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Abstract

Well-designed prompts can guide text-to-image models to generate amazing images.
However, the performant prompts are often model-specific and misaligned with user
input. Instead of laborious human engineering, we propose prompt adaptation, a
general framework that automatically adapts original user input to model-preferred
prompts. Specifically, we first perform supervised fine-tuning with a pretrained
language model on a small collection of manually engineered prompts. Then we
use reinforcement learning to explore better prompts. We define a reward function
that encourages the policy to generate more aesthetically pleasing images while
preserving the original user intentions. Experimental results on Stable Diffusion
show that our method outperforms manual prompt engineering in terms of both
automatic metrics and human preference ratings. Moreover, reinforcement learning
further boosts performance, especially on out-of-domain prompts. The pretrained
checkpoints are available at https://aka.ms/promptist. The demo can be
found at https://aka.ms/promptist-demo.

1 Introduction

Generative foundation models can be prompted to follow user instructions, including language
models [Brown et al., 2020, Chowdhery et al., 2022, Smith et al., 2022], and text-to-image mod-
els [Ramesh et al., 2021a, 2022, Saharia et al., 2022, Rombach et al., 2022]. It has been recognized
that prompt design plays an essential role in the generation quality. We need to adjust the prompt
to make the model better understand our intentions and produce higher-quality results [Reynolds
and McDonell, 2021, Zhou et al., 2022b]. The problem is severe in text-to-image models because
the capacity of their text encoders, such as CLIP text encoder [Radford et al., 2021] in Stable Diffu-
sion [Rombach et al., 2022], is relatively small. Empirical observations also confirm that common
user input is often insufficient to produce aesthetically pleasing images with current models.

Prior efforts implement manual prompt engineering towards specific text-to-image models [Liu and
Chilton, 2021, Oppenlaender, 2022, Parsons, 2022], typically adding some modifiers to the original
input. However, it is laborious and sometimes infeasible to conduct manual prompt engineering.
Besides, the manually engineered prompts often cannot be transferred between various model versions.
Therefore, it is necessary to find a systematic way to automatically align user intentions and various
model-preferred prompts.

In this work, we propose a prompt adaptation framework for automatic prompt engineering via
reinforcement learning. Specifically, we first perform supervised fine-tuning with a pretrained
language model (e.g., GPT) on a small collection of manually engineered prompts. The finetuned
model is used to initialize the prompt policy network for reinforcement learning. Next, the model
is trained by exploring optimized prompts of user inputs, where diverse beam search [Vijayakumar
et al., 2016] is used to ensure generation quality and diversity. The training objective is to maximize
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Figure 1: Overview of PROMPTIST training: (1) supervised fine-tuning (SFT) on manually engineered
prompts; (2) reinforcement learning (RL) to increase the rewards of generated images after prompt
optimization.

the reward, which is defined as a combination of relevance scores and aesthetic scores of generated
images. The relevance score reflects how much the original user intentions are retained after prompt
adaptation. The aesthetic score indicates what degree the generated images are aesthetically pleasing.

We conduct experiments with the publicly available Stable Diffusion models [Rombach et al., 2022].
We evaluate our method using both the automatic reward metric and human preference ratings.
Experimental results show that the optimized prompts outperform human-engineered ones and the
original inputs. Human preference ratings also show consistent improvements across in-domain
and out-of-domain prompts. Moreover, we find that reinforcement learning is more favorable than
supervised fine-tuning, especially on out-of-domain user inputs. Overall, we show that language
models can serve as a prompt interface that optimizes user input into model-preferred prompts.

Our contributions are as follows:

• We propose a general prompt optimization framework that adapts user input to model-
preferred prompts.

• We collect user queries and conduct extensive experiments on text-to-image generation.

• Experimental results show that our method outperforms manual prompt engineering in terms
of both automatic metrics and human preference ratings.

