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Abstract

Zero-sum Markov Stackelberg games can be used to model myriad problems,
in domains ranging from economics to human robot interaction. We develop a
policy gradient method which we prove solves these games in continuous state,
continuous action settings, using noisy gradient estimates computed from observed
trajectories of play. When the games are convex-concave, we prove that our
algorithm converges to Stackelberg equilibrium in polynomial time. We also prove
that reach-avoid problems are naturally modeled as convex-concave zero-sum
Markov Stackelberg games, and show experimentally that Stackelberg equilibrium
policies are more effective than their Nash counterparts in these problems.1

1 Introduction

Markov games [28, 65, 70] are a generalization of Markov decision processes (MDPs) comprising
multiple players simultaneously making decisions over time, collecting rewards along the way
depending on their collective actions. They have been used by practitioners to model many real-
world multiagent planning and learning environments, such as autonomous driving [31, 59], cloud
computing [77], and telecomunications [3]. Moreover, theoreticians are beginning to formally analyze
policy gradient methods, proving polynomial-time convergence to optimal policies in MDPs [2, 16],
and to Nash equilibrium policies [53] in zero-sum Markov games [24], the canonical solution concept.
While Markov games are a fruitful way to model some problems (e.g., robotic soccer [46]), others,
such as reach-avoid [48], may be more productively modeled as sequential-move games, where some
players commit to moves that are observed by others, before they make their own moves. To this
end, we study two-player zero-sum Markov Stackelberg [74] (i.e., sequential-move) games. While
polynomial-time value-iteration (i.e., planning) algorithms are known for these games assuming
discrete states [36], we develop a policy gradient method that converges to Stackelberg equilibrium
in polynomial time in continuous state, continuous action games, using noisy gradients based only
on observed trajectories of play. Furthermore, we demonstrate experimentally that Stackelberg
equilibrium policies are more effective than their Nash counterparts in reach-avoid problems.

A (discounted discrete-time) zero-sum Markov Stackelberg game [36] is played over an infinite
horizon t = 0, 1, . . . between two players, a leader and a follower. The game starts at time t = 0,
at some initial state S(0) ⇠ µ 2 �(S) drawn randomly from a set of states S. At each time step
t = 1, 2, . . ., the players encounter a state s(t) 2 S, where the leader takes its action a(t) first, from
its action space A(s(t)), after which the follower, having observed the leader’s action, makes it
own move b(t), chosen from a feasible subset C(s(t),a(t)) determined by the leader’s action a(t)

1A full and current version of the paper can be found at: https://arxiv.org/abs/2401.12437
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of its action space B(s(t)).2 After both players have taken their actions, they receive respective
rewards, �r(s(t),a(t), b(t)) and r(s(t),a(t), b(t)). The game then moves to time step t + 1 and
transitions either to a new state S(t+1) ⇠ p(· | s(t),a(t), b(t)) with probability �, called the discount
factor, or the game ends with the remaining probability. Each player’s goal is to play a (potentially
history-dependent) policy that maximizes its respective expected (cumulative discounted) payoffs,
�E

⇥P
1

t=0 �
tr(S(t), A(t), B(t))

⇤
and E

⇥P
1

t=0 �
tr(S(t), A(t), B(t))

⇤
.3

In zero-sum Markov Stackelberg games, when the reward function (a, b) 7! r(s,a, b) is continuous
and bounded, for all s 2 S, and the correspondence a 7!7! C(s,a) is continuous, as well as non-empty-
and compact-valued, a recursive (or Markov perfect) [49] Stackelberg equilibrium is guaranteed to
exist [36], meaning a stationary policy profile (i.e., a pair of mappings from states to the actions of
the leader and the follower, respectively) specifying the actions taken at each state s.t. the leader’s
policy maximizes its expected payoff assuming the follower best responds, while the follower indeed
best responds to the leader’s policy. In other words, the aforementioned assumptions guarantee the
existence of a policy profile ⇡⇤ .

= (⇡⇤

a ,⇡
⇤

b), with ⇡⇤

a : S ! A and ⇡⇤

b : S ! B, that solves the
following coupled min-max optimization problem:

min
⇡a :S!A

max
⇡b :S!B:

8s2S,⇡b (s)2C(s,⇡a (s))

E

"
1X

t=0

�tr(S(t),⇡a(S
(t)),⇡b(S

(t)))

#
, (1)

where the expectation is with respect to S(0) ⇠ µ and S(t+1) ⇠ p(· | s(t),⇡a(S
(t)),⇡b(S

(t))). The
problem is “coupled” because the players’ actions sets constrain one another; in particular, the set of
actions available to the follower at each state is determined by the leader’s choice.

In spite of multiple compelling applications, including autonomous driving [29, 43], reach-avoid
problems in human-robot interaction [10], robust optimization in stochastic environments [15],
and resource allocation over time [36], very little is known about computing recursive Stackelberg
equilibria in zero-sum Markov Stackelberg games. A version of value iteration is known to converge in
polynomial time when the state space is discrete [36], but this (planning) method becomes intractable
in large or continuous state spaces. Furthermore, nothing is known, to our knowledge, about learning
Stackelberg equilibria from observed trajectories of play. We develop an efficient policy gradient
method for convex-concave zero-sum Markov Stackelberg games, and we show that reach-avoid
problems naturally lie in this class of games.

