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Abstract

The success of meta-learning on out-of-distribution (OOD) tasks in the wild has
proved to be hit-and-miss. To safeguard the generalization capability of the meta-
learned prior knowledge to OOD tasks, in particularly safety-critical applications,
necessitates detection of an OOD task followed by adaptation of the task towards the
prior. Nonetheless, the reliability of estimated uncertainty on OOD tasks by existing
Bayesian meta-learning methods is restricted by incomplete coverage of the feature
distribution shift and insufficient expressiveness of the meta-learned prior. Besides,
they struggle to adapt an OOD task, running parallel to the line of cross-domain
task adaptation solutions which are vulnerable to overfitting. To this end, we build
a single coherent framework that supports both detection and adaptation of OOD
tasks, while remaining compatible with off-the-shelf meta-learning backbones. The
proposed Energy-Based Meta-Learning (EBML) framework learns to characterize
any arbitrary meta-training task distribution with the composition of two expressive
neural-network-based energy functions. We deploy the sum of the two energy
functions, being proportional to the joint distribution of a task, as a reliable score for
detecting OOD tasks; during meta-testing, we adapt the OOD task to in-distribution
tasks by energy minimization. Experiments on four regression and classification
datasets demonstrate the effectiveness of our proposal.

1 Introduction

Meta-learning [48, 6] that builds general-purpose learners with limited data has been under constant
investigation, recently demonstrating its potential to even advance few-shot learning of large lan-
guage models [36, 44]. Analogous to the notorious domain shift [23] that degrades the performance
of deep learning, meta-testing tasks that are out of the distribution of meta-training tasks (a.k.a.
out-of-distribution (OOD) tasks) put the meta-learned prior knowledge at high risk of losing effective-
ness [46]. In real-world applications, though, out-of-distribution tasks are highly prevalent, e.g., bin
picking for a robot that has never been meta-trained on environments involving bins [55], MRI-based
pancreas segmentation given a host of meta-training tasks with pathology images [35], and etc. Thus,
it is imperative to secure the generalization ability of the meta-learned prior (i.e., meta-generalization)
to OOD tasks, especially in safety-critical applications such as medical image analysis.

The first step to securing meta-generalization to a task is to develop awareness of whether the task
is OOD or not, i.e., OOD task detection. Existing solutions in literature have pursued a variety of
Bayesian meta-learning methods [7, 54, 41, 10, 43] that balance between flexibility and tractability of
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(b) Limited Expressiveness. The meta-training task
distribution learned by EBML-CNPs (middle, ours)
outperforms F-PACOH-GP [43] whose prior distri-
bution is built on GP.

Figure 1: Comparison of EBML and Bayesian meta-learning baselines for OOD detection.

solving the hierarchical probabilistic model p(Yi|Xi) =
∫∫
p(Yi|Xi, ϕi)p(ϕi|θ)p(θ) dϕidθ, where

Ti = {Xi,Yi} represents the i-th task. θ and ϕi denote parameters of the meta-model and task-
specific model, respectively. Unfortunately, these methods present some limitations in their practical
usage. (1) Incomplete OOD coverage: given that the Bayesian uncertainty is trained via maximizing
the posterior p(Yi|Xi) above, it is not necessarily high when encountering an OOD task that shares
the predictive function p(Yi|Xi) with some meta-training tasks but differs substantially in feature
distributions p(Xi). We verify this in Figure 1a and Appendix D. (2) Limited expressiveness: for
tractability purpose, the meta-learned prior p(ϕi|θ) predicates on simple known distributions, e.g.,
Maximum A Posterior (MAP) estimation [6, 53] and Gaussian [41, 7, 43], which may struggle to
align with the complex probabilistic structure of the meta-training task distribution (see Figure 1b).
This misalignment inevitably leads to unreliable estimation of OOD tasks.

Upon detection of an OOD task, secondly, adaptation of the meta-learned prior promotes its gen-
eralization to this OOD task. We dub this strategy during meta-testing as OOD task adaptation,
which is closely related to cross-domain meta-learning [4, 25, 34, 49]. The core philosophy behind
cross-domain meta-learning is the introduction of task-specific parameters which are inferred via
either gradient descent [28, 29] or feed-forward amortized encoder [42, 8] on the support set of each
OOD task. Learning task-specific parameters, however, is prone to overfitting given the usually very
limited size of a support set (e.g., 5 examples only in 5-way 1-shot classification).

The limitations are further complicated by the detachment of the existing solution to OOD task
detection from that to OOD task adaptation. An explicit prior model is absent in existing Bayesian
meta-learning methods for OOD task detection, so that adapting the prior during meta-testing to
accommodate an OOD task is ambitious to achieve. On the other hand, cross-domain meta-learning
approaches by design do not offer uncertainty estimation, thereby being a risky OOD task detector.
Pursuing a coherent framework that supports both detection and adaptation of OOD tasks remains an
open question, which motivates our proposal of a novel probabilistic meta-learning framework.

