
StyleDrop: Text-to-Image Generation in Any Style

Kihyuk Sohn Nataniel Ruiz Kimin Lee⇤ Daniel Castro Chin Irina Blok
Huiwen Chang† Jarred Barber Lu Jiang Glenn Entis Yuanzhen Li

Yuan Hao Irfan Essa Michael Rubinstein Dilip Krishnan
Google Research

Figure 1: Visualization of StyleDrop outputs for 18 different styles. Each model is tuned on a single style
reference image, which is shown in the white insert box of each image. The per-style text descriptor is appended
to the content text prompt: “A fluffy baby sloth with a knitted hat trying to figure out a laptop, close up”.
Generated images capture many nuances such as colors, shading, textures and 3D appearance.

Abstract
Pre-trained large text-to-image models synthesize impressive images with an appro-
priate use of text prompts. However, ambiguities inherent in natural language and
out-of-distribution effects make it hard to synthesize image styles, that leverage a
specific design pattern, texture or material. In this paper, we introduce StyleDrop, a
method that enables the synthesis of images that faithfully follow a specific style us-
ing a text-to-image model. The proposed method is extremely versatile and captures
nuances and details of a user-provided style, such as color schemes, shading, design
patterns, and local and global effects. It efficiently learns a new style by fine-tuning
very few trainable parameters (less than 1% of total model parameters) and im-
proving the quality via iterative training with either human or automated feedback.
Better yet, StyleDrop is able to deliver impressive results even when the user sup-
plies only a single image that specifies the desired style. An extensive study shows
that, for the task of style tuning text-to-image models, StyleDrop implemented on
Muse [5] convincingly outperforms other methods, including DreamBooth [34]
and textual inversion [11] on Imagen [35] or Stable Diffusion [33]. More results
are available at our project website: https://styledrop.github.io.

⇤Now at Korea Advanced Institute of Science and Technology (KAIST).
†Now at OpenAI.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://styledrop.github.io

1 Introduction
Text-to-image models trained on large image and text pairs have enabled the creation of rich and
diverse images encompassing many genres and themes [2, 5, 33, 35, 43]. The resulting creations have
become a sensation, with Midjourney [2] reportedly being the largest Discord server in the world [1].
The styles of famous artists, such as Vincent Van Gogh, might be captured due to the presence of their
work in the training data. Moreover, popular styles such as “anime” or “steampunk”, when added to
the input text prompt, may translate to specific visual outputs based on the training data. While many
efforts have been put into “prompt engineering", a wide range of styles are simply hard to describe in
text form, due to the nuances of color schemes, illumination and other characteristics. As an example,
Van Gogh has paintings in different styles (e.g., Fig. 1, top row, rightmost three columns). Thus, a
text prompt that simply says “Van Gogh” may either result in one specific style (selected at random),
or in an unpredictable mix of several styles. Neither of these is a desirable outcome.

In this paper, we introduce StyleDrop3 which allows significantly higher level of stylized text-to-image
synthesis, using as few as one image as an example of a given style. Our experiments (Fig. 1) show
that StyleDrop achieves unprecedented accuracy and fidelity in stylized image synthesis. StyleDrop
is built on a few crucial components: (1) a transformer-based text-to-image generation model [5];
(2) adapter tuning [15]; and (3) iterative training with feedback. For the first component, we find
that Muse [5], a transformer modeling a discrete visual token sequence, shows an advantage over
diffusion models such as Imagen [35] and Stable Diffusion [33] for learning fine-grained styles
from single images. For the second component, we employ adapter tuning [15] to style-tune a large
text-to-image transformer efficiently. Specifically, we construct a text input of a style reference image
by composing content and style text descriptors to promote content-style disentanglement, which is
crucial for compositional image synthesis [37, 32, 41]. Finally, for the third component, we propose
an iterative training framework, which trains a new adapter on images sampled from a previously
trained adapter. We find that, when trained on a small set of high-quality synthesized images, iterative
training effectively alleviates overfitting, a prevalent issue for fine-tuning a text-to-image model on a
very few (e.g., one) images. We study high-quality sample selection methods using CLIP score (e.g.,
image-text alignment) and human feedback in Sec. 4.4.3, verifying the complementary benefit.

In addition to handling various styles, we extend our approach to customize not only style but also
content (e.g., the identifying/distinctive features of a given object or subject), leveraging DreamBooth
[34]. We propose a novel approach that samples an image of my content in my style from two adapters
trained for content and style independently. This compositional approach voids the need to jointly
optimize on both content and style images [20, 13] and is therefore very flexible. We show in Fig. 5
that this approach produces compelling results that combines personalized generation respecting both
object identity and object style.

We test StyleDrop on Muse on a diverse set of style reference images, as shown in Fig. 1. We compare
with other recent methods including DreamBooth [34] and Textual Inversion [11], using Imagen [35]
and Stable Diffusion [33] as pre-trained text-to-image backbones. An extensive evaluation based on
prompt and style fidelity metrics using CLIP [29] and a user study shows the superiority of StyleDrop
to other methods. Please visit our website and Appendix for more results.

2 Related Work
Personalized Text-to-Image Synthesis has been studied to edit images of personal assets by lever-
aging the power of pre-trained text-to-image models. Textual inversion [11] and Hard prompt made
easy (PEZ) [39] find text representations (e.g., embedding, token) corresponding to a set of images of
an object without changing parameters of the text-to-image model.

DreamBooth [34] fine-tunes an entire text-to-image model on a few images describing the subject
of interest. As such, it is more expressive and captures the subject with greater details. Parameter-
efficient fine-tuning (PEFT) methods, such as LoRA [16] or adapter tuning [15], are adopted to
improve its efficiency [3, 27]. Custom diffusion [20] and SVDiff [13] have extended DreamBooth to
synthesize multiple subjects simultaneously. Inversion-based Style Transfer [44] presents a one-shot
style tuning of text-to-image diffusion models. Unlike these methods built on text-to-image diffusion

3“StyleDrop” is inspired by eyedropper (a.k.a color picker), which allows users to quickly pick colors from
various sources. Likewise, StyleDrop lets users quickly and painlessly ‘pick’ styles from a single (or very few)
reference image(s), building a text-to-image model for generating images in that style.

2

https://style-drop.github.io/
https://eyedropper.org/

models, we build StyleDrop on Muse [5], a generative vision transformer. [11, 39, 20] have shown
learning styles with text-to-image diffusion models, but from a handful or a dozen of style reference
images, and are limited to painting styles. We demonstrate on a wide variety of visual styles, including
3d rendering, design illustration, and sculpture, using a single style reference image.

Neural Style Transfer (NST). A large body of work [12, 18, 24, 7] has investigated style transfer
using deep networks by solving a composite objective of style and content consistency [12]. Recently,
[17] has shown that quantizing the latent space leads to improved visual and style fidelity of NST
compared to continuous latent spaces. MaskSketch [4] converts sketch images into natural images via
structure-guided parallel decoding of a masked image generation model. While both output stylized
images, StyleDrop is different from NST in many ways; ours is based on text-to-image models to
generate content, whereas NST uses an image to guide content (e.g., spatial structure) for synthesis;
we use adapters to capture fine-grained visual style properties; we incorporate feedback signals to
refine the style from a single input image.

Parameter Efficient Fine Tuning (PEFT) is a new paradigm for fine-tuning of deep learning models
by only tuning a much smaller number of parameters, instead of the entire model. These parameters
are either subsets of the original trained model, or small number of parameters that are added for the
fine-tuning stage. PEFT has been introduced in the context of large language models [15, 23, 16],
and then applied to text-to-image diffusion models [35, 33] with LoRA [3] or adapter tuning [27].
Fine-tuning of autoregressive (AR) [10, 43, 21] and non-autoregressive (NAR) [6, 5, 38] generative
vision transformers has been studied recently [36], but without the text modality.

3 StyleDrop: Style Tuning for Text-to-Image Synthesis
StyleDrop is built on Muse [5], reviewed in Sec. 3.1. There are two key parts. The parameter-efficient
fine-tuning of a generative vision transformer (Sec. 3.2) and an iterative training with feedback
(Sec. 3.3). Finally, we discuss how to synthesize images from two fine-tuned models in Sec. 3.4.

