
Inverse Dynamics Pretraining Learns Good
Representations for Multitask Imitation

David Brandfonbrener∗
New York University

Ofir Nachum
Google

Joan Bruna
New York University

Abstract

In recent years, domains such as natural language processing and image recognition
have popularized the paradigm of using large datasets to pretrain representations
that can be effectively transferred to downstream tasks. In this work we evaluate
how such a paradigm should be done in imitation learning, where both pretraining
and finetuning data are trajectories collected by experts interacting with an unknown
environment. Namely, we consider a setting where the pretraining corpus consists
of multitask demonstrations and the task for each demonstration is set by an
unobserved latent context variable. The goal is to use the pretraining corpus
to learn a low dimensional representation of the high dimensional (e.g., visual)
observation space which can be transferred to a novel context for finetuning on
a limited dataset of demonstrations. Among a variety of possible pretraining
objectives, we argue that inverse dynamics modeling – i.e., predicting an action
given the observations appearing before and after it in the demonstration – is
well-suited to this setting. We provide empirical evidence of this claim through
evaluations on a variety of simulated visuomotor manipulation problems. While
previous work has attempted various theoretical explanations regarding the benefit
of inverse dynamics modeling, we find that these arguments are insufficient to
explain the empirical advantages often observed in our settings, and so we derive a
novel analysis using a simple but general environment model.

1 Introduction

Pipelines in image recognition and natural language processing commonly use large datasets to
pretrain representations that are then transferred to downstream tasks where data is limited [Devlin
et al., 2018, Chen et al., 2020, Radford et al., 2021]. In this paper, we consider how this paradigm
can be applied to imitation learning [Pomerleau, 1991, Ho and Ermon, 2016, Kostrikov et al., 2019].
In contrast to supervised learning domains where datasets consist of input-output pairs, imitation
learning datasets consist of trajectories with both the input-output mapping to be learned (namely,
observation-action pairs) as well as information about the dynamics of the environment. Given
this additional structure, it is worthwhile to study pretraining approaches that can incorporate this
structure to improve beyond methods from traditional supervised learning domains.
To formalize the precise notion of transfer between pretraining and finetuning phases, we consider
a multitask imitation setting where the environment (i.e., the transition dynamics) is fixed and data
is comprised of trajectories of task experts acting in this environment. A task is defined by a latent
context variable that is observed by an expert demonstrator, but is not contained in the dataset, as
shown in Figure 1. During pretraining, we have access to a large number of trajectories from various
tasks, while during finetuning we have access to a small number of trajectories from a single task.
The goal is thus to use the pretraining dataset to learn representations that contain information about
the environment that facilitates efficient learning of the finetuning task.

∗david.brandfonbrener@nyu.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



A number of existing works have proposed objectives for representation learning that are applicable
in this setting [Schwarzer et al., 2021, Stooke et al., 2021, Yang and Nachum, 2021, Yang et al.,
2023], and we consider a variety of algorithms and modes of analysis to determine which approach is
the most promising. Algorithmically, we consider four generic classes of objectives for pretraining:
inverse dynamics, behavior cloning, forward dynamics, and static observation modeling (Figure
1). We conduct two types of analysis. First, we conduct an extensive empirical evaluation and
introspection of the candidate algorithms along with several strong baselines. Second, we present a
simple but general theoretical model of the multitask representation learning problem and analyze the
relative merits of the candidate algorithms under this model.
Our main results from these analyses are summarized as follows:

1. Across a broad array of experiments from visual observations in six environments, out of all
approaches considered, inverse dynamics is the only one that consistently outperforms the
baseline of training a model from scratch. The performance of inverse dynamics even matches
that of finetuning from ground truth low-dimensional states on in-distribution contexts. Moreover,
we find that inverse dynamics scales the best with pretraining dataset size and most effectively
maintains relevant information about the observation in its learned representation.

2. In our simplified model of representation learning, we show that inverse dynamics pretraining
efficiently recovers the ideal representation while behavior cloning can suffer from confounding
and forward dynamics can suffer from poor sample efficiency. These results provide intuition for
the empirical results and motivate why inverse dynamics pretraining is so performant and robust.

o1 o2 o3

a1 a2

c

(a) Multitask imitation.

o o′

a

(b) ID

o o′

a

(c) BC

o o′

a

(d) FD

o o′

a

(e) Cont (f) Experimental results

Figure 1: (a) A graphical models of the setting. Shaded nodes indicate observed variables. The
expert behavior (i.e., oi → ai) is determined by an unobserved context variable c while the transition
dynamics (i.e., (oi, ai) → oi+1) are determined by the environment dynamics. (b)-(e) illustrate the
candidate algorithms. We use blue to indicate inputs to the algorithm and green to indicate prediction
targets. ID = inverse dynamics, BC = behavior cloning, FD = forward dynamics, Cont = contrastive
learning. (f) Shows success of policies finetuned on top of various representations averaged across all
datasets in our suite for default dataset sizes. Inverse dynamics (shown in green) is the only method
to substantially outperform the baseline of training from scratch (shown in black). Further details
about the experimental protocol and results are in Sections 4 and 5.

2 Related work

As explained above, pretraining a representation has become a dominant paradigm in computer
vision and natural language processing [Devlin et al., 2018, Chen et al., 2020, Radford et al., 2021].
Determining how to best leverage similar pretraining techniques in decision making problems is an
important step towards extending the success of supervised learning into more temporally extended
problems like those in robotics [Yang et al., 2023].
Prior work proposes several possible pretraining objectives for learning features for decision-making
(and illustrated in Figure 1). First, inverse dynamics modeling has been proposed in several settings,
although never as a representation learning algorithm for multitask imitation. Most directly related to
our work is Efroni et al. [2021], Lamb et al. [2022] which use multi-step inverse dynamics for feature
extraction for exploration in reinforcement learning (RL) in the presence of exogenous noise. Later
work from Islam et al. [2022] extended this approach to offline RL. Less closely related are Pathak
et al. [2017] which uses inverse dynamics in the context of exploration and Baker et al. [2022], Venuto
et al. [2022] which use an inverse dynamics model to label video data with actions for imitation.

2



Another, perhaps simpler approach is to use behavior cloning as a pretraining algorithm. Arora et al.
[2020] shows that this can be a well-motivated approach to pretraining a representation when the
task variable is observed. Other work uses behavior cloning objectives to pretrain representations of
temproally extended actions [Ajay et al., 2020] or priors for offline RL [Zang et al., 2022].
A third approach is to model the forward dynamics of the system as a pretraining objective. Most
directly related to our work, Nachum and Yang [2021] show that this is a well-motivated technique
for imitation learning and provide empirical evidence on single task atari games, but do not compare
to inverse dynamics. This technique has also been explored in empirical work for online and offline
RL [Schwarzer et al., 2021, Laskin et al., 2020, Aytar et al., 2018, Lee et al., 2022b, Wu et al., 2023].
Finally, a method which we will refer to as static observation modeling does not leverage information
about dynamics and rather directly uses self-supervised methods from computer vision [Pari et al.,
2021, Chen et al., 2020, Grill et al., 2020]. This approach does not take advantage of any additional
structure in an imitation learning setting, but has nevertheless worked well in some settings.
Several empirical studies of representation learning for decision-making already exist. Most closely
related to this work, [Chen et al., 2022] conducts an empirical evaluation of representations for
imitation and finds that none of them consistently outperform training directly from pixels. However,
this prior work (a) considers much larger finetuning datasets which can dramatically reduce the
benefits of pretraining, and (b) considers different environments than we do, where the gap between
pretraining and finetuning tasks is less controlled. Another line of work like Nair et al. [2022] attempts
to pretrain general representations using large human-collected video datasets like Ego4d [Grauman
et al., 2022]. In contrast, we focus on a more carefully controlled (albeit smaller scale) experimental
settings where we can derive a more clear understanding of the relative merits of different pretraining
objectives. Another empirical study from Stooke et al. [2021] considers representations in online
reinforcement learning. Meanwhile, Yang and Nachum [2021] considers representations for imitation
but does not consider image-based or multitask problems. Moreover, none of these works includes a
theoretical understanding for the findings presented therein.
A further discussion of pretraining in the context of imitation can be found in Appendix A.

