (1, 2), we have the num-
ber of multiplication as SKIJ . Last, for the contraction order (12, 34), we have the number of
multiplication as SIJ .
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(a) Tensor-train network. (b) Tensor-ring network.

Figure 9: Illustration of the tensor train and tensor ring network.

B.4 Datasets for Different Tensor Networks

In this section, we will first introduce the data structure used to describe the relationships between
different tensor nodes. Then, we will demonstrate the generation process of the dataset for different
tensor networks.

Data Structure: The tensor network can be represented as an undirected graph G = {V,E,w} and
is amenable to be stored using the adjacent table, which can be defined as follows (C-format),

1 c l a s s TensorNetwork {
2 i n t V; / / number o f t e n s o r nodes
3 i n t E ; / / number o f edges
4 Queue [ ] a d j ; / / a d j a c e n t nodes f o r each node
5

6 TensorNetwork ( i n t V) { / / i n i t t h e g raph
7 t h i s .V = V; t h i s . E = 0 ;
8 t h i s . a d j = new Queue [V ] ;
9 f o r ( i = 0 ; i < V; i ++) {

10 t h i s . a d j [ i ] = new Queue [ ] ;
11 }
12 }
13 vo id AddEdge ( i n t v , i n t w) { / / add t h e edges
14 i f (w > v ) v , w = w, v ;
15 t h i s . a d j [ v ] . enqueue (w) ;
16 t h i s . E++;
17 }
18 vo id B u i l d ( . . . ) ; / / d i f f e r s i n d i f f e r e n t t e n s o r n e t w o r k s
19 }

Specifically, we use V and E to save the number of tensor nodes and edges, respectively. The
variable adj is a queue with flexible length, where adj[j] is also a queue to save the adjacent tensor
nodes. Given the total number of tensor nodes V , TensorNetwork(V ) is used to initialize the
undirected graph, where each tensor node is assigned an empty queue. The addEdge(·, ·) is invoked
to add the connected relationship between the connected tensor nodes v andw. We make a simplified
assumption that only the larger index w can be added to the adjacent queue of v. Different tensor
network differs in the implementation of the Build(...) function, which invokes the addEdge(·, ·)
depending on the specified tensor network structure.

Tensor-Train Network or Matrix Product States: The matrix product state (MPS) [41, 56] or
tensor-train (TT) represents a tensor as a chain-like contraction of third-order tensors with the head
and tail as matrices. The tensor diagram of MPS/TT is shown in Fig. 9(a).

MPS has been widely used in modeling quantum circuits such as [47, 16, 45]. In the Build(...)
function, for each tensor node i, we need to use the AddEdge(i, i + 1) to add the i + 1-th node to
the adjacent lists of i-th node, i < |V | − 1. We can set up different number of tensor nodes N to
generate the dataset for MPS tensor network.

1 vo id TensorNetwork : : B u i l d ( ) { / / B u i l d f o r MPS
2 f o r ( i = 0 ; i < t h i s . V−1; i ++) t h i s . AddEdge ( i , i +1) ; }
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The generation code for the tensor-train network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/mps/mps_generate.py.

Tensor ring network: The tensor ring (TR) represents a high-order (or high-dimensional) tensor by
a sequence of 3rd-order tensors that are multiplied circularly, whose tensor diagram notation can be
represented in Fig. 9(b).

The tensor-ring network has been utilized to simulate the quantum circuit in [44].

The main difference between the tensor ring and the MPS tensor network is that the first and last
tensor nodes in tensor ring network are also connected. Thus, only a minor modification of MPS
generation can be applied to generate the tensor ring network.

1 vo id TensorNetwork : : B u i l d ( ) { / / B u i l d f o r t r e e t e n s o r
2 f o r ( i n t i = 0 ; i < t h i s .V; i ++)
3 t h i s . AddEdge ( i , ( i +1)%t h i s .V) ; }

The generation code for the tensor-ring network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/tr/tr_generate.py.