Contributions. Equation (1) reveals that the problem of computing Stackelberg equilibria in zero-
sum Markov Stackelberg games is an instance of a coupled min-max optimization problem. Goktas
and Greenwald [33] studied coupled min-max optimization problems assuming an exact first-order
oracle, meaning one that returns a function’s exact value and gradient at any point in its domain. As
access to an exact oracle is an unrealistic assumption in Markov games, we develop a first-order
method for solving these problems, assuming access to a stochastic first-order oracle, which returns
noisy estimates of a function’s value and gradient at any point in its domain. We show that our
method converges in polynomial-time (Theorem 3.1) in a large class of coupled min-max optimization
problems, namely those which are convex-concave.

We then proceed to study zero-sum Markov Stackelberg games, providing sufficient conditions on
the action correspondence C : S ⇥ A ! B, the rewards r : S ⇥ A ⇥ B ! R, and the transition
probabilities p : S⇥S⇥A⇥B ! R+ to guarantee that the game is convex-concave. Furthermore, we
develop a policy gradient algorithm that provably converges to Stackelberg equilibrium in polynomial
time when such games are convex-concave (Theorem 4.1), the first reinforcement learning algorithm
of this kind. Our method specializes to continuous state, continuous action zero-sum Markov games;
as such, we provide a provably-convergent policy gradient method for these problems as well. Finally,
we prove that our framework naturally models reach-avoid problems, and run experiments which
show that the Stackelberg equilibrium policies learned by our method exhibit better safety and
liveness properties than their Nash counterparts.

2To simplify notation, we drop the dependency of action spaces A and B on states going forward, but our
theory applies in this more general setting.

3Unlike a(t) and b(t), which are deterministic actions because they depend on a realized history of states
and actions encountered, A(t) and B(t) are random variables, because they might depend on a random history.
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2 Preliminaries

Notation. All notation for variable types, e.g., vectors, should be clear from context; if any confusion
arises, see Appendix A. Unless otherwise noted, we assume k·k is the Euclidean norm, k·k2. We let
�n = {x 2 Rn

+ |
Pn

i=1 xi = 1} denote the unit simplex in Rn, and �(A), the set of probability
distributions on the set A. We also define the support of any distribution f 2 �(X ) as supp(f) .

=
{x 2 X : f(x) > 0}. We denote the orthogonal projection operator onto a set C by ⇧C , i.e.,
⇧C(x) = argminy2C kx� yk2. We denote by C(x) the indicator function of a set C, with
value 1 if x 2 C and 0 otherwise. Given two vectors x,y 2 Rn, we write x � y or x > y to
mean component-wise � or >, respectively. For any set C, we denote the diameter by diam(C) .

=
maxc,c02Ckc�c0k. Given a tuple consisting of a sequences of iterates and weights ({z(t)}t , {⌘(t)}t),
the weighted average of the iterates is given by z⌘

.
=

P
t ⌘(t)z(t)

P
t ⌘(t) .

Mathematical Concepts. Given X ⇢ Rn, the function f : X ! Y is said to be `f-Lipschitz-
continuous w.r.t. norm k·k iff 8x1,x2 2 X , kf(x1)� f(x2)k  `f kx1 � x2k. If Y = R, then f is
convex (resp. concave) iff for all � 2 (0, 1) and x,x0 2 X , f(�x+ (1� �)x0)  (resp. �) �f(x) +
(1 � �)f(x0). For any Y , if the relation holds with equality, then f is called affine. A two-sided
function h : X ⇥Y ! Z is biaffine if x 7! f(x,y) is affine for all y 2 Y, and y 7! h(x,y) is affine
for all x 2 X. f is µ-strongly convex if f(x1) � f(x2) + hrxf(x2),x1 � x2i+ µ/2 kx1 � x1k2.
For convenience, we say that an l-dimensional vector-valued function g : X ! Y ⇢ Rl is log-convex,
convex, log-concave, or concave, respectively, if gk is log-convex, convex, log-concave, or concave,
for all k 2 [l]. A correspondence Z : X ! Y is concave if for all � 2 (0, 1) and x,x0 2 X ,
Z(�x + (1� �)x0) ✓ �Z(x) + (1� �)Z(x), assuming Minkowski summation [22, 57].

We require notions of stochastic convexity related to stochastic dominance of probability distributions
[7]. Given non-empty and convex parameter and outcome spaces W and O respectively, a conditional
probability distribution w 7! p(· | w) 2 �(O) is said to be stochastically convex (resp. stochastically
concave) in w 2W if for all continuous, bounded, and convex (resp. concave) functions v : O ! R,
� 2 (0, 1), and w0,w† 2 W s.t. w = �w0 + (1 � �)w†, it holds that EO⇠p(·|w) [v(O)] 
(resp �) �EO⇠p(·|w0) [v(O)] + (1� �)EO⇠p(·|w†) [v(O)].