3.1 Preliminary: Muse [5], a masked Transformer for Text-to-Image Synthesis
Muse [5] is a state-of-the-art text-to-image synthesis model based on the masked generative image
transformer, or MaskGIT [6]. It contains two synthesis modules for base image generation (256⇥ 256)
and super-resolution (512⇥ 512 or 1024⇥ 1024). Each module is composed of a text encoder T,
a transformer G, a sampler S, an image encoder E, and decoder D. T maps a text prompt t2 T
to a continuous embedding space E . G processes a text embedding e2 E to generate logits l2L
for the visual token sequence. S draws a sequence of visual tokens v 2V from logits via iterative
decoding [6, 5], which runs a few steps of transformer inference conditioned on the text embeddings
e and visual tokens decoded from previous steps. Finally, D maps the sequence of discrete tokens to
pixel space I.4 To summarize, given a text prompt t, an image I is synthesized as follows:

I = D
�
S (G, T(t))

�
, lk = G (vk, T(t)) + �

�
G (vk, T(t))� G (vk, T(n))

�
, (1)

where n2 T is a negative prompt, � is a guidance scale, k is the synthesis step, and lk’s are logits,
from which the next set of visual tokens vk+1’s are sampled. We refer to [6, 5] for details on the
iterative decoding process. The T5-XXL [30] encoder for T and VQGAN [10, 42] for E and D are
used. G is trained on a large (image, text) pairs D using masked visual token modeling loss [6]:

L=E(x,t)⇠D,m⇠M

h
CEm

⇣
G
�
M (E(x),m) , T(t)

�
, E(x)

⌘i
, (2)

where M is a masking operator that applies masks to the tokens in vi. CEm is a weighted cross-entropy
calculated by summing only over the unmasked tokens.

3.2 Parameter-Efficient Fine-Tuning of Text-to-Image Generative Vision Transformers
Now we present a unified framework for parameter-efficient fine-tuning of generative vision transform-
ers. The proposed framework is not limited to a specific model and application, and is easily applied
to the fine-tuning of text-to-image (e.g., Muse [5], Paella [31], Parti [43], RQ-Transformer [21]) and
text-to-video (e.g., Phenaki [38], CogVideo [14]) transformers, with a variety of PEFT methods,
such as prompt tuning [23], LoRA [16], or adapter tuning [15], as in [36]. Nonetheless, we focus on
Muse [5], an NAR text-to-image transformer, using adapter tuning [15].

4We omit the description of the super-resolution module for concise presentation, and point readers to [5] for
a full description of the Muse model.

3

Self-Attn

Cross-Attn e

x L

A θ

Figure 2: A simplified architecture of transformer layers of Muse [5]
with modification to support parameter-efficient fine-tuning (PEFT)
with adapter [15, 36]. L layers of transformers are used to process a
sequence of visual tokens in green conditioned on the text embedding e.
Learnable parameters ✓ are used to construct weights for adapter tuning.
See Appendix B.1.1 for details on adapter architecture.

Following [36], we are interested in adapting a transformer G, while the rest (E, D, T) remain fixed.
Let bG :V ⇥ E ⇥⇥!L a modified version of a transformer G that takes learnable parameters ✓2⇥ as
an additional input. Here, ✓ would represent parameters for learnable soft prompts of prompt tuning
or weights of adapter tuning. Fig. 2 provides an intuitive description of bG with adapter tuning.

Fine-tuning of the transformer bG involves learning of newly introduced parameters ✓, while existing
parameters of G (e.g., parameters of self-attention and cross-attention layers) remain fixed, with the
learning objective as follows:

✓ = argmin
✓2⇥

L✓ , L✓ =E(x,t)⇠Dtr,m⇠M

h
CEm

⇣
bG
�
M (E(x),m) , T(t),✓

�
, E(x)

⌘i
, (3)

where Dtr contains a few (image, text) pairs for fine-tuning. Unlike DreamBooth [34] where the same
text prompt is used to represent a set of training images, we use different text prompts for each input
image to better disentangle content and style. Once trained, similarly to the procedure in Eq. (2), we
synthesize images from the generation distribution of bG(·, ·,✓). Specifically, at each decoding step k,
we generate logits lk as follows:

lk =bG (vk, T(t),✓) + �A
�bG (vk, T(t),✓)� G (vk, T(t))

�
+ �B

�
G (vk, T(t))� G (vk, T(n))

�
, (4)

where �A controls the level of adaptation to the target distribution by contrasting the two generation
distributions, one that is fine-tuned bG (vk, T(t),✓) and another that is not G (vk, T(t)), and �B controls
the textual alignment by contrasting the positive (t) and negative (n) text prompts.

3.2.1 Constructing Text Prompts

image text prompt

“A cat in
watercolor painting style”

Table 1: An example text prompt at training. We construct a text
prompt by composing descriptions of content (e.g., an object) and
style (e.g., watercolor painting).

To train ✓, we require training data Dtr = {(Ii, ti)}Ni=1 composed of (image, text) pairs for style
reference. In many scenarios, we may be given only images as a style reference. In such cases, we
need to manually append text prompts.

We propose a simple, templated approach to construct text prompts, consisting of the description of a
content (e.g., object, scene) followed by the phrase describing the style. For example, we use a “cat”
to describe an object in Tab. 1 and append “watercolor painting” as a style descriptor. Incorporating
descriptions of both content and style in the text prompt is critical, as it helps to disentangle the
content from style and let learned parameters ✓ model the style, which is our primary goal. While we
find that using a rare token identifier [34] in place of a style descriptor (e.g., “watercolor painting”)
works as well, having such a descriptive style descriptor provides an extra flexibility of style property
editing, which will be shown in Sec. 4.4.2 and Fig. 7.

3.3 Iterative Training with Feedback
While our framework is generic and works well even on small training sets, the generation quality
of the style-tuned model from a single image can sometimes be sub-optimal. The text construction
method in Sec. 3.2.1 helps the quality, but we still find that overfitting to content is a concern. As in
red boxes of Fig. 3 where the same house is rendered in the background, it is hard to perfectly avoid
the content leakage. However, we see that many of the rendered images successfully disentangle
style from content, as shown in the blue boxes of Fig. 3.

For such a scenario, we leverage this finding of high precision when successful and introduce an
iterative training (IT) of StyleDrop using synthesized images by StyleDrop trained at an earlier stage
to improve the recall (more disentanglement). We opt for a simple solution: construct a new training

4

Figure 3: Iterative Training with Feedback. When trained on a single style reference image (orange box), some
generated images by StyleDrop may exhibit leaked content from the style reference image (red box, images
contain in the background a similar-looking house as in the style image), while other images (blue box) have
better dismantlement of style from content. Iterative training of StyleDrop with the good samples (blue box)
results in an overall better balance between style and text fidelity (green box).

set with a few dozen successful (image, text) pairs (e.g., images in blue box of Fig. 3) while using the
same objective in Eq. (3). IT results in an immediate improvement with a reduced content leakage, as
in Fig. 3 green box. The key question is how to assess the quality of synthesized images.

CLIP score [29] measures the image-text alignment. As such, it could be used to assess the quality
of generated images by measuring the CLIP score (i.e., cosine similarity of visual and textual CLIP
embeddings). We select images with the highest CLIP scores and we call this method an iterative
training with CLIP feedback (CF). In our experiments, we find that the CLIP score to assess the
quality of synthesized images is an efficient way of improving the recall (i.e., textual fidelity) without
losing too much style fidelity. On the other hand, CLIP score may not be perfectly aligned with the
human intention [22, 40] and would not capture the subtle style property.

Human Feedback (HF) is a more direct way of injecting user intention into the quality evaluation of
synthetic images. HF is shown to be powerful and effective in LLM fine-tuning with reinforcement
learning [28]. In our case, HF could be used to compensate the CLIP score not being able to capture
subtle style properties. Empirically, selecting less than a dozen images is enough for IT, and it only
takes about 3 minutes per style. As shown in Sec. 4.4.4 and Fig. 9, HF is critical for some applications,
such as illustration designs, where capturing subtle differences is important to correctly reflect the
designer’s intention. Nevertheless, due to human selection bias, style may drift or be reduced.

