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1 Overview

This supplementary document contains additional information about HA-ViD.

Section 2 further describes the process of building HA-ViD, including the design of the Generic
Assembly Box, data collection, data annotation, and annotation statistics.

Section 3 presents the implementation details of our baselines, discusses the experimental results,
and provides the licenses of the benchmarked algorithms.

Section 4 discusses the bias and societal impact of HA-ViD.

Section 5 presents the research ethics for HA-ViD.

Section 6 describes the datasheet for HA-ViD.

2 HA-ViD Construction

In this section, we further discuss the process of building HA-ViD. First, we introduce the design of
the Generic Assembly Box. Second, we describe the three-stage data collection process. Third, we
describe data annotation details. Finally, we present critical annotation statistics.

2.1 Generic Assembly Box Design

To ensure the dataset is representative of real-world industrial assembly scenarios, we designed
the Generic Assembly Box (GAB), a 250×250×250mm box (see Figure 1), which consists of 11
standard parts and 25 non-standard parts and requires 4 standard tools during assembly (see Figure
2).

GAB has three assembly plates, including General Plate, Gear Plate, and Cylinder Plate, and three
blank plates. The opposite face of each assembly plate is intentionally left blank to allow a different
assembly orientation. Three assembly plates feature different design purposes.

General Plate (see Figure 3) was designed to capture action diversity. The general plate consists
of 11 different parts. The parts used in this plate were designed to include the different directions,
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Figure 1: The fully assembled Generic Assembly Box is shown in two different orientations. Each
plate can be assembled facing upwards or sideways.

Figure 2: The Generic Assembly Box consists of 11 standard parts and 25 non-standard parts and
requires 4 different standard tools during assembly.

shapes, and forces in which the common assembly actions can be performed. Since there is close
to no precedence between assembling different parts, General Plate results in the most variety of
possible assembly sequences.

Gear Plate (see Figure 4) was designed to capture parallel two-handed tasks, e.g., two hands inserting
two spur gears at the same time. Gear Plate has three gear sub-systems: large gear, small gear, and
worm gear, which mesh together to form a gear mechanism. The plate consists of 12 different parts.
Gear Plate has a higher precedence constraint on assembly sequence than the general plate.

Cylinder Plate (see Figure 5) was designed to capture two-handed collaborative tasks, e.g., two
hands collaborating on screwing the cylinder cap onto the cylinder base. Cylinder Plate requires
assembling a cylinder subassembly and fastening it onto the plate. This plate consists of 11 parts.
The parts were designed to represent assembling a subassembly where parts become fully occluded
or partially constrained to another part (see the cylinder in Figure 5).

Table 1 shows a summary of the three assembly plates. The box can be easily replicated using
standard components, laser cutting, and 3D printing. The CAD files and bill of material can be
downloaded from our website1.

Table 1: Summary of the three Generic Assembly Box plates.

Plate Design purpose Precedence constraint Two-handed collaboration Standard Parts Non-standard parts Tools

General Action and assembly sequence
variety and minimal precedence Minimal Low 4 7 2

Gear Parallel tasks
and high precedence. High Medium 3 9 3

Cylinder Collaboration tasks
and high precedence. High High 4 7 1

1https://iai-hrc.github.io/ha-vid
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Figure 3: The general plate (a) the contained parts and assemblable features and (b) subject-agnostic
task precedence graph where “must-collaborate” denotes the task requires two-handed collaboration,
and “tend-to-collaborate” denotes the task that tend to need two hands. Different from general
assembly datasets, we treat assemblable features, such as holes, stud and USB female, as objects, to
enable finer-grained assembly knowledge understanding.

2.2 Data Collection

Data was collected under two lighting conditions with three Azure Kinect RGB+D cameras mounted
to an assembly workbench. 30 participants (15 male, 15 female) were recruited for a 2-hour session
to assemble the GAB. During the data collection session, participants were given a fully disassembled
assembly box, assembly parts, tools, and instructions (see Figure 6).

To capture the natural progress of human procedural knowledge acquisition and behaviors (varying
efficiency, alternative routes, pauses, and errors), we designed a three-stage progressive assembly
setup:

Discovery: Participants were asked to assemble a plate twice following the minimal visual instructions
(see Figure 7).

Instruction: Participants were asked to assemble a plate six times following the detailed step-by-step
instructions (see Figure 8). Six different instruction versions were created, each presenting a different
assembly sequence. Each participant was given three different instruction versions, where two
attempts were completed following each instruction version. The three instruction versions given to
one participant must contain assembling the plate facing both upwards and sideways.

Practice: After the first two stages, participants were asked to assemble a plate four times without
any instructions. During this stage, participants performed two attempts of each plate facing upwards
and two attempts of each plate facing sideways.

The instruction files are available on our website2.

2.3 Data Annotation

To capture rich assembly knowledge, we provide temporal and spatial annotations.

2https://iai-hrc.github.io/ha-vid
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Figure 4: The gear plate (a) the contained parts and assemblable features and (b) subject-agnostic
task precedence.

Temporal Annotations: In HR-SAT3, an assembly task can be decomposed into a series of primitive
tasks, and each primitive task can be further decomposed into a series of atomic actions. For both
primitive task and atomic action, there are five fundamental description elements: subject, action
verb, manipulated object, target object, and tool (see Figure 9). We follow HR-SAT to provide
primitive task and atomic action annotations for the assembly processes recorded in the videos. To
enable the research in two-handed collaboration task understanding, we defined the two hands of
each participant as two separate subjects, and we annotated action verb, manipulated object, target
object, and tool for each subject. For both primitive task and atomic action annotations, we follow
the annotation specification shown in Figure 10.

Spatial Annotations: For spatial annotations, we use CVAT4 to annotate the subjects (two hands),
objects (manipulated object, target object), and tools via bounding boxes, shown in Figure 11.

2.4 Dataset Statistics

Overall, HA-ViD contains 1074 unique assembly processes captured from 3 camera views, providing
3222 videos in total. Each video contains one task, where a task is the assembly of one of the
assembly plates of GAB. Table 2 below compares the quantitative statistics of HA-ViD with other
existing datasets.