Tree Tensor Network: Tree tensor network (TTN) [37, 52, 55] or Hierarchical Tucker (HT) is a
generalization of MPS that encodes a tree entanglement structure. The diagram notation of a TTN
can be represented in Fig. 10.

Figure 10: Tree tensor network.

Tree tensor network has been used to model the quantum [24, 50], and quantum chemistry [36, 37].

Tree tensor network is a fully binary tree structure, of which the number of tensor nodes depends on
the height. we reload the initialization function and write the build function as follows,

1 TensorNetwork : : TensorNetwork ( i n t H) { / / i n i t t h e g raph
2 t h i s .H = H; t h i s .V = pow ( 2 ,H) − 1 ; t h i s . E = 0 ;
3 t h i s . a d j = new Queue [V ] ;
4 f o r ( i = 0 ; i < V; i ++) {
5 t h i s . a d j [ i ] = new Queue [ ] ;
6 }
7 }
8 vo id TensorNetwork : : B u i l d ( ) { / / B u i l d f o r t e n s o r r i n g
9 t h i s . AddEdge ( 0 , 1 ) ; t h i s . AddEdge ( 0 , 2 ) ;

10 f o r ( h = 1 ; h < t h i s .H; h ++){
11 f o r ( v = pow ( 2 , h −2) ; v < pow ( 2 , h −1) + 1 ; v ++){
12 t h i s . AddEdge ( v , 2v ) ; t h i s . AddEdge ( v , 2v +1) ;
13 }
14 }
15 }
16

The generation code for the tree tensor network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/tree/tree_generate.
py.

PEPS Network: The PEPS (projected entangled pair state) tensor network [49, 58] generalizes MPS
from a one-dimensional network to a network on an arbitrary graph, whose tensor diagram notation
can be represented in Fig. 11.

Some work applies the PEPS network to quantum circuits [43] and quantum systems [40, 31].
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Figure 11: PEPS tensor network.

The generation code for the PEPS network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/peps/peps_generate.
py.

MERA Network: The MERA (Multiscale Entanglement Renormalization Ansatz) [14] tensor net-
work colleagues as a refinement of the MPS and PEPS. It has a hierarchical structure, with layers
of tensors representing increasingly coarse-grained degrees of freedom, which can be represented in
Fig. 12.

Figure 12: MERA tensor network.

Some work applies the MERA network to quantum circuits [1, 20, 1, 30].

The generation code for the MERA tensor network is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/datasets/mera/mera_generate.
py.

Google’s Sycamore Circuits: Some work has put efforts into transforming the Sycamore circuits
into tensor representations. The provided data is usually organized into the adjacent graph structure,
while the indices of the i-th row are the indices of connected tensors to i-the tensor. The tensor
network representation of the Sycamore circuits corresponds to a complicated net structure. To map
the Sycamore circuits into the tensor network environment, we need to iteratively read each line of
the given Sycamore file and fill it up with corresponding dimension information.

The generation code for the Sycamore circuit is saved in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/tree/main/datasets/sycamore.

B.5 Environment

We provide the gym-environment for the tensor network contraction problem in our clas-
sical simulation of quantum circuits. The code is provided in https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/main/rl/mps/env.py for tensor-train ten-
sor network and https://github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits/blob/
main/rl/sycamore/env.py for Sycamore circuits.
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Specifically, the gym-environment for the tensor network contraction problem in our classical sim-
ulation of quantum circuits is designed as follows,

• Init/Restart: initialize the states of environments, including the number of nodes, the num-
ber of edges, etc.

• Step: Given the tensor network contraction order, compute the number of involved multi-
plications as the reward. The rewards are represented in log scale.

The implementations can be found in init(), and get log10 multiple times() functions of our env.py.

B.6 High-Performance Reinforcement Learning for TNCO

Mapping onto the K-spin Ising Model: We use the K-spin Ising model to formulate the TNCO
problem as follows,

H(x) =

N−1∑
i=1

(2− N−i∑
u=1

xu,i

)2

+

N∑
u=1

N∑
v=1

Jui,vixu,ixv,i

 ,
H(x1, ..., xK) =

K∑
k=1

H(xk) +

K∑
k=1

∑
i1∈V 1

...
∑

i1∈V k

Ji1...ikx
1
i1 ...x

k
ik ,

(12)

where we denote the N(N − 1) spin as xu,j , u as the tensor and j denotes its order in the TNCO
path.