2 Methods

The goal of our prompt adaptation framework is to automatically perform prompt engineering. Given
user input of the text-to-image generator, our model learns to generate model-preferred prompts
that obtain better output images while preserving their original intentions. Figure 1 presents the
overview of our method. The prompt optimization model is named PROMPTIST, which is built
upon a pretrained language model, such as GPT [Brown et al., 2020]. We first collect a set of
human-engineered examples and use them to conduct supervised fine-tuning (Section 2.1). Next,
we perform reinforcement learning (Section 2.3) to maximize the target reward (Section 2.2), which
improves both relevance and quality of generated images.
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2.1 Supervised fine-tuning

Initialized with a pretrained generative language model, the policy model is first finetuned on a set of
prompt pairs before reinforcement learning. A parallel prompt corpus D = {(x,y)} contains prompt
pairs of original user inputs x and manually engineered examples y. The training objective is to
maximize the log-likelihood with teacher forcing:

LSFT = −E(x,y)∼D log p(y|x) (1)

where the finetuned weights are used to initialize the policy network in reinforcement learning.

Collect human demonstrations We collect human-engineered prompts from Lexica2. Most
prompts are composed of two parts, i.e., main content that describes the user’s intention, and some
modifiers that customize the art style, such as artist names, and popular elements. We use the crawled
human-engineered prompts as targets. In order to obtain parallel data, we use three methods to
construct their source inputs. First, we extract the main contents by trimming the modifiers and regard
them as original user inputs. Second, we randomly remove or shuffle some modifiers and use the
remaining texts as source inputs. Third, we use the OpenAI API text-davinci-002 to rephrase the
main contents and the human-engineered prompts, respectively. We find that the template “[Input]
Rephrase:” works well in practice and translates input to a more user-friendly version. As shown
in Table 1, given a target prompt “dieselpunk blue wolf with fuzzy tail, concept art,
dramatic, fantasy, pixiv”, there are four source prompts collected.

Table 1: An example of a human-engineered prompt and four types of our constructed source prompts.

Human-engineered target prompt dieselpunk blue wolf with fuzzy tail, concept art, dramatic,
fantasy, pixiv

Main content dieselpunk blue wolf with fuzzy tail

Main content with random modifiers dieselpunk blue wolf with fuzzy tail, dramatic

Rephrasing of main content A blue wolf with a fuzzy tail that looks like it belongs in a
dieselpunk setting.

Rephrasing of target prompt This is a dieselpunk-style blue wolf with a fuzzy tail. It looks
like it could be from a fantasy or dramatic piece of artwork.

2.2 Reward definition

We measure the quality of optimized prompts from two aspects, namely relevance and aesthetics.
The goal motivates us to define the reward function R(·) from the above two perspectives.

First, we measure whether the generated images are relevant to the original input prompt after prompt
adaptation. To be specific, we first sample images by the text-to-image model conditioned on the
optimized prompt, respectively. Then, we compute CLIP [Radford et al., 2021] similarity scores
to measure how relevant the generated images and the original input prompts are. The resulting
relevance score is defined as:

frel(x,y) = Eiy∼G(y)[frel(x, iy)] (2)

frel(x, iy) =min(20 ∗ gCLIP(x, iy)− 5.6, 0) (3)

where iy ∼ G(y) means sampling images iy from the text-to-image model G with y as input prompt,
and gCLIP(·, ·) stands for the CLIP similarity function. Notice that we always compute the similarity
between the generated images and the original input prompt, which ensures the relevance score
reflects the user preferences. We determine the specific form of the relevance score according to the
approximate range of the clip score. Experiments show that this form works well in reinforcement
learning. If the relevance score is relatively reasonable (larger than 0.28), we encourage the model to
generate more aesthetically pleasing images.

Second, we employ the aesthetic predictor3 to quantify aesthetic preferences. The predictor builds a
linear estimator on top of a frozen CLIP model, which is trained by human ratings in the Aesthetic

2https://lexica.art
3https://github.com/christophschuhmann/improved-aesthetic-predictor
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Visual Analysis [Murray et al., 2012] dataset. The aesthetic score is defined as:

faes(x,y) = Eix∼G(x),iy∼G(y)[gaes(iy)−gaes(ix)] (4)

where gaes(·) denotes the aesthetic predictor, and iy, ix are the images generated by the prompts y
and x, respectively. Notice that both gCLIP(·) and gaes(·) require the CLIP model, so we can share the
CLIP forward pass during reward computation.

Finally, we define the overall reward by combining the above scores with an additional KL penalty,
which is between the policy model πθ and the supervised finetuned model πSFT with coefficient η:

R(x,y) = faes(x,y) + frel(x,y)

− η log
πθ(y|x)
πSFT(y|x)

(5)

The KL term is added to mitigate the overoptimization issue [Ouyang et al., 2022].