By virtue of the flexibility and expressiveness of energy-based models [24] in modelling complex
data distributions, we propose the Energy-Based Meta-Learning (EBML) framework that overcomes
the above-mentioned limitations. Specifically, we derive an energy-based model to explicitly model
any meta-training task distribution, resulting in the composition of an explicit prior energy function
and a complexity energy function. The sum of the two energy functions, trained directly to meet
the joint distribution p(Xi,Yi) and parameterized with neural networks, has completeness and
expressiveness advantages that give it an edge in detection of OOD tasks. During meta-testing, we
iteratively update the parameter for a task that has been identified as OOD by gradient descent of
energy minimization, which eventually adapts the prior towards in-distribution tasks and maximally
leverages the meta-learned prior for alleviating overfitting.

The key contributions of this research are outlined below. (1) Coherence and generality: we provide a
coherent probabilistic model that allows both detection and adaptation of OOD tasks. Also, EBML is
agnostic to meta-learning backbones, being general to secure meta-generalization for arbitrary off-the-
shelf meta-learning approaches against OOD tasks. (2) Practical efficacy: we conduct our experiments
on three regression and one classification datasets, on which EBML outperforms SOTA Bayesian
meta-learning methods for OOD task detection with an improvement of up to 7% on AUROC and
cross-domain meta-learning approaches for OOD task adaption with up to 1.5% improvement.

2 Related Work

Bayesian Meta-learning There has been a line of literature on Bayesian meta-learning algorithms
with predictive uncertainty estimation for safeguarding safety-critical and few-shot applications. Grant
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et al. [11] first recast gradient-based meta-learning as a tractable hierarchical Bayesian inference
problem. Much of the subsequent research attempts to solve the problem with various approximations.
Assuming a sufficient number of meta-training tasks, almost all works use a point estimate for the
initialization [41, 19, 10]. However, estimates of exceptions including [54] rely on SVGD [32] for
inference and require significant computation for an ensemble of task-specific weights. Several
studies that estimate the uncertainty in task-specific parameters after inner-loop adaptation have
explored MAP estimates [e.g. 47], sampling from a neural network [10, 53, 42], and variational
inference [41, 7, 43]. The uncertainties considered in these methods are often modelled using isotropic
Gaussians which suffer from limited expressiveness.

Meta-learning towards OOD Generalization Recent cross-domain meta-learning methods [e.g.
25, 4, 49, 34] deal with a distribution shift between meta-training and meta-testing tasks, by typically
parameterizing deep networks with a large set of task-agnostic and a small set of task-specific
weights that encode shared representations and task-specific representations for the training domains,
respectively. The works of [42, 1, 34] augment a shared pre-trained backbone with task-specific
FiLM [40] layers whose parameters are estimated through an encoder network conditioned on the
task’s support set. TSA [28] and URL [29] propose to attach task-specific adaptors in matrix form to
the pre-trained backbone at test time, inferring their parameters by gradient descent on the support set
for each task from scratch. On the other hand, SUR [4] and URT [31] pre-train multiple backbones
each for an ID training domain, and meta-learn an attention mechanism to selectively combine
the pre-trained representations into task-specific ones for ID and OOD classification. While these
methods generally have improved performance in the OOD domains of tasks, they nevertheless are
not designed with any explicit mechanism for detecting OOD tasks, i.e., lacking OOD awareness.

EBMs for OOD Detection Recently, there has been increasing interest in leveraging EBMs for
detecting testing samples that are OOD w.r.t. the training data distribution. Liu et al. [33] directly
use the energy score for OOD input detection, while Grathwohl et al. in JEM [12] use gradient
norm of the energy function as an alternative OOD score; both yield more superior OOD detection
performance than traditional density-based detection methods. There are also a number of works
that investigate the OOD detection capability of hybird and latent variable EBMs [38, 14, 13],
and more advanced training techniques for improving the density modelling hence OOD detection
performance of EBMs [5, 2, 57, 3]. While all aforementioned works focus on the standard supervised
and unsupervised learning scenarios, Willette et al. in [52] study OOD detection in meta-learning.
However, their work differs from EBML in that (a) EBML aims to detect a meta-testing task that
is OOD of the meta-training tasks whereas [52] focuses on detecting a query sample that is OOD
of the support samples in a meta-testing task, and (b) EBML explicitly meta-learns the distribution
of meta-training tasks via the two proposed EBMs and develops the Energy Sum to flag those high-
energy tasks as OOD tasks; while [52] resorts to post-hoc OOD detection via energy scaling (akin
to temperature scaling in softmax output) without learning any EBM. Moreover, we offer EBML
as a generic and flexible probabilistic meta-learning framework that supports both detection and
adaptation of OOD tasks.