3 Coupled Min-Max Optimization Problems

A min-max Stackelberg game, denoted (X,Y, f, g), is a two-player, zero-sum game, where one
player, called the leader, first commits to an action x 2 X from its action space X ⇢ Rn, after
which the second player, called the follower, takes an action y 2 Z(x) ⇢ Y from a subset of of
his action space Y ✓ Rm determined by the action correspondence Z : Rn ◆ Y. As is standard
in the optimization literature, we assume throughout that the follower’s action correspondence can
be equivalently represented via a coupling constraint function g : Rn ⇥ Rm ! Rd s.t. Z(x)

.
=

{y 2 Y | g(x,y) � 0}. An action profile (x,y) 2 X ⇥ Y comprises actions for both players.
Once both players have taken their actions, the leader (resp. follower) receives a loss (resp. payoff)
f(x,y), defined by an objective function f : Rn ⇥ Rm ! R. We define the marginal function
f⇤(x)

.
= maxy2Z(x) f(x,y), which, given an action for the leader, outputs its ensuing payoff,

assuming the follower best responds. The constraints in a min-max Stackelberg game are said to be
uncoupled if Z(x) = Y, for all x 2 X. A min-max Stackelberg game is said to be continuous iff
1. the objective function f is continuous; 2. the action spaces X and Y are non-empty and compact;
and 3. the action correspondence Z is continuous, non-empty- and compact-valued.4

Stackelberg Equilibrium. The canonical solution concept for min-max Stackelberg games is the
(", �)-Stackelberg equilibrium ((", �)-SE, or SE if " = � = 0), an action profile (x⇤,y⇤) 2 X ⇥ Y
s.t. k⇧Rd

�
[g(x⇤,y⇤)]k � and minx2X f⇤(x) + " � f (x⇤,y⇤) � maxy2Z(x⇤) f (x

⇤,y)� �, for
", � � 0.5 As a straightforward corollary of Theorem 3.2 of Goktas and Greenwald [33], a SE is
guaranteed to exist in continuous Stackelberg games. Moreover, the set of SE can be characterized as
solutions to the following coupled min-max optimization problem: minx2X maxy2Z(x) f(x,y).

4See Theorem 5.9 and Example 5.10 of Rockafellar and Wets [63] for conditions on g that guarantee the
continuity of Z or Section 3 of Goktas and Greenwald [33].

5For � > 0, this definition of an (", �)-SE is more general than the one introduced by Goktas and Greenwald
[33], as it allows for the coupling constraints to be satisfied only approximately, which is necessary in this paper,
as the coupling constraints can only be accessed via a stochastic oracle.
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An alternative but weaker solution concept previously considered for min-max Stackelberg games
[71] is the "-generalized Nash equilibrium ("-GNE, or GNE if " = 0), i.e., (x⇤,y⇤) 2 X ⇥ Z(x⇤)
s.t. minx2X f (x,y⇤) + " � f (x⇤,y⇤) � maxy2Z(x⇤) f (x

⇤,y) � ", for some " � 0.6 In
general, the set of GNE and SE need not intersect; as such, GNE are not necessarily solutions of
minx2X maxy2Z(x) f(x,y) (see, Appendix A of Goktas and Greenwald [33]). Furthermore, there
is no GNE whose value is less than the SE value of a game. When a min-max Stackelberg game’s
constraints are uncoupled, a(n "-)GNE is called a(n ")-saddle point, or a(n "-)Nash equilibrium,
and is also an SE. Finally, a saddle point is guaranteed to exist [67, 73] in continuous min-max
Stackelberg games with uncoupled constraints, a convex-concave objective f, and convex action
spaces X and Y, in which case such games have traditionally been referred to as convex-concave
min-max (simultaneous-move) games or saddle-point problems [13].

Convex-Concave Games. A min-max Stackelberg game is said to be convex-concave if, in addition
to being continuous, 1. f⇤ is convex; 2. y 7! f(x,y) is concave, for all x 2 X; 3. X and Y are
convex; and 4. Z is convex-valued. This definition generalizes that of convex-concave min-max
(simultaneous-move) game, because in such games, the marginal function f⇤ is necessarily convex
when f is convex, by Danskin’s theorem [23]. Assuming access to an exact first-order oracle, an
(", �)-SE of a convex-concave min-max Stackelberg game can be computed in polynomial time when
f and g are Lipschitz-continuous [33], while the computation is NP-hard in continuous min-max
Stackelberg games, even when X and Y are convex, f is convex-concave, and g is affine [47].