3 Problem setup

Here we present the formal setup for our problem setting of reward free pretraining from multitask
expert data . We formalize this as a contextual MDP with rich (i.e., visual) observations where the
latent context determines the initial state and reward functions.

Environment. We model the environment as a contextual MDP with context-independent dynamics:

c ∼ Pc, o0 ∼ ρc, ri = rc(si, ai), oi+1 ∼ T (oi, ai). (1)

Importantly, we consider the context variable c and rewards rc to be latent, i.e., they are not available
during training, and only used to evaluate a learned policy. At a high level, this captures the setting
where the task (defined by the context variable) may change, but the dynamics of the world do not.
For example, the context variable could be a continuous variable like a goal position that the expert is
navigating towards or a discrete variable representing a behavior like locking a door.

Data generation. Data is generated by executing policies π that map observations to actions in
the environment. We consider two different datasets for any given problem. First there is a large
multi-context pretraining dataset that will be used for representation learning, specifically to learn an
observation encoder. Second, there is a small single-context finetuning dataset for policy learning on
top of the pretrained representation. The multi-context pretraining data is generated as follows:

Dpre = {τi}
Npre

i=1 : c ∼ Pc, τ = (o0, a0, o1 . . . ) ∼ Pπc , πc ≈ π∗
c = argmax

π
Jrc(π), (2)

where Jrc(π) denotes the expected return of π when the reward is rc. Note that the demonstration
policy has access to the latent context c, but this latent context is not observed in the data.
Then the single-context finetuning data is generated for context cfine as follows:

Dfine = {τi}
Nfine

i=1 : τ = (o0, a0, o1 . . . ) ∼ Pπcfine . (3)

3



Pretraining. The goal of the paper is to analyze different methods for pretraining feature extractors.
Training of the encoders ϕ to minimize a loss ℓ proceeds as follows:

ϕ̂ : O → Rd = argmin
ϕ

E
Dpre

[ℓ(ϕ, τi)]. (4)

A full description of the losses ℓ used by different algorithms will come in Section 4.2. For simplicity
(and in keeping with prior work [Nachum and Yang, 2021, Chen et al., 2022]) we will consider ℓ to
only be a function of transitions (oji , a

j
i , o

j′

i ) rather than full trajectories to leverage the Markovian
structure. We also run some ablations of including multistep information in Appendix B and find
little difference.

Finetuning. Features are evaluated by finetuning a small policy head on top of the frozen features:

π̂ϕ̂ : Rd → A = argmin
π

E
Dfine

[ℓ(π, aji , ϕ̂(o
j
i ))]. (5)

In all of our experiments, ℓ is the mean squared error loss for behavior cloning. We elect to use frozen
features to allow for simple and clear evaluation of the representations. This is in keeping with prior
work on representations for imitation [Nachum and Yang, 2021, Chen et al., 2020, Nair et al., 2022]
as well as computer vision [Chen et al., 2020].

Evaluation. Finally, we evaluate the finetuned policy by performing rollouts in the finetuning
environment with context cfine to estimate Jrcfine

(π̂ϕ̂). In our tasks we usually consider rcfine
to be

a binary indicator of successful completion of the finetuning task.

4 Experimental setup

4.1 Environments and Datasets

We design a suite of tasks and datasets to probe the capabilities of various representation learners
for downstream imitation. We focus on robotic manipulation from vision as this is an important
sequential decision making task that depends on learning task-relevant visual representations where
pretraining deep visual feature extractors is a popular approach. Our suite consists of six different
pretraining datasets on varied tasks and of varied size. Each pretraining dataset has several associated
finetuning datasets and simulation environments that allow for online evaluation of learned policies.

(a) Pointmass (b) Pick + place (c) Door (d) Kitchen (e) Metaworld (ML45/R3M)

Figure 2: Our six datasets: (a) Pointmass navigation with latent goals. (b) Pick and place with latent
goals. (c) Multitask manipulation of a door. (d) Sequential kitchen manipulation. (e) Multitask
manipulation of diverse objects, where we consider two different train-eval splits ML45 and R3M.

All tasks are performed from visual inputs, as shown in Figure 2. Each pair of pretraining-finetuning
datasets requires a slightly different type of generalization as dictated by the different types of context
variable. Specifically, in the pointmass and pick+place datasets the context variable is a latent goal
position, while in the door and metaworld datasets the context variable is a discrete identity of a
desired behavior, and in the kitchen datasets the context variable is a discrete ordered sequence of
subtasks. The datasets are described in full detail in Appendix C.

4.2 Algorithms

We consider nine different representations across our suite of experiments. These representations
include baseline and skyline/oracle performance as well as five representations that are pretrained on

4



Table 1: Description of the different datasets used in the experiments. Dataset sizes are measured
in number of trajectories (Npre

traj for pretraining and Nfine
traj for finetuning) and given as ranges with

default values in bold. Trajectory lengths vary from 50 to 400 steps. These default sizes may vary in
each experiment when indicated. Each datasets contains a certain number of latent contexts (Npre

context

and Nfine
context). For each finetuning context, we sample datasets with Nfine

seed different seeds.

Environment Npre
traj Nfine

traj Npre
context Nfine

context Nfine
seed

Pointmass (1e1, 1e2, 1e3) (1, 2, 5, 10) Npre
traj 5 1

Pick + place (1e1, 1e2, 1e3) (2, 5, 10, 20) Npre
traj 5 1

Door (1e1, 1e2, 1e3) (2, 5, 10, 20) 3 1 5
Kitchen (50, 150, 450) (2, 5, 10, 15) 21 3 5
MW-ML45 (1e2, 1e3, 1e4) (2, 5, 10, 20) 45 5 5
MW-R3M (1e2, 1e3, 1e4) (2, 5, 10, 20) 45 5 5

our own pretraining datasets described above. Each of the representations will be referred to by its
bolded name after it is described.
All algorithms (except for the Imagenet and R3M baselines) share the exact same encoder architecture
to control as best we can for variation in architecture between methods. Each method is pretrained
for the same number of gradient steps. Additional training details can be found in Appendix C.

Skyline/oracle. As a skyline or oracle representation we directly use the low dimensional states
(States) from the simulator. Depending on the task, this representation includes the position of the
robot, position of the object to be manipulated, and/or position of the goal. A full description of the
per environment state variables can be found in Appendix C.

Baselines. We consider three baseline representations that are not trained on our pretraining datasets.
The first is to directly use the pixels with image augmentations (Pixels + Aug) to train an encoder
and a policy from scratch on the finetuning data. It is essential to use the augmentations to ensure
that this a strong baseline. The second is features of a ResNet18 pretrained on Imagenet (Imagenet).
The last consists of the features of a ResNet18 that is specifically pretrained for robotic manipulation
by Nair et al. [2022] on the Ego4d dataset (R3M).