3.4 Sampling from Two ✓’s
There has been an extensive study on personalization of text-to-image diffusion models to synthesize
images containing multiple personal assets [20, 26, 13]. In this section, we show how to combine
DreamBooth and StyleDrop in a simple manner, thereby enabling personalization of both style

and content. Inspired by the idea of diffusion as energy-based models for compositional visual
generation [9, 25, 8], we sample from two modified generation distributions, guided by ✓s for style
and ✓c for content, each of which are adapter parameters trained independently on style and content
reference images, respectively. Unlike existing works [20, 13], our approach does not require joint
training of learnable parameters on multiple concepts, leading to a greater compositional power with
pre-trained adapters, which are separately trained on individual subject and style assets.

Our overall sampling procedure follows the iterative decoding of Eq. (1), with differences in how we
sample logits at each decoding step. Let t be the text prompt and c be the text prompt without the
style descriptor.5 We compute logits at step k as follows: lk =(1� �)lsk + �lck, where

lsk =bG (vk, T(t),✓s) + �A
�bG (vk, T(t),✓s)� G (vk, T(t))

�
+ �B

�
G (vk, T(t))� G (vk, T(n))

�
(5)

lck =bG (vk, T(c),✓c) + �A
�bG (vk, T(c),✓c)� G (vk, T(c))

�
+ �B

�
G (vk, T(c))� G (vk, T(n))

�
(6)

where � balances the StyleDrop and DreamBooth – if � is 0, we get StyleDrop, and DreamBooth if 1.
By properly setting � (e.g., 0.5⇠ 0.7), we get images of my content in my style (see Fig. 5).

4 Experiments
We report results of StyleDrop on a variety of styles and compare with existing methods in Sec. 4.2.
In Sec. 4.3 we show results on “my object in my style” combining the capability of DreamBooth and
StyleDrop. Finally, we conduct an ablation study on the design choices of StyleDrop in Sec. 4.4.

4.1 Experimental Setting
To the best of our knowledge, there has not been an extensive study of style-tuning for text-to-image
generation models. As such, we suggest a new experimental protocol.

5For example, t is “A teapot in watercolor painting style” and c is “A teapot”.

5

Figure 4: Qualitative comparison of style-tuned text-to-image synthesis on various styles, including “melting
golden 3d rendering”, “3d rendering”, “wooden sculpture”, “flat cartoon illustration”, and “cartoon line drawing”,
shown on the first column. Text prompts used for synthesis are “the Golden Gate bridge”, “the letter ‘G”’, and
“a man riding a snowboard”. Image sources are in Tab. S1. We see that StyleDrop (HF) consistently captures
nuances such as the “melting” effect in the top row.

Data collection. We collect a few dozen images of various styles, from watercolor and oil painting,
flat illustrations, 3d rendering to sculptures with varying materials. While painting styles have been a
major focus for neural style transfer research [12, 7], we go beyond and include a more diverse set of
visual styles in our experiments. We provide image sources in Tab. S1 and attribute their ownership.

Model configuration. As in Sec. 3.2, we base StyleDrop on Muse [5] using adapter tuning [15, 36].
For all experiments, we update adapter weights for 1000 steps using Adam optimizer [19] with a
learning rate of 0.00003. Unless otherwise stated, we use “StyleDrop” to denote the second round
model trained on as many as 10 synthetic images with human feedback, as in Sec. 3.3. Nevertheless,
to mitigate confusion, we append “HF” (human feedback), “CF” (CLIP feedback) or “R1” (first
round model) to StyleDrop whenever there needs a clarity. More training details are in Appendix B.1.

Evaluation. We report quantitative metrics based on CLIP [29] that measures the style consistency
and textual alignment. In addition, we conduct the user preference study to assess style consistency
and textual alignment. Appendix B.2 summarizes details on the human evaluation protocol.

4.2 StyleDrop Results
Fig. 1 shows results of our default approach on the 18 different style images that we collected, for the
same text prompt. We see that StyleDrop is able to capture nuances of texture, shading, and structure
across a wide range of styles, significantly better than previous approaches, enabling significantly
more control over style than previously possible. Fig. 4 shows synthesized images of StyleDrop using
3 different style reference images. For comparison, we also present results of (b) DreamBooth [34]
on Imagen [35], (c) a LoRA implementation of DreamBooth [34, 3, 16] and (d) textual inversion [11],
both on Stable Diffusion [33].6,7 More results are available in Figs. S9 to S14.

6Colab implementation of textual inversion [11] is used with stable-diffusion-2.
7More baselines using hard prompt made easy (PEZ) [39] are in Appendix B.

6

https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb

Table 2: Evaluation metrics of (top) human evaluation and (bottom) CLIP scores [29] for image-text alignment
(Text) and visual style alignment (Style). We test on 6 styles from Fig. 1. For human evaluation, preferences
are reported. For CLIP scores, we report the mean and standard error. We report scores for Muse [5] and
Imagen [35] with styles guided by the text prompt. DB: DreamBooth, SDRP: StyleDrop, and iterative training
with human feedback (HF), CLIP feedback (CF), and random selection (Random).

SDRP (R1) tie DB on Imagen SDRP (R1) tie SDRP (HF) SDRP (HF) tie SDRP (CF)

Text 31.7% 45.0% 23.3% 20.7% 56.0% 23.3% 19.4% 58.2% 22.4%
Style 86.0% 4.3% 9.7% 62.3% 7.4% 30.3% 60.9% 8.4% 30.8%

Method Imagen DB on Imagen Muse StyleDrop on Muse
Round 1 HF CF Random

Text (") 0.337±0.001 0.335±0.001 0.323±0.001 0.313±0.001 0.322±0.001 0.329±0.001 0.316±0.001

Style (") 0.569±0.002 0.644±0.002 0.556±0.001 0.705±0.002 0.694±0.001 0.673±0.001 0.678±0.001

For baselines, we follow instructions from the respective papers and open-source implementations,
but with a few modifications. For example, instead of using a rare token (e.g., “a watermelon slice in
[V*] style”), we use the style descriptor (e.g., “a watermelon slice in 3d rendering style”), similarly
to StyleDrop. We train DreamBooth on Imagen for 300 steps after performing grid-search. This is
less than 1000 steps recommended in [34], but is chosen to alleviate overfitting to image content
and to better capture style. For LoRA DreamBooth on Stable Diffusion, we train for 400 steps with
learning rates of 0.0002 for UNet and 0.000005 for CLIP. We do not adopt the iterative training for
baselines in Fig. 4. StyleDrop results without iterative training are in Sec. 4.4.3. It is clear from Fig. 4
that StyleDrop on Muse convincingly outperforms other methods that are geared towards solving
subject-driven personalization of text-to-image synthesis using diffusion models.

We see that style-tuning on Stable Diffusion with LoRA DreamBooth (Fig. 4(c)) and textual inversion
(Fig. 4(d)) show poor style consistency to reference images. While DreamBooth on Imagen (Fig. 4(b))
improves over those on Stable Diffusion, it still lacks the style consistency over StyleDrop on Muse
across text prompts and style references. It is interesting to see such a difference as both Muse [5] and
Imagen [35] are trained on the same set of image/text pairs using the same text encoder (T5-XXL [30]).
We provide an ablation study to understand where the difference comes from in Sec. 4.4.1.

4.2.1 Quantitative Results
For quantitative evaluation, we synthesize images from a subset of Parti prompts [43]. This includes
190 text prompts of basic text compositions, while removing some categories such as abstract, arts,
people or world knowledge. We test on 6 style reference images from Fig. 1.8

CLIP scores. We employ two metrics using CLIP [29], (Text) and (Style) scores. For Text score,
we measure the cosine similarity between image and text embeddings. For Style score, we measure
the cosine similarity between embeddings of style reference and synthesized images. We generate 8
images per prompt for 190 text prompts, 1520 images in total. While we desire high scores, these
metrics are not perfect. For example, Style score can easily get to 1.0 if mode collapses.