The dataset contains temporal annotations of 81 primitive task classes and 219 atomic action classes.
The trainset and testset were split by subjects to balance data diversity. Figure 12 and Figure 13
show the class distributions of primitive task and atomic action annotations in the trainset and testset,
respectively.

3Details for the definitions of primitive task and atomic action can be found at: https://iai-hrc.github.io/hr-sat
4https://www.cvat.ai/
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Figure 5: The cylinder plate (a) the contained parts and assemblable features and (b) subject-agnostic
task precedence.

Figure 6: Summary of the data collection setup.

Table 2: Quantitative comparison between HA-ViD with other assembly video datasets.
Dataset Subject Videos Views Unique sequences Total duration (hr) Average clip length (min) Temporal label classes Spatial label classes

Wooden box [1] 17 124 2 62 13 12.8 9 n/a
IKEA-FA [2] 14 101 1 101 n/a 2 to 4 12 n/a

MECCANO [3] 20 20 1 20 6.9 21.1 61 20
IKEA ASM [4] 48 1113 3 371 11.7 1.9 33 9

Assembly101 [5] 53 4321 12 362 42.8 7.1 1380 fine
202 coarse 90

HA4M [6] 41 217 1 217 5.9 1.6 13 n/a

HA-ViD (ours) 30 3222 3 1074 29 1.6
75 primitive tasks
219 atomic actions

4 collaboration status
42
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Figure 7: Minimal instruction pages.

Figure 8: Example of the detailed instruction provided to participants for the cylinder assembly plate.

Overall, the dataset contains spatial annotations of 42 classes. The trainset and testset were split by
subjects to balance data diversity. Figure 14 shows the class distributions of spatial annotation classes
in the trainset and testset.

3 Experiment

In this section, we provide the implementation details of the baselines, the results unreleased in the
main paper, further discussions on the results, and the licenses of the benchmarked algorithms.
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Figure 9: Human-robot shared assembly taxonomy (HR-SAT) schema. We tailored the original
taxonomy by removing information that cannot be annotated from videos and incorporating a
Disassembly action verb to describe human error-and-correction process.

Figure 10: The annotation specification and the list of abbreviated action verbs, objects, and tools
annotated in HA-VID.

3.1 Action Recognition

We use the MMSkeleton5 toolbox to benchmark ST-GCN [7]; the MMAction26 toolbox to benchmark
ST-GCN++ [8], I3D [9], TimeSformer [10], MVITv2 [11], and UniFormerV2 [12]; and the original
codes to benchmark TSM [13]. For ST-GCN, we use the joints extracted by the Azure Kinect Body
Tracking SDK7. However, we only use the upper 26 skeleton joints from the total 32 extracted
joints. This excludes the lower limb joints (left and right knee, ankle and foot joints) that are not
visible due to the participant standing behind the workbench. Action clips which consisted of frames
where the skeleton could not be extracted, were excluded from reporting the performance. For
TSM, TimeSformer, I3D (rgb), MVITv2, and UniFormerV2, the RGB frames of each clip were
used as input. For I3D (flow), we extracted TV-L1 optical flow frames from each clip as input. To
compare model performance on different views (side, front, and top), hands (left and right hands)
and annotation levels (primitive task and atomic action), we conducted a combinational benchmark,
which means we benchmark each model on 12 sub-datasets (see Figure 15). We report the Top-1 and
Top-5 accuracy on these sub-datasets in Table 3.

5https://github.com/open-mmlab/mmskeleton
6https://github.com/open-mmlab/mmaction2
7https://learn.microsoft.com/en-us/azure/kinect-dk/body-sdk-download.
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Figure 11: CVAT interface for annotating the subjects (two hands), objects (manipulated object, target
object), and tools.

Figure 12: Trainset and testset distribution of the 75 primitive tasks classes. Additionally, to show
the distribution better, the frequency axis bound has been reduced, which cuts off the column for the
null class. Instead, we have manually overwritten the null class column with the trainset and testset
frequency.

TSM: Following the original paper’s suggestions, we use the SGD optimizer with a dropout of 0.5.
The learning rate was initialized as 0.0025 and decayed by a factor of 10 after epochs 20 and 40. 8
frames were uniformly sampled from each clip. The TSM was pretrained on ImageNet [14], and we
finetuned it on our 12 sub-datasets. As the slowest convergence of the 12 sub-datasets was observed
around 40 epochs, we set the total training epochs to be 50 with a batch size of 16.

TimeSformer: Following the default parameters from MMAction2, we use the SGD optimizer. The
learning rate was initialized as 0.005 and decayed by a factor of 10 after epochs 5 and 10. 8 frames
were uniformly sampled from each clip. The TimeSformer was pretrained on ImageNet-21K [14],
and we finetuned it on our 12 sub-datasets. As the slowest convergence of the 12 sub-datasets was
observed around 90 epochs, we set the total training epochs to be 100 with a batch size of 8.

I3D (rgb) and (flow): Following the default parameters from MMAction2, we use the SGD optimizer
with a dropout of 0.5. The learning rate was initialized as 0.01 and decayed by a factor of 10 after
epochs 40 and 80. 32 frames were uniformly sampled from each clip. I3D takes ResNet50 pretrained
on ImageNet-1K [14] as the backbone, and we finetuned it on our 12 sub-datasets. As the slowest
convergence of the 12 sub-datasets was observed around 90 epochs, we set the total training epochs
to be 100 with a batch size of 4.
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Figure 13: Trainset and testset distribution of the 219 atomic action classes. To show all classes,
the diagram is split into three rows. Additionally, to show the distribution better, the frequency axis
bound has been reduced, which cuts off the column for the null class. Instead, we have manually
overwritten the null class column with the trainset and testset frequency.

Figure 14: Trainset and testset distribution of the 42 spatial annotation classes. This includes subject,
object, and tool.

MVITv2: Following the default parameters from MMAction2, we use the AdamW optimizer. Epochs
1 to 20 have a linear learning rate scheduler with an initial learning rate of 0.00015 and start factor of
0.1667. The subsequent epochs use a cosine annealing learning rate with the minimum learning rate
ratio of 0.1667. 16 frames were uniformly sampled from each clip. The MVITv2 was pre-trained
on Kinetics-400 [15] via MaskFeat [16], and we finetuned it on our 12 sub-datasets. As the slowest
convergence of the 12 sub-datasets was observed around 90 epochs, we set the total training epochs
to be 100 with a batch size of 4.
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Figure 15: We split the dataset into 12 sub-datasets with three views (side, front, and top), two hands
(left and right hands), and two annotation levels (primitive task and atomic action).