We use the variational annealing methods to solve the K-spin Ising model problem of TNCO. Specif-
ically, we minimize the KL divergence between the transition distribution of x to x′ with the target
Boltzmann distribution as follows,

DKL(qθ||p) =
∑
x

qθ(x→ x′) ln

(
qθ(x→ x′)

p(x→ x′)

)
=
∑
x

qθ(x→ x′) ln qθ(x→ x′)

+
qθ(x→ x′)(H(x)−H(x′))

T
+ lnZx,

(13)

where T is the temperature, qθ is the distribution of TNCO path x → x′ parameterized by θ,

p(x′|x) is the transition distribution of Boltzmann distribution p(x′|x) =
exp(−H(x′)

T )

Z , Zx =∑H(x′)<H(x)
x′ e−

H(x′)
T . During the learning process, we gradually anneal the temperature to op-

timize (13).

Parallel data sampling: We use RNN parameterized by θ as the policy network to model the
transition probability qθ(x → x′). We input the K-spin representation of tensor contraction order,
(x1, ..xK), sequentially from left to right, and compute the transition probability as follows,

1. Randomly initialize the hidden variable h1;
2. Input x1 and h1 to the RNN, and output the next hidden variable h2 and a transition prob-

ability qθ(x1);
3. Input x2 and h2 to the RNN, and output the next hidden variable h3 and a transition prob-

ability qθ(x1 → x2);
4. ......
5. Input xK and hK to the RNN, and output the next hidden variable hK+1 and a transition

probability qθ(xK−1 → xK).

Then, by sampling the tensor contraction ordering trajectories, (x1, x2, ..., xK), we can optimize
(13) to train the RNN. The sampling process can be batched onto multiprocess to achieve high-
performance data sampling, thus alleviating the performance bottleneck of reinforcement learning
training.
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Parallel training: We initialize multiple optimizers in parallel to learn to optimal tensor contraction
order. Specifically, at the t-th iteration

1. We parallelly sampleN tensor contraction ordering from the TNCO environment and store
them in the reply buffer.

2. For the optimizer i -th, we first freeze ρt,i parameters, 0 < ρi < 1, then sample data from
replay buffer, and compute the loss function (13) with the temperature Tt,i, independently.

3. For i-th optimizer, we compute the gradient and use LSTM to learn to optimize the param-
eter.

We vary the parameter masked ratio ρ and temperature T by increasing the number of iterations and
initialized all the parameters differently to achieve swarm intelligence integrated with the curriculum
learning.

Appendix C Accessibility, Usage, License, and Maintenance

Accessibility: All the code, dataset, and tensor network contraction orderings, including
the Sycamore circuits, can be found in our open source project https://github.com/
XiaoYangLiu-FinRL/RL4QuantumCircuits without personal request.

Dataset generation: We generate the classical simulation of quantum circuits synthetically using
https://github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits/tree/main/datasets.

For example, we run https://github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits/
blob/main/datasets/mps/mps_generate.py to generate quantum circuits based on the tensor
train, where V in code controls the number of nodes in generated data.

Code organization: We implement the baseline methods using Opt-einsum and Cotengra to
search for the tensor network contraction orderings. The codes for calling these solvers are
provided in https://github.com/XiaoYangLiu-FinRL/RL4QuantumCircuits/tree/main/
baseline. We provide two methods to solve each type of quantum circuit, like tensor train-based
quantum circuits.

Usage: To run the baseline methods, execute “python cotengra.py” or “python opt einsum.py”,
where the variable n is the number of nodes. To generate the dataset, please execute “python gener-
ate.py”, where the variable V in the central part is the number of tensor nodes.

License: MIT License.

Maintenance: On GitHub, we keep updating our codes, merging pull requests, and fixing bugs and
issues. We welcome contributions from community members and researchers.
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