Inverse dynamics. The primary representation learning objective that we consider is inverse
dynamics (ID) which models the distribution P (a|o, o′) using an architecture that first encodes o, o′
with an encoder ϕ and then predicts a with a small MLP f :

ϕ∗
ID = argmin

ϕ
min
f

E
o,a,o′

[(a− f(ϕ(o), ϕ(o′)))2]. (6)

Behavior cloning. A simpler alternative objective is to directly apply behavior cloning (BC) to
the multitask actions in the pretraining dataset conditioned on the observations using MSE loss. The
learner is parameterized as an encoder ϕ followed by a small MLP π:

ϕ∗
BC = argmin

ϕ
min
π

E
o,a

[(a− π(ϕ(o)))2]. (7)

Forward dynamics. We consider two representation learners that predict the forward dynamics
of the system. The first is explicit forward dynamics (FD-e) which explicitly constructs a model
of the forward dynamics in the space of observations by encoding the current observation and then
attempting to reconstruct the next observation o′ using a decoder d:

ϕ∗
EFD = argmin

ϕ
min
d

E
o,a,o′

[(o′ − d(ϕ(o), a))2]. (8)

The second objective is implicit forward dynamics (FD-i) which implicity constructs a model of the
forward dynamics using contrastive learning. Explicitly, we consider a form of contrastive learning
where an energy function is defined as the inner product of L2-normalized projected embeddings
(given by projection MLPs f1, f2) which is then passed into an InfoNCE loss:

E(o, a, o′) = exp(f1(ϕ(o), a)
⊤f2(ϕ(o

′))), (9)

ϕ∗
IFD = argmin

ϕ
min
f1,f2

E
o,a,o′

[− log(E(o, a, o′)) + log Ē
o′
[E(o, a, ō′)]]. (10)

5



Static observation modeling Finally, we consider a baseline that simply models P (o). Rather than
modeling this explicitly with reconstruction, we use a contrastive loss (Cont) where we use image
augmentations to construct pairs of o and ō that do not rely on the dynamics of the environment at all.
Again we use the InfoNCE loss, in what can be seen as a variant of SimCLR:

E(o, oaug) = exp(f(ϕ(o))⊤π(ϕ(oaug))), (11)
ϕ∗
Cont = argmin

ϕ
min
f

E
o,oaug

[− log(E(o, oaug)) + log E
ōaug

[E(o, ōaug)]]. (12)

5 Experiments

We want to determine which representation learning objective is best, but the precise answer will
depend on the situation. To get a clearer understanding of this sometimes ambiguous performance
we conduct a variety of controlled experiments on our diverse suite of datasets. We focus on the
following questions to guide our empirical analysis:

1. How do factors of the datasets impact performance of algorithms?

2. How are the learned representations similar to and different from each other?

Note: we will focus on presenting aggregate statistics across all datasets in the main text, but full
results can be found in Appendix B. Full details about the methodology are in Appendix C and code
is at https://github.com/davidbrandfonbrener/imitation_pretraining.

5.1 Impact of dataset on representation learning performance

Scaling with data size. The performance of each algorithm can be highly sensitive to both pretrain-
ing and finetuning sizes. Thus, instead of producing one simple summary statistic, we sweep over
both the size of the finetuning data (for default pretraining size) and size of the pretraining data (for
default finetuning size). The results of these sweeps are presented in Figure 3.

Figure 3: Average success rate after finetuning averaged across datasets, contexts, and seeds. Error
bars show the standard error across contexts and seeds, averaged across datasets. The plots show
sweeps across finetuning size with default pretraining size (left) or pretraining size with default
finetuning size (right) measured in units according to Table 1. Methods that do not depend on
pretraining size are shown as horizontal lines.

The sweeps both suggest that inverse dynamics outperforms the alternatives. First, on the finetuning
size sweep, we see that the ID line is the only one that consistently outperforms training from
scratch on Pixels + Aug. This gap is largest at small finetuning sizes, which are perhaps the most
interesting case since that is when we expect pretraining to be useful. Second, the pretraining size
sweep indicated that ID is scaling the most efficiently with pretraining size. Further results, including
breakdowns across each dataset can be found in Appendix B.

In distribution vs. out of distribution eval tasks. The way that our datasets are constructed, the
door, kitchen, metaworld-ml45, and metaworld-r3m datasets only have a finite number of possible
contexts that is much smaller than the number of pretraining trajectories. For our default datasets, we
elected to construct a train-test split of contexts to ensure that the contexts used for finetuning are

6

https://github.com/davidbrandfonbrener/imitation_pretraining


not seen during pretraining. As a result, the default finetuning tasks can be in some sense “out of
distribution”, measuring extrapolation as opposed to in-distribution generalization. For example, in
the door dataset, we pretrain on door opening, closing, and unlocking (with varied door position) and
then finetune on door locking (again with varied position).
To test the impact of this gap between pretraining and finetuning, we created alternative pretraining
datasets, where we include the test contexts (but not the test trajectories) into the pretraining data.
For example, in the door domain we include door opening, closing, locking, and unlocking in the
pretraining data and still finetune on only unlocking (but with heldout initial conditions). These
datasets now require a much more limited notion of generalization from pretraining to finetuning.

Figure 4: Average performance on the four discrete
context environments when the finetuning contexts
are included in the pretraining data. The finetuning
data contains heldout initial conditions and trajec-
tories not seen during pretraining.

Results are shown in Figure 4. We again see that
ID is the strongest performer, but now the gap is
even larger. ID matches the skyline performance
of training from ground truth low-dimensional
simulator states. BC also shows substantially
stronger performance and outperfroms training
from scratch Pixels + Aug. None of the other
pretraining algorithms benefit much from the
substantially easier type of generalization re-
quired on these datasets. This suggests that ID
and BC are uniquely able to benefit in easier
settings, suggesting that they are better represen-
tation learners. If an algorithm is not able to out-
perform training from scratch in this simplified
setting, it is unlikely to be a good representation
learner.

Fully latent vs. inferrable context variables.
Looking at our dataset suite, the datasets can
be divided into two groups: those where the
context variable is not inferrable at all from the initial state (pointmass, pick+place, and kitchen),
and those where the effect of the context variable on the initial state makes it possible to infer the
context given the initial state (door, metaworld-ml45, and metaworld-r3m). This split presents an
interesting comparison in particular between ID and BC (the best performing algorithms from the
prior experiment). Figure 5 shows results for these algorithms and the Pixels + Aug baseline on the
datasets where the context is latent.

Figure 5: A comparison between ID and
BC on the datasets where the context is
not inferrable from the observation.

There is a large gap between ID and BC when the con-
text is fully latent. In these cases, it is impossible to tell
from the current state alone what the context is and thus
what the optimal action should be. As we will show in
our simplified model (Section 6), in these settings BC is
confounded by the latent context (in the terminology of
causal inference). As a result, BC can fail to learn useful
features. In contrast, ID uses the information about the
future state to deconfound the learning problem and still
learns a good representation. Note that this gap largely
disappears when the context is observable, see Appendix
B for further details.

5.2 Predictive power of the representations

So far, we have focused on the success rate of the downstream finetuned policy as the main metric
of comparison between algorithms. Now we will instead consider a series of experiments that
assess the quality of the representations based on the ability to predict various quantities of interest
from the representations. These experiments help to illustrate what information is retained in the
representations and how efficiently that information can be accessed.

Action prediction. First, we consider the ability to predict the expert actions in the finetuning
dataset. This is directly related to the success of the finetuned policy, but avoids the variance of

7



performing rollouts and allows us to compare train and validation errors to evaluate the representations.
Low train loss means the representations are not aliasing observations that require different actions.
Meanwhile the validation loss measures the simplicity of the function that maps representations to
targets, i.e. how well it generalizes.

Figure 6: Average train and validation action-
prediction loss during finetuning. All losses are
normalized by the Pixels + Aug validation loss to
maintain consistency across environments.

The results in Figure 6 show the train and valida-
tion loss during finetuning using the default pre-
training and finetuning sizes from Table 1. Since
losses vary across datasets, we normalize by the
Pixels + Aug validation loss so as to be able to
present averages across all datasets. We see that
out of the learned representations, ID has both
the lowest train and validation losses, almost
matching the performance of Pixels + Aug on
train and almost matching the performance of
States on validation. In contrast, representations
that attempt to predict forward dynamics have
substantially higher train loss, indicating alias-
ing of states in terms of their optimal actions.
Interestingly, the Imagenet pretrained features
have very low train loss, indicating a lack of
aliasing, but very high validation loss, indicating that the function that maps representations to actions
does not generalize well.

Figure 7: Average state prediction error on the
pretraining distribution. Values are normalized by
the ID train loss.

