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Abstract

Understanding comprehensive assembly knowledge from videos is critical for
futuristic ultra-intelligent industry. To enable technological breakthrough, we
present HA-ViD – an assembly video dataset that features representative indus-
trial assembly scenarios, natural procedural knowledge acquisition process, and
consistent human-robot shared annotations. Specifically, HA-ViD captures di-
verse collaboration patterns of real-world assembly, natural human behaviors and
learning progression during assembly, and granulate action annotations to sub-
ject, action verb, manipulated object, target object, and tool. We provide 3222
multi-view and multi-modality videos, 1.5M frames, 96K temporal labels and
2M spatial labels. We benchmark four foundational video understanding tasks:
action recognition, action segmentation, object detection and multi-object tracking.
Importantly, we analyze their performance and the further reasoning steps for
comprehending knowledge in assembly progress, process efficiency, task collabo-
ration, skill parameters and human intention. Details of HA-ViD is available at:
https://iai-hrc.github.io/ha-vid.

1 Introduction

Assembly knowledge understanding from videos is crucial for futuristic ultra-intelligent industrial
applications, such as robot skill learning [1], human-robot collaborative assembly [2] and quality
assurance [3]. To enable assembly video understanding, a video dataset is required. Such a video
dataset should (1) represent real-world assembly scenarios, (2) capture the comprehensive assembly
knowledge, (3) follow a consistent annotation protocol that aligns both human and robot assembly
comprehension. However, existing datasets fall short in meeting all these requirements.

First, the assembled products in existing datasets are either highly application-specific [4–9] or lack
representative assembly parts and tools [5–7, 9]. Second, many datasets did not design assembly
tasks to foster the emergence of natural behaviors (e.g., varying efficiency, alternative routes, pauses
and errors) during procedural knowledge acquisition. Third, thorough understanding of nuanced
assembly knowledge is challenging with existing datasets as they often do not to annotate subjects,
objects, tools and their interactions in a systematic approach.

Therefore, we introduce HA-ViD: a human assembly video dataset recording people assembling the
Generic Assembly Box (GAB, see Figure 1). We benchmark on four foundational video understanding
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tasks: action recognition, action segmentation, object detection and multi-object tracking (MOT), and
analyze their performance and the further reasoning steps for comprehending application-oriented
knowledge. HA-ViD features three novel aspects:

• Representative industrial assembly scenarios: GAB includes 35 standard and non-
standard parts frequently used in real-world industrial assembly scenarios and requires
4 standard tools to assemble it. The assembly tasks are arranged onto 3 plates featuring
different task precedence and collaboration requirements to promote the emergence of
two-handed collaboration and parallel tasks. Compared to existing assembly video datasets,
GAB is more representative of generic industrial assembly scenarios (see Table 1).

• Natural procedural knowledge acquisition process: Progressive observation, thought
and practice process (shown as varying efficiency, alternative assembly routes, pauses, and
errors) in acquiring and applying complex procedural assembly knowledge is captured via
the designed three-stage progressive assembly setup (see Figure 1). This design allows
in-depth understanding of the human cognition process, where existing datasets are limited
(see Table 1).

• Consistent human-robot shared annotations: We designed a consistent fine-grained
hierarchical task/action annotation protocol following a Human-Robot Shared Assembly
Taxonomy (HR-SAT1 , to be introduced in Section 2.3). Using this protocol, we, (1)
granulate action annotations to subject, action verb, manipulated object, target object, and
tool; (2) provide two-handed collaboration status annotations; and (3) annotate human
pauses and errors. Such detailed annotation embeds more knowledge sources for diverse
understanding of application-oriented knowledge (see Table 1).

Figure 1: HA-ViD, a dataset designed for industrial applications, represents real-world assembly
scenarios, and captures the process of acquiring procedural knowledge. The consistent annotation
follows a human-robot shared taxonomy. The dataset features 3222 multi-view and multi-modalities
videos, 1.5M frames, 96K temporal labels and 2M spatial labels.

2 Dataset

In this section, we present the process of building HA-ViD and provide essential statistics.

1HR-SAT, developed by the same authors, is a hierarchical assembly task representation schema that both
humans and robots can comprehend. See details via: https://iai-hrc.github.io/hr-sat
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Table 1: Comparison between HA-ViD and other assembly video datasets.