All the conditions that define a convex-concave Stackelberg game depend on the game primitives,
namely (X,Y, f, g), and are well-understood (see, for instance Section 5 of Rockafellar and Wets
[63]), with the exception of the condition that the marginal function f⇤ be convex. While it is difficult
to obtain necessary and sufficient conditions on the game primitives that ensure the convexity of f⇤,
one possibility is to require f to be convex in (x,y) and Z to be concave.7 The following sufficient
conditions, which also guarantee concavity, were introduced by Goktas and Greenwald [33].
Assumption 1 (Convex-Concave Assumptions). 1. The objective function f(x,y) is convex in
(x,y), and concave in y , for all x 2 X; 2. the action correspondence Z is concave; 3. the action
spaces X and Y are convex.
As these assumptions are only sufficient, they are not necessarily satisfied in all applications of convex-
concave min-max Stackelberg game. Hence, the convexity of the marginal function must sometimes
be established by other means. We thus provide the following alternative set of sufficient conditions,
which we use to show that the reach-avoid problem we study in Section 5 is convex-concave.
Assumption 2 (Alternative Convex-Concave Assumptions). 1. (Convex-concave objective) The
objective f(x,y) is convex in x, for all y 2 Y, and concave in y , for all x 2 X; 2. (log-convex-
concave coupling) the coupling constraint g(x,y) is log-convex in x for all y 2 Y, and concave in
y for all x 2 X; and 3. the action spaces X and Y are convex.
Computation. We now turn our attention to the computation of (", �)-SE in convex-concave min-max
Stackelberg games, assuming access to an unbiased first-order stochastic oracle ( bF, bG,F ,G) com-
prising random functions bF : Rn⇥Rm⇥⇥! R and bG : Rn⇥Rm⇥�! Rd and sampling distribu-
tions F 2 �(⇥) and G 2 �(�) s.t. E✓⇠F [ bF(x,y ;✓)] = f(x,y), E�⇠G [ bG(x,y ;�)] = g(x,y),
E✓ [r(x,y)

bF (x,y ;✓)] = rf(x,y), and E� [r(x,y)
bG(x,y ;�)] = rg(x,y). The following as-

sumptions are required for the convergence of our methods.
Assumption 3. 1. (Lipschitz game) f and g are Lipschitz-continuous; 2. (concave representation)
the coupling constraint function y 7! g(x,y) is concave for all x 2 X; 3. (Slater’s condition)
8x 2 X, 9by 2 Y s.t. g(x, by) > 0; and 4. (stochastic oracle) there exists an unbiased first-order
stochastic oracle ( bF, bG,F ,G) with bounded variance s.t. 8(x,y) 2 X⇥Y, E[k bG(x,y ;�)k2]  �g ,
E[kr(x,y)

bF (x,y ;✓)k2]  �rf , and E[kr(x,y)
bG(x,y ;�)k2]  �rg , for �g ,�rf ,�rg � 0.

In the sequel, we rely on the following notation and definitions. For any action x 2 X of
the leader, we can re-express the marginal function in terms of the Lagrangian `(y ,�;x)

.
=

f(x,y) + h�, g(x,y)i (see, for instance, Section 5 of Boyd et al. [17]) as follows: f⇤(x) =
maxy2Y min�2Rd

+
`(y ,�;x). Further, we define the follower’s best-response correspondence

6A GNE is guaranteed to exist in continuous min-max Stackelberg games when the objective function f is
convex-concave, the action spaces A and B are convex, and the action correspondence Z is convex-valued [4].

7See Section 2 of Nikodem [57] and Chapter 36 of Czerwik [22] for conditions on g which guarantee that Z
is concave and/or continuous and/or convex-valued.
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Y⇤(x)
.
= argmaxy2Y

min�2Rd
+
`(y ,�;x), and the KKT multiplier correspondence ⇤⇤(x)

.
=

argmin�2Rd
+
maxy2Y `(y ,�;x). With these definitions in hand, under Assumption 3, we can build

an unbiased first-order stochastic oracle bL(y ,�;x,✓,�)
.
= bF(x,y ;✓)+ < �, bG(x,y ;�) > for

the Lagrangian ` s.t. E(✓,�)[ bL(y ,�;x,✓,�)], where the expectation is taken over (✓,�) ⇠ F ⇥ G.

Algorithms. Assuming access to an exact first-order oracle (f, g), a natural approach to comput-
ing SE in convex-concave min-max Stackelberg games with uncoupled constraints games (i.e.,
saddle-point problems) is to simultaneously run projected gradient descent and projected gra-
dient ascent on the objective function f w.r.t. x 2 X and y 2 Y, i.e., for t = 0, 1, 2, . . .,
(x(t+1),y(t+1))  ⇧X⇥Y [(x(t),y(t)) + (�rxf,ryf)(x

(t),y(t))], a method known under
the names of Arrow-Hurwicz-Uzawa, primal-dual, and (simultaneous) gradient descent ascent
(GDA) [5, 6]. Intuitively, any fixed point of GDA in such games, i.e., (x⇤,y⇤) 2 X ⇥ Y s.t.
k(x⇤,y⇤) � ⇧X⇥Y [(x⇤,y⇤) + (�rxf,ryf)(x

⇤,y⇤)]k= 0, satisfies the necessary and suffi-
cient optimality condition for an action profile to be a SE. More generally, in convex-concave
min-max Stackelberg games (without coupled constraints), this approach fails, as the neces-
sary and sufficient optimality condition for an action profile (x⇤,y⇤) 2 X ⇥ Y to be a SE is
k(x⇤,y⇤)�⇧X⇥Z(x⇤)[(x

⇤,y⇤)+ (�rxf
⇤(x⇤),ryf(x

⇤,y⇤))]k= 0, where, for any leader action
bx 2 X,rxf

⇤(bx) .
= `(y⇤(bx),�⇤(bx); bx), for some (y⇤,�⇤)(bx) 2 Y⇤(bx)⇥⇤⇤(bx), by the subdiffer-

ential envelope theorem [33]. The observation that any subgradient of rxf
⇤ depends on the optimal

KKT multipliers motivates a first-order method based on the gradient of the Lagrangian.