UniFormerV2: Following the default parameters from MMAction2, we use the AdamW optimizer.
Epochs 1 to 5 have a linear learning rate with an initial learning rate of 0.00002 and start factor of
0.05. The subsequent epochs use a cosine annealing learning rate with the minimum learning rate
ratio of 0.05. 8 frames were uniformly sampled from each clip. The Uniformerv2 was pre-trained on
Kinetics-710 [12], a combined Kinetics-400/600/700 [15] benchmark. As the slowest convergence of
the 12 sub-datasets was observed around 20 epochs, we set the total training epochs to be 24 with a
batch size of 8.

ST-GCN: Following the default parameters from MMSkeleton, we use the SGD optimizer with a
dropout of 0.5. The learning rate was initialized as 0.1 and decayed by a factor of 10 after epochs
10 and 50. We sampled all frames as the input. The ST-GCN was pretrained on NTU [17], and we
finetuned it on our 12 sub-datasets. As the slowest convergence of the 12 sub-datasets was observed
around 70 epochs, we set the total training epochs to be 80 with a batch size of 16.

ST-GCN++: Following the default parameters from MMAction2, we use the SGD optimizer. We use
a cosine annealing learning rate with the learning rate initialized as 0.0125 and minimum learning
rate as 0.100 frames were uniformly samples from each clip. As the slowest convergence of the 12
sub-datasets was observed around 60 epochs, we set the total training epochs to be 80 with a batch
size of 16.

The benchmarking results of action recognition are shown in Table 3. We use a single RTX 3090 GPU
to train each model, and Table 4 shows the average training time of each model for each sub-dataset.

3.2 Action Segmentation

We benchmark three action segmentation algorithms: MS-TCN [18], DTGRM [19], BCN [20],
and C2F-TCN [21], and report the frame-wise accuracy (Acc), segmental edit distance (Edit) and
segmental F1 score at overlapping thresholds 10% in Table 5. Before benchmarking, we extract
I3D features for each frame as the input of the action segmentation algorithms. We use the Pytorch
version of the I3D implementation8 and the pretrained model on ImageNet [14] and Kinetics [15].
For action segmentation, we also conducted a combinational benchmark.

MS-TCN: We follow the model settings provided by [18]. More specifically, we use the Adam
optimizer with a fixed learning rate of 0.0005, dropout of 0.5 and sampling rate of 1 (taking all
frames into the network). As the slowest convergence of the 12 sub-datasets was observed around
800 epochs, we set the total training epochs to be 1000 with a batch size of 10.

8https://github.com/piergiaj/pytorch-i3d
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Table 3: Baselines of action recognition.

Method View
Primitive Task Atomic Action

Left-Hand Right-Hand Left-Hand Right-Hand
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

TSM
Side 57.5 88.2 56.8 89.7 38.4 67.8 37.0 67.5
Front 61.5 89.3 57.1 85.1 38.9 69.8 34.3 64.6
Top 64.2 88.1 62.0 88.9 41.6 70.8 39.8 69.7

TimeSformer
Side 53.8 85.8 50.6 85.7 36.8 69.7 31.8 64.7
Front 50.8 84.4 48.9 80.5 36.8 68.0 32.8 62.9
Top 51.7 86.0 55.9 87.0 39.1 68.7 39.3 70.8

I3D (flow)
Side 38.6 50.6 37.0 44.9 23.8 46.8 23.8 45.3
Front 39.1 54.7 37.0 45.1 23.7 48.1 23.5 46.5
Top 39.4 57.9 37.3 48.7 22.6 45.3 23.9 45.9

I3D (rgb)
Side 54.9 82.5 51.8 83.7 38.2 72.0 34.0 66.8
Front 52.8 83.6 51.6 82.9 41.6 73.5 35.6 66.0
Top 54.4 85.0 57.6 84.0 41.3 70.3 41.2 71.3

I3D (both)
Side 32.2 45.7 51.1 85.2 40.8 75.6 37.6 71.4
Front 53.2 83.6 49.7 84.4 44.0 75.9 39.6 71.3
Top 57.7 85.0 57.8 85.6 44.1 73.5 44.4 75.9

MVITv2
Side 58.5 85.2 57.8 85.2 48.5 76.5 41.8 70.8
Front 63.1 86.6 55.9 81.6 48.3 76.4 41.9 70.1
Top 62.9 87.1 62.5 85.4 48.3 76.5 44.9 72.8

UniFormerV2
Side 58.4 88.6 58.7 91.1 46.3 79.8 48.8 80.1
Front 62.5 90.4 59.1 89.1 48.3 79.6 43.4 76.5
Top 66.4 90.1 66.4 89.5 52.2 83.5 41.5 76.1

ST-GCN
Side 40.7 61.5 41.4 61.3 22.2 46.0 21.5 44.4
Front 41.9 65.7 39.3 57.7 21.9 46.6 19.9 40.5
Top 35.8 53.4 35.4 46.7 16.8 40.7 17.8 36.9

ST-GCN++
Side 40.6 59.4 19.6 43.6 39.3 60.4 17.6 38.8
Front 42.4 62.2 19.6 39.3 38.3 55.4 17 34.8
Top 33.3 52.5 17.9 40.9 34.9 54.2 15.5 34.6

Table 4: Training efficiency of ST-GCN, TSM, TimeSformer, I3D, and MVITv2.