3 Preliminaries: Energy-based Models

An energy-based model (EBM) [24] expresses a probability density p(x) for x ∈ RD as

pθ(x) =
exp(−Eθ(x))

Z(θ)
, (1)

where Eθ(x) is the energy function parametrized by θ that maps each point x in the input space to
a scalar value known as the energy. Z(θ) =

∫
x
exp(−Eθ(x))dx is the partition function that is a

constant w.r.t. the variable x. Training pθ(x) to fit some data distribution pD(x) requires maximizing
the log-likelihood L(θ) = Ex∼pD(x)[log pθ(x)] w.r.t. θ. Though an intractable integral in Zθ is
involved in this objective, it is not a concern when computing the gradient [3, 12]

∇θL = Ex′∼pθ [∇θEθ(x
′)]− Ex∼pD [∇θEθ(x)]. (2)

Intuitively, Eqn. (2) encourages Eθ to assign low energy to the samples from the real data distribution
pD while assigning high energy to those from the model distribution pθ. Computing Eqn. (2), thus,
requires drawing samples from pθ, which is challenging. Recent approaches [12, 3] on training EBMs
resort to stochastic gradient Langevin dynamics (SGLD) [51] which generates samples following

x0 ∼ p0(x), xk+1 = xk − η2

2

∂Eθ(x
k)

∂xk
+ ηzk. (3)
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The K-step sampling starts from an (typically uniform) initial distribution p0(x). zk∼N (0, I)∈RD
is a perturbation, and η ∈ R+ controls the step size and noise magnitude. Denote the distribution qθ by
Eqn. (3), which signifies x′=xK∼qθ. When η→0 and K→∞, then qθ→pθ under some regularity
conditions [51]. Consequently, the gradient of Eqn. (2) is approximated in practice [3, 12] by

∇θL = Ex′∼stop_grad(qθ)[∇θEθ(x
′)]− Ex∼pD [∇θEθ(x)], (4)

where the gradient does not back-propagate into SGLD sampling.

4 Energy-Based Meta-learning

For clarity, we use the notation PID to denote the unknown meta-training ID task distribution where
the i-th training task is T i. We let Xi, Yi to denote sets of samples {xij , yij} in T i, and T si , T

q
i

to denote support and query sets, respectively. The size of T i, T si , T
q
i is denoted by Ni, Ns

i , Nq
i ,

respectively. The subscript i denotes the task index, and j denotes the sample index.

4.1 Energy-based Modelling of Task Distribution

As illustrated in Introduction, existing probabilistic meta-learning methods maximizing the predic-
tive likelihood p(Y|X) suffer from incomplete OOD coverage. To this end, we model the meta-
training task distribution by (1) formulating the joint distribution p(Xi,Yi) of each task T i and
(2) maximizing the log-likelihood of all meta-training tasks. Concretely, by Kolmogorov’s exten-
sion and de Finneti’s theorems [22], we have the expected log-likelihood of the meta-training tasks
as EPID [log p(T i)] = EPID [log p(Xi,Yi)] = EPID [log

∫
ϕi

∏Ni
j=1 p(xij , yij |ϕi)p(ϕi)dϕi]. Each

p(T i) is written in a factorized form over Ni conditional independent distributions with ϕi being the
task-specific latent variable. Due to the intractable integral over ϕi in high dimension, we resort to
amortized inference [8, 41] and learn with a lower-bound instead. This gives the ELBO

EPID [log p(T i)]≥E
[
Eϕi∼qψ(ϕi| T si )

[
log

Ni∏
j=1

p(xij , yij |ϕi)
]
−KL

(
qψ(ϕi| T si )||p(ϕi)

)]
. (5)

Following the conventional wisdom [41, 28, 6], qψ is conditioned on the support set only during meta-
training to align the inference procedure, i.e., ϕi ∼ qψ(ϕi| T si ), for meta-training and meta-testing.
It remains now to parameterize the three distributions in Eqn. (5) including (a) the task-specific
data distribution p(xij , yij |ϕi), (b) the prior latent distribution p(ϕi), and (c) the posterior latent
distribution qψ(ϕi| T si ). Prior works parameterize these distributions in simple known forms, e.g.,
Gaussians [41, 7, 43] or MAP estimation [6, 53], which may be insufficient to match the complex
probabilistic structure of the meta-training task distribution. To increase the expressiveness, we turn
to EBMs for parameterizing the two distributions of p(xij , yij |ϕi) and p(ϕi). For one reason,
EBMs are known to be sufficiently flexible and expressive for characterizing complex arbitrary
density functions [3] not limiting to only uni-modal distributions like isotropic Gaussians and MAP
estimation; for another, the energy function of an EBM is directly proportional to the negative
log-likelihood, paving the way for OOD detection in Section 4.2.

(a) Task-specific data EBM We model p(xij , yij |ϕi) by an energy function parameterized with ω,

p(xij , yij |ϕi) = pω(xij , yij |ϕi) =
exp(−Eω(xij , yij ,ϕi))

Z(ω,ϕi)
, (6)

where Eω denotes the task-specific data energy function conditioned on the latent ϕi, and Z(ω,ϕi)
is the corresponding partition function. Note that the parameter ω of this EBM is shared by all tasks.