A min-max Stackelberg game can be seen as a three-player game minx2X maxy2Z(x) f(x,y) =
minx2X maxy2Y min�2Rd

+
`(y ,�;x), where the x-player moves first, and the y- and �-players

move second, simultaneously, because strong duality holds under Assumption 3 (Slater’s con-
dition [68]) for the inner min-max optimization problem, i.e., maxy2Y min�2Rd

+
`(y ,�;x) =

min�2Rd
+
maxy2Y `(y ,�;x). The problem of computing an SE can thus be reduced to the min-max

optimization min(x,�)2X⇥Rd
+
maxy2Y `(y ,�;x), which we might hope to solve by running GDA

on `(y ,�;x) w.r.t. (x,�) and y over X ⇥ Rd
+ and Y, respectively. Although y 7! `(y ,�;x)

is concave, (x,�) 7! `(y ,�;x) is not convex, and its stationary points (i.e., points (y⇤,�⇤;x⇤)
s.t. k(y⇤,�⇤;x⇤) � ⇧

Y⇥Rd
+⇥X

[(y⇤,�⇤;x⇤) + (ry `,�r�`,�rx`)(y
⇤,�⇤;x⇤)]k= 0) do not

necessarily coincide with SE even in simple convex-concave min-max Stackelberg games [35].

Algorithm 1 Saddle-Point-Oracle SGD/Nested SGDA

Inputs: X,Y, bF, bG,F ,G,x(0), Tx , {⌘(t)x }t , �
(+ for nested SGDA:) ⇤,y0(0),�0(0), Ty , {⌘(t)y }t
Outputs: (x(t),y(t),�(t))

Tx

t=0

1: for t = 0, . . . , Tx do

2: if Saddle-Point-Oracle SGD then

3: Find (y(t),�(t)) 2 Y ⇥ Rd
+ s.t.

4: max
y2Y

`(y(t),�;x(t))� min
�2Rd

+

`(y ,�(t);x(t))  �,

5: if Nested SGDA then

6: for s = 0, . . . , Ty do

7: Sample ✓ ⇠ F ,� ⇠ G
8: y0(s+1) ⇧Y

h
y0(s)+ ⌘(s)y ry

bL(y0(s),�0(s);x(t),✓,�)
i

9: �0(s+1) ⇧⇤

h
�0(s)� ⌘(s)y r�

bL(y0(s),�0(s);x(t),✓,�)
i

10: Average iterates (y(t),�(t)) (y 0

⌘y
,�0

⌘y
)

11: Sample ✓ ⇠ F ,� ⇠ G
12: x(t+1) ⇧X

h
x(t)�⌘(t)x rx

bL(y(t),�(t);x(t),✓,�)
i

13: return (x⌘x ,y
(Tx ),�(Tx ))

As GDA fails in these games,
Goktas and Greenwald [33] de-
veloped nested GDA, a nested
first-order method for computing
an (", �)-SE, which solves the in-
ner maximization problem by run-
ning GDA on ` w.r.t. y and �
over constraint sets Y and Rd

+
until convergence to a �-saddle
point (by, b�). Then, exploiting
the convexity of the marginal
function f⇤, the algorithm runs
a descent step on f⇤ w.r.t. x,
in which, for any leader action
x 2 X, a subgradient rxf

⇤

is approximated by \rxf
⇤(x) =

`(by, b�;x). In this paper, we
replace the exact first-order ora-
cle used by nested GDA with a
stochastic one, the gradient de-
scent step with a step of stochastic
gradient descent (SGD), and GDA
with stochastic GDA (SGDA), us-
ing in both cases the stochastic

Lagrangian oracle bL. We call our method nested stochastc gradient descent ascent (nested SGDA).
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We begin by presenting saddle-point-oracle stochastic gradient descent algorithm (saddle-point-
oracle SGD, Algorithm 1), whose analysis we build on to develop our primary contribution, nested
SGDA. Following Goktas and Greenwald’s [33] max-oracle gradient descent algorithm, saddle-point-
oracle SGD runs SGD on f⇤, assuming access to an oracle, which, for any leader action x 2 X,
returns a �-saddle point of (y ,�) 7! `(y ,�;x). Our second algorithm, nested stochastic gradient
descent ascent (nested SGDA, Algorithm 1), follows the same logic as saddle-point-oracle SGD, but
implements the saddle-point oracle by running SGDA. The following theorem establishes conditions
under which both of our algorithms converge to an ("+ �, �)-SE in a number of oracle calls that is
polynomial in 1/" and 1/�.8