State prediction. Since we perform all of
our experiments in simulated environments, we
have access to the ground truth low dimensional
states. So, we can measure the ability of each
representation to predict the ground truth low
dimensional state and thus measure how well
the representation retains information about this
ground truth state. Results are in Figure 7; here
we measure the train and validation loss on the
pretraining distribution so as to isolate the effect
of the representation learning apart from the gap
between pretraining and finetuning. Again we
normalize the losses for each dataset.
Again we see that ID and BC yield the best
performance. This suggests that in these datasets, pretraining objectives that attempt to predict the
optimal action do indeed facilitate recovery of the low-dimensional simulator state. In contrast, while
the FD methods achieve approximately the same training error, they generalize much more poorly.
This suggests that the FD objectives are not throwing away relevant information, but are keeping
around too much extraneous information about the observations, thus making the representations
susceptible to overfitting. Standard contrastive learning is substantially worse, even on train error,
suggesting that it is throwing away important information. Extended results are in Appendix B.

6 Analysis

To add a more theoretical understanding of the empirical results, we will consider a simplified model
of the data generating process based on linear dynamics in a latent space. We begin by presenting
the model and then show that under this model we can explain three key experimental findings: (1)
inverse dynamics is able to recover the low dimensional state, (2) forward dynamics can be less
efficient in some cases, and (3) BC can be confounded by the latent context. We present a high level
sketch here and more details along with discussion of related theoretical work are in Appendix D.

Model. Some of the key interesting properties of problems like visual manipulation that we consider
empirically are that (a) the observation is very high dimensional relative to the action, (b) the actual
state of the world (or simulator) can be summarized in a much lower dimensional state variable,
and (c) the dynamics are relatively simple if given the right representation. All of these motivating

8



properties can be captured in a simplified model that assumes linear dynamics occurring in a hidden
low-dimensional state space, as presented below.
For simplicity, we will only consider one step of the dynamics represented by a tuple (o, a, o′, s, s′, c)
that is sampled iid from the joint distribution over those variables. Recall that we only observe
(o, a, o′) and that (s, s′, c) are latent. Formally, let O = Rd, S = Rℓ, and A = Rk with d ≫ ℓ > k.
Let ϕ : O → S be the ground truth encoder, which we assume is invertible by ϕ−1. Let ϵ ∼ N (0,Σ)
in Rℓ and A,B to be any matrices in Rℓ×ℓ and Rℓ×k. Then, assume that the dynamics are:

o′ = ϕ−1(Aϕ(o) +Ba+ ϵ). (13)

Note that we make no assumption on the policy π∗
c other than that it only depends on o via ϕ(o).

This model is similar to ones studied in the online control setting by Mhammedi et al. [2020], Dean
and Recht [2021], but is different from models where inverse dynamics have been studied for online
control with exogenous noise since the dynamics are entirely contained in the low dimensional state
space [Efroni et al., 2021, Lamb et al., 2022].

Inverse dynamics recovers the state. To get an intuition as to why inverse dynamics learning is
feasible in this model, note that if B+ is the pseudoinverse of B that:

a = B+ϕ(o′)−B+Aϕ(o)−B+ϵ. (14)

Thus the inverse dynamics are a simple linear function of the embeddings ϕ(o), ϕ(o′). As a result,
when we solve for a with least squares regression, if the encoder ϕ is representable by our function
class, we will be able to recover it up to linear transformation, provided the matrix B is well-
conditioned, so that the noise term B+ϵ does not blow up.

Forward dynamics can be less statistically efficient. Intuitively, the potential problem with
learning forward dynamics is that it requires learning both an encoder and a decoder while inverse
dynamics only requires learning the encoder. This is not necessarily a problem a priori, but we
hypothesize that in practical problems of interest (like the ones in our experiments) the decoder
(mapping from low dimensional state to high dimensional observation) may be more complicated
than the encoder (mapping from observations to states).

Figure 8: An example where the decoder
is more complicated than the encoder.

To grasp why we might expect this, note that the set of
possible observations is the manifold represented by the
image of the decoder, i.e. Im(ϕ−1). As a simple example,
consider a toy 2d example where the high dimensional
observation is (x, f(x)) ∈ R2 and the low dimensional
state is simply x ∈ R1, as depicted in Figure 8. Here the
encoder ϕ is very simple since it just needs to recover x,
while the decoder must learn f(x). Of course this is a very
toy example, but we find it illustrative of the idea that it is
possible that the encoder is much simpler than the decoder
in practice.

BC can be confounded by the latent context. As we alluded to in the experimental section, the
latent context variable can confound BC. Now we will show an example in our model where this
problem arises. In this case, even with a linear encoder, infinite data, and a fully expressive policy
class, the Bayes optimal BC representation cannot be used to recover anything better than a random
policy. This example is extreme, but shows the shortcomings of a confounded pretraining objective.
For simplicity, let ℓ = k and ϵ = 0. Let R(Rk×k) be the set of rotation matrices in Rk. Let Sk−1 be
the unit sphere in Rk, U be the uniform distribution, and δ denote a Dirac delta. Now, assume:

c ∼ U(R(Rk×k)), o ∼ U(ϕ−1(Sk−1)), π∗
c (a|o) = δ[a = cϕ(o)] (15)

Note that ϕ(o) returns a unit vector in Rk and that a uniformly sampled rotation of a unit vector is a
uniformly sampled unit vector. Thus, we can marginalize over c to get:

P (a|o) =
∫
c

P (c)π∗
c (a|o) =

∫
c

P (c)δ[a = cϕ(o)] = PU(Sk−1)(a) = ηk, (16)

for a constant ηk equal to the reciprocal of the surface area of the unit sphere in Rk.

9



Thus, the Bayes optimal BC policy does not depend on o at all. As a result, the optimal representation
learned by BC can just map every observation to zero. This representation is not capable of represent-
ing the optimal policy for any choice of c. However, switching to inverse dynamics pretraining where
we condition on the outcome observation o′ breaks the confounding and allows us to learn the true
representation even without observing c.

7 Discussion

We have seen that inverse dynamics pretraining provides an effective method for learning features from
multitask demonstration data. We demonstrated this across a suite of datasets with visual observations
and provided analysis in a simplified model to understand the strong empirical performance.

Limitations. There are still a few limitations of our work that are worth pointing out explicitly.
First, in this work we prioritized simulated domains with large numbers of predefined tasks and
datasets with a single morphology to allow for a variety of experiments. However, it is possible that
the results we observed in these tasks would differ when scaled to real world tasks with additional
visual diversity and physical realism. We leave this extension to future work.
Second, while our theoretical analysis provides a clear rationale for the observed empirical results in
a toy model, there is clearly room for better theory. Ideally, future work could present a more rigorous
theory that goes beyond a toy model. However, we do think that the toy model captures some of
the essential characteristics of the problem and recognize that any theory must make simplifying
assumptions.

Future directions. In addition to removing the limitations described above, there are many other
interesting directions for future work to build on our results. One direction would be to extend these
results to settings with suboptimal data. In this work we focus on an imitation learning setting where
data is collected by expert policies across a variety of tasks. In future, it would be interesting to study
how and if the properties of various representation learning algorithms change in the presence of
suboptimal data.
It would also be interesting for future work to compare the relative merits of a broader array of
pretraining techniques that go beyond representation learning. For example, methods that learn con-
ditional generative models (e.g. goal-conditioning, language-conditioning, or reward-conditioning)
provide a different paradigm for pretraining policies instead of the feature extractors that we consider
in this work.
Finally, it would be interesting to consider developing new pretraining objectives for representation
learning. This could be done by combining existing objectives or developing completely new ones.

Acknowledgments

This work was completed as part of the Google Research Collabs program. We would like to thank
Mahi Shafiullah, Mark Goldstein, Aahlad Puli, Siddhant Haldar, Ben Evans, Ulyana Piterbarg, and
Lerrel Pinto for helpful discussions and feedback.