2.3 Reinforcement learning

Starting from the supervised fine-tuning, we further finetune our model with reinforcement learning.
We employ proximal policy optimization (PPO) [Schulman et al., 2017], which is empirically data-
efficient and of reliable performance. As a text generation problem, prompt optimization can be
viewed as a Markov decision process (MDP) ⟨S,A, r, fst, γ⟩ with a finite state space S , action space
A, reward function r, state-transition probability function fst, and a discount term γ. In an episode
of prompt adaptation, the initial state x ∈ S is the input prompt with n tokens x = (x1, . . . , xn)
where each token x is from a finite vocabulary V . At t-th time step, the agent selects an action
yt ∈ V according to the current policy model yt ∼ π(y|x,y<t). With a deterministic state transition,
the next state is (x,y<t+1) = (x1, . . . , xn, y1, . . . , yt). The episode ends when the agent selects
an end-of-sentence action. The goal of the agent is to maximize the accumulated expected reward
Ex,y

∑
t γ

tr(x,y<t) = Ex,yR(x,y).

Let πθ denote the policy model to be trained, we maximize the accumulated expected reward over a
training set D′ = {x}:

J = Ex∼D′,y∼πθ
[R(x,y)] (6)

We implement both the policy model πθ and the value function model as generative language models,
with the language modeling head and the regression head, respectively. The parameters of the two
models are initialized from the supervised finetuned policy model πSFT and are optimized during
reinforcement learning. The supervised finetuned model πSFT and the score function model are frozen
during training. Besides, we employ the clipped probability ratios [Schulman et al., 2017] to avoid
large policy updates.

3 Experiments

We conduct experiments on public text-to-image model Stable Diffusion v1.44 and v1.55 . We use
the DPM solver [Lu et al., 2022] to accelerate image sampling and set the denoising steps to 20.

3.1 Data collection

For supervised fine-tuning, we collect 90k target prompts from Lexica website and construct four
types of source prompts as described in Section 2.1, obtaining 360k paired data in total. At the
reinforcement learning stage, we only require source prompts and the policy can explore better
rephrasings itself. We use three types of data: (1) in-domain prompts from DiffusionDB [Wang et al.,
2022], which is a gallery of prompts specified by real users. We use the user input (main content) for
exploration and the manually engineered prompt (with modifiers) for comparison, (2) out-of-domain
image captions from COCO dataset [Chen et al., 2015], (3) image labels from ImageNet-21k [Deng
et al., 2009], the sizes of which are 600k, 600k and 40k respectively. We empirically observe that

4https://huggingface.co/CompVis/stable-diffusion-v1-4
5https://huggingface.co/runwayml/stable-diffusion-v1-5
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Figure 2: Reward comparison of optimized prompts with other baselines on in-domain and out-of-
domain data. For in-domain Lexica prompts, we evaluate on four augmentations: main content (MC),
main content with random modifiers (MCM), rephrasing of main content (RMC) and rephrasing of
target prompt (RTP). Results indicate that the text-to-image model benefits a lot from our method.

Table 2: Absolute reward improvements of supervised fine-tuning and reinforcement learning. It is
observed that RL generally outperforms the SFT-only model.

In-Domain (Lexica) In-Domain Out-of-Domain
MC MCM RMC RTP (DiffusionDB) (COCO)

SFT 0.36 0.16 0.44 0.11 0.29 0.28
RL 0.47 0.17 0.63 0.25 0.36 0.48
Gain +31%+31%+31% +6%+6%+6% +43%+43%+43% +127%+127%+127% +24%+24%+24% +71%+71%+71%

human-engineered prompts from Lexica perform better than those from DiffusionDB so we use the
former in supervised fine-tuning. To improve the data diversity, we add image caption data and image
label data in reinforcement learning. To avoid model bias in certain data formats, we randomize the
capitalization of the first letter of each prompt and randomly add periods at the end of it.

3.2 Settings

For the policy model, we use GPT-2 [Radford et al., 2019] with 117M parameters, which is a
multi-layer Transformer [Vaswani et al., 2017] decoder pretrained with causal language modeling.