Dataset Average training time per epoch (min)
View Hand Task level ST-GCN ST-GCN++ TSM TimeSformer I3D (flow) I3D (rgb) MVITv2 UniFormerV2

Side
Left hand Primitive task 1.65 2.25 1.3 6.12 3.3 5.83 11.12 3.95

Atomic action 5.55 7.12 2.6 14.42 10.82 10.02 24.9 12.83

Right hand Primitive task 1.73 2.02 1.4 4.2 4.22 5.72 6.95 3.79
Atomic action 5.38 6.14 4.48 12.85 9.12 11.73 23.55 11.55

Front
Left hand Primitive task 1.73 2.13 1.33 3.93 4.15 5.88 11.15 3.97

Atomic action 5.72 6.86 4.5 21.4 9.63 12.23 25.37 12.67

Right hand Primitive task 1.82 2.05 1.22 4.22 2.48 4.68 6.98 3.74
Atomic action 5.65 6.14 4.27 12.82 7.02 11.18 26.58 11.45

Top
Left hand Primitive task 0.71 1.24 1.38 4.08 5.25 5.55 11.5 3.87

Atomic action 3.01 5.14 4.75 14.3 10.05 11.57 24.05 12.54

Right hand Primitive task 0.65 1.12 1.4 4.17 4.47 2.8 8.33 3.65
Atomic action 2.43 5.21 4.57 12.8 7.07 10.93 24.03 11.20

DTGRM: We follow the model settings provided by [19]. More specifically, we use the Adam
optimizer with a fixed learning rate of 0.0005, dropout of 0.5 and sampling rate of 1. As the slowest
convergence of the 12 sub-datasets was observed around 800 epochs, we set the total training epochs
to be 1000 with a batch size of 16.

BCN: We follow the model settings provided by [20]. More specifically, we use the Adam optimizer
with the learning rate of 0.001 for the first 30 epochs and 0.0001 for the rest epochs, dropout of 0.5
and sampling rate of 1. As the slowest convergence of the 12 sub-datasets was observed around 200
epochs, we set the total training epochs to be 300 with a batch size of 1.

C2F-TCN: We follow the model settings provided by [21]. More specifically, we use the Adam
optimizer with the learning rate of 0.00005 and sampling rate of 1. As the slowest convergence of the
12 sub-datasets was observed around 1000 epochs, we set the total training epochs to be 1500 with a
batch size of 100.

The benchmarking results of action segmentation are shown in Table 5. We use a single RTX 3090
GPU to train each model, and Table 6 shows the average training time of each model for each
sub-dataset.
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Table 5: Baselines of Action Segmentation.

Method View
Primitive task Atomic Action

Left hand Right hand Left hand Right hand
F1 Edit Acc F1 Edit Acc F1 Edit Acc F1 Edit Acc

MS-TCN
Side 37.6 37.4 41.2 31.1 32.5 37.4 35.3 32.1 40.9 29.2 31.0 32.6
Front 35.2 36.3 38.8 36.7 36.2 39.3 34.1 31.2 41.1 29.3 31.1 33.4
Top 37.1 38.9 40.4 36.1 35.6 41.3 35.9 34.1 40.8 35.1 34.6 37.8

DTGRM
Side 38.5 36.5 40.9 35.9 35.2 37.6 33.7 30.7 39.3 27.8 28.2 30.3
Front 38.5 37.2 39.0 38.8 39.6 40.5 34.0 33.6 39.7 27.6 27.8 31.5
Top 40.4 38.8 40.8 38.7 37.0 41.2 35.1 33.6 40.5 34.0 31.9 37.6

BCN
Side 43.1 40.4 43.7 38.6 36.3 42.4 21.3 18.0 39.5 20.5 18.9 34.1
Front 44.4 43.1 44.4 41.3 37.0 44.0 17.2 14.4 39.5 22.9 20.7 34.3
Top 43.5 40.7 44.3 44.0 40.7 43.7 16.8 15.3 40.1 23.4 20.6 35.5

C2F-TCN
Side 18.0 20.7 38.2 21.7 20.9 38.8 19.9 18.2 37.9 15.8 15.7 30.3
Front 23.3 21.4 39.1 20.5 22.2 38.8 20.1 19.8 37.4 17.9 17.5 31.4
Top 26.6 24.0 41.1 25.4 22.7 39.5 21.5 19.7 37.7 18.6 18.9 33.6

Table 6: Training efficiency of MS-TCN, DTGRM and BCN.

Dataset Average training time per epoch (sec)
View Hand Task level MS-TCN DTGRM BCN C2F-TCN

Side
Left hand Primitive task 8.24 18.66 16.35 13.47

Atomic action 8.37 19.42 16.50 13.67

Right hand Primitive task 8.86 20.01 16.26 13.64
Atomic action 8.66 20.41 16.51 13.85

Front
Left hand Primitive task 8.04 19.44 16.31 13.76

Atomic action 8.01 19.82 16.38 13.68

Right hand Primitive task 8.31 20.05 16.24 13.76
Atomic action 8.45 19.12 16.56 13.83

Top
Left hand Primitive task 7.81 19.44 16.39 13.72

Atomic action 7.97 19.44 16.42 14.09

Right hand Primitive task 8.23 18.70 16.31 13.66
Atomic action 8.30 19.27 16.51 13.94

3.3 Object Detection

We benchmark three object detection algorithms: Faster-RCNN [22], YOLOv5 [23] and DINO [24]
with different backbone networks. The results have been reported in the main paper. Therefore,
we only discuss the implementation details here. We train Faster-RCNN and DINO using the
implementation provided by the MMDetection [25] and train YOLOv5 using the implementation
provided by the MMYOLO9.

Faster-RCNN: We train Faster-RCNN with three backbone networks: ResNet50, ResNet101, and
ResNext101. All the networks have been pretrained on the coco_2017_train dataset [26] and finetuned
on our dataset. Following the default setting provided by MMDetection, we use the SGD optimizer
with a momentum of 0.9 and weight decay of 0.0001. The learning rate was initialized as 0.02 and
decayed by a factor of 10 at epochs 8 and 11. As the slowest convergence of the three models was
observed around 14 epochs, we set the total training epochs to be 20. We set the batch size as 4, 1,
and 5, respectively, for ResNet50, ResNet101, and ResNext101.

YOLOv5: We train YOLOv5-small and YOLOv5-large using MMDetection. These two models have
been pretrained on the coco_2017_train dataset, and finetuned on our dataset. Following the default
setting provided by MMDetection, we use the SGD optimizer with a momentum of 0.937, weight
decay of 0.0005 for both models. The linear learning rate with base learning rate of 0.0025 and factor
of 0.01 was applied to YOLOv5-small. The linear learning rate with base learning rate of 0.0025
and factor of 0.1 was applied to YOLOv5-large. We set the total training epochs to be 100 epochs
with a batch size of 32 and 50 epochs with a batch size of 10, respectively, for YOLOv5-small and
YOLOv5-large to ensure convergence.