References
Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive

discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-
shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable representation
learning for imitation learning via bi-level optimization. In International Conference on Machine
Learning, pages 367–376. PMLR, 2020.

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando De Freitas. Playing
hard exploration games by watching youtube. Advances in neural information processing systems,
31, 2018.

10



Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,
David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio Fantacci,
Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven
Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena Martens, Hamza
Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John Quan, Roman Ring,
Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan
Srinivasan, Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind
JAX Ecosystem, 2020. URL http://github.com/deepmind.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

Xin Chen, Sam Toyer, Cody Wild, Scott Emmons, Ian Fischer, Kuang-Huei Lee, Neel Alex, Steven H
Wang, Ping Luo, Stuart Russell, et al. An empirical investigation of representation learning for
imitation. arXiv preprint arXiv:2205.07886, 2022.

Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. From play to policy:
Conditional behavior generation from uncurated robot data. arXiv e-prints, pages arXiv–2210,
2022.

Sarah Dean and Benjamin Recht. Certainty equivalent perception-based control. In Learning for
Dynamics and Control, pages 399–411. PMLR, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in neural
information processing systems, 30, 2017.

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Prov-
able rl with exogenous distractors via multistep inverse dynamics. arXiv preprint arXiv:2110.08847,
2021.

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learning
as goal-conditioned reinforcement learning. arXiv preprint arXiv:2206.07568, 2022.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep spatial
autoencoders for visuomotor learning. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 512–519. IEEE, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pages 1126–1135. PMLR,
2017a.

11

http://github.com/deepmind
http://github.com/google/jax


Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imitation
learning via meta-learning. In Conference on robot learning, pages 357–368. PMLR, 2017b.

Xiang Fu, Ge Yang, Pulkit Agrawal, and Tommi Jaakkola. Learning task informed abstractions. In
International Conference on Machine Learning, pages 3480–3491. PMLR, 2021.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International Conference
on Machine Learning, pages 2170–2179. PMLR, 2019.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal-
conditioned policies. arXiv preprint arXiv:1811.07819, 2018.

Dibya Ghosh, Chethan Bhateja, and Sergey Levine. Reinforcement learning from passive data via
latent intentions. arXiv preprint arXiv:2304.04782, 2023.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18995–19012, 2022.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipendra
Misra, Xin Li, Harm van Seijen, Remi Tachet des Combes, et al. Agent-controller representations:
Principled offline rl with rich exogenous information. arXiv preprint arXiv:2211.00164, 2022.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In
Conference on Robot Learning, pages 991–1002. PMLR, 2022.

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2022.
URL https://github.com/ikostrikov/jaxrl2. v2.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. arXiv preprint arXiv:1912.05032, 2019.

Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Didolkar, Dipendra Misra, Dylan Foster, Lekan
Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of control-
lable latent states with multi-step inverse models. arXiv preprint arXiv:2207.08229, 2022.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International Conference on Machine Learning, pages 5639–5650.
PMLR, 2020.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision
transformers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022a.

12

http://github.com/google/flax
https://github.com/ikostrikov/jaxrl2


Kuang-Huei Lee, Ofir Nachum, Tingnan Zhang, Sergio Guadarrama, Jie Tan, and Wenhao Yu. Pi-ars:
Accelerating evolution-learned visual-locomotion with predictive information representations.
In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1447–1454. IEEE, 2022b.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre
Sermanet. Learning latent plans from play. In Conference on robot learning, pages 1113–1132.
PMLR, 2020.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Zakaria Mhammedi, Dylan J Foster, Max Simchowitz, Dipendra Misra, Wen Sun, Akshay Krish-
namurthy, Alexander Rakhlin, and John Langford. Learning the linear quadratic regulator from
nonlinear observations. Advances in Neural Information Processing Systems, 33:14532–14543,
2020.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pages 7780–7791. PMLR, 2021.

Ofir Nachum and Mengjiao Yang. Provable representation learning for imitation with contrastive
fourier features. Advances in Neural Information Processing Systems, 34:30100–30112, 2021.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The surprising effectiveness of representation learning for visual imitation. arXiv preprint
arXiv:2112.01511, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International conference on machine learning, pages 2778–2787.
PMLR, 2017.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
computation, 3(1):88–97, 1991.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pages 5331–5340. PMLR, 2019.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,
2021.

Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with
action-free pre-training from videos. In International Conference on Machine Learning, pages
19561–19579. PMLR, 2022.

13



Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning, pages
1332–1344. PMLR, 2023.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pages 9767–9779.
PMLR, 2021.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International Conference on Machine Learning, pages 9870–9879.
PMLR, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033.
IEEE, 2012.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

David Venuto, Sherry Yang, Pieter Abbeel, Doina Precup, Igor Mordatch, and Ofir Nachum.
Multi-environment pretraining enables transfer to action limited datasets. arXiv preprint
arXiv:2211.13337, 2022.

William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware embeddings.
arXiv preprint arXiv:1908.09357, 2019.

Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel, and Aravind
Rajeswaran. Masked trajectory models for prediction, representation, and control. arXiv preprint
arXiv:2305.02968, 2023.

Mengjiao Yang and Ofir Nachum. Representation matters: offline pretraining for sequential decision
making. In International Conference on Machine Learning, pages 11784–11794. PMLR, 2021.

Mengjiao Yang, Sergey Levine, and Ofir Nachum. Trail: Near-optimal imitation learning with
suboptimal data. arXiv preprint arXiv:2110.14770, 2021.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving
sample efficiency in model-free reinforcement learning from images. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 10674–10681, 2021.

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and Sergey
Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. arXiv
preprint arXiv:1802.01557, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pages 1094–1100. PMLR, 2020.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.
Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pages
537–546. PMLR, 2022.

Hongyu Zang, Xin Li, Jie Yu, Chen Liu, Riashat Islam, Remi Tachet Des Combes, and Romain
Laroche. Behavior prior representation learning for offline reinforcement learning. arXiv preprint
arXiv:2211.00863, 2022.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

14



Thomas T Zhang, Katie Kang, Bruce D Lee, Claire Tomlin, Sergey Levine, Stephen Tu, and
Nikolai Matni. Multi-task imitation learning for linear dynamical systems. arXiv preprint
arXiv:2212.00186, 2022.

15



A Extended related work

In this paper we focus specifically on pretraining methods that learn representations of high di-
mensional observations from multitask demonstration data with latent contexts for the purpose of
imitation. There are many closely related problems that are studied in other papers that we did not
have space to address fully in the main text that we more fully describe here. These are all very
interesting and complementary lines of work, but are beyond the scope of this paper.
Perhaps the largest closely related line of work focuses on learning reward-directed representations in
the context of reinforcement learning. This is a different setting than ours and methods from there
are not applicable in our setting where we do not have access to rewards. Moreover, most of these
methods do not consider multitask settings [Zhang et al., 2020, Gelada et al., 2019, Fu et al., 2021,
Ghosh et al., 2018, Eysenbach et al., 2022, Sodhani et al., 2021].
Another line of work seeks to learn representations of actions or sequences of actions rather than
observations. This is a directly complementary line of work to the ideas presented in this paper [Ajay
et al., 2020, Yang et al., 2021, Lynch et al., 2020, Whitney et al., 2019].
Another body of literature focuses on learning representations that can be transferred across domain
and embodiment gaps and even trained directly from videos without access to actions at all [Oord
et al., 2018, Aytar et al., 2018, Seo et al., 2022, Ma et al., 2022, Zakka et al., 2022, Ghosh et al., 2023].
In this paper, we focus on the simpler task of pretraining a representation within one MDP with
consistent dynamics and access to demonstration actions, but with varied tasks. This choice allows us
to make more clear comparisons between algorithms and rigorous claims about when representations
will be effective, but also limits the generality of the representations that are learned.
There are a variety of new methods that rely on transformer architectures to construct interesting
new pretraining objectives [Yang and Nachum, 2021, Lee et al., 2022a, Reed et al., 2022, Seo et al.,
2023, Wu et al., 2023]. In this paper we focus on simple methods that can all use the same simple
convolutional architecture operating on transition tuples to provide the most controlled comparison
that we can. It is an interesting direction for future work to see how our insights in the Markovian
case could be leveraged to inform sequence level models of partially observed problems.
Another line of work avoids pretraining representations directly and instead meta-learns a policy
that can adapt to new tasks [Duan et al., 2017, Finn et al., 2017a,b, Yu et al., 2018, Rakelly et al.,
2019, Mitchell et al., 2021]. This approach is beyond the scope of this paper which focuses on
representation learning. Moreover, these meta-learning algorithms require the pretraining trajectories
to be partitioned by task so that each task has multiple trajectories. Since we focus on pretraining
data where we don’t have access to the latent context, it is unclear how to create these meta-training
datasets.
Finally, recent work has shown the promise of zero-shot generalization for multitask imitation,
especially when the task identifying information is expressed in natural language to leverage advances
in language models [Ding et al., 2019, Jang et al., 2022, Cui et al., 2022, Brohan et al., 2022]. This
is an exciting line of work, but beyond the scope of this project where we focus on data where the
context information is latent. It is an interesting direction for future work to assess precisely how
much performance can be improved via extra context information to gauge whether it is worth the
cost of labeling trajectories with context information.
It is an interesting direction for future work to try to better synthesize some of the findings from
across this broad array of approaches to pretraining in slightly different settings.