StyleDrop results in competitive Text scores to Muse (e.g., 0.323 vs 0.322 of StyleDrop (HF)) while
achieving significantly higher Style scores (e.g., 0.556 vs 0.694 of StyleDrop (HF)), implying that
synthesized images by StyleDrop are consistent in style with style reference images, without losing
text-to-image generation capability. For the 6 styles we test, we see a light mode collapse from the
first round of StyleDrop, resulting in a slightly reduced Text score. Iterative training (IT) improves
the Text score, which is aligned with our motivation. As a trade-off, however, they show reduced
Style scores over Round 1 models, as they are trained on synthetic images and styles may have been
drifted due to a selection bias.

DreamBooth on Imagen falls short of StyleDrop in Style score (0.644 vs 0.694 of HF). We note
that the increment in Style score for DreamBooth on Imagen is less significant (0.569! 0.644)
than StyleDrop on Muse (0.556! 0.694). We think that the fine-tuning for style on Muse is more
effective than that on Imagen. We revisit this in Sec. 4.4.1.

Human evaluation. We formulate 3 binary comparison tasks for user preference among StyleDrop
(R1), StyleDrop with different feedback signals, and DreamBooth on Imagen. Users are asked to
select their preferred result in terms of style and text fidelity between images generated from two

8Images used are (1, 2), (1, 6), (2, 3), (3, 1), (3, 5), (3, 6) of Fig. 1, and are also visualized in Fig. S8.

7

https://github.com/google-research/parti/blob/main/PartiPrompts.tsv

(a) A teapot in
3d rendering style

(b) A teapot in
3d rendering style

(c) A teapot in
3d rendering style

(a) A teapot in
watercolor painting style

(b) A teapot in
watercolor painting style

(c) A teapot in
watercolor painting style

(a) A vase in
3d rendering style

(b) A vase in
3d rendering style

(c) A vase in
3d rendering style

(a) A vase in
watercolor painting style

(b) A vase in
watercolor painting style

(c) A vase in
watercolor painting style

(a) A dog in
3d rendering style

(b) A dog in
3d rendering style

(c) A dog in
3d rendering style

(a) A dog in
watercolor painting style

(b) A dog in
watercolor painting style

(c) A dog in
watercolor painting style

Figure 5: Qualitative comparison of (a) DreamBooth, (b) StyleDrop, and (c) DreamBooth + StyleDrop. For
DreamBooth and StyleDrop, style and subject are guided by text prompts, respectively, whereas DreamBooth
+ StyleDrop, both style (blue inset box at bottom left) and subject (red inset box at top right) are guided by
respective reference images. Image sources are in Tab. S1.

different models (i.e., an A/B test), while given a style reference image and the text prompt. Details
on the study is in Appendix B.2. Results are in Tab. 2 (top). Compared to DreamBooth on Imagen,
images by StyleDrop are significantly more preferred by users in Style score. The user study also
shows style drifting more clearly when comparing StyleDrop (R1) and StyleDrop IT either by HF or
CF. Between HF and CF, HF retains better Style and CLIP retained better Text. Overall, we find
that CLIP scores are a good proxy to the user study.

4.3 My Object in My Style

We show in Fig. 5 synthesized images by sampling from two personalized generation distributions,
one for an object and another for the style, as described in Sec. 3.4. To learn object adapters, we
use 5⇠6 images per object.9 Style adapters from Sec. 4.2 are used without any modification. The
value of � (to balance the contribution of object and style adapters) is chosen in the range 0.5–0.7.
We show synthesized images from (a) object adapter only (i.e., DreamBooth), (b) style adapter only
(i.e., StyleDrop), and (c) both object and style adapters. We see from Fig. 5(a) that text prompts are
not sufficient to generate images with styles we desire. From Fig. 5(b), though StyleDrop gets style
correct, it generates objects that are inconsistent with reference subjects. The proposed sampling
method from two distributions successfully captures both my object and my style, as in Fig. 5(c).

4.4 Ablations

We conduct ablations to better understand StyleDrop. In Sec. 4.4.1 we compare the behavior of
the Imagen and Muse models. In Sec. 4.4.2 we highlight the importance of a style descriptor. In
Sec. 4.4.3, we compare choices of feedback signals for iterative training. In Sec. 4.4.4, we show to
what extent StyleDrop learns distinctive styles properties from reference images.

4.4.1 Comparative Study of DreamBooth on Imagen and StyleDrop on Muse
We see in Sec. 4.2 that StyleDrop on Muse convincingly outperforms DreamBooth on Imagen. To
better understand where the difference comes from, we conduct some control experiments.

Impact of training text prompt. We note that both experiments in Sec. 4.2 are carried out using the
proposed descriptive style descriptors. To understand the contribution of fine-tuning, rather than the
prompt engineering, we conduct control experiments, one with a rare token as in [34] (i.e., “A flower
in [V*] style”) and another with descriptive style prompt.

9
teapot and vase images from DreamBooth [34] are used.

8

https://github.com/google/dreambooth/tree/main/dataset

Figure 6: Ablation study using Imagen [35]. (a, b) are trained with a rare token and (c, d) are trained with a style
descriptor. (a, c) are trained on a single style reference image. (b, d) are trained on 10 synthetic images from
StyleDrop. With Imagen, we need 10 images and a descriptive style descriptor to capture the style, as in (d).

Muse

+: “[V*]”
-: “ ”

+: “melting golden 3d rendering”
-: “ ”

Muse

+: “golden 3d rendering”
-: “melting”

Muse

+: “[V*]”
-: “melting”

Muse

(a) (b) (c) (d)Style reference

Figure 7: StyleDrop on Muse. All models are trained on 10 images from StyleDrop, which in turn was trained
on a single style image. (a, b) are trained with a rare token and (c, d) are trained with a style descriptor. When
trained with a descriptive style descriptor, StyleDrop can support additional applications such as style editing (d),
here removing the “melting” component of the reference style.

Results on Muse are in Fig. 7. Comparing (a) and (c), we do not find a substantial change, suggesting
that the style can be learned via an adapter tuning without too much help of a text prior. On the other
hand, as seen in Fig. 6, comparing (a) and (c) with Imagen as a backbone model, we see a notable
difference. For example, “melting” property only appears for some images synthesized from a model
trained with the descriptive style descriptor. This suggests that the learning capability of fine-tuning
on Imagen may not be as powerful as that of Muse, when given only a few training images.

Data efficiency. Next, we study whether the quality of the fine-tuning on Imagen could be improved
with more training data. In this study, we train a DreamBooth on Imagen using 10 human selected,
synthetic images from StyleDrop on Muse. Results are in Fig. 6. Two models are trained with (b)
a rare token and (d) a descriptive style descriptor. We see that the style consistency improves a lot
when comparing (c) and (d) of Fig. 6, both in terms melting and golden properties. However, when
using a rare token, we do not see any notable improvement from (a) to (b). This suggests that the
superiority of StyleDrop on Muse may be coming from its extraordinary fine-tuning data efficiency.

4.4.2 Style Property Edit with Concept Disentanglement
We show in Sec. 4.4.1 that StyleDrop on Muse is able to learn the style using a rare token identifier.
Then, what is the benefit of descriptive style descriptor? We argue that not all styles are described in
a single word and the user may want to learn style properties selectively. For example, the style of an
image in Fig. 7 may be written as a composite of “melting”, “golden”, and “3d rendering”, but the
user may want to learn its “golden 3d rendering” style without “melting”.

We show that such a style property edit can be naturally done with a descriptive style descriptor. As
in Fig. 7(d), learning with a descriptive style descriptor provides an extra knob to edit a style by
omitting certain words (e.g., “melting”) from the style descriptor at synthesis. This clearly shows
the benefit of descriptive style descriptors in disentangling visual concepts and creating a new style
based on an existing one. This is less amenable when trained with the rare token, as in Fig. 7(b).

4.4.3 Iterative Training with Different Feedback Signals

Figure 8: Qualitative comparison of StyleDrop. (a) Round 1, (b) IT with random selection, (c) CLIP and (d)
Human feedback. Generated images of “a banana” and “a bottle” in “3d rendering style” are visualized. While
StyleDrop Round 1 model captures the style very well, it often suffer from a content leakage (e.g., a banana and
women are mixed). (c, d) IT with a careful selection of synthetic images reduces content leakage and improves.

