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Abstract

As the scale of machine learning models increases, trends such as scaling laws
anticipate consistent downstream improvements in predictive accuracy. However,
these trends take the perspective of a single model-provider in isolation, while
in reality providers often compete with each other for users. In this work, we
demonstrate that competition can fundamentally alter the behavior of these scaling
trends, even causing overall predictive accuracy across users to be non-monotonic
or decreasing with scale. We define a model of competition for classification
tasks, and use data representations as a lens for studying the impact of increases
in scale. We find many settings where improving data representation quality
(as measured by Bayes risk) decreases the overall predictive accuracy across
users (i.e., social welfare) for a marketplace of competing model-providers. Our
examples range from closed-form formulas in simple settings to simulations with
pretrained representations on CIFAR-10. At a conceptual level, our work suggests
that favorable scaling trends for individual model-providers need not translate to
downstream improvements in social welfare in marketplaces with multiple model
providers.

1 Introduction

Scaling trends in machine learning suggest that increasing the scale of a system consistently improves
predictive accuracy. For example, scaling laws illustrate that increasing the number of model
parameters [Kaplan et al., 2020, Sharma and Kaplan, 2020, Bahri et al., 2021] and amount of data
[Hoffmann et al., 2022] can reliably improve model performance, leading to better representations
and thus better predictions for downstream tasks [Hernandez et al., 2021].

However, these scaling laws typically take the perspective of a single model-provider in isolation,
when in reality, model-providers often compete with each other for users. For example, in digital
marketplaces, multiple online platforms may provide similar services (e.g., Google search vs. Bing,
Spotify vs. Pandora, Apple Maps vs. Google) and thus compete for users on the basis of prediction
quality. A distinguishing feature of competing platforms is that users can switch between platforms
and select a platform that offers them the highest predictive accuracy for their specific requests. This
breaks the direct connection between predictive accuracy of a single platform in isolation and social
welfare across competing platforms, and raises the question: what happens to scaling laws when

model-providers compete with each other?

⇤Equal contribution
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Figure 1: Comparison of equilibrium loss on two data distributions, one with high Bayes risk (left) and one with
lower Bayes risk (right). Each plot shows the linear predictors chosen at equilibrium under competition between
three model-providers (solid lines), along with two approximately Bayes-optimal predictors (dashed lines). The
equilibrium social loss is lower in the left plot than the right plot, even though the Bayes risk is much higher.
The intuition is that approximate Bayes optima disagree on more data points in the left plot than in the right plot;
thus, users have a greater likelihood of at least one predictor offering them a correct prediction, which increases
the overall predictive accuracy for users (i.e., the social welfare).

We show that the typical intuition about scaling laws can fundamentally break down under competition.
Surprisingly, even monotonicity can be violated: increasing scale can decrease the overall predictive
accuracy (social welfare) for users. More specifically, we study increases to scale through the lens of
data representations (i.e., learned features), motivated by how increasing scale generally improves
representation quality [Bengio et al., 2013].2 We exhibit several multi-class classification tasks where
better data representations (as measured by Bayes risk) decrease the overall predictive accuracy
(social welfare) for users, when varying data representations along several different axes.

The basic intuition for this non-monotonicity is illustrated in Figure 1. When data representations are
low quality, any predictor will be incorrect on a large fraction of users, and near-optimal predictors
may disagree on large subpopulations of users. Model providers are thus incentivized to choose
complementary predictors that cater to different subpopulations (market segments), thus improving
the overall predictive accuracy for users. In contrast, when representations are high quality, each
optimal predictor is incorrect on only a small fraction of users, and near-optimal predictors likely
agree with each other on most data points. As a result, model-providers are incentivized to select
similar predictors, which decreases the overall predictive accuracy for users.

To study when non-monotonicity can occur, we first focus on a stylized setup that permits closed-
form calculations of the social welfare at equilibrium (Section 3). Using this characterization,
in three concrete binary classification setups, we show that the equilibrium social welfare can
be non-monotonic in Bayes risk. In particular, we vary representations along three axes—the
per-representation Bayes risks, the noise level of representations, and the dimension of the data
representations—and exhibit non-monotonicity in each case (Figure 2).