Theorem 3.1. Let (X,Y, f, g) be a convex-concave min-max Stackelberg game for which Assump-
tion 3 holds. For any ", � � 0, if nested SGDA (resp. saddle-point-oracle SGD) is run with inputs9

that satisfy for all t 2 N+, ⌘(t)x , ⌘(t)x 2 ⇥ (1/pt+1), and outputs (x⇤,y⇤,�⇤), then in expectation
over all runs of the algorithm (i.e., sample paths of ✓ and �), the action profile (x⇤,y⇤) is an
(" + �, �)-SE after Õ(1/"2�2) (resp. Õ(1/"2)) oracle calls. If, in addition, f⇤ is µ-strongly-convex,
then (x⇤,y⇤) is an ("+ �, �)-SE after Õ(1/"�2) (resp. Õ(1/")) oracle calls.

4 Policy Gradient in Convex-Concave Zero-Sum Markov Stackelberg Games

In this section, we reduce the computation of Stackelberg equilibrium in zero-sum Markov Stackelberg
games to a coupled min-max optimization problem, which enables us to derive a policy gradient
method for these games based on our nested SGDA algorithm.

We consider zero-sum Markov Stackelberg games M .
= (l, n,m, d,S,A,B, µ, r, g, p, �) with state

space S ⇢ Rl and action spaces A ⇢ Rn and B ⇢ Rm for the leader and follower, respectively, where
the follower’s actions are constrained by the leader’s via vector-valued state-dependent coupling
constraints g : S ⇥ Rn ⇥ Rm ! Rd s.t. that define a correspondence C(s,a) .

= {b 2 B |
g(s,a, b) � 0}. We define the set of states with non-trivially coupled constraints N .

= {s 2 S |
9(a, b) 2 A⇥B, g(s,a, b) < 0}. A Markov policy for the leader (resp. follower)—hereafter policy
for short—is one that is history independent, and thus a mapping from states to actions ⇡a : S ! A
(resp. ⇡b : S ! B). A policy profile ⇡

.
= (⇡a ,⇡b) 2 AS ⇥ BS is a tuple comprising policies

for the leader and follower, respectively. The follower’s feasible policy correspondence is given by
Z(⇡a) = {⇡b : S ! B | 8s 2 N , g(s,⇡(s)) � 0}.

A continuous action zero-sum Markov Stackelberg game is a game where 1. for all states s 2 S, the
reward function (a, b) 7! r(s,a, b) is continuous and bounded, i.e., kr(s, ·, ·)k

1
 rmax < 1,

for some rmax 2 R+; 2. the action spaces A and B are non-empty and compact; and 3. for all
states s 2 S, the correspondence a 7!7! C(s,a) is continuous, non-empty-, and compact-valued. A
continuous state zero-sum Markov Stackelberg game is a game where 1. S is non-empty and compact
and 2. the reward function r is continuous and bounded, i.e., krk

1
<1.

A history h 2 (S ⇥ A ⇥ B)⌧ of length ⌧ 2 N is a sequence of state-action tuples
h = (s(t),a(t), b(t))⌧�1

t=0 . Given a policy profile ⇡ and a history of play h of length
⌧ , we define the discounted history distribution as ⌫⇡ ,⌧ (h) = µ(s(0))

Q⌧�1
t=0 �tp(s(t+1) |

s(t),a(t), b(t)) ⇡(s(t))(a
(t), b(t)). Define the set of all realizable trajectories H⇡ ,⌧ of length ⌧ under

policy ⇡ as H⇡ ,⌧ .
= supp(⌫⇡ ,⌧ ), i.e., the set of all histories that occur with non-zero probability. For

convenience, we denote by ⌫⇡
.
= ⌫⇡ ,1, and by H =

�
S(t), A(t), B(t)

�
t

any randomly sampled his-
tory from ⌫⇡ . Finally, we define the discounted state-visitation distribution under any initial state dis-
tribution µ as �⇡µ (s) =

P
1

t=0

P
h2H

⇡ ,t :S(t)=s µ(s
(0))

Qt
k=1 �

kp(s(k) | s(k�1),a(k�1), b(k�1)).

Given a policy profile ⇡ , the (state-)value function v⇡ : S ! R and the action-value function q⇡ : S⇥
A ⇥B ! R are defined in terms of ⌫⇡ as v⇡ (s) .

= EH⇠⌫⇡

⇥P
1

t=0 r
�
S(t), A(t), B(t)

�
| S(0) = s

⇤

and q⇡ (s,a, b)
.
= EH⇠⌫⇡

⇥P
1

t=0 r
�
S(t), A(t), B(t)

�
| S(0) = s, A(0) = a, B(0) = b

⇤
, respec-

tively. The cumulative payoff function u : AS ⇥ BS ! R is then defined in terms of the value
function as u(⇡a ,⇡b)

.
= ES⇠µ [v⇡ (S)], i.e., the total expected loss (resp. gain) of the leader (resp.