Dataset Assembled
product

Natural procedual
knowledge aquisition process

Consistent human-robot
shared assembly taxonomy Two-handed

collaboration
statusVarying assembly

efficiency
Alternative

route Pause Error Subject Action
verb

Manipulated
object

Target
object Tool Two-hand

Wooden box [8] Wooden box × × × × × ✓ × × ✓ × ×
IKEA-FA [7] Furniture × ✓ ✓ × × ✓ ✓ × × × ×

MECCANO [9] Toy motorbike × ✓ × × × ✓ ✓ × ✓ × ×
IKEA ASM [5] Furniture × ✓ ✓ × × ✓ ✓ × × × ×

Assembly101 [6] Toy cars × ✓ × ✓ × ✓ ✓ × ✓ × ×

HA4M [4] Epicyclic
Gear Train × ✓ ✓ × × ✓ ✓ × × × ×

HA-ViD
(ours)

Generic
assembly box ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.1 Generic Assembly Box

To ensure the dataset can represent real-world industrial assembly scenarios, we designed the GAB
shown in Figure 1.

First, GAB2 is a 250×250×250mm box including 11 standard and 24 non-standard parts frequently
used in real-world industrial assembly. Four standard tools are required for assembling GAB. The
box design also allows participants to naturally perform tasks on a top or side-facing plate, closer to
the flexible setups of real-world assembly.

Second, GAB consists of three plates featuring different task precedence and collaboration require-
ments. Figure 2 shows the subject-agnostic task precedence graphs (SA-TPG) for the three plates
with different precedence constraints. These different task precedence graphs provide contextual
links between actions, enabling situational reasoning with different complexities. The cylinder plate
also has more collaboration tasks, posing greater challenges for understanding collaborative assembly
tasks. Gear and cylinder plates contain parts that become hidden after assembly, e.g., spacers under
the gears. This introduces additional complexities for understanding assembly status.

Figure 2: Subject-agnostic task precedence graphs for three plates and annotation specification.
“must-collaborate” denotes the task requires two-handed collaboration, and “tend-to-collaborate”
denotes the task that tend to need two hands.

2.1.1 Dataset Collection

Data was collected on three Azure Kinect RGB+D cameras mounted to an assembly workbench
facing the participant from left, front and top views (see Figure 4). Videos were recorded at 1280×720
RGB resolution and 512×512 depth resolution under lab lighting and natural lighting conditions. 30
participants (15 male, 15 female) assembled each plate 11 to 12 times during a 2-hour session.

2Find GAB CAD files at: https://iai-hrc.github.io/ha-vid
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To capture the progression of human procedural knowledge [10] acquisition and behaviors (e.g.,
varying efficiency, alternative routes, pause, and errors) during learning, a three-stage progressive
assembly setup is designed. Inspired by discovery learning [11], we design the three stages as3:
Discovery – participants are given minimal exploded view instructions of each plate; Instruction –
participants are given detailed step-by-step instructions of each plate; Practice – participants are
asked to complete the task without instruction.

The first stage encourages participants to explore assembly knowledge to reach a goal, the second
stage provides targeted instruction to deepen participants’ understanding, and the last stage encourages
participants to reinforce their learning via practicing. During Instruction and Practice stages, the
participants were asked to perform the assembly with the plate both facing upwards and sideways.

2.1.2 Dataset Annotations

We provide temporal and spatial annotations to capture rich assembly knowledge shown in Figure 1.

To enable human-robot assembly knowledge transfer, our annotations follow the HR-SAT (shown in
Figure 3). According to the HR-SAT, an assembly task can be decomposed into primitive tasks and
further into atomic actions. Each primitive task and atomic action contain five description elements:
subject, action verb, manipulated object, target object and tool. Primitive tasks annotations describe
a functional change of the manipulated object, such as inserting a gear on a shaft or screwing a nut
onto a bolt. Atomic actions describe an interaction change between the subject and manipulated
object such as a hand grasping the screw or moving the screw. HR-SAT ensures the transferability,
adaptability, and consistency of annotations. It can be used to transform annotations from other
datasets into our designated description, or annotate new data to extend HA-ViD.