Going beyond the stylized setup of Section 3, in Section 4 we consider linear function classes and
demonstrate empirically that the social welfare can be non-monotonic in the data representation

2We are motivated by emerging marketplaces where different model-providers utilize the same pretrained
model, but finetune the model in different ways. To simplify this complex training process, we conceptualize
pretraining as learning data representations (e.g., features) and fine-tuning as learning a predictor from these

representations. In this formalization, increasing the scale of the pretrained model leads to improvements in data
representations accessible to the model-providers during “fine-tuning”.
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quality. We consider binary and 10-class image classification tasks on CIFAR-10 where data
representations are obtained from the last-layer representations of AlexNet, VGG16, ResNet18,
ResNet34, and ResNet50, pretrained on ImageNet. Better representations (as measured by Bayes
risk) can again perform worse under competition (Figure 3). We also consider synthetic data where
we can vary representation quality more systematically, again finding ubiquitous non-monotonicities.

Altogether, our results demonstrate that the classical setting of a single model-provider can be a poor
proxy for understanding multiple competing model-providers. This suggest that caution is needed
when inferring that increased social welfare necessarily follows from the continuing trend towards
improvements in predictive accuracy in machine learning models. Machine learning researchers and
regulators should evaluate methods in environments with competing model-providers in order to
reasonably assess the implications of raw performance improvements for social welfare.

1.1 Related work

Our work connects to research threads on the welfare implications of algorithmic decisions and
competition between data-driven platforms.

Welfare implications of algorithmic decisions. Recent work investigates algorithmic monoculture

[Kleinberg and Raghavan, 2021, Bommasani et al., 2022], a setting in which multiple model-providers
use the same predictor. In these works, monoculture is intrinsic to the decision-making pipeline:
model-providers are given access to a shared algorithmic ranking [Kleinberg and Raghavan, 2021]
or shared components in the training pipeline [Bommasani et al., 2022]. In contrast, in our work,
monoculture may arise endogenously from competition, as a result of scaling trends. Model-providers
are always given access to the same function classes and data, but whether or not monoculture arises
depends on the quality of data representations and its impact on the incentives of model-providers.
Our work thus offers a new perspective on algorithmic monoculture, suggesting that it may arise
naturally in competitive settings as a side effect of improvements in data representation quality.

More broadly, researchers have identified several sources of mismatch between predictive accuracy
and downstream welfare metrics. This includes narrowing of a classifier under repeated interactions
with users [Hashimoto et al., 2018], preference shaping of users induced by a recommendation
algorithm [Carroll et al., 2022, Dean and Morgenstern, 2022, Curmei et al., 2022], strategic adaptation

by users under a classifier [Brückner et al., 2012, Hardt et al., 2016], and the long-term impact of

algorithmic decisions [Liu et al., 2018, 2020].

Competition between data-driven platforms. Our work is also related to the literature on competing
predictors. The model in our paper shares similarities with Ben-Porat and Tennenholtz [2017, 2019],
who studied equilibria between competing predictors. Ben-Porat and Tennenholtz [2017, 2019] show
that empirical risk minimization is not an optimal strategy for a model-provider under competition
and design algorithms that compute the best-responses; in contrast, our focus is on the equilibrium
social welfare and how it changes with data representation quality. The specifics of our model also
slightly differ from the specifics of Ben-Porat and Tennenholtz [2017, 2019]. In their model, each
user has an accuracy target that they wish to achieve and randomly chooses between model-providers
meeting that target; in contrast, in our model, each user noisily chooses the model-provider that
minimizes their loss and model-providers can have asymmetric market reputations.

Our work also relates to bias-variance games [Feng et al., 2019] between competing model-providers.
However, Feng et al. [2019] focus on the the equilibrium strategies for the model-provider, but do not
consider equilibrium social welfare for users; in contrast, our work focuses on the equilibrium social
welfare. The model of Feng et al. [2019] also differs from the model in our work. In Feng et al. [2019],
a model-provider action is modeled as choosing an error distribution for each user, and the action set
includes error distributions with a range of different variances. In contrast, in our setup, the error
distribution for every user is always a point mass (variance 0). Thus, the equilibrium characterization
of Feng et al. [2019] does not translate to our model. The specifics of the model-provider utility in
the work of Feng et al. [2019] differs slightly from our model as well.