8We include detailed theorem statements and proofs in the full version of the paper.
9⇤ should be chosen as a superset of all optimal KKT multipliers, i.e., [x2X⇤

⇤(x) ✓ ⇤ (see Appendix C).
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follower). Additionally, the marginal action-value function q⇤⇡ (s,a)
.
= maxb2C(s,a) q

⇡ (s,a, b) is
the payoff when play initiates at state s with the leader taking action a, after which the follower best
responds (at state s only), with both players playing according to ⇡ thereafter. Finally, for any leader
policy ⇡a 2 AS , we define the marginal (state-value) function u⇤(⇡a)

.
= max⇡b2Z(⇡a ) u(⇡a ,⇡b).

Recursive Stackelberg Equilibrium. A policy profile ⇡⇤ .
= (⇡⇤

a ,⇡
⇤

b) 2 AS⇥BS is called an (", �)-
recursive (or Markov perfect) Stackelberg equilibrium iff 8s 2 S, k⇧Rd

�
[g(s,⇡⇤(s))]k  � and

max⇡b2Z(⇡a ) v
(⇡⇤

a ,⇡b )(s)��  v⇡
⇤
(s)  min⇡a2AS max⇡b2Z(⇡a ) v

(⇡a ,⇡b )(s)+". A recursive
SE is guaranteed to exist in continuous state, continuous action zero-sum Markov Stackelberg games
[36]. A policy profile ⇡⇤ .

= (⇡⇤

a ,⇡
⇤

b) 2 AS ⇥ Z(⇡⇤

a) is called an (", �)-Markov perfect GNE iff
8s 2 S, max⇡b2Z(⇡a ) v

(⇡⇤
a ,⇡b )(s)� �  v⇡

⇤
(s)  min⇡a2AS v⇡a ,⇡⇤

b (s) + ".

Convex-Concave Markov Stackelberg Games. As we have shown (Theorem 3.1), Stackelberg
equilibria can be computed in polynomial time in convex-concave min-max Stackelberg games,
assuming access to an unbiased first order-stochastic oracle. We now define an analogous class of
Markov Stackelberg games, namely zero-sum Markov Stackelberg games in which the min-max
Stackelberg game played at each state is convex-concave. A convex-concave zero-sum Markov
Stackelberg game is a continuous state, continuous action zero-sum Markov game where, for all
policy profiles ⇡ 2 AS ⇥ BS , 1. the marginal action-value function (s,a) 7! q⇤⇡ (s,a) is convex,
2. the action-value function (s, b) 7! q⇡ (s,a, b) is concave, for all a 2 A, 3. the state and action
spaces S,A and B are convex, and 4. the action correspondence C is convex-valued. We note that
any continuous state, continuous action convex-concave zero-sum Markov game, i.e., 1. N = ;,
2. (s,a) 7! r(s,a, b) is convex, for all b 2 B, 3. (s, b) 7! r(s,a, b) is concave, for all a 2 A,
4. (s,a) 7! p(· | s,a, b) is stochastically convex, for all b 2 B; and 5. (s, b) 7! p(· | s,a, b) is
stochastically concave, for all a 2 A, is a convex-concave zero-sum Markov Stackelberg game for
which the set of Markov perfect generalized Nash equilibria is a subset of the recursive SE.

As our plan is to use our nested SGDA algorithm to compute recursive Stackelberg equilibria,
we begin by showing that zero-sum Markov Stackelberg games are an instance of min-max
Stackelberg games. Assume parametric policy classes for the leader and follower, respectively,
namely P

X

.
= {⇡x : S ! A | x 2 X} ✓ AS and P

Y

.
= {⇡y : S ! B | y 2 Y} ✓ BS , for param-

eter spaces X ⇢ Rd and Y ⇢ Rd. Using these parameterizations, we redefine v(x,y) .
= v(⇡x ,⇡y ),

q(x,y) .
= q(⇡x ,⇡y ), u(x,y) .

= u(⇡x ,⇡y ), etc., and thus restate the problem of computing a recur-
sive SE as finding (x,y) 2 X⇥Y that solves minx2X maxy2Y2Z(x) v

(x,y)(s), for all states s 2 S.
As this optimization problem is infinite dimensional for continuous state games, we optimize the
objective and satisfy the constraints, both in expectation over the initial state distribution µ, thereby
reducing the problem to the min-max Stackelberg game minx2X maxy2Z(x) u(x,y).

In Appendix D, assuming 1. biaffine parametric policy classes, i.e., (s,x) 7! ⇡x(s) and (s,y) 7!
⇡y (s) are biaffine, and 2. non-empty, compact, and convex parameter spaces X and Y, we show that
the min-max Stackelberg game associated with any convex-concave zero-sum Markov Stackelberg
game is also convex-concave (Lemma 4). We also provide sufficient conditions on the primitives
M of any zero-sum Markov Stackelberg game to ensure that it is convex-concave (Lemma 5 and
6). At a high level, our results allow us to conclude that a zero-sum Markov Stackelberg game is
convex-concave if the 1. reward (resp. transition probability) function is concave (resp. stochastically
concave) in the state and the follower’s action; 2. the reward (resp. transition probability) function
is convex (resp. stochastically convex) in the state and the leader’s follower’s actions; and 3. the
follower’s action correspondence is concave.