We study how different feedback signals affects the performance of StyleDrop. We compare three
feedback signals, including human, CLIP, and random. For CLIP and random signals, we synthesize

9

64 images per prompt from 30 text prompts and select one image per prompt. For human, we select
10 images from the same pool, which takes about 3 minutes per style. See Appendix B.2 for details.

Qualitative results are in Fig. 8. We observe that some images in (a) from a Round 1 model show a
mix of banana or bottle with a human. Such concept leakage is alleviated with IT, though we still
see a banana with arms and legs with Random strategy. The reduction in concept leakage could be
verified with the Text score, achieving (a) 0.303, (b) 0.322, (c) 0.339, and (d) 0.328. On the other
hand, Style score, (a) 0.560, (b) 0.567, (c) 0.542, and (d) 0.549, could be misleading in this case, as
we compute the visual similarity to the style reference image, favoring a content leakage. Between
CLIP and human feedback, we see a clear trade-off between text and style fidelity from quantitative
metrics.

4.4.4 Fine-Grained Style Control with User Intention

(a) flat color (b) flat color with offset (c) gradation (d) sharp corner

Figure 9: Fine-grained style control. StyleDrop captures subtle style differences, such as (b) color offset, (c)
gradation, or (d) sharp corner, reflecting designer’s intention in text-to-image synthesis.

Moreover, human feedback is more critical when trying to capture subtle style properties. In this
study, we conduct experiments on four images in Fig. 9 inside orange boxes, created by the same
designer with varying style properties, such as color offset (Fig. 9(b)), gradation (Fig. 9(c)), and
sharp corners (Fig. 9(d)). We train two more rounds of StyleDrop with human feedback. We use the
same style descriptor of “minimal flat illustration style” to make sure the same text prior is given to
all experiments. As in Fig. 9, style properties such as color offset, gradation, and corner shape are
captured correctly. This suggests that StyleDrop offers the control of fine-grained style variations.

5 Conclusion
We have presented StyleDrop, a novel approach to enable synthesis of any style through the use of
a few user-provided images of that style and a text description. Built on Muse [5] using adapter
tuning [15], StyleDrop achieves remarkable style consistency at text-to-image synthesis. Training
StyleDrop is efficient both in the number of learnable parameters (e.g., < 1%) and the number of
style samples (e.g., 1) required.

Limitations. Visual styles are of course even more diverse than what is possible to explore in our
paper. More study with a well-defined system of visual styles, including, but not limited to, the
formal attributes (e.g., use of color, composition, shading), media (e.g., line drawing, etching, oil
painting), history and era (e.g., Renaissance painting, medieval mosaics, Art Deco), and style of art
(e.g., Cubism, Minimalism, Pop Art), would broaden the scope. While we show in part the superiority
of a generative vision transformer to diffusion models at few-shot transfer learning, it is by no means
conclusive. We leave an in-depth study among text-to-image generation models as a future work.

Societal impact. As illustrated in Fig. 4, StyleDrop could be used to improve the productivity and
creativity of art directors and graphic designers when generating various visual assets in their own
style. StyleDrop makes it easy to reproduce many personalized visual assets from as little as one seed
image. We recognize potential pitfalls such as the ability to copy individual artists’ styles without
their consent, and urge the responsible use of our technology.

Acknowledgement. We thank Varun Jampani, Jason Baldridge, Forrester Cole, José Lezama, Steven
Hickson, Kfir Aberman for their valuable feedback on our manuscript.

10

References
[1] Discord top servers worldwide by number of members. https://www.statista.com/statistics/

1327141/discord-top-servers-worldwide-by-number-of-members/. 2

[2] Midjourney. http://www.midjourney.com. 2

[3] Low-rank adaptation for fast text-to-image diffusion fine-tuning, 2022. 2, 3, 6

[4] Dina Bashkirova, José Lezama, Kihyuk Sohn, Kate Saenko, and Irfan Essa. Masksketch: Unpaired
structure-guided masked image generation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 1879–1889, 2023. 3

[5] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation via masked
generative transformers. arXiv preprint arXiv:2301.00704, 2023. 1, 2, 3, 4, 6, 7, 10

[6] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image
transformer. arXiv preprint arXiv:2202.04200, 2022. 3

[7] Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Xingjia Pan, Lei Wang, and Changsheng Xu.
Stytr2: Image style transfer with transformers. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11326–11336, 2022. 3, 6

[8] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Compositional
generation with energy-based diffusion models and mcmc. In International Conference on Machine

Learning, pages 8489–8510. PMLR, 2023. 5

[9] Yilun Du, Shuang Li, Yash Sharma, Josh Tenenbaum, and Igor Mordatch. Unsupervised learning of
compositional energy concepts. Advances in Neural Information Processing Systems, 34:15608–15620,
2021. 5

[10] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12873–12883, 2021. 3

[11] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion.
arXiv preprint arXiv:2208.01618, 2022. 1, 2, 3, 6

[12] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv preprint

arXiv:1508.06576, 2015. 3, 6

[13] Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdiff: Compact
parameter space for diffusion fine-tuning. arXiv preprint arXiv:2303.11305, 2023. 2, 5

[14] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pretraining for
text-to-video generation via transformers. arXiv preprint arXiv:2205.15868, 2022. 3

[15] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International

Conference on Machine Learning, pages 2790–2799. PMLR, 2019. 2, 3, 4, 6, 10, 14

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021. 2, 3, 6

[17] Siyu Huang, Jie An, Donglai Wei, Jiebo Luo, and Hanspeter Pfister. Quantart: Quantizing image style
transfer towards high visual fidelity. arXiv preprint arXiv:2212.10431, 2022. 3

[18] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli Song. Neural style
transfer: A review. IEEE transactions on visualization and computer graphics, 26(11):3365–3385, 2019. 3

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014. 6

[20] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion. arXiv preprint arXiv:2212.04488, 2022. 2, 3, 5

11

https://www.statista.com/statistics/1327141/discord-top-servers-worldwide-by-number-of-members/
https://www.statista.com/statistics/1327141/discord-top-servers-worldwide-by-number-of-members/
http://www.midjourney.com

[21] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 11523–11532, 2022. 3

[22] Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human feedback.
arXiv preprint arXiv:2302.12192, 2023. 5

[23] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages
3045–3059, 2021. 3

[24] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural style transfer. arXiv preprint

arXiv:1701.01036, 2017. 3

[25] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. In European Conference on Computer Vision, pages
423–439. Springer, 2022. 5

[26] Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang, Kecheng Zheng, Yu Liu, Deli Zhao, Jingren Zhou, and
Yang Cao. Cones: Concept neurons in diffusion models for customized generation. arXiv preprint

arXiv:2303.05125, 2023. 5

[27] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie. T2i-
adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv

preprint arXiv:2302.08453, 2023. 2, 3

[28] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022. 5

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021. 2, 5, 6, 7

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv preprint arXiv:1910.10683, 2019. 3, 7

[31] Dominic Rampas, Pablo Pernias, Elea Zhong, and Marc Aubreville. Fast text-conditional discrete denoising
on vector-quantized latent spaces. arXiv preprint arXiv:2211.07292, 2022. 3

[32] Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning to disentangle factors of variation
with manifold interaction. In International conference on machine learning, pages 1431–1439. PMLR,
2014. 2

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 10684–10695, 2022. 1, 2, 3, 6

[34] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
DreamBooth: Fine tuning text-to-image diffusion models for subject-driven generation. arXiv preprint

arXiv:2208.12242, 2022. 1, 2, 4, 6, 7, 8

[35] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-
image diffusion models with deep language understanding. Advances in Neural Information Processing

Systems, 35:36479–36494, 2022. 1, 2, 3, 6, 7, 9

[36] Kihyuk Sohn, Yuan Hao, José Lezama, Luisa Polania, Huiwen Chang, Han Zhang, Irfan Essa, and Lu Jiang.
Visual prompt tuning for generative transfer learning. arXiv preprint arXiv:2210.00990, 2022. 3, 4, 6

[37] Joshua Tenenbaum and William Freeman. Separating style and content. Advances in neural information

processing systems, 9, 1996. 2

[38] Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Moham-
mad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable length video
generation from open domain textual description. arXiv preprint arXiv:2210.02399, 2022. 3

12

[39] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard
prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery. arXiv preprint

arXiv:2302.03668, 2023. 2, 3, 6, 19

[40] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. arXiv preprint

arXiv:2304.05977, 2023. 5

[41] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2image: Conditional image generation
from visual attributes. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The

Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 776–791. Springer, 2016. 2

[42] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved VQGAN. arXiv

preprint arXiv:2110.04627, 2021. 3

[43] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich
text-to-image generation. arXiv preprint arXiv:2206.10789, 2022. 2, 3, 7

[44] Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and Changsheng
Xu. Inversion-based style transfer with diffusion models. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10146–10156, 2023. 2

13

A Image Attributions

We provide the links to images used for style references (please click through on each number).