Supervised fine-tuning We finetune GPT-2 to predict the target prompt conditioned on the source
prompt with teacher forcing. The input format is [Source] Rephrase:[Target]. We use a batch
size of 256, a learning rate of 5e-5, and a max length of 512. We finetune the model for 15k steps
and choose a slightly underfitting checkpoint according to the validation loss which aims to avoid
overfitting and provide a proper exploration space for the policy.

Reinforcement learning We train the policy with Proximal Policy Optimization [Schulman et al.,
2017, PPO]. The value and policy network are initialized from the supervised finetuned model.
The parameters of the value function are separated from the policy to avoid excessive competition
between two objectives. To guarantee the quality and diversity of exploration, we adopt diverse
beam search [Vijayakumar et al., 2016] with a beam size of 8 and a diversity penalty of 1.0. We find
that having too long rephrasings occasionally produces aesthetically pleasing but misleading results,
especially for short user input like image labels. In order to prevent the model from only exploring
long completions, the maximum generation length at each step is set to a random value from 15 to 75
so that the policy can learn to adjust the generation length for each prompt. We randomly choose
one of the returned completions after diverse beam search to update the policy. We generate three
images per prompt and compute the average reward to reduce variance. We train the policy for 12k
episodes, four PPO epochs per batch with one minibatch each, with a batch size of 256 and a constant
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learning rate of 5e-5. The value loss coefficient and the KL reward coefficient are kept at 2.3 and 0.2
respectively. We do not cherry-pick checkpoints and directly use the final checkpoint for evaluation.
Please refer to the Appendix A for more training details and Appendix B for computational resources.

Evaluation In order to evaluate how text-to-image models benefit from the prompt adaptation,
we compare the reward value computed by two automatic predictors (Section 2.2). Moreover, we
use human preference ratings to demonstrate real user feedback. We adopt beam search with a
beam size of 8 and a length penalty of 1.0. We evaluate our method on held-out data from training
distribution, including in-domain data from Lexica with four augmentations, in-domain data from
DiffusionDB, and out-of-domain COCO data. Each category contains 256 prompts. In-domain data
has corresponding manually engineered prompts for comparison, and the out-of-domain data is used
to verify whether our method can generalize to new domains. Except for the user input and manually
engineered baseline, we also consider the supervised finetuned model as a baseline that can reflect
the importance of reinforcement learning.

3.3 Results

Optimized prompts obtain higher reward improvements than manual engineering. We evaluate
optimized prompts on held-out data by generating three images for each prompt and computing
the average reward value. Figure 2 shows that the reward value can be improved regardless of the
engineering method, which suggests the misalignment problem between user-friendly prompts and
model-preferred prompts is serious. Compared with the strong baseline of manually engineered
prompts, optimized prompts can still achieve considerable reward improvements. Furthermore,
optimized prompts perform even better on rephrased versions (i.e., RMC, and RTP), and out-of-
domain data. These prompts are more user-friendly but cause more significant reward drops on
generation results, especially on the rephrasing of the main content. Benefiting from automatic
prompt engineering, optimized prompts can align well between two different domains from users and
text-to-image models respectively.

We also present the evaluation results of the aesthetic score and relevance score respectively in
Table 4. We empirically found that the generated images are relevant enough to the input prompt if
the relevance score (CLIP score) is around 0.26. As mentioned at Section 2.2, we design the reward
function which encourages the model to generate more aesthetically pleasing images if the relevance
score is good enough. On the DiffusionDB dataset, our RL method improves the SFT baseline
in terms of relevance score from 0.25 to 0.26, and the human-engineered baseline also obtains a
relevance score of 0.26. Moreover, the aesthetic score of our model is improved significantly over
both the human-engineered prompts and the supervised fine-tuned model. It demonstrates that our
method generates images with good relevance and much better aesthetic scores.

We provide some images generated by user input and its corresponding optimized prompt in Table 3.
Each group consists of three images generated by different random seeds. We observe that images
generated by user input are intuitively uninspiring while optimized prompts can not only retain the
original intentions but also induce the model to produce more remarkable results. For example,
generated images are crude when prompted with “A rabbit is wearing a space suit”. After prompt
optimization, generated images become more bright and more expressive.