Figure 3: Human-robot shared assembly taxonomy (HR-SAT) schema. We tailored the original taxon-
omy by removing information that cannot be annotated from videos and incorporating a Disassemble
action verb to describe human error-and-correction process. We provide textual annotations (see
Figure 2) following the typical input formats of current video understanding algorithms. We also
offer SA-TPGs as knowledge graphs 4in RDF/XML format following the HR-SAT schema to enable
advanced assembly knowledge reasoning with enhanced relationship information.

We annotate human pause and error as null and wrong respectively to enable research on understanding
assembly efficiency and learning progression. Our annotations treat each hand as a separate subject.
Primitive tasks and atomic actions are labeled for each hand to support multi-subject collaboration
related research. Alongside the primitive task annotations, we annotate the two-handed collaboration
status as: collaboration, when both hand work together on the same task; parallel, when each hand
is working on a different task; single-handed, when only one hand is performing the task while the
other hand pauses; and pause, when neither hand is performing any task.

For spatial annotations, we use CVAT5, a video annotation tool, to manually label bounding boxes for
subjects, objects, and tools frame-by-frame. Furthermore, we treat important assemblable features

3The instruction files can be found at https://iai-hrc.github.io/ha-vid. The detailed instructions
were developed following HR-SAT to align assembly instructions with our annotations.

4The ST-TPGs files can be downloaded at: https://iai-hrc.github.io/hr-sat
5https://www.cvat.ai/
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(such as holes, stud and USB female) as objects, to enable finer-grained assembly knowledge
understanding.

2.2 Statistics

In total, we collected 3222 videos with side, front and top camera views. Each video contains one task
– the process of assembling one plate. Our dataset contains 86.9 hours of footage, totaling over 1.5
million frames with an average of 1 min 37 sec per video (1456 frames). To ensure annotation quality,
we manually labeled temporal annotations for 609 plate assembly videos and spatial annotations
for over 144K frames. The selected videos for labeling collectively capture the dataset diversity by
including videos of different participants, lightings, instructions and camera views.

Figure 4: Side, front and top camera views of the workbench.

Overall, our dataset (in Fig. 5) contains 18831 primitive tasks across 75 classes, 63864 atomic actions
across 219 classes, and close to 2M instances of subjects, objects and tools across 42 classes. Our
dataset shows potential for facilitating small object detection research as 46.6% of the annotations
are of small objects.

Figure 5: Temporal and spatial annotation statistics. (a) Total number of temporal annotations and
annotation distributions, categorized by hands. The three head classes of primitive tasks and atomic
actions are shown. (b) Total number of spatial annotations categorized into COCO object scale.

Our temporal annotations can be used to understand the learning progression and efficiency of
participants over the designed three-stage progressive assembly setup. The combined annotation
of wrong primitive task, pause collaboration status and total frames can indicate features such as
errors, observation patterns and task completion time for each participant. Our dataset captures the
natural progress of procedural knowledge acquisition, as indicated by the overall reduction in task
completion time and pause time from stage 1 to 3, as well as the significant reduction in errors (see
Figure 6). The wrong and pause annotations enable research on understanding varying efficiency
between participants.

By annotating the collaboration status and designing three assembly plates with different task
precedence and collaboration requirements, HA-ViD captures the two-handed collaborative and
parallel tasks commonly featured in real-world assembly, shown in Figure 7. Overall, 49.6% of the
annotated frames consist of collaborative or parallel tasks. The high percentage of two-handed tasks
enables research in understanding the collaboration patterns of complex assembly tasks.
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Figure 6: Annotation statistics of total frames, pause frames, and wrong frames. (a) Total frames and
pause frames distribution by participant. (b) Average total frames and pause frames per task in each
progressive assembly stage. (c) Average wrong frames per task in each progressive assembly stage.

Figure 7: Percentage distribution of each collaboration status annotation for each assembly plate.

3 Benchmark Experiments

We benchmark SOTA methods for four foundational techniques for assembly knowledge understand-
ing, i.e., action recognition, action segmentation, object detection, and MOT. Due to the page limit,
we highlight key results and findings in this section, and present implementation details, more results
and discussions in the Supplementary document.