(b) Latent prior EBM Inspired by [39], we model the prior latent distribution p(ϕi) as an uncon-
ditional EBM parameterized by λ; training such a EBM offers expressiveness benefits over a fixed
non-informative prior distribution, e.g., isotropic Gaussian distribution. Specifically,

p(ϕi) = pλ(ϕi) =
exp(−Eλ(ϕi))

Z(λ)
, ∀i. (7)

(c) Latent posterior As many meta-learning algorithms have already carefully designated the poste-
rior latent distribution qψ(ϕi| T si ), we simply follow the same implementation of qψ in the chosen
base meta-learning algorithm, e.g., MAP estimation in [8, 42, 1, 53]. This design favorably empowers
EBML to be a generic and flexible framework compatible with off-the-shelf meta-learning algorithms.
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Grounded on the above parameterization, we are now ready to derive our EBML meta-training
objective as below by plugging the two EBMs defined in Eqn. (6) and Eqn. (7) into Eqn. (5). The
derivation shares the spirit with Eqn. (4), and more details can be found in Appendix A.1.

argmax
ω,ψ,λ

ET i∼PID

[
Eϕi∼qψ(ϕi|T si )[

Ni∑
j=1

−Eω(xij , yij ,ϕi) + Epω(x′,y′|ϕi)[Eω(x
′
ij , y

′
ij ,ϕi)]]

− Eqψ(ϕi|T si )[Eλ(ϕi)] + Epλ(ϕ′
i)
[Eλ(ϕ

′
i)] +H(qψ(ϕi| T

s
i ))

]
. (8)

Solving the above meta-training objective involves sampling of x′, y′ from pω and ϕ′
i from pλ, in

order to compute the expectations Epω(x′,y′|ϕi) and Epλ(ϕ′
i)

as Monte-Carlo averages. We follow
the similar SGLD sampling procedure in Eqn. (3). Besides, since the majority of state-of-the-art
meta-learning algorithms [8, 42, 1, 53] adopt the MAP estimation of the latent posterior qψ which is
deterministic, the last entropy term ofH essentially becomes zero and the expectations in the first
and second terms are trivial to solve. For this reason, we focus on base meta-learning algorithms
with MAP approximation in the following sections, which not only simplifies computation but also
maintains the state-of-the-art performance. We left a discussion on EBML with distributional qψ in
Appendix C.3. The complete pseudo codes for meta-training of EBML are available in Appendix E.

4.2 EBML for OOD Detection
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Figure 2: The roles of Eω and Eλ in En-
ergy Sum in detecting OOD tasks. Each dot de-
notes a task. Left: We perturb each sup-
port sample of a task T i by ηij ∼
Ni(0, σi) where we sample σi from [0, 1] uni-
formly. The y-axis shows the average energy
Exsij ,y

s
ij∼T si ,ηij∼Ni [Eω(x

s
i ,y

s
i ,ϕi)] and the x-

axis plots the variance σ2
i . Right: We first com-

pute the mean of the overall ID task latent prior
as ϕID =Eϕi∼pID [ϕi]. The y-axis shows the
energy Eλ(ϕID + ηi) where ηi ∼ N (0, 1) for
the i-th task and the x-axis plots the Euclidean
distance of the perturbed latent from ϕID.

Detecting an OOD task w.r.t. the meta-training dis-
tribution constitutes an essential first step to guard
successful meta-generalization. A straightfor-
ward solution is density-based OOD detection,
for which the OOD score of a task following the
Bayesian principle boils down to its log-likelihood
log p(Xs

i ,Y
s
i )=logEϕi∼pλ(ϕi)[pω(X

s
i ,Y

s
i |ϕi)].

Despite the meta-learned latent prior EBM pλ(ϕi)
that is readily available, estimating this log-
likelihood still presents daunting challenges. First,
when the latent prior is expressed in the form of a
distribution over model parameters in very high di-
mension, MCMC sampling from pλ(ϕi) is almost
computationally infeasible. Second, especially
when the latent prior exhibits multi-modality, draw-
ing a considerable number of samples to achieve
a low-variance MC estimation of the integral is
prohibitively costly.

On this account, we define the OOD score of a task
to be faithful to our proposed ELBO approximation
of its log-likelihood in Eqn. (5), which gives

Eqψ(ϕi| T si )
[ Nsi∑

j

Eω(x
s
ij , y

s
ij ,ϕi) + Eλ(ϕi)

]
. (9)

We dub this OOD score tailored to EBML Energy Sum, whose full derivation is deferred to
Appendix A.2. This energy sum enjoys not only the theoretical advantage, i.e., being provably
proportional to the negative log-likelihood of a task, but also simple computation benefits. During
meta-testing, evaluating the score of Eqn. (9) for each task requires only a single forward pass of the
support set samples through the two energy functions.

More remarkably, the energy sum is intuitively appealing in the sense that it characterizes (1) how
far a task is from the overall ID meta-training task distribution via the latent prior energy score Eλ
and (2) how difficult it is to predict the observed support set conditioned on ϕi via the task-specific
data energy score Eω. First, the terms in the last line of Eqn. (8) for learning the latent prior EBM
altogether correspond to maximizing the likelihood ET i∼p(T ) Eqψ(ϕi|T si )[log pλ(ϕi)], which enforces
the latent prior energy score Eλ to capture the overall ID meta-training distribution. As illustrated in

5



Figure 2 (right), the further away a task is from the overall ID meta-training distribution measured in
Euclidean distance, the larger the energy score Eλ is as expected. Second, conditioned on even the
ID latent prior ϕi, those tasks with support samples as scattered as possible are especially difficult to
predict. These tasks are considered to be OOD, as evidenced in higher values of Eω in Figure 2 (left).