Other aspects studied in this research thread include competition between model-providers using
out-of-box learning algorithms that do not directly optimize for market share [Ginart et al., 2021,
Kwon et al., 2022, Dean et al., 2022], competition between model-providers selecting regularization

parameters that tune model complexity [Iyer and Ke, 2022], competition between bandit algorithms

where data directly comes from users [Aridor et al., 2020, Jagadeesan et al., 2022], and competition

3



between algorithms dueling for a user [Immorlica et al., 2011]. Our work also relates to classical

economic models of product differentiation such as Hotelling’s model [Hotelling, 1981, d’Aspremont
et al., 1979] (see Anderson et al. [1992] for a textbook treatment), as well as the emerging area of
platform competition [see, e.g., Jullien and Sand-Zantman, 2021, Calvano and Polo, 2021].

2 Model

We focus on a multi-class classification setup with input space X ✓ Rd and output space Y =
{0, 1, 2, . . . ,K � 1}. Each user has an input x and a corresponding true output y, drawn from
a distribution D over X ⇥ Y . Model providers choose predictors f from some model family
F ✓ (�(Y ))X where �(Y ) is the set of distributions over Y . A user’s loss given predictor f is
`(f(x), y) = P[y 6= f(x)]. In Section 3, we take F = {0, 1, 2, . . . ,K � 1}X to be all deterministic
functions mapping inputs to classes, while in Section 4 we consider linear predictors of the form
f(x) = softmax(Wx+ b).

We study competition between m � 2 model-providers for users, building on the model of Ben-Porat
and Tennenholtz [2017, 2019]. We index the model-providers by [m] := {1, 2, . . . ,m}, and let
fj denote the predictor chosen by model provider j. After the model-providers choose predictors
f1, . . . , fm, each user then chooses one of the m model-providers to link to, based on prediction
accuracy. Model-providers aim to optimize the number of users that they win. We describe the model
in detail below. (We note that this model is stylized and will make several simplifying assumptions;
we defer a detailed discussion of the implications of these assumptions to Appendix A.)

User decisions. Users noisily pick the model-provider offering the best predictions for them. That is,
a user with representation x and true label y chooses a model-provider j⇤(x, y) such that the loss
`(fj⇤(x,y)(x), y) is the smallest across all model-providers j 2 [m], subject to noise in user decisions.
More formally, we model user noise with the logit model [Train, 2002], also known as the Boltzmann
rationality model:

P[j⇤(x, y) = j] =
e�`(fj(x),y)/c

Pm
j0=1 e

�`(fj0 (x),y)/c
, (1)

where c > 0 denotes a noise parameter. We extend this model to account for uneven market
reputations across decisions in Section B.1.

Model provider incentives. A model-provider’s utility is captured by the market share that they win.
That is, model-provider j’s utility is

u(fj ; f�j) := E
(x,y)⇠D

[P[j⇤(x, y) = j]] ,

where f�j denotes the predictors chosen by the other model-providers and where the expectation is
over (x, y) drawn from D. Since the market shares always sum to one, this is a constant-sum game.

Each model-provider chooses a best response to the predictors of other model-providers. That is,
model-provider j chooses a predictor fj such that

fj 2 argmax
f2F

u(fj ; f�j).

The best-response captures that model-providers optimize for market share. In practice, model-
providers may do so via A/B testing to steer towards predictors that maximize profit, or by actively
collecting data on market segments where competitors are performing poorly.

We study market outcomes f = (f1, f2, . . . , fm) that form a Nash equilibrium. Recall that f is a pure

strategy Nash equilibrium if for every j 2 [m], model-provider j’s predictor is a best-response to f�j :
that is, fj 2 argmaxf2F u(fj ; f�j). In well-behaved instances, pure-strategy equilibria exist (see
Proposition 1 and simulation results in Section 4). However, for uneven market reputations (Appendix
B.1), we must turn to mixed strategy equilibria where model-providers choose distributions µ over F .

Quality of market outcome for users. We are interested in studying the quality of a market outcome
f = (f1, f2, . . . , fm) in terms of user utility. The quality of f is determined by the overall social loss

that it induces on the user population, after users choose between model-providers:

SL(f1, . . . fm) := E[`(fj⇤(x,y)(x), y)]. (2)
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When f1, . . . , fm is a Nash equilibrium, we refer to SL(f1, . . . fm) as the equilibrium social loss.

Our goal is to study how the equilibrium social loss changes when the representation quality (i.e.,
the quality of the input representations X) improves. We formalize representation quality as the
minimum risk OPTsingle that a single model-provider could have achieved on the distribution D with
the model family F . This means that OPTsingle is equal to the Bayes risk:

OPTsingle := min
f2F

E [`(f(x), y)] .