Reinforcement learning can further boost the reward value. Reinforcement learning in our
method is supposed to perform better on out-of-domain data through explorations. To quantify its
effect, we compute the ratio of reward improvements after fine-tuning and reinforcement learning.
As shown in Table 2, reinforcement learning brings 31%, 24%, and 71% average improvements
on in-domain main content from Lexica, DiffusionDB, and out-of-domain COCO data. In-domain
prompts are very similar to the data we used in supervised fine-tuning, so reward improvements
are relatively saturated in the first stage and improvements of reinforcement learning on them are
correspondingly smaller. Oppositely, out-of-domain data such as COCO captions are more similar to
user input and unseen during the first stage. The policy must learn to adapt better to new domains
through exploration, so their improvements on these prompts are more prominent. Surprisingly,
although in-domain Lexica prompts and their augmentations are not used, reinforcement learning
still exhibits better generalization capability on them. The boost is remarkable on those prompts that
fine-tuning cannot optimize well (43% on rephrasings of main content and 127% on rephrasings of
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Table 3: Images generated by user input and optimized prompts using Stable Diffusion v1.4. Each
group contains three images generated with three different random seeds. We observe that optimized
prompts can generate more aesthetically pleasing images than original user input.

User Input Optimized Prompt

A rabbit is wearing a space suit A rabbit is wearing a space suit, digital Art, Greg
rutkowski, Trending cinematographic artstation

Several railroad tracks with one train passing
by

several railroad tracks with one train passing by,
hyperdetailed, artstation, cgsociety, 8 k

The roof is wet from the rain
the roof is wet from the rain, intricate, elegant,
highly detailed, digital painting, artstation, con-
cept art, smooth, sharp focus, illustration,

Cats dancing in a space club
Cats dancing in a space club, digital painting,
artstation, concept art, soft light, hdri, smooth,
sharp focus, illustration, fantasy,

target prompt). These results suggest that given appropriate human queries, reinforcement learning
can optimize them to adapt to different domains and boost reward improvements.

To further demonstrate the effectiveness of our framework, we also present the results of our model
on Stable Diffusion v1.5 in Appendix C, comparisons with the heuristic baseline in Appendix D and
the results on different categories and lengths of prompts in Appendix E.

3.4 Human evaluation

The reward function of our model is defined by two automatic metrics, aesthetic score and relevance
score predicted by neural networks, which may have some discrepancies from real human feedback.
Therefore, we additionally evaluate whether optimized prompts actually make humans more satisfied.
We generate two images for each user input and the optimized prompt. Afterward, three held-out
annotators are asked to rank the two groups of images in preference order and we compute the
average preference distribution. Results are shown in Table 5. We observe that annotators generally
prefer images generated by optimized prompts over their original input. Compared with manually
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Table 4: Evaluation of the aesthetic score and relevance score on DiffusionDB.

Aesthetic Relevance
User Input 5.47 0.28

Human Engineered Prompt 5.87 0.260.260.26
Supervised Fine-tuning 6.15 0.25
PROMPTIST(Ours) 6.266.266.26 0.260.260.26

Table 5: Human evaluation results. The different colors represent how many images generated by
corresponding prompts are considered more aesthetically pleasing. The orange block means that both
prompts produce equally pleasing images.
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engineered prompts, optimized prompts yield less gain over user input. It suggests that the aesthetic
score can measure the quality of generated images to some extent, it would be better if direct human
feedback is included in the reward function.

3.5 Ablation of source prompt augmentation

As described in Section 2.1, we crawl human-engineered prompts as target prompts and use the
main content without any modifiers as source prompts. To enable the supervised fine-tuned model
to generalize better on unseen domains, we propose different augmentation methods that improve
the diversity of source prompts. We compare the fine-tuning performance with and without the
augmentation strategy and results are shown in Figure 3. We observe that fine-tuning with source
prompt augmentation brings consistent improvements on both in-domain held-out data and out-of-
domain data. From the results on MCM, adding some random modifiers to the user input slightly
obtains reward improvement but it is not as distinct as the improvement brought by fine-tuning,
indicating that we should customize modifiers for each individual prompt and automatic prompt
engineering is a promising way to tackle it. Compared with other data, prompts rephrased by
text-davinci-002 are more difficult to optimize at the fine-tuning stage and they benefit more
from reinforcement learning. Overall, source prompt augmentation makes the fine-tuned model
generalize better and is important in our prompt adaptation framework.