4.3 EBML for OOD Generalization

The Energy Sum proposed in Section 4.2 develops OOD awareness of a meta-testing task, based on
which we differentiate our meta-testing procedures for effective meta-generalization.

Meta-testing for ID tasks Given the support set T s of a meta-testing task, prediction of the label for
its query xqj amounts to maximizing our approximated log-likelihood (see Eqn. (5)) of the task, i.e.,

yqj = argmin
y

Eϕ∼qψ(ϕ| T s)
[
Eω(x

q
j , y,ϕ) + Eλ(ϕ)

]
. (10)

Provided that the task has already been identified within the ID region, the second energy Eλ(ϕ) is
negligibly small. Consequently, we reduce the above optimization problem to consider only the first
term Eω(x

q
j , y,ϕ), and solve it via gradient descent. We provide the pseudo codes in Appendix E.

Meta-testing for OOD tasks For an OOD task, its meta-learned prior ϕ ∼ qψ(ϕ| T s) is located out
of the ID meta-training task distribution and likely loses its effectiveness. We seek a solution that
adapts this inadequate meta-learned prior back to the ID region, so as to make the most of the ID latent
priors with guaranteed meta-generalization. This shares the idea with classifier editing in [45], where
the editing parameters are trained to map an OOD image to an ID one for improving generalization.
Therefore, we introduce task-specific parameters ζ which are optimized via the following,

argmin
ζ

Eϕ∼qψ∪ζ(ϕ| T s)
[ Ns∑
j=1

Eω(x
s
j , y

s
j ,ϕ) + max(Eλ(ϕ)−m, 0)

]
, (11)

where m is a hyper-parameter. We find that setting m as the empirical average of the latent prior
energy over all ID training tasks works well in practice, i.e., m = EpID [Eϕi∼qψ(ϕi| T si )[Eλ(ϕi)]].
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Figure 3: Illustration of the OOD task adap-
tation process on OOD domains of the meta-
dataset [49] where each dot in (a) represents
an OOD task in latent space ϕ. Minimizing
Eqn. (11) leads to (a) the latent ϕ of the OOD
task moving to the ID region (contour plot), (b)
the Euclidean distance between class prototypes
enlarging, and consequently (c), the classifica-
tion accuracy on query samples increasing.

As a result of optimizing the second term in
Eqn. (11), the task-specific parameters ζ enable
qψ∪ζ(ϕ| T s) to accommodate for OOD tasks by
mapping the meta-learned prior back to ID meta-
training tasks; while optimizing the first term
preserves the data-level predictive ability of the
model. We highlight that the task energy mini-
mization approximates the minimization of a KL
divergence between the task-specific posterior and
the meta-learned prior, thereby inducing a meta-
regularization effect during adaptation. See Ap-
pendix A.3 for details. Eventually, we use the
adapted task-specific parameters for final predic-
tion on query samples as in Eqn. (10). Pseudo code
for the EBML adaptation and inference algorithms
described above can be found in Appendix E.

In Figure 3, we visualize the adaptation process
when optimizing Eqn. (11) for OOD few-shot clas-
sification tasks in Meta-dataset [49]. As the prior
energy of these OOD tasks decreases, their ϕi gradually shift towards to the ID region as desired.
Within this region, minimizing the first term in Eqn. (11) continuously improves generalization. In
contrast, given only a few support samples, existing SOTA methods that solely rely on feed-forward
inference [1] and gradient-based optimization [28] for OOD task adaptation without a prior are both
prone to overfitting. We provide more empirical evidence on this in Appendix C. On the other hand,
meta-learning a BNN, which imposes a prior distribution on the parameter space during adaptation
may be computationally cumbersome and often lead to sub-optimal performance in comparison to
their non-Bayesian counterparts.
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5 Experiments

In the experiments, we test EBML on both few-shot regression and image classification tasks in
search for answers to the following key questions: RQ1: Whether the improved expressiveness of
EBML over traditional Bayesian meta-learning methods can lead to a more accurate model of the
meta-training ID task distribution, hence a more reliable OOD task detector. RQ2: Whether Energy
Sum can be an effective score for detection of OOD meta-testing tasks. RQ3: Whether EBML
instantiated with SOTA algorithms can exploit the meta-learned EBM prior in OOD task adaptation
to achieve better prediction performance on OOD tasks.

5.1 Implementation Details

We now discuss two instantiations of the EBML framework with SOTA meta-learning algorithms for
regression and classification. We illustrate our approach in Figure 4 below and defer a more detailed
description for our models to Appendix B.

Figure 4: Overview of the EBML framework. The task latent variable ϕi is inferred from the support
set T si following the implementation of the base algorithm. The data and task energy scores are
evaluated by the data and prior EBMs Eω1

and Eλ, respectively; while the query labels are predicted
by the classifier pω2

of the base algorithm.