3.1 Action Recognition, Action Segmentation, Object Detection and MOT

Action recognition is to classify a sequence of video frames into an action category. We split 123
out of 609 temporally labeled videos to be the testset, and the rest as trainset. We benchmark seven
action recognition methods from three categories: 2D models (TSM [12], TimeSFormer [13]), 3D
models (I3D [14], MVITv2 [15], UniFormerV2 [16]), and skeleton-based methods (ST-GCN [17],
ST-GCN++ [18]) and report the Top-1 accuracy and Top-5 accuracy in Table 2.

Action segmentation is to temporally locate and recognize human action segments in untrimmed
videos [19]. Under the same train/test split as action recognition, we benchmark four action seg-
mentation methods, MS-TCN [20], DTGRM [19], BCN [21], and C2F-TCN [22], and report the
frame-wise accuracy (Acc), segmental edit distance (Edit) and segmental F1 score at overlapping
thresholds of 10% in Table 3.

Object detection is to detect all instances of objects from known classes [23]. We split 18.4K out
of 144K spatially labeled frames to be the testset, and the rest as trainset. We benchmark classical
two-stage method FasterRCNN [24], one-stage method Yolov5 [25], and the SOTA end-to-end
Transformer-based method DINO [26] with different backbone networks, and report the parameter
size (Params), average precision (AP), AP under different IoU thresholds (50% and 75%), and AP
under different object scales (small, medium and large) in Table 4.

MOT aims at locating multiple objects, maintaining their identities, and yielding their individual
trajectories given an input video [27]. We benchmark SORT [28] and ByteTrack [29] on the detection
results of DINO and ground truth annotations (test split of object detection), respectively. We report
the average multi-object tracking accuracy (MOTA), ID F1 score (IDF1), false positive (FP), false
negative (FN), and ID switch (IDS) over the videos in our testing dataset in Table 5.
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Table 2: Baselines of action recognition. Average results over three views are reported here and more
detailed results can be found in the Supplementary document.

Method View
Primitive Task Atomic Action

Left-Hand Right-Hand Left-Hand Right-Hand
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

TSM [12] Average 61.0 88.5 58.6 87.9 39.6 69.4 37.0 67.2
TimeSFormer [13] Average 52.1 85.4 51.8 84.4 37.6 68.8 34.6 66.1
I3D(rgb+flow) [14] Average 47.7 71.5 52.9 85.1 43.0 75.0 40.5 72.9

MVITv2 [15] Average 61.5 86.3 58.7 84.1 48.4 76.5 42.9 71.2
UniFormerV2 [16] Average 62.4 89.7 61.4 89.9 48.9 80.9 44.6 77.6

ST-GCN [17] Average 39.5 60.2 38.7 55.2 20.3 44.4 19.7 40.6
ST-GCN++ [18] Average 38.8 58.0 37.5 56.7 19.0 41.3 16.7 36.1

Table 3: Baselines of action segmentation. Average results over three views are reported here and
detailed results can be found in the Supplementary document.

Method View
Primitive task Atomic Action

Left hand Right hand Left hand Right hand
F1 Edit Acc F1 Edit Acc F1 Edit Acc F1 Edit Acc

MS-TCN [20] Avg. 36.6 37.5 40.2 34.7 34.8 39.3 35.1 32.5 40.9 31.2 32.2 34.6
DTGRM [19] Avg. 39.1 37.5 40.2 37.8 37.3 39.7 34.3 32.6 39.8 29.8 29.3 33.1

BCN [21] Avg. 43.7 41.4 44.1 41.3 38 43.4 18.4 15.9 39.7 22.3 20.1 34.6
C2F-TCN [22] Avg. 22.6 22.0 39.5 22.5 21.9 39 20.5 19.2 37.6 17.4 17.4 31.8

Table 4: Baselines of object detection.