We show that the equilibrium social loss SL(f⇤
1 , . . . f

⇤
m) can be non-monotonic in the representation

quality (as measured by OPTsingle), when representations are varied along a variety of axes.

3 Non-monotonicity of Equilibrium Social Loss in a Stylized Setup

To understand when non-monotonicity can occur, we first consider a stylized setup (described below)
that permits closed-form calculations of the social loss. We characterize the equilibrium social loss in
this setup for binary classification (Proposition 2), and apply this characterization to three concrete
setups that vary representation quality along different axes (Section 3.2): we show that the equilibrium
social loss can be non-monotonic in Bayes risk in all of these setups (Figures 2b-2c). Finally, we
extend our theoretical characterization in Proposition 2 to setups with more than 2 classes (Section
3.3), and we extend to model-providers with unequal market reputations (Appendix B.1).

Specification of stylized setup. Assume the input space X is finite and let F = Fmulti-class
all contain

all deterministic functions from X to {0, 1, . . . ,K � 1}. For simplicity, we assume that users make
noiseless decisions (i.e., c ! 0), so a user’s choice of model-provider j⇤(x, y) is specified as follows:

P[j⇤(x, y) = j] =

(
0 if j 62 argminj02[m] [y 6= fj0(x)]

1

|argminj02[m] [y 6=fj0 (x)]| if j 2 argminj02[m] [y 6= fj0(x)].
(3)

In other words, users pick the model-provider with minimum loss, choosing randomly in case of ties.
We show that pure strategy equilibria are guaranteed to exist in this setup.
Proposition 1. Let X be a finite set of representations, let there be K � 2 classes, let F = Fmulti-class

all
,

and let D be the distribution over (X,Y ). Suppose that user decisions are noiseless (i.e., user

decisions are given by (3)). For any m � 2, there exists a pure strategy equilibrium.

3.1 Characterization of the equilibrium social loss for binary classification

We first focus on binary classification. Let Fbinary
all denote the function class Fmulti-class

all in the special
case of K = 2 classes. Since Fbinary

all lets model-providers make independent predictions about each
representation x, the only source of error is noise in individual data points. To capture this, we
define the per-representation Bayes risk ↵(x) to be ↵(x) := min(P(y = 1 | x),P(y = 0 | x)). The
value ↵(x) measures how random the label y is for a given representation x. As a result, ↵(x) is the
minimum error that a model-provider can hope to achieve on the given representation x. Increasing
↵(x) increases the Bayes risk OPTsingle: in particular, OPTsingle is equal to the average value E[↵(x)]
across the population. The equilibrium social loss, however, depends on other aspects of ↵(x).

We characterize the equilibrium social loss in terms of the per-representation Bayes risks in the
following proposition. Our characterization focuses on pure-strategy equilibria, which are guaranteed
to exist in this setup (see Proposition 1).

Proposition 2. Let X be a finite set, let K = 2, and let F = Fbinary

all
. Suppose that user decisions are

noiseless (i.e., user decisions are given by (3)). Suppose also that ↵(x) 6= 1/m for all x 2 X .
3

At

any pure strategy Nash equilibrium f⇤
1 , . . . , f

⇤
m, the social loss SL(f⇤

1 , . . . , f
⇤
m) is equal to:

SL(f⇤
1 , . . . , f

⇤
m) = E

(x,y)⇠D
[↵(x) · [↵(x) < 1/m]] . (4)

The primary driver of Proposition 2 is that as the per-representation Bayes risk ↵(x) decreases,
the equilibrium predictions for x go from heterogeneous (different model-providers offer different

3When ↵(x) = 1/m, there turn out to be multiple pure-strategy equilibria with different social losses.
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Figure 2: Equilibrium social loss (y-axis) versus data representation quality (x-axis) given m model-providers,
for different function classes F (rows) and when representations are varied along different aspects (columns).
Top row: F = F binary

all , with closed-form formula from Proposition 2. Bottom row: linear functions, computed
via simulation (Section 4). We vary representations with respect to per-representation Bayes risk (a,d), noise
level (b,e), and dimension (c,f). The dashed line indicates the Bayes risk (omitted if it is too high to fit on the
axis). The Bayes risk is monotone, but the equilibrium social loss is non-monotone.

predictions for x) to homogenous (all model-providers offer the same prediction for x). In particular,
if ↵(x) is below 1/m, then all model-providers choose the Bayes optimal label y⇤ = argmaxy0 P[y0 |
x], so predictions are homogeneous; on the other hand, if ↵(x) is above 1/m, then at least one model-
provider will choose 1� y⇤, so predictions are heterogeneous. When predictions are heterogeneous,
each user is offered perfect predictive accuracy by some model-provider, which results in zero social
loss. On the other hand, if predictions are homogeneous and all model-providers choose the Bayes
optimal label, the social loss on x is the per-representation Bayes risk ↵(x). Putting this all together,
the equilibrium social loss takes the value in (4). We defer a proof of Proposition 2 to Appendix D.