9https://github.com/open-mmlab/mmyolo
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DINO: We benchmark the DINO model with the Swin-large network as the backbone. The model has
been pretrained on the coco_2017_train dataset, and finetuned on our dataset. Following the default
setting provided by MMDetection, we use the AdamW optimizer with a learning rate of 0.0001 and
weight decay of 0.0001. As the convergence was observed around 6 epochs, we set the total training
epochs to be 10 with a batch size of 1.

We use single RTX 3090 GPU to train each model, and Table 7 shows the average training time of
each model.

Table 7: Training efficiency of Faster-RCNN, YOLOv5 and DINO.

Method Average training time per epoch (min)

Faster-RCNN
ResNet50 446.9

ResNet101 197.0
ResNext101 668.8

YOLOv5-s DarkNet 39.5
YOLOv5-l DarkNet 94.2

DINO Swin-L 1592.3

3.4 Multi-Object Tracking

In this paper, we focus on tracking-by-detection methods because, normally, tracking-by-detection
methods perform better than joint-detection-association methods [27]. Since we already benchmarked
the object detection methods, we only need to test the SOTA trackers. We benchmark SORT [28] and
ByteTrack [29] trackers on the detection results of DINO and ground truth annotations, respectively.
The results have been reported in the main paper. Since the trackers are not neural networks, we do
not need to train them and explain the implementation details. We always use the default parameters
of the algorithm. For more details, please refer to the papers [28, 29] and their GitHub repositories.

3.5 Discussion

In this section, we further discuss the results from the above experiments, examine the action
anticipation task, investigate class imbalance problem, and analyze a prevalent problem of video
understanding – occlusion.

3.5.1 General Discussion

Action recognition: We found the Top-1 accuracy of primitive task recognition is 15.6% higher on
average than atomic action recognition, and the atomic action recognition performance of the left hand
is 2.4% higher on average than the right hand. One possible reason behind these two observations
can be occlusion since (1) primitive task recognition is less influenced by occlusion because it can
rely on the key motion or relevant object recognition; and (2) the left hand is less occluded because
the side-view camera is mounted on the left-side of the participant. We also found the accuracy of
skeleton-based accuracy is significantly lower than the other action recognition benchmarks. One
possible reason could be that skeleton-based action recognition only considers human motion and
does not take visual object information as input. Another possible reason could be the uncertain
quality of the skeleton data, since the ground truth skeleton data is difficult to obtain.

Action segmentation: We found (1) the frame-wise accuracy (Acc) of atomic action segmentation
is 4% lower on average than primitive task segmentation, as atomic actions have higher diversity
and current methods face under-segmentation issues (refer to the main paper); and (2) on the atomic
action level, the Acc of the left hand is 6% higher on average than the right hand, where one possible
reason could be that the left hand is less occluded.

Object detection: From Table 4 of the main paper, we found that (1) the large-scale end-to-end
Transformer based model (DINO) performs the best, and the traditional two-stage method (Faster-
RCNN) has better performance on small objects but worse performance on large objects than the
one-stage method (YOLOv5), which is consistent with the conclusion of [30]; (2) current methods
still face great challenges in small object detection, as the best model only has 27.4% average
precision on small object detection; and (3) recognizing objects with same/similar appearances but
different sizes is challenging (see Figure 16, e.g., Bar and Rod, Hole C1-C4, and two Wrenches).

13



Figure 16: Confusion matrix of object detection results from DINO.

Multi-object detection: From Table 5 of the main paper, we found that (1) object detection per-
formance is the decisive factor in tracking performance; (2) with perfect detection results, even
the simple tracker (SORT) can achieve good tracking results, as SORT has 94.5% multi-object
tracking accuracy on the ground truth object bounding boxes; and (3) ByteTrack can track blurred and
occluded objects better (comparing b1-2, c1-2, and f1-2 in Figure 17) due to taking low-confidence
detection results into association, but it generates more ID switches (IDS) (seeing a2-f2 in Figure 17)
due to the preference of creating new tracklets.

Figure 17: Visualizing the tracking results of SORT and ByteTrack (taking hand as an example).

3.5.2 Action Anticipation

Recognizing the indispensability of assembly video reasoning in comprehending application-oriented
knowledge, we conducted a preliminary exploration of a typical video reasoning task, action antici-
pation, on HA-ViD. We benchmark one long-term action anticipation algorithm – FUTR [31]. The
problem setting is that for a video with T frames, the first αT frames are observed and a sequence
of actions for the next βT frames is anticipated. We use the pre-extracted I3D features (same as
action segmentation) as input visual features. We follow the model settings provided by [31]. In
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training, we set the observation rate α ∈ {0.2, 0.3, 0.5} and fix the prediction rate β to 0.5. We use
AdamW optimizer with a learning rate of 0.0001, dropout of 0.5 and sampling rate of 1. We employ
a cosine annealing warm-up scheduler with warm-up stages of 10 epochs and base learning rate of
0.0003. As the slowest convergence of the 12 sub-datasets was observed around 150 epochs, we set
the total training epochs to be 200 with a batch size of 16. In inference, we set the observation rate
α ∈ {0.2, 0.3} and prediction rate β ∈ {0.1, 0.2, 0.3, 0.5} and measure mean over classes (MoC)
accuracy following the long-term action anticipation framework protocol [32]. To compare the
performance difference between anticipating action (action verb + manipulated object + target object
+ tool), anticipating action verb only and anticipating manipulated object only, we conduct three
sets of experiments and report the results in Table 8. We found that the main factor affecting action
anticipation performance is the task complexity, as there are 75 action anticipation, 7 action verb
anticipation, and 25 manipulated object anticipation classes on the primitive task level and 219 action
anticipation, 11 action verb anticipation, and 29 manipulated object anticipation classes on the atomic
action level.

Table 8: Comparison between action anticipation, action verb anticipation and manipulated object
anticipation.