Regression. Take CNPs [8] as an example base model. CNPs implements qψ(ϕi| T si ) as a neural
network encoder that outputs a function embedding in finite vector form, i.e., ϕi ∈ RD, from a
given support set, T si . That said, we let the prior EBM to model the empirical distribution over such
finite-dimension function embedding, i.e., Eλ(ϕi) : RD → R.

Classification Many cross-domain few-shot classification algorithms [28, 42, 1] rely on a metric-
based classifier for prediction, which assigns query sample to the class with nearest prototype to
the query representation based on some distance measure. In these cases, it is natural to specify the
task-specific latent ϕi as the set of class prototypes in each ID training task. Since ϕi is a set of
variables, we build the prior EBM model as a permutation-invariant neural network function. Suitable
choices include DeepSets [56] and set transformer [26].

To align with the state-of-the-art prediction performance, we follow the practice in [50, 37] to train
another decoder ω2 with the loss function (e.g., cross entropy) in the base meta-learning model, which
serves as a surrogate for Eω(x

q
j , y, ϕ) in Eqn. (10) and Eqn. (11). We use this decoder for prediction.

Baseline Models For regression, we compare against: 1) MAML [6] which is a deterministic meta-
learning method, and 2) Bayesian meta-learning methods that use Gaussians for prediction or prior,
including ABML [41], MetaFun [53], CNPs [8] and F-PACOH-GP [43]. For classification, we con-
sider Simple-CNAPs [1] and TSA [28], which respectively resort to amortized variational inference
and gradient-based optimization for estimating the task-specific parameters from the support set.
Both are SOTA cross-domain few-shot classification approach on the Meta-dataset [49] benchmark.
For more experimental details, hyper-parameter configurations, and additional experimetal results,
please refer to Appendix B and C.
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5.2 Datasets and Evaluation Metrics

Sinusoids Few-shot Regression We consider 1D sinusoids regression tasks in the form y(x) =
Asin(B(x+C)). For ID meta-training, we consider frequencyB = 1, while sample amplitudeA and
phase C uniformly from a set of equally-spaced points {1, 1.1, 1.2, ..., 4} and {0, 0.1, 0.2, ..., 0.5π},
respectively. Each training task consists of 2 to 5 support and 10 query points with x uniformly
sampled from X ∈ [−5.0, 5.0]. During testing, we evaluate the models on 500 ID and OOD tasks
each with 512 equal-distant query points in X . For ID testing, we expand the range of the tasks
by uniformly sampling A ∈ [1, 4] and C ∈ [0, 0.5π]. For OOD tasks, we randomly change either
the phase distribution to C ∈ [0.6π, 0.75π], amplitude to A ∈ [0.1, 0.8] ∪ [4.2, 5.0] or frequency to
B ∈ [1.1, 1.25]. Details for the multi-sinusoids regression experiment can be found in C.1. We use
MSE and negative log-likelihood on query samples to evaluate the regression performance.

Drug Activity Prediction Few-shot Regression In each task, we aim to predict the drug-target
binding affinity of query molecular compounds given 10 to 50 labelled examples from the same
domain defined by molecular size. We use the lbap-general-ic50-size ID/OOD task split in the
DrugOOD [21] benchmark, which divides the molecules into 222/145/23 domains by molecular
size for ID Train / ID Test / OOD Test, respectively. The regression performance is evaluated by the
square of Pearson coefficient (R2) between predictions and the ground-truth values. We report the
mean and median R2 on 500 tasks sampled from ID and OOD testing domains.

Meta-dataset [49] 5-way 1-shot Classification This experiment considers image classification
problems on Meta-dataset [49]. Each task contains up to 10 query images per class from the same
domain. Following the current state-of-the-art practice [28, 1], we use Aircraft, dtd, cub, vgg-flower,
fungi, quickdraw and omniglot as the ID datasets for meta-training and meta-testing, while traffic,
mscoco, cifar10, cifar100 and mnist are treated as OOD datasets for meta-testing only.

OOD Task Detection Evaluation We compare the OOD task detection performance of Energy
Sum against several model-agnostic OOD detection baselines. Concretely, for classification, we
compare against max-softmax score [16], ODIN [30], MAH [27], and max-logits score [15]; for
regression, we consider Averaged Bayesian prediction uncertainty in standard deviation (Std) on
support samples, and Averaged Support samples Negative Log-Likelihood (SNLL) under model’s
task-specific predictive probability, i.e., −Eϕi∼qψ(ϕi|T si )[Ej [log pω(y

s
ij |xsij ,ϕi)]] for baselines and

Eϕi∼qψ(ϕi|T si )[Ej [Eω(y
s
ij , x

s
ij ,ϕi)]] for EBML. Following common practice [17, 16], we report

AUROC, AUPR and FPR95 for OOD detection performance. Details for these metrics can be found
in Appendix B.1.