3.2 Non-monotonicity along several axes of varying representations

Using Proposition 2, we next vary representations along several axes and compute the equilibrium
social loss, observing non-monotonicity in each case.

Setting 1: Varying the per-representation Bayes risks. Consider a population with a single value
of x with Bayes risk ↵(x) = ↵. We vary representation quality by varying ↵ from 0 to 0.5. Figure
2a depicts the result: by Proposition 2, the equilibrium social loss is zero if ↵ > 1/m and is ↵ if
↵ < 1/m, leading to non-monotonicity at ↵ = 1/m. When there are m � 3 model-providers, the
equilibrium social loss is thus non-monotonic in ↵.4 As m increases, the non-monotonicity occurs at
a higher data representation quality (a lower Bayes risk).

Setting 2: Varying the representation noise. Consider a one-dimensional population given by a
mixture of two Gaussians (one for each class), where each Gaussian has variance �2 (see Appendix C
for the details of the setup). We vary the parameter � to change the representation quality. Intuitively,
a lower value of � makes the Gaussians more well-separated, which improves representation quality
(Bayes risk). By Proposition 2, the equilibrium social loss is E [↵(x) · [↵(x) < 1/m]]. For each
value of �, we estimate the equilibrium social loss by sampling representations x from the population
and taking an average.5 Figure 2b depicts the result: the equilibrium social loss is non-monotonic in �

4For m = 2, where ↵ = 1/2 is the maximum possible per-representation Bayes risk, the equilibrium social
loss is monotone in ↵.

5Strictly speaking, we can’t directly apply Proposition 2 to this setup since X is infinite. We circumvent this
issue by applying Proposition 2 on a sample of the representations.
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(and thus the Bayes risk). Again, as the number of model-providers increases, the non-monotonicity
occurs at a higher representation quality (a lower Bayes risk).

Setting 3: Varying the representation dimension. We consider a four-dimensional population
(Xall, Y ), and let the representation X consist of the first D coordinates of Xall, for D varying from
0 to 4 (see Appendix C for full details). Intuitively, a higher dimension D makes the representations
more informative, thus improving representation quality (Bayes risk). As before, for each value of D,
we estimate the equilibrium social loss by sampling representations x from the population and taking
an average. Figure 2c depicts the result: the equilibrium social loss is once again non-monotonic in
the representation dimension D (and thus the Bayes risk).

Discussion. Settings 1-3 illustrate that equilibrium social loss can be non-monotonic in Bayes
risk when representations are improved along many different axes. The intuition is that varying
representations along these axes can increase ↵(x) for inputs x; by Proposition 2, these changes to
↵(x) can lead to non-monotonicity in the equilibrium social loss. We revisit Settings 1-3 for richer
market structures (Appendix B.1) and for linear predictors and noisy user decisions (Section 4.2).

3.3 Generalization to more than 2 classes

While our analysis has thus far focused on classification with K = 2 classes, the number of classes
K can be much larger in practice. As a motivating example, consider content recommendation
tasks where each class represents a different genre of content; since the content landscape can be
quite diverse, we would expect K to be fairly large. This motivates us to extend our theoretical
characterization in Proposition 2 to classification with K � 2 classes.

For the case of K � 2 classes, the appropriate analogue of the per-representation Bayes risk is the
per-class-per-representation Bayes risk, defined to be ↵i(x) := P(y = i | x) for each x 2 X and
i 2 {0, 1, . . . ,K � 1}. As a result, 1 � max0iK�1 ↵i(x) is the minimum error that a model-
provider can achieve on x, and OPTsingle is equal to the average value E[1 � max0iK�1 ↵i(x)]
across the population. The equilibrium social loss, however, depends on other aspects of the ↵i(x)
values.