Task level Hand View β (α = 0.2 β (α = 0.3
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Action anticipation

Primitive task

Left-hand
Side 7.9 5.1 4.5 3.3 13.5 10.1 6.7 5.2
Front 5.9 3.3 2.7 4.6 12 8.7 6.5 5.8
Top 7.5 7.5 6.4 6.2 15.3 10.9 8.5 8

Right-hand
Side 6.7 4.7 3.6 3.4 12.2 10.2 6.7 6.6
Front 5.9 7.1 5 4.8 10.4 5.8 3.1 2.9
Top 10.4 8.5 6 4.3 10.3 9.3 7.7 5.1

Atomic action

Left-hand
Side 3.4 2.2 2 1.8 2.9 3.2 2.9 1.9
Front 2.6 1.9 1.9 1.6 5 3.3 2.8 2.3
Top 2.5 1.7 1.8 1.5 3.9 2.5 2.2 2.3

Right-hand
Side 1.4 1.8 1.7 1.3 4.5 2.9 2.4 1.6
Front 1.7 1.6 1.3 1.2 6.1 2.1 1.5 1.2
Top 1.7 1.6 1.3 1.2 6.1 2.1 1.5 1.2

Action verb anticipation

Primitive task

Left-hand
Side 12.5 14.5 19.9 18.8 25.7 16.6 16.1 15.3
Front 18.5 19.5 19 17.6 30.6 18.1 17.4 16.1
Top 17.9 17.5 17.6 17.2 28.5 20.6 19.5 17.9

Right-hand
Side 24.3 21.7 16.9 16.6 35.7 19 16.8 16.2
Front 33.8 31.3 17.9 17.9 38.1 18.2 14.1 14.4
Top 38.2 36.5 17.8 17.7 38.4 19 15.9 16.1

Atomic action

Left-hand
Side 12 10.3 9.5 9.7 14.2 10.8 9.4 9.5
Front 13.5 12.9 12 10.8 15.2 13.5 11.1 9.6
Top 12.5 9.6 8.8 9.7 17.6 14.3 12.8 11

Right-hand
Side 14.9 11.1 11.2 10.5 15.7 13.2 11.6 10
Front 11.7 9.7 9.7 9.7 14.5 12.9 13 10.7
Top 23.1 18.4 12.9 12 15.2 13.1 12 10.4

Manipulated object anticipation

Primitive task

Left-hand
Side 6.8 6.4 6.5 7.7 16.8 12.9 12.2 7.7
Front 10.7 6.1 7 8.4 16 14.4 14.5 10.6
Top 13.5 10.4 9.4 11.6 12.5 9.7 10 10.4

Right-hand
Side 15.9 11.6 9.4 8.6 19.7 13.1 8 6.6
Front 13.8 10.3 11.8 10.7 20.7 13.3 11.7 11.7
Top 20.3 15 10.6 10.8 16.5 14 8 7.6

Atomic action

Left-hand
Side 13.1 11.8 10.9 10.7 11.6 8.9 8.2 8.9
Front 10.6 9.5 10.3 9.7 15.8 13.2 12.7 9.6
Top 10.3 10 10 10.2 18.2 17 15 11.6

Right-hand
Side 4.3 4.7 4.9 3.9 11.1 7.6 7 6.4
Front 6.9 9.6 7.3 6.5 13.4 9.1 7.9 7.3
Top 9 9.1 8.7 7.5 10.8 8.5 8.3 5.8

3.5.3 Class Imbalance

The statistics of HA-ViD reveal a distinct class imbalance problem, a challenge often encountered
in real-world. Taking a step to mitigate this problem, we utilize an over-sampling strategy on our
dataset, randomly over-sampling the minority classes (sample size less than a threshold) to reach
the threshold. Then, we test the performance of UniFormerV2 on the over-sampled dataset. The
implementation details of UniFormerV2 are the same as described in Section 3.1. After a preliminary
experiment on different thresholds, we set the threshold set to 300. The results are reported in Table
9. Compared with the original dataset, there is a noticeable improvement of Top-1 accuracy in the
over-sampled dataset.
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Table 9: Comparison between the results of UniFormerV2 on the original dataset and over-sampled
dataset.

Method View
Primitive Task Atomic Action

Left-Hand Right-Hand Left-Hand Right-Hand
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

UniFormerV2
Side 58.4 88.6 58.7 91.1 46.3 79.8 48.8 80.1
Front 62.5 90.4 59.1 89.1 48.3 79.6 43.4 76.5
Top 66.4 90.1 66.4 89.5 52.2 83.5 41.5 76.1

UniFormerV2 (Over-sampling)
Side 66.9 90.1 65.1 89.8 51.3 80.7 50.9 79.9
Front 66.9 88.5 64.3 87.1 50.3 79.8 44.7 74.8
Top 68.1 89.1 69.2 90.3 54.5 83 51 79.6

3.5.4 Occlusion Analysis

From the discussion in Section 3.5.1, we can see occlusion is a prevalent problem of video under-
standing. Therefore, we further explore the impact of occlusion on video understanding tasks in this
Section. Table 10 reports the average results over two hands of action recognition and segmentation
on three views and the combined view (Com). We fuse the features from three views before the
softmax layer to evaluate the performance of the combined view. The results show the significant
benefits of combining three views which offers a viable solution for mitigating occlusion challenges
in industrial settings.

Table 10: Performance of action recognition and segmentation on three views and the combined view.

View
Action Segmentation (BCN) Action Recognition (MVITv2)

Primitive task Atomic action Primitive task Atomic action
F1 Edit Acc F1 Edit Acc Top-1 Top-5 Top-1 Top-5

Side 40.9 38.4 43.1 20.9 18.5 36.8 58.2 85.2 45.2 73.7
Front 42.9 40.1 44.2 20.1 17.6 36.9 59.5 84.1 45.1 73.3
Top 43.8 40.7 44 20.1 18.0 37.8 62.7 86.3 46.6 74.7
Com 44.6 45.9 47.2 41.7 35.9 44.5 64.0 89 50.8 80.9

Figure 17 shows the impact of occlusion on tracking and reidentification via visualizing SORT
and ByteTrack tracking results on sampled ground truth object annotations. To quantitatively
analyze the occlusion problem, we design two metrics: occlusion duration (OD) and occlusion
frequency (OF). Given a video of n frames v = [f1, . . . , fn], the observation of object k is denoted
as Ok = [okt , o

k
t+1, . . . , o

k
t+m], where t and t + m are the frame numbers that object k first, and

last appear, respectively. okj = {0, 1}, where 0 denotes observed, and 1 denotes unobserved.
ODk = 1

m

∑j=t+m
j=t okj and OFk = 1

2

∑j=t+m−1
j=t |okj+1 − okj |. ODk and OFk describe the occluded

duration and occluded frequency of object k in a video. We calculate the average OD and OF over
every object in our testing dataset and compare the results with the tracking results on ground truth
object annotations in Table 11. Table 11 shows a negative correlation between mOD and mOF with
MOTA and IDS, which is also consistent with the findings in Figure 17. We envision OD and OF will
serve as effective occlusion evaluation tools for developing better object association modules and
reidentification modules in MOT.