B Extended experimental results

In this section we present the experimental results that were excluded from the main text due to
space constraints. In particular, Section B.1 presents representation analysis by predicting one
representation from another, Section B.2 presents the per-dataset results of various sweeps over
dataset size and type, Section B.3 presents per-dataset results for representation analysis, and Section
B.4 presents results of an ablation over multistep dynamics.

B.1 Cross-representation prediction

In the main text, we evaluated representation quality by measuring accuracy of small MLPs to
predict either the actions on the finetuning data or the low dimensional states on the pretraining

16



data. Here we present a similar analysis, but now where we use small MLPs to predict the other
representations themselves. This is interesting since it lets us assess which representations contain
enough information and shared structure to predict the other representations. Hypothetically, a
representation that is easily able to recover another representation may be preferable since it retains
more information.

Figure 9: Cross-representation predic-
tion error of a small MLP on a validation
set from the pretraining distribution. Re-
sults are normalized per dataset by the
mean error on that dataset and then aver-
aged across datasets.

Results presented in Figure 9 show the average across
datasets of the cross-representation prediction error on a
validation set from the pretraining distribution (normalized
by the mean prediction error on each dataset). There are
several possible takeaways from this experiments. First,
looking a the rows, which correspond to the error when
each method is used as the source, we can see that in-
verse dynamics generally has the lowest average error for
predicting the other representations. This suggests that
inverse dynamics is doing a good job of recovering the
information that is shared among all the representations.
Second, looking at the columns, which correspond to error
when each representation is used as the target, we see that
BC is the most difficult to predict and inverse dynamics
is second most difficult. This is a somewhat surprising
result, but suggests that these representations actually con-
tain information that may have been thrown away (or at
made least difficult to access via small MLP) within the
other representations. Finally, note that the contrastive
learner is both the worst source and easiest target, which
is consistent with the idea that those representations are
losing important task-relevant information.
Full results on each dataset can be found in Appendix B.3 and full methodological details can be
found in Appendix C.

B.2 Per dataset evaluation success results

In the main text and Section B.1 we have only presented aggregate results that average across datasets.
These averages make it easier to summarize comparisons between methods, but they sacrifice the
precision of how the results vary across datasets. In this section we present per dataset results for all of
the relevant sweeps across dataset variations including pretraining size, finetuning size, and finetuning
size when we ablate in distribution contexts or observability of the context in the observation.

Pretraining size. First, we present the full ablation over pretraining size, corresponding to the right
panel of Figure 3. The full per dataset results are shown in Figure 10.
There are several findings in the dataset-specific results that are not visible in the aggregate reported
in the main text:

• First, the kitchen environment is a clear outlier mainly due to the stochasticity in the
data generating process and smaller dataset size compared to the others (see Appendix
C.1 for more detailed description of the data). As a result of the noise added to the low
dimensional states, training from States actually underperforms training from Pixels + Aug.
We hypothesize that this is due to some implicit regularization that arises from training from
the rendered noisy observations instead of the low dimensional noisy states. Importantly,
inverse dynamics is much better able to handle the stochasticity than the alternative methods
given the relatively small pretraining dataset and is the only method that is able to perform
comparably to training from scratch.

• Point mass is the only environment where the externally pretrained representations (R3M
and Imagenet) substantially outperform training from Pixels + Aug and they are substantially
outperformed on kitchen and the metaworld datasets. We hypothesize that this shows how it
is quite difficult to transfer features across domains and see consistent benefits on challenging
tasks.

17



Figure 10: The per dataset results of sweeping over pretraining size, corresponding to the right
panel of Figure 3. Error bars show standard error over seeds and contexts (as described in Table 1).
Horizontal lines indicate mean performance of algorithms that do not depend on pretraining size.

• Note that performance of contrastive learning is substantially better relative to the alternatives
on point mass. We hypothesize that this is due to the fact that random crop augmentations are
actually a reasonable simulation of the dynamics in the pointmass environment specifically
so that contrastive learning becomes more similar to implicit forward dynamics.

Finetuning size. Next, we present the full ablation over finetuning size, corresponding to the left
panel of Figure 3. The full per dataset results are shown in Figure 11.
Again, as described above, Kitchen is a clear outlier due to stochasticity with inverse dynamics the
best performer. Inverse dynamics is also the clear winner on point mass and a slight winner on pick
and place. The other tasks are more ambiguous with many methods performing about the same, and
none substantially better than training from scratch (across all pretraining sizes). Disaggregating
the results here shows how even though inverse dynamics is clearly the best in aggregate, this is not
necessarily true on every dataset. As we will see in Figure 12, we hypothesize that much of this weak
performance can be attributed to the fact that the evaluation contexts in door and the two metaworld
variants are truly out of distribution, making it difficult for any pretraining method to generalize.

Ablating in distribution contexts. Next, we present the full per dataset results when we ensure
that all the evaluation contexts are included in the pretraining distribution, corresponding to Figure 4
in the main text. The full per dataset results are shown in Figure 12.
It is important to compare these results to those that include out of distribution evaluation contexts
in Figure 11. First, note that the evaluation contexts on point mass and pick and place were already
in distribution, so they are kept the same. However, on door and the two metaworld splits there is a
substantial improvement, especially for inverse dynamics and BC. This shows how these methods
can benefit from being applied on tasks that are contained in the pretraining distribution. Interestingly,
even though the evaluation contexts are now in distribution, the forward dynamics representations do
not see substantial improvements and are still outperformed by training from scratch on the more
challenging datasets.

18



Figure 11: The per dataset results of sweeping over finetuning size, corresponding to the left panel of
Figure 3. Error bars show standard error over seeds and contexts (as described in Table 1).

Figure 12: The per dataset results of sweeping over finetuning size when we include the evaluation
tasks in the pretraining data, corresponding to Figure 4. Error bars show standard error over seeds
and contexts (as described in Table 1).

19



Aggregating based on context observability. Finally, we present the full results for aggregations
across whether the context is observable, corresponding to Figure 5 in the main text. Context is latent
in point mass, pick and place, and kitchen, but inferrable in door and both metaworld splits. The
results are shown in Figure 13. Note that these results are just grouped averages over the results
presented in Figure 11.

Figure 13: The full results of aggregating based on the observability of the context variable, corre-
sponding to Figure 5. Error bars show standard error over seeds and contexts (as described in Table
1) then averaged across datasets.