We characterize the equilibrium social loss in terms of the per-class-per-representation Bayes risks in
the following proposition. Our characterization again focuses on pure-strategy equilibria, which are
guaranteed to exist in this setup by Proposition 1.

Proposition 3. Let X be a finite set, let K � 2, let F = Fmulti-class

all
. Suppose that user decisions are

noiseless (i.e., user decisions are given by (3)). Let c = minx2X max0iK�1 ↵i(x). Then, at any

pure strategy Nash equilibrium f⇤
1 , . . . , f

⇤
m, the social loss SL(f⇤

1 , . . . , f
⇤
m) is bounded as

E
(x,y)⇠D

"
KX

i=1

↵i(x) ·
h
↵i(x) <

c

m

i#
 SL(f⇤

1 , . . . , f
⇤
m)  E

(x,y)⇠D

"
KX

i=1

↵i(x) ·

↵i(x)  1

m

�#
.

(5)

The high-level intuition for Proposition 3 is similar to the intuition for Proposition 2, except that each
class needs to be considered separately. In particular, when class i occurs sufficiently frequently for
the representation x (i.e., when ↵i(x) is not too small), then some model-provider will label x as i;
on the other hand, if the class i occurs very infrequently for x, then no model-provider will label x as
i. We defer a proof of Proposition 3 to Appendix D.

While Proposition 3 is conceptually a generalization of Proposition 2, the details of Proposition
3 slightly differ. In particular, Proposition 3 does not completely pin down the equilibrium social
loss, and there is a factor of c slack in the constraint on each ↵i(x) in (5) between the upper
and lower bounds. Nonetheless, since the value c = minx2X max0iK�1 ↵i(x) measures the
minimum accuracy of the Bayes optimal predictor across all inputs x, we expect that “reasonable”
representations (i.e., sufficiently informative representations) would have c equal to a constant. When
c is a constant, there is at most a constant factor slack in the ↵i(x) constraints in (5) between upper
and lower bound.

For similar reasons to Proposition 2, Proposition 3 implies that the equilibrium social loss can be
non-monotonic in representation quality (i.e., Bayes risk). We defer a discussion to Appendix B.2.

7
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Figure 3: Equilibrium social loss (left) and Bayes risk (right) on a binary (top) and multi-class (bottom)
classification tasks on CIFAR-10 (Section 4.3). Representations are generated from different networks pre-
trained on ImageNet. The points show the equilibrium social loss when m model-providers compete with each
other (left) and the Bayes risk of a single model-provider in isolation (right). While Bayes risk is decreasing in
this representation ordering, the equilibrium social loss is non-decreasing in this ordering. The equilibrium social
loss is thus non-monotonic in representation quality as measured by Bayes risk. Error bars are 1 standard error.

4 Empirical Analysis of Non-monotonicity for Linear Predictors

We next turn to linear predictors and demonstrate empirically that the social welfare can be non-
monotonic in data representation quality in this setup as well. We take X = RD and we let the
model parameters be �. For binary classification, we let Fbinary

linear be the family of linear predictors
fw,b = sigmoid(hw, xi+ b) where w 2 RD, b 2 R, and � = [w, b]. Similarly, for classification with
more than 2 classes, we let Fmulti-class

linear be the family of linear predictors fW,b = softmax(Wx+ b)
where w 2 R|Y |⇥D, b 2 R|Y |, and � = [W, b]. Since this setting no longer admits closed-form
formulae, we numerically estimate the equilibria using a variant of best-response dynamics, where
model-providers repeatedly best-respond to the other predictors.

We first show on low-dimensional synthetic data on a binary classification task that the insights from
Section 3.2 generalize to linear predictors (Figures 2d-2f). We then turn to natural data, considering
binary and 10-class image classification tasks for CIFAR-10 and using pretrained networks—AlexNet,
VGG16, and various ResNets—to generate high-dimensional representations (ranging from 512 to
4096). We again find that the equilibrium social loss can be non-monotonic in Bayes risk (Figure 3).

4.1 Best-response dynamics implementation

To enable efficient computation, we assume the distribution D corresponds to a finite dataset with
N data points. We calculate equilibria using an approximation of best-response dynamics. Model-
providers (players) iteratively (and approximately) best-respond to the other players’ actions. We
implement the approximate best-response as running several steps of gradient descent.