Method Backbone Params AP AP50 AP75 AP-s AP-m AP-l

Faster-RCNN [24]
ResNet50 41.6M 21.7 32.6 24.4 13.0 37.4 40.6
ResNet101 60.6M 20.9 31.1 23.9 12.3 37.9 43.1
ResNext101 99.5M 22.2 31.6 25.7 15.0 36.2 46.2

YOLOv5-s [25] DarkNet 7.1M 10.2 14.1 10.9 0.7 18.8 46.8
YOLOv5-l [25] DarkNet 46.4M 12.9 17.3 14.0 1.0 28.8 59.8

DINO [26] Swin-L 218M 35.5 54.5 37.7 27.4 36.4 59.2

Table 5: MOT results on object detection results and ground truth object bounding boxes.

Method bboxes MOTA IDF1 FP FN IDS

SORT [28] dets 20.4% 27.1% 737.8 9212.3 29
gt 94.5% 69.1% 223.9 408.1 54.8

ByteTrack [29] dets 20.0% 41.1% 5175.3 4678.3 87.2
gt 98.5% 67.5% 32.4 32.5 121.6

The baseline results show that our dataset presents great challenges on the four foundational video
understanding tasks compared with other datasets. For example, BCN has 70.4% accuracy on
Breakfast [30], MViTv2 has 86.1% Top-1 accuracy on Kinetics-400 [31], DINO has 63.3% AP on
COCO test-dev [32], and ByteTrack has 77.8% MOTA on MOT20 [33].

Compared to the above baseline results, we are more concerned with whether existing video un-
derstanding methods can effectively comprehend the application-oriented knowledge (shown in
Figure 1). Therefore, in Sections 3.2 to 3.5, we further analyze the performance and limitation of the
foundational tasks on comprehending application-oriented knowledge, discuss the required assembly
video reasoning tasks, and highlight the potential research directions.

3.2 Assembly progress

Insight #1: Assembly progress understanding could focus on compositional action understand-
ing and leveraging prior domain knowledge. Basic assembly progress understanding requires
real-time action (action verb + interacted objects and tools) recognition, and compare the action
history with the predefined assembly plan (represented in a task graph). After further analysis of the
sub-optimal action recognition performance in Table 2, we found recognizing the interacting objects
and tools are more challenging than recognizing the action verbs, (as shown in Table 6).
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Table 6: Recall of action verb, manipulated object, target object, and tool recognition, via MVITv2.

Action verb Manipulated Object Target Object Tool
Primitive Task 71.1% 60.4% 57.1% 60.8%
Atomic Action 67.6% 50.9% 53.5% 55.0%

Deeper assembly progress understanding requires real-time reasoning on human-object interaction
dynamics, future operations, and their operation times. Taking a step to address this need, we
benchmark FUTR [34] – a SOTA long-term action anticipation method, and report the mean over
classes (MoC) accuracy as per [35] in Table 7. Similar to Table 6, a higher accuracy of action verb
anticipation can also be observed in Table 7.

Table 7: Mean over classes accuracy of action (action verb + interacted objects and tools) anticipation,
action verb anticipation and manipulated object anticipation. Following the problem setting in [34]:
for a video with T frames, the first αT frames are observed and anticipate the next βT frames.

β(α=0.2) β(α=0.3)
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Action anticipation Primitive task 7.4 6.1 4.7 4.4 12.3 9.2 6.5 5.6
Atomic action 2.2 1.8 1.6 1.4 4.7 2.7 2.2 1.8

Action verb anticipation Primitive task 24.2 23.5 18.2 17.6 32.8 18.6 16.6 16.0
Atomic action 14.6 12.0 10.7 10.4 15.4 13.0 11.7 10.2

Manipulated object anticipation Primitive task 13.5 10.0 9.1 9.6 17.0 12.9 10.7 9.1
Atomic action 9.0 9.1 8.7 8.1 13.5 10.7 9.8 8.3

Based on the observation from Table 6 and 7, a promising research direction could be recognizing and
anticipating action verbs, objects, and tools compositionally and leveraging prior domain knowledge
(such as task precedence and probabilistic correlation between action verbs, objects, and tools) to
precisely track and predict the assembly progress. With defined task precedence graphs and rich list
of annotated action verb/object/tool pairs, HA-ViD enables research on this aspect.