Compared to Figure 5, we now include the results from all algorithms and also from the environments
where the context is inferrable. As reported in the main text, there is a clear gap between inverse
dynamics and BC when the context is latent, likley due to confounding. Here we see that this gap
largely disappears in the datasets where the context is inferrable and generally the disparities between
methods shrink.

B.3 Per dataset representation analysis

Now we present the per dataset results of the various methods of representation analysis based on
predicting different target quantities of interest: the action, the low dimensional state, and the other
representations themselves.

Figure 14: Full per dataset results of action prediction on the finetuning distribution.

Predicting action. First we present the per dataset results for train and validation action prediction
on the finetuning datasets using the default pretraining and finetuning size. These results correspond

20



to Figure 6 from the main text. Unlike in the main text, here we do not do any normalization of the
losses, so the losses occur at different scales on each dataset depending on how difficult the prediction
task is. Results are shown in Figure 14.

Figure 15: Full per dataset results for state prediction on the pretraining distribution.

Predicting state. Next, we present the per dataset results for predicting the low dimensional state
on the pretraining distribution from the various learned representations. These results correspond to
Figure 7 in the main text. Again, unlike in the main text, results are not normalized, so they occur at
different scales across environments. Results are shown in Figure 15.
Note that as mentioned before, there is stochasticity added to the low dimensional states in the kitchen
environment. This makes it difficult for any of the methods to substantially outperform the floor set
by the noise level.

Figure 16: Per dataset results for cross-representation prediction on the pretraining distribution. Color
shows the validation error of predicting target from source.

21



Predicting across representations. Finally, we present the per dataset results for predicting across
the different learned representations on the pretraining distribution. These results correspond to
Figure 9. Again, unlike in the averaged figure, this figure is not normalized, so the scales vary across
datasets. We truncate the color scale at 1e-4 on the low end for easier visualization.

B.4 Ablation of multistep dynamics

As mentioned in the main text, some work argues for multistep dynamics models [Efroni et al., 2021,
Lamb et al., 2022]. Note that this work focuses on settings with exogenous noise which are different
from the simpler settings that we consider. To confirm that using multistep dynamics models does
not help to learn better representations, we run an ablation of the number of steps included in the
dynamics model on three environments: point mass, pick and place, and door and two algorithms:
inverse dynamics and implicit forward dynamics. Results are shown in Figure 17. At a high level,
we basically find little difference when ablating the number of steps, so we default to using one step
models everywhere for simplicity.
Note: for inverse dynamics models, we learn a k step model by predicting at given ot and ot+k. For
forward dynamics, we learn a k step model by predicting ot+k given ot and at:t+k.

Figure 17: Sweep over the number of timesteps included in the dynamics models.

C Detailed experimental methodology

In this section we present a detailed account of out methodology. We also release our code that was
used to perform the experiments for full transparency. We split up the description into Section C.1
which describes the environments and dataset generation, Section C.2 which describes the details of
the pretraining pipeline, and Section C.3 which describes the details of the finetuning and evaluation
pipeline.
All code is at https://github.com/davidbrandfonbrener/imitation_pretraining.

C.1 Envionment and dataset details

Software dependencies. All of our environments are based on the MuJoCo simulator [Todorov
et al., 2012]. The point mass environment is derived from the DM control suite [Tunyasuvunakool
et al., 2020]. The kitchen environment and dataset was introduced in Gupta et al. [2019]. The rest of
the environments are taken from Metaworld [Yu et al., 2020]. We describe each environment in detail
and summarize the descriptions in Table 2

Point mass. The point mass environment consists of an actuated point mass on a 2d plane. In our
version, the context c ∈ R2 determines the goal location. Then, the demonstration policy π∗

c is a PD
controller that moves the point from the current position x to the goal position c. Because the context
variable is continuous, we sample an independent context for each trajectory in the pretraining dataset
from the uniform distribution over possible goal states. The context is fully latent and not observable
in the observation. The low dimensional state is the 2d position and the high dimensional images are
84x84x3.

22

https://github.com/davidbrandfonbrener/imitation_pretraining


Pick and place. The pick and place task is taken from the metaworld suite. In our version, the
context c ∈ R3 determines the goal location for the block. The demonstration policy π∗

c is a scripted
policy from the metaworld repo. We remove the goal indicator from the image in this environment so
that the context is fully latent and not observable from the observation. The low dimensional state
is the 3d position of the gripper, 1d openness of the gripper, and 7d position and orientation of the
block. The high dimensional observations are images of size 120x120x3.

Door. The door environment is also taken from the metaworld suite. In our version, the context
c ∈ [4] determines the index of the environment from door-close, door-open, door-unlock, and door-
lock. For our default experiments we use door-close, door-open, and door-unlock as the pretraining
contexts and door-lock as the eval context. For the ablation where we ensure that the eval context
is in the pretraining distribution, we include door-lock in the pretraining data. The demonstration
policy π∗

c is a scripted policy from the metaworld repo. Given the context, the initial position of the
robot, initial position of the door, and goal position (which is visible in the observation image) are all
randomized. Note, the context is inferrable since the initial position of the door and lock allow the
learner to infer the context. The low dimensional state is the 3d position of the gripper, 1d openness
of the gripper, 7d position and orientation of two objects in the scene, and 3d goal position. The high
dimensional observations are images of size 120x120x3.

Kitchen. The kitchen environment and dataset are taken from Gupta et al. [2019]. Each trajectory
contains a sequence of four tasks in a simulated kitchen collected by a human demonstrator. In
our version, the context c ∈ [24] is determined by the sequence of four tasks contained within
the demonstration trajectory (of which there are 24 possibilities). We evaluate on three contexts:
microwave-kettle-light switch-slide cabinet, bottom burner-top burner-slide cabinet-hinge cabinet,
and kettle-bottom burner-top burner-light switch. In our default setup, we pretrain on the other 21
contexts, and in the ablation of in distribution evaluation we pretrain on all 24 contexts. The context is
fully latent and not observable from the initial state. The low dimensional state is a 9d description of
the arm position and a 21d description of the position of objects in the kitchen. The high dimensional
observations are images of size 120x120x3.
Note: the kitchen environment is the only one that we consider that has added noise. The raw data
from Gupta et al. [2019] contains gaussian noise added to the low dimensional states and actions, so
this noise cannot be removed without re-generating the data. We render the images from the noisy
states, so there is also noise present in the image observations. We also evaluate in an environment
with the same noise added, so there is no gap between training and eval.

Metaworld (ML45 and R3M). Finally, we consider two variants of the full metaworld suite.
Here the context c ∈ [50] determines which metaworld task is used. We consider two different
train-eval splits for our default environments. The ML45 split takes the eval tasks from the original
metaworld ML45 task which are bin-picking, box-close, hand-insert, door-lock, and door-unlock.
The R3M split takes the eval tasks that were chosen in the R3M paper [Nair et al., 2022]: assembly,
bin-picking, button-press, drawer-open, and hammer. Given the context, the initial and goal positions
are randomized. The goal position is visible in the observation. The low dimensional state is the 3d
position of the gripper, 1d openness of the gripper, 7d position and orientation of (potentially) two
objects in the scene, and 3d goal position. The high dimensional observations are images of size
120x120x3.

Table 2: A summary of the description of datasets above. Inferrable refers to whether the context is
observable. OOD refers to whether the evaluation context is out of distribution.

Dataset Policy Context Inferrable OOD Noise State dim

Point mass PD controller R2 No No No 2
Pick and place Script R3 No No No 11
Door Script [4] Yes Yes No 21
Kitchen Human [24] No Yes Yes 30
Metaworld-ML45 Script [50] Yes Yes No 21
Metaworld-R3M Script [50] Yes Yes No 21

23



C.2 Pretraining details

Software dependencies. We implement all of our training in JAX [Bradbury et al., 2018]. We use
flax for neural networks [Heek et al., 2023] and optax for optimization [Babuschkin et al., 2020]. Our
code is loosely based on Kostrikov [2022].