In more detail, for each j 2 [m], we initialize the model parameters � as mean zero Gaussians with
standard deviation �. Our algorithm then proceeds in stages. At a given stage, we iterate through
the model-providers in the order 1, . . . ,m. When j is chosen, first we decide whether to reinitialize:
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if the risk E(x,y)⇠D[`(f�(x), y)] exceeds a threshold ⇢, we re-initialize wj and bj (sampling from
mean zero Gaussians as before); otherwise, we do not reinitialize. Then we run gradient descent
on u(·; f�j) (computing the gradient on the full dataset of N points) with learning rate ⌘ for I
iterations, updating the parameters �. We run this gradient descent step up to 2 more times if the risk
E(x,y)⇠D[`(f�(x), y)] exceeds a threshold ⇢0. At the end of a stage, the stopping condition is that for
every j 2 [m], model-provider j’s utility u(fj , f�j) has changed by at most ✏ relative to the previous
stage. If the stopping condition is not met, we proceed to the next stage.6

4.2 Simulations on synthetic data

We first revisit Settings 1-3 from Section 3.2, considering the same axes of varying representations and
distributions over (x, y). In contrast to Section 3.2, we restrict the model family to linear predictors
Fbinary

linear instead of allowing all predictors Fbinary
all . We also set the noise parameter c in user decisions

(1) to 0.3. Our goal is to examine if the findings from Section 3 generalize to this new setting.

We compute the equilibria for each of the following (continuous) distributions as follows. First, we
let D be the empirical distribution over N = 10, 000 samples from the continuous distribution. Then
we run the best-response dynamics described in Section 4.1 with ⇢ = ⇢0 = 1, I = 5000, ⌘ = 0.1,
✏ = 0.001, and � = 1.0. We then compute the equilibrium social loss according to (2). We also
compute the Bayes optimal predictor with gradient descent. See Appendix C for full details.

Our results, described below, are depicted in Figures 2d-2f (row 2). We compare these results with
Figures 2a-2c (row 1), which shows the analogous results for Fbinary

all from Section 3.2.

Setting 1: Varying the per-representation Bayes risks. Consider the same single x setup as in
Setting 1 in Section 3.2. The only parameter of the predictor is the bias b 2 R (i.e., we treat x as
zero-dimensional). Figure 2d shows that the equilibrium social loss is non-monotonic in ↵, which
mirrors the non-monotonicity in Figure 2a.

Setting 2: Varying the representation noise. Consider the same one-dimensional mixture-of-
Gaussians distribution as in Setting 2 in Section 3.2. (The weight w is one-dimensional.) We again
vary the noise � to change the representation quality. Figure 2e shows that the equilibrium social loss
is non-monotonic in the noise �, which again mirrors the non-monotonicity in Figure 2b.

Setting 3: Varying the representation dimension. Consider the same four-dimensional population
as in Setting 3 in Section 3.2. We vary the representation dimension D from 0 to 4 to change the
representation quality. Figure 2f shows that the equilibrium social loss is non-monotonic in the
dimension D, which once again mirrors the non-monotonicity in Figure 2c.

Discussion. In summary, in Figure 2, rows 1 and 2 exhibit similar non-monotonicities. This illustrates
that the insights from Section 3.1 translate to linear predictors and noisy user decisions.

4.3 Simulations on CIFAR-10 for binary classification

We next turn to experiments with natural data. While we have directly varied the informativeness
of data representations thus far, representations in practice are frequently generated by pretrained
models. The choice of the pretrained model implicitly influences representation quality, as measured
by Bayes risk on the downstream task. In this section, we consider how the equilibrium social loss
changes with representations generated from pretrained models of varying quality. We restrict the
model family to linear predictors Fbinary

linear and set the noise parameter c in user decisions (1) to 0.1.

We consider a binary image classification task on CIFAR-10 [Krizhevsky, 2009] with 50,000 images.
Class 0 is defined to be {airplane, bird, automobile, ship, horse, truck} and the class 1 is defined to
be {cat, deer, dog, frog}. We treat the set of 50,000 images and labels as the population of users,
meaning that it is both the training set and the validation set.7 Representations are generated from five
models—AlexNet [Krizhevsky et al., 2012], VGG16 [Simonyan and Zisserman, 2015], ResNet18,
ResNet34, and ResNet50 [He et al., 2016]—pretrained on ImageNet [Deng et al., 2009]. The

6The code can be found at https://github.com/mjagadeesan/competition-nonmonotonicity.
7We make this choice to be consistent with the rest of the paper, where we focus on population-level behavior

and thus do not consider generalization error.
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representation dimension is 4096 for AlexNet and VGG16, 512 for ResNet18 and ResNet34, and
2048 for ResNet50.