4 Related work

Prompt engineering. Manual prompt engineering is a natural way to optimize prompts. Manually
designed cloze-style prompts have been used to probe knowledge from pre-trained language mod-
els [Petroni et al., 2019, Dai et al., 2022]. In addition to knowledge probing, models are also prompted
to handle NLP tasks with manually designed prefix prompts [Brown et al., 2020, Du et al., 2021].
Recent work has explored how to write prompts to improve performance [Wei et al., 2022]. Despite
the success of manually-crafted prompts, designing prompts takes time and experience [Shin et al.,
2021] and can be sub-optimal [Jiang et al., 2020]. In particular, when using text-to-image models,
users have to carefully select and compose sentences to achieve a certain visual style [Liu and Chilton,
2021, Oppenlaender, 2022, Parsons, 2022]. Thus, various methods focus on automatically searching
prompts by mining [Jiang et al., 2020], paraphrasing [Haviv et al., 2021], and text generation [Gao
et al., 2021]. Besides, continuous prompt methods treat the prompts as additional continuous pa-
rameters of pre-trained models and directly optimize the parameters on downstream tasks [Li and
Liang, 2021, Tsimpoukelli et al., 2021, Zhou et al., 2022a]. However, continuous prompt methods
require access to manipulating the model, and the learned prompts lack interpretability. In contrast,
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Figure 3: Reward comparison of supervised fine-tuning with or without source prompt augmentation.
For in-domain Lexica prompts, we evaluate on four augmentations: main content (MC), main
content with random modifiers (MCM), rephrasing of main content (RMC) and rephrasing of target
prompt (RTP). It is observed that source prompt augmentation in supervised fine-tuning can boost
performance on both in-domain data and out-of-domain data.

our methods directly optimize prompts in text format, which can fit in black-box downstream systems
such as text-to-image models.

Learning from human feedback. Our work is related to research on learning from human feedback,
which has been widely studied in machine learning problems. Several studies propose to continually
improve dialogue systems by collecting human feedback after deployment [Hancock et al., 2019,
Shuster et al., 2020, Xu et al., 2022]. Besides, human feedback has also been also applied to human-in-
the-loop methods for entity linking [Klie et al., 2020], semantic parsing [Yao et al., 2019], etc. Recent
research on reinforcement learning from human feedback (RLHF) has shown promising results on
machine learning problems, ranging from classical RL tasks [Christiano et al., 2017, Ibarz et al., 2018]
to a wide range of natural language processing tasks, including text summarization [Stiennon et al.,
2020, Ziegler et al., 2019], dialogue [Jaques et al., 2019], and general text generation tasks [Ouyang
et al., 2022]. Differently, our goal is to automatically optimize prompts for text-to-image models.

Text-to-image models. Text-to-image synthesis models are typically trained to generate images
conditioned on text. Text-to-image synthesis has been widely studied using GANs [Reed et al.,
2016a,b, Tao et al., 2022]. More recently, text-to-image models are further improved with large-scale
auto-regressive models [Ramesh et al., 2021b, Ding et al., 2021] or diffusion-based models [Rombach
et al., 2022, Gu et al., 2022].

5 Conclusion

We propose to automatically optimize prompts for text-to-image models so that the user input
and model-preferred prompts can be well aligned. We evaluate our method with Stable Diffusion.
Experimental results show that prompt adaptation outperforms human prompt engineering and
supervised fine-tuning, in terms of automatic metrics and human evaluation. The exploration nature of
reinforcement learning enables the model to go beyond teacher forcing, which improves generalization
over out-of-domain examples. The proposed method is flexible to align human intentions and model-
favored languages. Although our experiments are conducted on text-to-image models, the framework
can be easily applied to other tasks for prompt adaptation. Rather than using automatic score functions
as rewards, we can directly use human feedback as supervision to train a reward model [Ouyang
et al., 2022]. Moreover, using a larger-size language model as the prompt interface tends to improve
the optimization quality.

6 Limitations

We crawl human-engineered prompts from the Lexica website as golden prompts to guide the
supervised fine-tuning process. The crawled prompts contain some biases. For example, we observe
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that they tend to generate more artwork instead of realistic photographs because most of them contain
one or more artist names. Besides, the proportion of prompts about portraits is relatively higher
than those about other categories. Although the reinforcement learning stage can mitigate these
issues, it would be better to balance the art styles and objects at the beginning. Moreover, we
currently only apply our framework to text-to-image models. As the proposed framework is general
to prompt-guided generation, we will apply it to other generative models like text-only models and
text-to-video models for future work.
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Appendix

A Hyperparameter settings

Table 6: Hyperparameter settings of supervised fine-tuning (SFT) and reinforcement learning (RL).