5.3 OOD Detection Results

Energy sum performs best in OOD task detection. Table 1 and 8. The proposed energy sum
further improves our SNLL-only results in all three OOD detection metrics - with 15.2% and 11.8%
significant reduction in FPR95, outperforming the best baseline methods by 20.0% and 39.1%, in
single and multi-sinusoids situations respectively. In Table 2 for OOD classification task detection,
Energy Sum consistently results in superior OOD detection performance, outperforming the best
baselines by large margins of 36.84% and 20.19% in FPR95 for Simple-CNAPs and TSA, respectively.

Table 1: OOD task detection performance on single-sine and DrugOOD [21] few-shot regression
tasks.

OOD Scores Models Sinusoids DrugOOD
AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

Std

ABML [41] 50.14 54.80 97.20 57.82 50.31 74.80
F-PACOH-GP [43] 49.52 51.30 94.20 81.74 71.99 32.00
CNPs [8] 22.72 35.34 99.60 93.56 89.58 13.00
Metafun [53] 76.57 80.33 82.40 85.68 80.55 58.18

SNLL

ABML [41] 82.48 81.31 61.00 80.99 79.12 47.60
F-PACOH-GP [43] 91.78 93.23 52.40 37.73 45.01 85.21
CNPs [8] 95.63 96.46 34.22 17.25 34.07 91.40
Metafun [53] 96.25 97.11 32.00 83.54 85.54 65.17
EBML-CNPs (Ours) 96.46 97.41 29.40 99.71 99.71 2.20

Energy Sum EBML-CNPs (Ours) 97.74 98.31 14.20 99.79 99.78 1.40
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Modelling the joint distribution improves OOD detection under Domain-shift. In Table 1
DrugOOD regression tasks, using either our SNLL or Energy Sum as OOD scores can achieve better
detection performance than baselines. In particular, our method outperforms the best OOD detection
results obtained using Gaussian SNLL and Std by 43.84% and 11.6% in FPR95, respectively.

Figure 5: Predictive distribution of Middle an
data EBM vs Right a Gaussian for an ID task.

Qualitative Illustration. In Figure 5, we visualize
the predictive distribution p(yij |xij ,ϕi) learned us-
ing an EBM decoder and a Gaussian decoder on a
sampled ID multi-sinusoids task. The EBM clearly
shows two prediction modes at all non-overlapping
positions, whereas the Gaussian decoder is unable
to model the multi-modality, resulting in a blurry
prediction.

Computational Complexity Analysis. We conduct a computational complexity analysis for EBML
by comparing its wall-clock training time and convergence to baselines in Figure 6 below. EBML-
CNPs eventually achieves better OOD detection performance than baseline CNPs meanwhile match-
ing its regression performance at all training epochs. In Table 15 Appendix C.4, we show EBML-
CNPs is computationally cheaper and faster than traditional Bayesian methods, namely, F-PACOH-
GP [43] which requires matrix inversion for inference with Gaussian processes prior, and ABML [41]
which imposes a Gaussian prior over the entire parameter space of the model.

0 1000 2000 3000 4000
seconds

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

CNPs
EBML-CNPs

0 1000 2000 3000 4000
seconds

0.0

0.2

0.4

0.6

0.8

1.0

(1
-A

UR
OC

)+
(1

-A
UP

R)
+F

PR
95

500 1000 1500 2000 2500 3000
epoch

0.00

0.01

0.02

0.03

0.04

0.05
M

SE

500 1000 1500 2000 2500 3000
epoch

0.0

0.2

0.4

0.6

0.8

1.0

(1
-A

UR
OC

)+
(1

-A
UP

R)
+F

PR
95

Figure 6: Left : Wall-clock convergence in seconds, and Right: performance vs number of training
epochs, for EBML-CNPs vs CNPs in single-sinosoid few-shot regression tasks. The plots show
the regression (MSE ↓) and combined OOD tasks detection (1-AUROC)+(1-AUPR)+FPR95 ↓
performance on single sine few-shot regression tasks during training. Curves are moving averages
with window size 3. EBML-CNPs achieves better final performance than CNPs.

Energy sum achieves better OOD detection results with EMB prior than Gaussian. In Table 3
and 9, we investigate the contribution of the prior EBM in improving the modelling of meta-training
task distribution. We train CNPs and ABML using diagonal Gaussian distribution as the prior in
ELBO, and compute OOD scores as (a) SNLL, and (b) the sum between SNLL and the NLL of
task-specific latent evaluated under the learned Gaussian prior (indicated by +Gauss Prior). The
results show that energy sum using an EBM prior outperforms all ablated models. The OOD detection
performance of our model benefits from adding the prior EBM energy to the data EBM energy
(SNLL), resulting in the most reduction in FPR95 on both single and multi-sinusoids tasks (15.2%
and 11.8%, respectively). This suggests the improved expressive of EBM over simple distributions
can indeed lead to learning a more accurate model of the meta-training ID task distribution.

Energy sum achieves better OOD detection results when learning the joint distribution In
Table 16, we compare EBML-joint, which is exactly our proposed training procedure in the paper,

Table 2: OOD task detection performance on Meta-dataset
5-way 1-shot classification tasks.