Insight #2: Assembly action segmentation should focus on addressing under-segmentation issues
and improving segment-wise sequence accuracy. Assembly progress tracking requires obtaining
the accurate number of action segments and their sequence. For obtaining the accurate number
of action segments from a given video, previous action segmentation algorithms [19–21] focused
on addressing over-segmentation issues, but lack metrics for quantifying under/over-segmentation.
Therefore, we propose segmentation adequacy (SA) to fill this gap. Considering the predicted
segments as spred = {s′1, s′2, . . . , s′F } and ground truth segments as sgt = {s1, s2, . . . , sN}, where

F and N are the number of segments for a given video, SA = tanh
(

2(F−N)
F+N

)
. Table 8 reveals the

significant under-segmentation issues observed from our dataset, which is a potentially important
issue to be addressed for assembly action understanding. Our proposed SA metric can offer evaluation
support, and even assist in designing the loss function given its use of the hyperbolic tangent function.

Table 8: Comparison between our dataset and others on segmentation adequacy. We calculated the
average number of ground truth segments (N ), predicted segments (F ), and segment adequacy (SA)
of the videos in the testing datasets of ours and others. The predicted results are from BCN.

Dataset N F SA

HA-ViD(ours) Primitive task 14.9 8.3 -0.47
Atomic action 51.2 11.5 -0.82

Breakfast 6 6.8 -0.12
GTEA 32.5 32.9 -0.03

For segment-wise sequence accuracy, the low Edit value in Table 3 suggests further research efforts
are required. Compared with Breakfast [30] (66.2% Edit score with BCN), our dataset presents
greater challenges.

3.3 Process Efficiency

Understanding process efficiency is essential for real-world industry. It requires video understanding
methods to be capable of identifying human pause and error via reasoning of the contextual scene
and human-object interaction. HA-ViD supports this research by providing null and wrong labels.
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Insight #3: Null action understanding requires efforts on addressing imbalanced class distribu-
tion. Table 9 shows the recall and precision of action recognition and action segmentation for null
actions. We suspect the high recall and low precision is caused by the imbalanced class distribution,
as null is the largest head class (see Figure 5). To address the class imbalance problem, we randomly
over-sample the minority classes (classes with sample size below a threshold) to reach the threshold,
and report the action recognition accurarcy of UniFormerV2 on the over-sampled dataset in Table 10.
Here, the threshold is set to 300 and more details can be found in the Supplementary.

Table 9: Recall and precision of null recognition and segmentation. Action recognition results are
from MVITv2 and action segmentation results are from BCN.

Recall Precision

Recognition Primitive Task 90.8% 65.1%
Atomic Action 81.5% 39.1%

Segmentation Primitive Task 80.9 45.1%
Atomic Action 84.6% 37.5%

Table 10: The action recognition accuracy of UniFormerV2 on the over-sampled dataset.

Method View
Primitive Task Atomic Action

Left-hand Right-hand Left-hand Right-hand
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

UniFormerV2 Average 62.4 89.7 61.4 89.9 48.9 80.9 44.6 77.6
UniFormerV2 (over-sampling) Average 67.3 89.2 66.2 89.1 52.0 81.2 48.8 78.1

Insight #4: New research from wrong action annotations. Wrong actions refer to assembly
actions (primitive task level) occurred at the wrong position or order. Our annotated wrong actions
can initiate three avenues for research. First, the pattern of wrong actions in different participants
across the three-stage progressive assembly can provide insights into human learning progression and
performance. Second, investigating the wrong action and the actions leading up to it can help identify
assembly errors, contributing to quality assurance. Third, analyzing the actions undertaken after the
wrong action can provide insights into how humans resolve errors and re-plan the assembly sequence.

3.4 Task Collaboration

Understanding the states, patterns, and dynamics of two-handed collaboration during the assembly
process is essential for applications, such as ergonomics analysis, collaborative task planning, and
human-robot collaboration design. HA-ViD can support research in this aspect via providing spatial
annotations, two-hand separated temporal annotations and collaboration status annotations.

Insight #5: New research on understanding parallel tasks from both hands. Table 11 shows that
both action recognition and segmentation have lowest performance on parallel tasks during assembly.
One possible reason is that the foundational video understanding methods rely on global features of
each image, and do not explicitly detect and track the action of each hand. This calls for new methods
to independently track both hands and recognize their actions through local features. Recent research
on human-object interaction detection in videos [36, 37] could offer valuable insights.