Table S1: Image sources.

Fig. 1 (row 1) 1, 2, 3, 4, 5, 6; (row 2) 1, 2, 3, 4, 5, 6; (row 3) 1, 2, 3, 4, 5, 6
Figs. S6 and S7 (row 1) 1, 2, 3, 4, 5, 6, 7, 8; (row 2) 1, 2, 3, 4, 5, 6, 7, 8; (row 3) 1, 2, 3, 4, 5, 6, 7, 8

Fig. 9 Special thanks to Elizabeth Cruz for help designing the initial style image.

Table S2: A list of text prompts used to synthesize images for additional round of training of StyleDrop. {}’s are
filled with the style descriptors, e.g., “in watercolor painting style”.

“A chihuahua {}” “A chihuahua walking on the street {}” “A chihuahua walking in the forest {}”
“A tabby cat {}” “A tabby cat walking on the street {}” “A tabby cat walking in the forest {}”
“A portrait of chihuahua {}” “A portrait of tabby cat {}” “A portrait of human face {}”
“An apple on the table {}” “An apple on the dish {}” “An apple on the ground {}”
“A banana on the table {}” “A banana on the dish {}” “A banana on the ground {}”
“A human {}” “A human walking on the street {}” “A human walking in the forest {}”
“A church on the street {}” “A temple on the street {}” “A cabin on the street {}”
“A church in the mountain {}” “A temple in the mountain {}” “A cabin in the mountain {}”
“A church in the field {}” “A temple in the field {}” “A cabin in the field {}”
“A church on the beach {}” “A temple on the beach {}” “A cabin on the beach {}”

B Experiments

B.1 Details on Model Training

B.1.1 Adapter Architecture

We apply an adapter at every layer of transformer. Specifically, following [15], we apply two adapters
for each layer, one after the cross-attention block, and another after the MLP block. An example code
explaining how to apply an adapter to the output of an attention layer and how to generate adapter
weights are in Fig. S1. All up weights (wu) are initialized with zeros, and down weights (wd) are
initialized from truncated normal distribution with standard deviation of 0.02.

We note that adapter weights are generated in a parameter-efficient way via weight sharing across
transformer layers. This is triggered by setting is_shared to True, and the total number of parame-
ters would be reduced roughly by the number of transformer layers. The number of parameters of
adapter weights are given in Tab. S3. While we use these settings on all experiments, one can easily
reduce the number of parameters by setting is_shared to True for Base (Round 2) and Super-res
fine-tuning without loss in quality.

B.1.2 Hyperparameters

We provide in Tab. S3 hyperparameters for optimizer, adapter architecture, and synthesis. Note that
we use the batch size of 8, 1 per core of TPU v3, but StyleDrop can be also optimized on a single
GPU (e.g., A100) with batch size of 1. We find that learning rate higher than 0.00003 for the base
model often results in overfitting to content of a style reference image. Learning rate lower than
0.00003 for the base model leads to slower convergence and we suggest to increase the number of
train steps in such a case.

B.1.3 Style Descriptors

We provide full description on descriptive style descriptors for images used in our experiments in
Tab. S4. As discussed in Sec. 4.4.1 and Sec. 4.4.2, StyleDrop works well without descriptive style
descriptors, but they add additional capability such as style editing.

14

https://unsplash.com/photos/X2QwsspYk_0
https://unsplash.com/photos/6L4jcwgDNNE
https://unsplash.com/photos/6dY9cFY-qTo
https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:VanGogh-starry_night_ballance1.jpg
https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:Van_Gogh_Starry_Night_Drawing.jpg
https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:Vincent_van_Gogh_-_Self-portrait_with_grey_felt_hat_-_Google_Art_Project.jpg
https://www.instagram.com/p/CqwU1bavm0T/
https://www.freepik.com/free-vector/young-woman-walking-dog-leash-girl-leading-pet-park-flat-illustration_11236131.htm#page=3&query=dog&position=11&from_view=search&track=robertav1_2_sidr
https://www.freepik.com/free-vector/biophilic-design-workspace-abstract-concept_12085250.htm#page=2&query=work&position=40&from_view=search&track=robertav1_2_sidr
https://www.freepik.com/free-vector/pine-tree-sticker-white-background_20710341.htm#query=sticker&position=19&from_view=search&track=sph
https://www.freepik.com/free-psd/abstract-background-design_1055977.htm#query=smoke%20rainbow&position=1&from_view=search&track=ais
https://unsplash.com/photos/RWrbY8j9GPo
https://unsplash.com/photos/0e6nHU8GRUY
https://unsplash.com/photos/1RUHvfnaCWY
https://unsplash.com/photos/rdHrrFA1KKg
https://github.com/styledrop/styledrop.github.io/blob/main/images/assets/image_6487327_crayon_02.jpg
https://unsplash.com/photos/Prx96KdmWj0
https://unsplash.com/photos/CuWq_99U0xs
https://unsplash.com/photos/0pJPixfGfVo
https://unsplash.com/photos/X2QwsspYk_0
https://unsplash.com/photos/6L4jcwgDNNE
https://unsplash.com/photos/6dY9cFY-qTo
https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:VanGogh-starry_night_ballance1.jpg
https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:Van_Gogh_Starry_Night_Drawing.jpg
https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:Vincent_van_Gogh_-_Self-Portrait_-_Google_Art_Project_(454045).jpg
https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:Vincent_van_Gogh_-_Self-portrait_with_grey_felt_hat_-_Google_Art_Project.jpg
https://www.instagram.com/p/CqwU1bavm0T/
https://www.freepik.com/free-vector/young-woman-walking-dog-leash-girl-leading-pet-park-flat-illustration_11236131.htm#page=3&query=dog&position=11&from_view=search&track=robertav1_2_sidr
https://www.freepik.com/free-vector/biophilic-design-workspace-abstract-concept_12085250.htm#page=2&query=work&position=40&from_view=search&track=robertav1_2_sidr
https://www.freepik.com/free-vector/pine-tree-sticker-white-background_20710341.htm#query=sticker&position=19&from_view=search&track=sph
https://www.freepik.com/free-psd/abstract-background-design_1055977.htm#query=smoke%20rainbow&position=1&from_view=search&track=ais
https://unsplash.com/photos/RWrbY8j9GPo
https://www.rawpixel.com/image/6051791/free-public-domain-cc0-photo
https://unsplash.com/photos/1vzLW-ihJaM
https://unsplash.com/photos/0e6nHU8GRUY
https://www.freepik.com/free-psd/three-dimensional-real-estate-icon-mock-up_32453229.htm#query=3d%20house&position=3&from_view=search&track=ais
https://unsplash.com/photos/1RUHvfnaCWY
https://unsplash.com/photos/rdHrrFA1KKg
https://github.com/styledrop/styledrop.github.io/blob/main/images/assets/image_6487327_crayon_02.jpg
https://unsplash.com/photos/I9wXip-cqvA
https://unsplash.com/photos/Prx96KdmWj0
https://unsplash.com/photos/CuWq_99U0xs

1 import flax.linen as nn

2 import jax

3 import jax.numpy as jnp

4

5 def apply_adapter(emb , wd, wu):

6 """ Applies adapter.

7

8 Args:

9 emb: token embedding , B x S x D.

10 wd: down weight , D x H.

11 wu: up weight , H x D.

12

13 Returns:

14 tensor , B x S x D.