3.6 Licenses of the benchmarked algorithms

The licenses of the benchmarked algorithms are listed in Table 12.

Table 11: Comparison between tracking results and occlusion metrics on three views.

View Method MOTA IDF1 IDS mOD mOF

Side SORT 93.5% 66.5% 58.3 18.7% 4.1ByteTrack 98.5% 68.4% 124.5

Front SORT 95.3% 72.1% 48.2 12.1% 2.9ByteTrack 98.7% 67.8% 118.7

Top SORT 94.7% 68.6% 57.8 14.7% 5.3ByteTrack 98.4% 66.3% 121.5
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Table 12: Licenses of the benchmarked algorithms.

Algorithm License
MMSkeleton Apache License 2.0

ST-GCN BSD 2-Clause "Simplified" License
MMAction2 Apache License 2.0
ST-GCN++ Apache License 2.0

TSM MIT
TimeSFormer Attribution-NonCommercial 4.0 International

I3D Apache License 2.0
MVITv2 Apache License 2.0

UniFormerV2 Apache License 2.0
MS-TCN MIT
DTGRM MIT

BCN MIT
C2F-TCN MIT

FUTR MIT + Commons Clause License Condition v1.0
MMDetection Apache License 2.0
Faster-RCNN MIT

DINO Apache License 2.0
MMYOLO GNU General Public License v3.0
YOLOv5 GNU Affero General Public License v3.0

SORT GNU General Public License v3.0
ByteTrack MIT

4 Dataset Bias and Societal Impact

Our objective is to construct a dataset that can represent interesting and challenging problems in real-
world industrial assembly scenarios. Based on this objective, we developed the Generic Assembly
Box that encompasses standard and non-standard parts widely used in industry and requires typical
industrial tools to assemble. However, there is still a gap between our dataset and the real-world
industrial assembly scenarios. The challenges lie in:

1) the existence of numerous unique assembly actions, countless parts, and tools in the industry;
2) the vast diversity of operating environments in the industry;
3) various agents and multi-agent collaborative assembly scenarios in the industry.

Therefore, additional efforts would be needed to apply the models trained on our dataset to real-
world industrial applications. We hope the fine-grained annotations of this dataset can advance the
technological breakthrough in comprehensive assembly knowledge understanding from videos. Then,
the learned knowledge can benefit various real-world applications, such as robot skill learning, human-
robot collaboration, assembly process monitoring, assembly task planning, and quality assurance. We
hope this dataset can contribute to technological advancements facilitating the development of smart
manufacturing, enhancing production efficiency, and reducing the workload and stress on workers.

5 Ethics Approval

HA-ViD was collected with ethics approval from the University of Auckland Human Participants
Ethics Committee. The Reference Number is 21602. All participants were sent a Participant
Information Sheet and Consent Form10 prior to the collection session. We confirmed that they had
agreed to and signed the Consent form before proceeding with any data collection.

6 Data Documentation

We follow the datasheet proposed in [33] for documenting our HA-ViD dataset:
10The participant consent form is available at: https://www.dropbox.com/sh/ekjle5bwoylmdcf/

AACLd_NqT3p2kxW7zLvvauPta?dl=0
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1. Motivation

(a) For what purpose was the dataset created?

This dataset was created to understand comprehensive assembly knowledge from videos. The previous
assembly video datasets fail to (1) represent real-world industrial assembly scenarios, (2) capture
natural human behaviors (varying efficiency, alternative routes, pauses and errors) during procedural
knowledge acquisition, (3) follow a consistent annotation protocol that aligns with human and robot
assembly comprehension.

(b) Who created the dataset, and on behalf of which entity?

This dataset was created by Hao Zheng, Regina Lee and Yuqian Lu. At the time of creation, Hao
and Regina were PhD students at the University of Auckland, and Yuqian was a senior lecturer at the
University of Auckland.

(c) Who funded the creation of the dataset?

The creation of this dataset was partially funded by The University of Auckland FRDF New Staff
Research Fund (No. 3720540).

(d) Any other Comments?

None.

2. Composition

(a) What do the instances that comprise the dataset represent?

For the video dataset, each instance is a video clip recording a participant assembling one of the
three plates of the designed Generic Assembly Box. Each instance consists of two-level temporal
annotations: primitive task and atomic action, and spatial annotations, which means the bounding
boxes for subjects, objects, and tools.

(b) How many instances are there in total?

We recorded 3222 videos over 86.9 hours, totaling over 1.5M frames. To ensure annotation quality,
we manually labeled temporal annotations for 609 plate assembly videos and spatial annotations for
over 144K frames.

(c) Does the dataset contain all possible instances, or is it a sample (not necessarily random) of
instances from a larger set?

Yes, the dataset contains all possible instances.

(d) What data does each instance consist of?

See 2. (a).

(e) Is there a label or target associated with each instance?

See 2. (a).

(f) Is any information missing from individual instances?

No.

(g) Are relationships between individual instances made explicit?

Yes, each instance (video clip) contains one participant performing one task (assembling one of the
three plates of the designed Generic Assembly Box.)

(h) Are there recommended data splits?

For action recognition and action segmentations, we provide two data splits: trainset and testset.

For object detection and multi-object tracking, we provide another two data splits: trainset and testset.

Refer to Section 2.4 for details.

(i) Are there any errors, sources of noise, or redundancies in the dataset?
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Given the scale of the dataset and complexity in annotation, it is possible that some ad-hoc errors
exist in our annotations. However, we have given our best efforts (via human checks and quality
checking code scripts) in examining manually labelled annotations to minimize these errors.

(j) Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,
tweets, other datasets)?