We compute the equilibria as follows. First, let D be the distribution described above with N =
50, 000 data points. Then we run the best-response dynamics described in Section 4.1 for m 2
{3, 4, 5, 6, 8} model-providers with ⇢ = ⇢0 = 0.3, I = 2000, ✏ = 0.001, � = 0.5, and a learning rate
schedule that starts at ⌘ = 1.0. We then compute the equilibrium social loss according to (2). We
also compute the Bayes risk using gradient descent. For experimental details, see Appendix C.

Figures 3a-3b show that the equilibrium social loss can be non-monotone in the Bayes risk. For
example, for m = 3, VGG16 outperforms AlexNet, even though the Bayes risk of VGG16 is much
higher than the Bayes risk of AlexNet. Interestingly, the location of the non-monotonicity differs
across different values of m. For example, for m = 5 and m = 8, AlexNet outperforms ResNet50
despite having a higher Bayes risk, but ResNet50 outperforms AlexNet for m = 3 and m = 4.

4.4 Simulations on CIFAR-10 for 10-class classification

While our empirical analysis has thus far focused on binary classification, we now turn to classification
with more than 2 classes. In particular, we consider a ten class CIFAR-10 [Krizhevsky, 2009] task
with 50,000 images. The labels are specified by the CIFAR-10 classes in the original dataset. We treat
the set of 50,000 images and labels as the population of users, meaning that it is both the training set
and the validation set. Representations are generated from the same five models as in Section 4.3. We
restrict to linear predictors Fmulti-class

linear and again set the noise parameter c in user decisions (1) to 0.1.

We compute the equilibria. We again let D be the distribution described above with N = 50, 000
data points. Then, we run the best-response dynamics described in Section 4.1 for m 2 {3, 4, 5, 6, 8},
and we compute the equilibria with the same hyperparameter settings as in Section 4.3 (except that
⇢ = 0.7 and ⇢0 = 1). We then compute the equilibrium social loss according to (2). We also compute
the Bayes risk using gradient descent. For full experimental details, see Appendix C.

Figures 3c-3d show that the equilibrium social loss can be non-monotone in the Bayes risk. For
example, across all five values of m, ResNet18 outperforms VGG16, even though the Bayes risk
of ResNet is substantially higher than the Bayes risk of VGG16. Furthermore, for m = 3, VGG16
outperforms AlexNet despite having a larger Bayes risk. Interestingly, the shape of the equilibrium
social loss curve for each value of m (Figure 3c) appears qualitatively different than the analogous
equilibrium social loss curve for binary classification (Figure 3a).

5 Discussion

We showed that the monotonicity of scaling trends can be violated under competition. We demon-
strated that when multiple model-providers compete for users, improving data representation quality
(as measured by Bayes risk) can increase overall loss at equilibrium. We exhibited non-monotonicity
of the equilibrium social loss in Bayes risk when representations are varied along several axes (per-
representation Bayes risk, noise, dimension, and pre-trained model which generates representations).

An interesting direction for future work is to further characterize the regimes when the equilibrium
social loss is monotonic versus non-monotonic in data representation quality as measured by Bayes
risk. For example, it would be interesting to generalize our theoretical results from Section 3 to
general function classes and market reputations as well as to generalize our empirical findings from
Section 4 to other axes of varying data representations and to non-linear functions. Finally, while we
focused on classification, an interesting direction would be to generalize our findings to regression
tasks with continuous outputs or to generative AI tasks with text-based or image-based outputs.

More broadly, the non-monotonicity of equilibrium social welfare in scale under competition estab-
lishes a disconnect between scaling trends in the single model-provider setting and in the competitive
setting. In particular, typical scaling trends (e.g. [Kaplan et al., 2020, Sharma and Kaplan, 2020, Bahri
et al., 2021, Hoffmann et al., 2022, Hernandez et al., 2021]) may not translate to competitive settings
such as digital marketplaces. Thus, understanding the downstream impact of scale on user welfare in
digital marketplaces will likely require understanding how scaling trends behave under competition.
We hope that our work serves as a starting point for analyzing and eventually characterizing the
scaling trends of learning systems in competitive settings.
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