15 """

16

17 prj = jnp.einsum(’...d,dh ->...h’, emb , wd)

18 prj = jax.nn.gelu(prj)

19 prj = jnp.einsum(’...h,hd ->...d’, prj , wu)

20 return emb + prj

21

22

23 class AdapterGenerator(nn.Module):

24 """ Generates Adapter Weights."""

25

26 d_emb: int # Embedding dimension.

27 d_prj: int # Projection dimension.

28 n_layer: int # Number of transformer layers.

29 is_shared: bool # Share adapter parameters across layers.

30

31 @nn.compact

32 def __call__(self):

33 D, H, L = self.d_emb , self.d_prj , self.n_layer

34 idx = jnp.arange(L)

35 if self.is_shared:

36 idx0 = jnp.zeros_like(idx)

37 # Factorize depth , emb and prj.

38 dd = nn.Embed(L, H)(idx).reshape(L, 1, H)

39 du = nn.Embed(L, D)(idx).reshape(L, 1, D)

40 wd = nn.Embed(1, D * H)(idx0).reshape(L, D, H) + dd

41 wu = nn.Embed(1, H * D)(idx0).reshape(L, H, D) + du

42 else:

43 wd = nn.Embed(L, D * H)(idx).reshape(L, D, H)

44 wu = nn.Embed(L, H * D)(idx).reshape(L, H, D)

45 return wd, wu

Figure S1: An example code on how to apply an adapter and how adapter weights are generated in Flax-ish
format.

B.2 Details on Human Evaluation

In this section, we provide more details on the user preference study discussed in Sec. 4.2.1. 3
binary comparison tasks are conducted between DreamBooth on Imagen and StyleDrop (Round 1),
StyleDrop (Round 1) and StyleDrop (IT human), StyleDrop (IT human) and StyleDrop (IT CLIP).
300 queries (50 queries per style from 6 styles, as shown in Fig. S8 are uploaded. The same query is
asked to 5 raters independently to mitigate the human selection bias and variance. In total, we collect
4500 answers.

We show in Fig. S2 the screenshot of the interface. We provide an instruction, examples, and task,
composed of a reference image, text prompt, and two images that raters are asked to compare.

Instructions.

15

Table S3: Hyperparameters for optimizer, adapter architecture, and synthesis.

Base (Round 1) Base (Round 2) Super-res

Learning rate 0.00003 0.00003 0.0001
Batch size 8 8 8
steps 1000 1000 1000

d_prj 4 32 32
is_shared True False False
adapter parameters 0.23M 12.6M 6.3M

decoding step 36 36 12
temperature 4.5 4.5 4.5
�A 0.0–2.0 2.0 1.0
�B 5.0 5.0 0.0

• Task: Given a reference image and two machine-generated output images, select which
machine-generated output better matches the style of the reference image.

• Review this definition of a style: style (from Merriam-Webster): A particular manner or
technique by which something is done, created or performed. Then choose either Image A,
Image B, or Cannot Determine / Both Equally.

• Next, review the reference text. Select which generated output is best described by the
reference text. If you’re again not sure, select Cannot Determine / Both Equally.

Questions.

• Which Machine-Generated Image best matches the style of the reference image? Image A,
Image B, Cannot Determine / Both Equally

• Which Machine-Generated Image is best described by the reference text? Image A, Image
B, Cannot Determine / Both Equally

Additional Analysis. We provide an additional analysis on the user preference study results. Note
that the numbers reported in Tab. 2 are based on the majority voting and claimed tie only if two
models received the same number of votes. To provide a full picture, we draw a diagram that shows
individual vote counts in Fig. S3. We find that there are more “tie” counts, but confirm overall a
consistent trend with the results by the majority vote in Tab. 2.

B.3 Extended Ablation Study

B.3.1 Classifier-Free Guidance

We conduct an ablation study on classifier-free guidance (CFG) parameters, �A and �B, of Eq. (4).
They play different roles: �A controls the level of style adaptation and �B controls the text prompt
fidelity. We conduct two sets of experiments, one with the StyleDrop Round 1 model and another
with the model trained with a human feedback (IT, human).

StyleDrop (Round 1) model. In this study, we use StyleDrop (Round 1) model, which is trained on
a single style reference image.

1. �A with fixed �B. Firstly, we vary �A while fixing �B to 5.0. Results are in Fig. S4a.
When �A =0.0, we find synthesized images having less faithful styles to the style reference
images. As we increase �A, we see the style of synthesized images getting more consistent.
However, when �A becomes too large (e.g., 5.0) the style factor dominates the sampling
process, making the content of synthesized images collapsed to that of the style reference
image and hard to make it follow the text condition.

2. �B with fixed �A. Subsequently, we investigate the impact of �B, while fixing �A =2.0.
Results are in Fig. S4c. When �B =0.0, we see that synthesized images being collapsed to

16

Table S4: Text prompts used for experiments in Fig. 1. We construct a text prompt by composing descriptions of
a content (e.g., object) and style (e.g., watercolor painting).

image text prompt image text prompt

“A house in
watercolor painting style”

“A cat in
watercolor painting style”

“Flowers in
watercolor painting style”

“A village in
oil painting style”

“A village in
line drawing style”

“A portrait of a person
wearing a hat in

oil painting style”

“A person drowning
into the phone in

cartoon line drawing style”

“A woman walking a dog in
flat cartoon illustration style”

“A woman working on a laptop
in flat cartoon illustration style”

“A Christmas tree in
sticker style”

“A wave in
abstract rainbow colored

flowing smoke wave design”

“A mushroom
in glowing style”

“Slices of watermelon and
clouds in the background in

3d rendering style”

“A thumbs up in
glowing 3d rendering style”

“A woman in
3d rendering style”

“A bear in
kid crayon drawing style”

“A flower in
melting golden

3d rendering style”

“A Viking face with beard in
wooden sculpture”

the style reference image without being too much text controlled. Increasing �B improves
the text fidelity, but eventually override the learned style to a more generic, text-guided style
of Muse model.

Overall, we verify that �A and �B play roles as intended to control the style adaptation and the text
prompt conditioning. Nonetheless, these two parameters impact each other and we find that fixing
�B =5.0 and control �A to trade-off the style and text fidelity is sufficient for most cases.

StyleDrop IT (human) model. Next, we use StyleDrop (IT, human), which is trained on synthetic
images manually selected with a human feedback. We find that the model becomes less sensitive
to the change of guidance scales �A or �B and more robust across values in terms of content
disentanglement and style consistency.

B.3.2 Visual Comparison to Muse Baseline

In addition to the Tab. 2, we provide a comparison of StyleDrop to the Muse baseline, i.e., generating
stylized images through only a text prompting. We show results in Fig. S5. As we see, images
generated by Muse are in more generic styles, while images by StyleDrop follow the style of reference
images more closely.

17

Figure S2: User preference study interface. We cast the problem as a binary comparison task and ask raters to
choose one from two images that is best aligned with the style reference image or the text prompt. The same
query is asked to 5 different raters, with location of two images randomized.

B.3.3 Quantitative Results on Descriptive Text Prompts

In this section, we ablate the importance of descriptive text prompts. To this end, we compare two
one-shot fine-tuning methods on Muse, first, using a descriptive text prompt (a.k.a. StyleDrop, as in
Sec. 3.2.1), and second, using a rare token (a.k.a. DreamBooth), for style descriptors. We measure
the Text and Style CLIP scores as in Tab. 2. We observe higher scores on both Text (0.313 vs
0.308) and Style (0.705 vs 0.654) with StyleDrop on Muse than DreamBooth on Muse.

B.3.4 Robustness of Human Feedback

StyleDrop involves an iterative training with human feedback and the performance may vary across
different users. In this section, we conduct experiments of iterative training based on feedback from 5
different human subjects and see the robustness of our method. Experiments are done on 6 styles
considered in Tab. 2. We obtain Style score of 0.687 on average with the standard deviation of 0.011
and Text score of 0.325 on average with the standard deviation of 0.003. We find that there is a clear
variance based on the human subject and their quality of feedback, but the standard deviation is low.

18

(a) StyleDrop Round 1 (SDRP, R1) vs. DreamBooth on Imagen.