OOD Scores Simple-CNAPs [1] TSA [28]

AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓
max-softmax [16] 85.50 85.54 65.43 89.25 87.14 46.02
max-logits [15] 50.00 70.83 95.00 50.14 44.64 95.28
ODIN [30] 90.49 89.42 43.57 92.02 90.18 37.36
MAH [27] 71.18 69.76 90.52 94.54 93.95 23.83
Domain Classifier 83.10 73.18 53.17 n/a n/a n/a

EBML Energy Sum 97.01 94.92 6.74 99.10 98.48 3.64

Table 3: Ablation study on Energy Sum
for OOD detection on single-sinusoids.

Models OOD Scores Sinusoids
AUROC↑ AUPR↑ FPR95↓

ABML [41] SNLL 82.48 81.31 61.00
+Gauss Prior 86.95 86.64 52.20

CNPs [8] SNLL 94.81 96.34 38.40
+Gauss Prior 94.61 96.10 34.40

EBML-CNPs SNLL 96.46 97.41 29.40
+EBM Prior 97.74 98.31 14.20
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Table 4: Few-shot regression performance on single-sinusoids and DrugOOD [21] tasks.

Models Sinusoids DrugOOD

ID MSE ↓ ID Mean R2 ↑ ID Median R2 ↑ OOD Mean R2 ↑ OOD Median R2 ↑
F-PACOH-GP [43] 0.068±0.016 0.492 0.454 0.055 0.027
Metafun[53] 0.009±0.002 0.537 0.541 0.054 0.027
CNPs [8] 0.009±0.002 0.540 0.549 0.066 0.046
ABML [41] 0.127±0.013 0.452 0.443 0.051 0.029
MAML [6] 0.119±0.013 0.462 0.475 0.055 0.024

EBML-CNPs 0.009±0.002 0.533 0.553 0.071 0.043

and EBML-conditional, which follows the same training with EBML-joint but models p(Y | X)
instead of p(X,Y). With all other factors being the same, EBML-joint significantly outperform
EBML-conditional in OOD detection on DrugOOD regression tasks with domain shift in X. This
supports our motivation for using the joint distribution instead of the conditional distribution for
training a potentially better OOD detector. Detail of this ablation study can be found in Appendix D.

5.4 OOD Generalization Results

Table 5: Classification performance
on 5-way 1-shot tasks for both ID
and OOD domains in Meta-dataset.

Datasets TSA EBML-TSA
[28] (Ours)

Omniglot 98.63±0.26 98.67±0.26

Textures 51.93±0.87 52.35±0.88

Aircraft 78.91±0.86 78.47±0.86

Birds 75.02±0.90 75.52±0.90

VGG Flower 80.37±0.80 80.30±0.83

Fungi 70.89±0.93 72.29±0.94

Quickdraw 79.02±0.84 80.27±0.85

MSCOCO 52.28±0.94 53.03±0.97

Traffic Sign 57.40±0.94 58.85±1.01

CIFAR10 49.16±0.82 50.04±0.89

CIFAR100 62.25±1.01 62.77±1.05

MNIST 74.72±0.83 76.08±0.88

Avg ID 76.40 76.84
Avg OOD 59.16 60.15
Avg All 69.22 69.89

EBML achieves SOTA regression performance. In Table 4,
for single-sinusoids, EBML is able to match the MSE of the
best-performing baseline methods; while on multi-sinusoids
in Table 7, EBML obtains the lowest ID NLL, specifically
0.58 lower than the best baseline, thanks to our energy-based
decoder which is sufficiently expressive for modelling the multi-
modality at each input.

Task adaption using Eqn. (11) improves few-shot classifica-
tion performance. In Table 5, we report the average classifi-
cation accuracy computed over 600 test tasks per ID and OOD
domains. In meta-testing, we obtain classification results for
EBML-TSA by running gradient descent on the objective in
Eqn. (11) to optimize the task-specific modules in TSA from
scratch. With this addition of prior energy in the OOD adap-
tion objective, EBML-TSA further improves TSA results in
5/7 ID domains and all 5 OOD domains. Additional OOD
classification results in Table 11 Appendix C further confirm
the superiority of our proposed OOD task adaptation strategy
in Eqn. (11) over prior baselines.

6 Conclusion and Limitation

This paper proposes a new energy-based meta-learning (EBML) framework for the first time, which
directly characterizes any arbitrary meta-training task distribution using two data and prior energy
functions. EBML is compatible with many existing SOTA meta-learning algorithms and allows
both detection and adaption of OOD tasks. The sum of the two learned energy functions gives an
unnormalized probability distribution proportional to the underlying task likelihood, deployable as
OOD scores. The experiment results show the superiority of Energy Sum over traditional methods in
detecting both OOD regression and classification tasks, and the possibility of achieving improved
OOD adaptation performance with EBML through minimizing the task energy. One limitation of
EBML is that our current OOD task adaptation strategy does not consider the effect of negative
transfer, as some OOD tasks may benefit from adaptating from scratch without ID energy prior
regularization. Thus, in future works, we are interested in designing task-specific adaptation strategies
for EBML that can selectively adapt OOD tasks for better performance.
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