Table 11: Recall of two-handed primitive task recognition and segmentation in four collaboration
status. Action recognition results are from MVITv2 and action segmentation results are from BCN.

Action recognition results Action segmentation results
Collaboration Parallel Single-handed Pause Collaboration Parallel Single-handed Pause

Left hand 52.5% 39.7% 54.2% 92.4% 32.1% 15.4% 18.5% 85.5%
Right hand 46.1% 30.5% 50.7% 93.3% 35.0% 24.2% 17.2% 82.9%

3.5 Skill Parameters and Human Intention

Understanding skill parameters and human intentions from videos is essential for robot skill learning
and human-robot collaboration (HRC) [38, 39].

Typically, skill parameters vary depending on the specific application. However, there are certain
skill parameters that are commonly used, including trajectory, object pose, force, and torque [40, 41].
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While videos cannot capture force and torque directly, our dataset offers spatial annotations that
enable tracking the trajectory of each object. Additionally, the object pose can be inferred from our
dataset via pose estimation methods. Therefore, HA-ViD can support basic research in this direction.
To acquire more detailed and accurate skill parameters, assembly process comprehension must extend
to the 3D space, utilizing 3D reasoning and 3D hand-object interaction estimation techniques to
precisely track the temporal changes in hand poses and objects. For human-robot skill transfer, the
learned assembly skill parameters can be sourced as input to robot learning environments.

Understanding human intention in HRC refers to a combination of trajectory prediction, action
anticipation and task goal understanding [42]. Our spatial annotations provide trajectory informa-
tion, SA-TPGs present action sequence constraints, and GAB CAD files offer the final task goals.
Therefore, HA-ViD can enhance the research in this aspect.

4 Discussion

As identified in Section 3, HA-ViD provides a basis for developing video understanding and rea-
soning techniques to derive application-oriented knowledge. Model design, results analysis, and
knowledge reasoning pipeline development that are based on HA-ViD can accelerate the development
of application-specific models. In addition, if a new dataset is required for a specific application,
our HR-SAT-based annotation protocol can be employed to ensure the resulting target dataset is
compatible with HA-ViD. The annotation alignment eases the process of adapting and deploying
pre-trained models to new scenarios.

We acknowledge the limitation of HA-ViD on fully capturing the complexities and diversities
of industrial assembly scenarios. Therefore, HA-ViD can be extended to include more products,
assembly environments, and even different agents. Following our data collection and annotation
protocol could ensure similar high-quality assembly video datasets that are compatible with HA-ViD.

Furthermore, we identify that HA-ViD could benefit from 3D and pixel-wise geometric annotations.
This can facilitate the research into 3D hand-object interaction and 3D scene understanding, which
is essential for assembly quality checking and robot skill learning. Therefore, future work could
involve providing more refined annotations, such as hand poses, object poses and 3D key points,
via additional sensors. We therefore created a dataset roadmap on our Github repository to outline
improvement focuses and encourage collective efforts from the community to extend HA-ViD.

5 Conclusion

We present HA-ViD, a human assembly video dataset, to advance comprehensive assembly knowledge
understanding toward real-world industrial applications. We designed the Generic Assembly Box
to represent industrial assembly scenarios and a three-stage progressive learning setup to capture
the natural process of human procedural knowledge acquisition. The dataset annotation follows the
Human-Robot Shared Assembly Taxonomy. HA-ViD includes (1) multi-view, multi-modality data,
fine-grained action annotations (subject, action verb, manipulated object, target object, and tool), (2)
human pause and error annotations, and (3) collaboration status annotations to enable technological
breakthroughs industrial application-oriented knowledge comprehension from videos.

We benchmarked strong baseline methods of action recognition, action segmentation, object detec-
tion and multi-object tracking, and analyzed their performance and the further reasoning steps for
comprehending application-oriented knowledge in assembly progress, process efficiency, task collab-
oration, skill parameter and human intention. The results show that our dataset captures essential
challenges for foundational video understanding tasks, and new methods need to be explored for
application-oriented knowledge comprehension. We envision HA-ViD will open opportunities for
advancing video understanding techniques to enable the futuristic ultra-intelligent industry.
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