Hyperparameters SFT RL
Batch Size 256 256
Learning Rate 5e-5 5e-5
Training Steps 15000 12000
Max Length 512 512
Dropout 0.0 0.0
Optimizer Adam Adam
Adam ϵ 1e-6 1e-6
Adam β (0.9, 0.999) (0.9, 0.95)
Weight Decay 0.1 1e-6

B Computational budget

Our experiments are implemented on V100 (32GB) GPU.

Table 7: Computational budget of supervised fine-tuning (SFT) and reinforcement learning (RL).

SFT RL
The Number of GPUs 4 32
GPU Hours 3 hours 2.5 days

C Results on Stable Diffusion v1.5.

Table 8: Results on Stable Diffusion v1.5

Lexica DiffusionDB COCO
User Input -0.31 -0.32 -0.37

Human Engineered Prompt -0.05 -0.18 -
Supervised Fine-tuning -0.04 -0.16 -0.1
PROMPTIST(Ours) 0.050.050.05 0.060.060.06 0.110.110.11
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D Comparisons with heuristic baseline

Table 9: Combinations of common tags.

Tag Content
1 artstation, highly detailed, elegant
2 8 k, trending on artstation, concept art
3 digital painting, intricate, fantasy
4 illustration, smooth, octane render
5 digital art, 8k, intricate
6 highly detailed, elegant, smooth

Table 10: Comparisons with the heuristic baseline.

Data User Tag1 Tag2 Tag3 Tag4 Tag5 Tag6 Human SFT Ours

Lexica -0.32 0.07 -0.06 0.06 -0.17 -0.05 -0.28 -0.02 0.03 0.140.140.14
DiffusionDB -0.3 0 -0.07 -0.16 -0.1 -0.17 -0.31 -0.21 -0.01 0.060.060.06
COCO -0.38 -0.24 -0.29 -0.2 -0.33 -0.32 -0.41 - -0.1 0.10.10.1

To compare the performance of our proposed framework with the heuristic baseline, we select the top
15 frequent tags from human-engineered prompts and randomly combine them to create six groups
of common tags. The specific tags are presented in Table 9. We concatenate the user input with these
common tags and compute their reward. The results are in Table 10.

While using these common tags can improve the reward to some extent, we found that their perfor-
mance varies significantly across different domains. For instance, tag3 performs well on COCO and
Lexica but poorly on DiffusionDB. It suggests that relying on a handful of common hand-selected
tags may not be practical in real-world scenarios. In contrast, our proposed framework can perform
well across domains and improve a lot over the common tags.
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E Results on different categories and lengths of prompts

We aim to validate the effectiveness of our method on different categories and different lengths.
In Figure 2, we divide the prompts into several categories according to the prompt pattern, there
are MC, MCM, RMC, RTP, in-domain DiffusionDB and out-of-domain COCO. Results show that
optimized prompts are generally effective for all these categories. For semantic categories, these
prompts have no clear boundaries. Therefore, we use RoBERTa-Large Liu et al. [2019] to get the
sentence embedding of each prompt and perform K-means clustering on these prompts and divide
them into five categories. We list their proportion and their reward in Table. For length ablation,
we also classify them into five categories according to the length of input tokens. The results are in
Table 12.

We observe that the performance of different lengths and semantic categories varies slightly but
our model can improve the reward generally. When conducting reinforcement learning, we build
large-scale prompts from both in-domain data and out-of-domain data, which cover a wide range of
prompts with different lengths and semantic categories.

Table 11: Results on different semantic categories of prompts.

Cluster 1 2 3 4 5
Proportion 0.18 0.08 0.17 0.21 0.36
User Input -0.39 -0.29 -0.37 -0.34 -0.31
PROMPTIST (Ours) -0.01 0.04 0.13 0.06 0.1

Table 12: Results on different lengths of prompts.

Length 0∼10 10∼20 20∼30 30∼40 >40
Proportion 0.21 0.48 0.2 0.07 0.04
User Input -0.48 -0.33 -0.18 -0.28 -0.22
PROMPTIST (Ours) -0.02 0.11 0.08 0.05 0.06
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