(b) StyleDrop Round 1 (SDRP, R1) vs. StyleDrop IT (human) (SDRP, IT).

(c) StyleDrop IT (human) (SDRP, IT (human)) vs. StyleDrop IT (CLIP) (SDRP, IT (CLIP)).

Figure S3: Comprehensive analysis on user preference study.

B.4 Extended Baseline Comparison

In addition to Sec. 4.2 and Fig. 4, we provide additional qualitative comparison with hard prompt
made easy (PEZ) [39] in Fig. S15. We do not find PEZ to be better than any of the compared methods
including StyleDrop and DreamBooth.

19

λA = 0.0 λA = 0.2 λA = 0.5 λA = 1.0 λA = 1.5 λA = 2.0 λA = 5.0 Style reference

(a) Varying �A while fixing �B =5.0 on StyleDrop (R1) model.

Style referenceλA = 0.0 λA = 0.2 λA = 0.5 λA = 1.0 λA = 1.5 λA = 2.0 λA = 5.0

(b) Varying �A while fixing �B =5.0 on StyleDrop (HF) model.

Style reference λ B= 0.0 λB = 1.0 λB = 2.0 λB = 5.0 λ B= 10.0 λB = 20.0 λB = 50.0

(c) Varying �B while fixing �A =2.0 on StyleDrop (R1) model.

(d) Varying �B while fixing �A =2.0 on StyleDrop (HF) model.

Figure S4: Ablation study on the classifier-free guidance (CFG) scales �A and �B of Eq. (4) on (a, c) StyleDrop
(R1) and (b, d) StyleDrop (HF). �A controls the style adaptation and �B controls the text prompt condition.
StyleDrop (R1) model responds to CFG scales sensibly and shows issues such as a content leakage (e.g., with
large values of �A, or small values of �B). On the other hand, StyleDrop (HF) model shows robustness to the
change of guidance scales. Text prompts are “An Opera house in Sydney” and “A temple”.

20

Muse StyleDrops
“3d rendering style”

Style
Reference

Muse StyleDrops
“watercolor painting style”

Style
Reference

Muse StyleDrop

Style
Reference

Muse StyleDrop

Style
Reference

Muse StyleDrop

Style
Reference

Muse StyleDrops
“oil painting style”

Style
Reference

“flat cartoon illustration style”“kid crayon drawing style” “line drawing style”

Figure S5: Comparison of generated images by Muse and StyleDrop. Muse generates images only through
the text prompt, whereas StyleDrop generates images by text prompt and the style tuning using style reference
images. For each orange box, we show style reference images in the first row, and generated images in the
second row by Muse (first column) and StyleDrop. Images generated by StyleDrop follows the style of the
reference images, while images generated by Muse represent more generic styles.

21

(a) “A fluffy baby sloth with a knitted hat trying to figure out a laptop, close up”

(b) “A Golden Gate bridge”

(c) “The letter ‘G’”

Figure S6: StyleDrop on 24 styles. Style descriptors are appended to each text prompt.

22

(a) “A man riding a snowboard”

(b) “A panda eating bamboo”

(c) “A friendly robot”

Figure S7: StyleDrop on 24 styles. Style descriptors are appended to each text prompt.

(a) source (b) source (c) source (d) source (e) source (f) source

Figure S8: Style reference images. (a) “melting golden 3d rendering”, (b) “3d rendering”, (c) “oil painting”, (d)
“watercolor painting”, (e) “wooden sculpture”, (f) “flat cartoon illustration”.

23

https://unsplash.com/photos/Prx96KdmWj0
https://unsplash.com/photos/0e6nHU8GRUY
https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:Vincent_van_Gogh_-_Self-portrait_with_grey_felt_hat_-_Google_Art_Project.jpg
https://unsplash.com/photos/6L4jcwgDNNE
https://unsplash.com/photos/CuWq_99U0xs
https://www.freepik.com/free-vector/biophilic-design-workspace-abstract-concept_12085250.htm#page=2&query=work&position=40&from_view=search&track=robertav1_2_sidr

(a) source

(b) A baby penguin, animals

(c) A moose, animals

(d) A towel, artifacts

(e) An espresso machine, artifacts

(f) An avocado, produce and plants

(g) A crown, artifacts

Figure S9: Results comparison without cherry-picking. From left to right, DreamBooth on Imagen, LoRA
DreamBooth on Stable Diffusion, StyleDrop (round 1), StyleDrop (round 2, HF), StyleDrop (round 2, CLIP
score feedback). A style reference image is shown in Fig. S8a.

24

https://unsplash.com/photos/Prx96KdmWj0

(a) source

(b) A baby penguin, animals

(c) A moose, animals

(d) A towel, artifacts

(e) An espresso machine, artifacts

(f) An avocado, produce and plants

(g) A crown, artifacts

Figure S10: Results comparison without cherry-picking. From left to right, DreamBooth on Imagen, LoRA
DreamBooth on Stable Diffusion, StyleDrop (round 1), StyleDrop (round 2, HF), StyleDrop (round 2, CLIP
score feedback). A style reference image is shown in Fig. S8b.

25

https://unsplash.com/photos/0e6nHU8GRUY

(a) source

(b) A baby penguin, animals

(c) A moose, animals

(d) A towel, artifacts

(e) An espresso machine, artifacts

(f) An avocado, produce and plants

(g) A crown, artifacts

Figure S11: Results comparison without cherry-picking. From left to right, DreamBooth on Imagen, LoRA
DreamBooth on Stable Diffusion, StyleDrop (round 1), StyleDrop (round 2, HF), StyleDrop (round 2, CLIP
score feedback). A style reference image is shown in Fig. S8c.

26

https://en.wikipedia.org/wiki/Vincent_van_Gogh#/media/File:Vincent_van_Gogh_-_Self-portrait_with_grey_felt_hat_-_Google_Art_Project.jpg

(a) source

(b) A baby penguin, animals

(c) A moose, animals

(d) A towel, artifacts

(e) An espresso machine, artifacts

(f) An avocado, produce and plants

(g) A crown, artifacts

Figure S12: Results comparison without cherry-picking. From left to right, DreamBooth on Imagen, LoRA
DreamBooth on Stable Diffusion, StyleDrop (round 1), StyleDrop (round 2, HF), StyleDrop (round 2, CLIP
score feedback). A style reference image is shown in Fig. S8d.

27

https://unsplash.com/photos/6L4jcwgDNNE

(a) source

(b) A baby penguin, animals

(c) A moose, animals

(d) A towel, artifacts

(e) An espresso machine, artifacts

(f) An avocado, produce and plants

(g) A crown, artifacts

Figure S13: Results comparison without cherry-picking. From left to right, DreamBooth on Imagen, LoRA
DreamBooth on Stable Diffusion, StyleDrop (round 1), StyleDrop (round 2, HF), StyleDrop (round 2, CLIP
score feedback). A style reference image is shown in Fig. S8e.

28

https://unsplash.com/photos/CuWq_99U0xs

(a) source

(b) A baby penguin, animals

(c) A moose, animals

(d) A towel, artifacts

(e) An espresso machine, artifacts

(f) An avocado, produce and plants

(g) A crown, artifacts

Figure S14: Results comparison without cherry-picking. From left to right, DreamBooth on Imagen, LoRA
DreamBooth on Stable Diffusion, StyleDrop (round 1), StyleDrop (round 2, HF), StyleDrop (round 2, CLIP
score feedback). A style reference image is shown in Fig. S8f.

29

https://www.freepik.com/free-vector/biophilic-design-workspace-abstract-concept_12085250.htm#page=2&query=work&position=40&from_view=search&track=robertav1_2_sidr

(a) StyleDrop

Style references

(e) Hard Prompt Made Easy (PEZ) on Stable Diffusion

(b) Dreambooth on Imagen

(c) Dreambooth (LoRA) on Stable Diffusion

(d) Textual Inversion on Stable Diffusion

Figure S15: Style tuning comparison to baseline methods, including (b) DreamBooth on Imagen, (b) DreamBooth
(LoRA) on Stable Diffusion, (c) Textual Inversion on Stable Diffusion, and (e) Hard Prompt Made Easy (PEZ)
in Stable Diffusion.

30