Architecture. All of our pretraining algorithms share exactly the same encoder architecture to
ensure that we have a fair comparison. Since our tasks are relatively simple visually, and so as to
allow for large scale experiments without too much compute, we use a relatively small convnet
encoder. Specifically, we follow the architecture from Yarats et al. [2021] which consists of a 4
layer convnet with 3x3 filters, number of channels of (32, 64, 128, 256), and strides of (2,2,1,1). We
add a modification to include a spatial softmax activation [Finn et al., 2016], which we found to be
important for the manipulation tasks we consider. This is followed by a linear layer to project into the
embedding dimension of 64 and finally a layernorm and tanh activation to normalize the embedding.
We use the gelu activation function throughout.
Now we will birefly describe the architecture used for each pretraining algorithm, following their
descriptions in Section 4.2:

• Inverse dynamics: the inverse dynamics head is an MLP that takes in ϕ(o), ϕ(o′) and
produces an estimated action. This MLP has two hidden layers of width 256 and dropout of
0.1 during training.

• BC: the BC policy head is an MLP with two hidden layers of width 256 and dropout of 0.1
during training.

• Implicit forward dynamics: the implicit forward dynamics model uses an action encoder
ϕa(a) which outputs a 64 dimensional normalized action embedding which is concatenated
to ϕ(o) to form ϕ(o, a). Then there are two projection heads f1, f2 that take in ϕ(o, a) and
ϕ(o′) respectively and produce 64 dimensional embeddings that are normalized to have unit
norm. All these networks (ϕa, f1, and f2) are MLPs with two hidden layers of width 256
and the relevant input and output dimensions.

• Explicit forward dynamics: the explicit forward dynamics model uses the same architecture
to encode a with ϕa. Then, instead of projection heads, we require a convolutional decoder
to produce an image. Following Yarats et al. [2021] we use an architecture that inverts the
encoder, having a dense projection layer followed by channels of (256, 128, 64, 32) and
strides of (1,1,2,2).

• Contrastive: the contrastive network is the same as the implicit forward dynamics network
except that there is no action input and o′ is replaced by an augmentation of o.

Training hyperparameters. For pretraining, we split the datasets into two categories: easy (point
mass, pick and place, and door) and hard (kitchen, metaworld-ml45, and meatworld-r3m). On the
easy tasks we train for 100k gradient steps and on the hard tasks we train for 200k gradient steps.
Batch size is 256 for all methods except explicit forward dynamics where (due to the added compute
required for the decoder) we use batch size of 128 to even out computational requirements across
methods. All methods are trained with the adamw optimizer with learning rate 1e-3, a cosine learning
rate decay schedule, and default weight decay of 1e-4.

Data augmentation. Following [Chen et al., 2022] and others, we note that cropping augmentations
are the most important for training policies in simulated visual domains. As such, all of our pretraining
algorithms (and the Pixels + Aug baseline) use random cropping augmentations, and we found this to
be an important implementation detail. The one exception is explicit forward dynamics where we
found it difficult to reconstruct images with augmentations, so we omit them for that algorithm.

Compute resources. Pretraining was all done on an internal cluster using RTX8000 GPUs. We
estimate that the final training run needed to produce the results in the paper took approximately 600
GPU hours.

C.3 Finetuning and evaluation details

Training hyperparameters. The policy is always an MLP with two hidden layers of width 256.
We use gelu activation and apply dropout with probability 0.1 during finetuning. We finetune on every

24



dataset for 10k gradient steps with batch size 256. All policies are trained with the adamw optimizer
with learning rate 1e-3, a cosine learning rate decay schedule, and default weight decay of 1e-4.
As explained in Table 1 there are several seeds and evaluation contexts for each environment. For
example, for the default results in Figure 1 we end up having a total of 80 different finetuning datasets
per representation when sweeping across dataset, context, and seed so that Figure 1 is reporting
aggregate results across 720 finetuning and evaluation runs.

Evaluation hyperparameters. Each evaluation is run for 100 episodes in the environment to
estimate the success of the policy (except for the kitchen environment where we run 50 episodes due
to slow rendering of that environment).

Compute resources. Finetuning and evaluation was all done on an internal cluster on CPU (since
the finetuned policy network is small and environments run on CPU). We estimate that all the
finetuning and evaluation in the final runs used to produce results for the paper took approximately
2000 CPU hours.

C.4 Comparison to R3M experimental setup

There are several low-level but important differences between our evaluation setup and the one used
in the R3M paper [Nair et al., 2022] which uses some similar environments. These differences end
up making the pretrained R3M representations perform worse in our evaluations than those in the
original paper. For the kitchen tasks in particular, the biggest difference is that while the R3M paper
considers only learning single subtasks (e.g. slide the door open, see section 4.2 of the R3M paper),
we consider learning sequences of subtasks (e.g. open the microwave, put the kettle on, turn on
the light, and slide the door open, all in one trajectory). The R3M paper considers explicitly easier
tasks. We did this because the kitchen data itself contains sequences of subtasks, not single subtasks
(following the paper that introduced the kitchen dataset). For the metworld tasks, R3M chose to
evaluate on a particular subset of tasks that are somewhat easier than average (this is why we consider
two different splits of metaworld on with the R3M eval tasks and one with the original eval tasks from
the metaworld paper). Another difference is that to focus solely on feature learning, we only pass in
the image observation and not the proprioception while R3M passes in both. Again this makes the
problem a little bit more difficult. wW also render images at a lower resolution due to computational
constraints.
Finally, it is important to note that R3M is attempting to solve a different problem of general image
representation learning that transfers across domains, while we are focusing on within domain, but
cross-task generalization (which is easier to analyze in a controlled way).

D Extended analysis discussion

Here we provide a more detailed discussion of related theoretical work.
One recent line of work focuses on learning representations for exploration [Efroni et al., 2021, Lamb
et al., 2022] and offline RL [Islam et al., 2022] in the presence of exogenous noise. The exogenous
noise setting means that the high dimensional observations contain information that is not effected by
the actions; e.g., background dynamics that appear in image observations but do not affect the task.
This line of work argues that inverse dynamics modeling is the best approach to ignore exogenous
noise. Our results are complementary to this line of work in showing that even in settings without
exogenous noise, inverse dynamics is still often preferable to alternatives for representation learning.
Moreover, we consider a multitask imitation setting with latent contexts while they consider single
task and reward-directed problems.
Another line of work proves that learning a forward dynamics model is a well-motivated approach for
multitask imitation [Nachum and Yang, 2021]. While that work does not directly compare to inverse
dynamics pretraining, we find that inverse dynamics pretraining outperforms forward dynamics
modeling in our settings. Moreover, while this paper shows that if our representation learns a good
forward dynamics model that it works well for imitation, it does not discuss how efficiently such a
representation can be learned. So, while both methods are well-motivated, we find inverse dynamics
modeling to be more efficient than learning the forward dynamics.

25



Finally, another line of work studies multitask representation learning for imitation by directly
performing behavior cloning [Arora et al., 2019, Zhang et al., 2022]. These methods provide positive
results for the approach, but require algorithms that have access to the latent context information
which must be discrete so as to learn a separate policy for every pretraining context, thus avoiding
confounding. This method requires extra information and is difficult to scale to very large numbers
of contexts. In contrast, we find that inverse dynamics modeling is able to perform well without this
extra information or added complexity of learning multiple models and naturally avoids confounding
by the latent context information.

26


	Introduction
	Related work
	Problem setup
	Experimental setup
	Environments and Datasets
	Algorithms

	Experiments
	Impact of dataset on representation learning performance
	Predictive power of the representations

	Analysis
	Discussion
	Extended related work
	Extended experimental results
	Cross-representation prediction
	Per dataset evaluation success results
	Per dataset representation analysis
	Ablation of multistep dynamics

	Detailed experimental methodology
	Envionment and dataset details
	Pretraining details
	Finetuning and evaluation details
	Comparison to R3M experimental setup

	Extended analysis discussion