The dataset is self-contained.

(k) Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confidentiality, data that includes the content of individuals’
non-public communications)?

No.

(l) Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or
might otherwise cause anxiety?

No.

(m) Does the dataset relate to people?

Yes, all videos are recordings of human assembly activities, and all annotations are related to the
activities.

(n) Does the dataset identify any subpopulations (e.g., by age, gender)?

No. Our participants have different ages and genders. But our dataset does not identify this
information. To ensure this, we have blurred participants’ faces in the released videos.

(o) Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly
(i.e., in combination with other data) from the dataset?

No, as explained in 2. (n), we have blurred participants’ faces in the released videos.

(p) Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals
racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships,
or locations; financial or health data; biometric or genetic data; forms of government identification,
such as social security numbers; criminal history)?

No.

(q) Any other comments?

None.

3. Collection Process

(a) How was the data associated with each instance acquired?

For each video instance, we provide temporal annotations and spatial annotations. We follow HR-SAT
to create temporal annotations to ensure the annotation consistency. The temporal annotations were
manually created and checked by our researchers. The spatial annotations were manually created by
postgraduate students at the University of Auckland, who were trained by one of our researchers to
ensure the annotation quality.

(b) What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, software API)?

Data were collected on three Azure Kinect RGB+D cameras via live video capturing while a
participant is performing the assembly actions, and we manually labeled all the annotations.

(c) If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

No, we created a new dataset.

(d) Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?
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For video recordings, volunteer participants were rewarded gift cards worth NZ$50.00 upon comple-
tion of the 2-hour data collection session.

For data annotations, we contracted students at the University of Auckland, and they were paid at a
rate of NZ$23.00 per hour.

(e) Over what timeframe was the data collected?

The videos were recorded during August to September of 2022, and the annotations were made
during October of 2022 to March of 2023.

(f) Were any ethical review processes conducted (e.g., by an institutional review board)?

Yes, we obtained ethics approval from the University of Auckland Human Participants Ethics
Committee. More information can be found in Section 5.

(g) Does the dataset relate to people?

Yes, we recorded the process of people assembling the Generic Assembly Box.

(h) Did you collect the data from the individuals in question directly, or obtain it via third parties or
other sources (e.g., websites)?

We collected the data from the individuals in question directly.

(i) Were the individuals in question notified about the data collection?

Yes, all participants were informed of the data collection purpose, process and the intended use of the
data. They were sent a Participant Information Sheet and signed Consent Form prior to the collection
session. All sessions started with an introduction where instructions on data collection, health and
safety and confirmation of the Consent Form were discussed.

(j) Did the individuals in question consent to the collection and use of their data?

Yes, all participants were sent a Participant Information Sheet and Consent Form prior to the collection
session. We confirmed that they had agreed to and signed the Consent form regarding the collection
and use of their data before proceeding with any data collection. Details can be found in Section 5.

(k) If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses?

Yes. The Participant Information Sheet and Consent Form addressed how they can request to withdraw
and remove their data from the project and how the data will be used.

(l) Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted?

No, all data have been processed to be made de-identifiable and all annotations are on objective world
states. The potential impact of the dataset and its use on data subjects were addressed in the Ethics
Approval, Participant Information Sheet and Consent Form. Details can be found in Section 5.

(m) Any other comments?

None.

4. Preprocessing, Cleaning and Labeling

(a) Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of
missing values)?

Yes, we have cleaned the videos by blurring participants’ faces. We have also extracted I3D features
from the video for action segmentation benchmarking.

(b) Was the "raw" data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)?

No, we only provide the cleaned videos (participants’ faces being blurred) to the public due to the
ethics issues.

(c) Is the software used to preprocess/clean/label the instances available?
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Yes, we used CVAT to draw bounding boxes. Details can be found in Section 2.3.

(d) Any other comments?

None.

5. Uses

(a) Has the dataset been used for any tasks already?

No, the dataset is newly proposed by us.

(b) Is there a repository that links to any or all papers or systems that use the dataset?

Yes, we provide the link to all related information on our website.

(c) What (other) tasks could the dataset be used for?

The dataset can also be used for Compositional Action Recognition, Human-Object Interaction
Detection, and Visual Question Answering.

(d) Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses?

We granulated the assembly action annotation into subject, action verb, manipulated object, target
object and tool. We believe the fine-grained and compositional annotations can be used for more
detailed and precise descriptions of the assembly process, and the descriptions can serve various
real-world industrial applications, such as robot learning, human robot collaboration, and quality
assurance.

(e) Are there tasks for which the dataset should not be used?

The usage of this dataset should be limited to the scope of assembly activity or task understanding,
e.g., action recognition, action segmentation, action anticipation, human-object interaction detection,
visual question answering, and the downstream industrial applications, e.g., robot learning, human-
robot collaboration, and quality assurance. Any work that violates our Code of Conduct are forbidden.
Code of Conduct can be found at our website11.

(f) Any other comments?

None.

6. Distribution

(a) Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?

Yes, the dataset will be made publicly available.

(b) How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?

The dataset could be accessed on our website.

(c) When will the dataset be distributed?

We provide private links for the review process. Then the dataset will be released to the public after
the review process.

(d) Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)?

We release our dataset and benchmark under CC BY-NC 4.012 license.

(e) Have any third parties imposed IP-based or other restrictions on the data associated with the
instances?

No.

(f) Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?

11https://iai-hrc.github.io/ha-vid
12https://creativecommons.org/licenses/by-nc/4.0/
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No.

(g) Any other comments?

None.

7. Maintenance

(a) Who is supporting/hosting/maintaining the dataset?

Regina Lee and Hao Zheng are maintaining, with continued support from Industrial AI Research
Group at The University of Auckland.

(b) How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

E-mail addresses are at the top of the paper.

(c) Is there an erratum?

Currently, no. As errors are encountered, future versions of the dataset may be released and updated
on our website.

(d) Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances’)?
Yes, see 7.(c).

(e) If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a fixed
period of time and then deleted)?

No.

(f) Will older versions of the dataset continue to be supported/hosted/maintained?

Yes, older versions of the dataset and benchmark will be maintained on our website.

(g) If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them
to do so?

Yes, errors may be submitted to us through email.

(h) Any other comments?

None.
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