Computation. We now turn our attention to the computation of recursive SE in convex-concave
zero-sum Markov Stackelberg games. Mirroring the steps by which policy gradient has been show to
converge in other settings [24], we first define an unbiased first-order stochastic oracle for zero-sum
Markov-Stackelberg games, given access to an unbiased first-order stochastic oracle for the reward
and probability transition functions. We then establish convergence of nested SGDA in this setting by
invoking Theorem 3.1 under the following assumptions.

Assumption 4 (Convergence Assumptions). 1. The parameter spaces X and Y are non-empty,
compact, and convex; 2. the policy parameterizations are biaffine, i.e., (s,x) 7! ⇡x(s) and
(s,y) 7! ⇡y (s) are biaffine; 3. the set of non-trivially constrained sets is finite N , i.e. kN k<1;
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4. (Slater’s condition) for all s 2 N and a 2 A, there exists bb 2 B s.t. g(s,a, bb) > 0; and 5. the
reward r , probability transition p, and coupling constraint g functions are Lipschitz-continuous.

Stochastic nested GDA relies on an unbiased first-order stochastic oracle ( bF, bG,F ,G), which we
can use to obtain unbiased first-order stochastic estimators of u and g. Since the constraints are
deterministic, we simply set bG(x,y ; s)

.
= (g(s,⇡x(s),⇡y (s)))s2S and G(s) .

= ⇢(s), for any
distribution ⇢ 2 �(S) over the state space to obtain an unbiased first-order stochastic oracle for
the constraints g. While for simplicity we define bG as such, bG is tractable to compute (i.e., finite-
dimensional) only when N is finite. When N is infinite, our theoretical results generalize by setting
bG(x,y ; s)

.
= (mins2N gc(s,⇡x(s),⇡y (s)))c2[d]; however, in practice, this estimator might be

intractable, in which case one might choose to abandon our theoretical guarantees in favor of the biased
estimator bG(x,y ; s)

.
= g(s,⇡x(s),⇡y (s)). In all cases, the definition ofr(x,y)

bG follows directly,

since bG is deterministic. Now, for any history h of length ⌧ , define the cumulative payoff estimator
bR(⇡ ;h)

.
=

P⌧�1
t=0 µ(s(0))

Qt�1
k=0 �

kp(s(k+1) | s(k),⇡(s(k)))r(s(k),⇡(s(k)))). We then construct
an estimator for u using first-order gradient estimator [69], i.e., we set bF(x,y ;h) .

= bR(⇡x ,⇡y ;h),
and r(x,y)

bF (x,y ;h)
.
= r(x,y)

bR(⇡x ,⇡y ;h). Regarding the variances of this oracle model, as
bG and r(x,y)

bG are deterministic, they have bounded variance. Moreover, if the policy and the
reward and transition probability functions are Lipschitz-continuous, then bR and r(x,y)

bR are also
Lipschitz-continuous if their domains are compact (i.e., if S, A, and B are compact). Hence bF and
r bF likewise must be Lipschitz-continuous, which implies that their variances must be bounded,
e.g., there exists �rf 2 R s.t. Eh [kr bF (x,y ;h)k2]  kr bF (x,y ;h)k2

1
= �rf where the middle

expression is well-defined sincer bF is Lipschitz-continuous over its compact domain.

With all of this machinery in place, we can now extend nested SGDA to compute recursive Stackelberg
equilibria in zero-sum Markov Stackelberg games (Algorithm 2; Appendix C). In the usual case,
when the policy parameterization does not represent the space of all policies AS ⇥ BS , this result
should be understood as convergence to the recursive Stackelberg equilibria of a game in which the
players’ action spaces are restricted to the parameterized policies.
Theorem 4.1. Let M be a convex-concave zero-sum Markov Stackelberg game. Under Assumption 4,
for any ", � � 0, if nested policy gradient descent ascent (Algorithm 2, Appendix C) is run with inputs
that satisfy for all t 2 N+, ⌘(t)x , ⌘(t)x 2 ⇥ (1/pt+1), and outputs (x⇤,y⇤,�⇤), then in expectation
over all runs of the algorithm (i.e., sample paths of ✓ and �), the policy profile (⇡x⇤ ,⇡y⇤) is an
("+ �, �)�recursive SE after Õ(1/"2�2) oracle calls.

5 Application: Reach-Avoid Problems

In this section, we endeavor to apply our algorithms to a real-world application, namely reach-avoid
problems. In a reach-avoid problem (e.g., [29, 32]), an agent seeks to reach one of a set of targets—
achieve liveness—while avoiding obstacles along the way—ensuring safety. Reach-avoid problems
have myriad applications, including network consensus problems [42], motion planning [21, 41],
pursuit-evasion games [30, 44], autonomous driving [43], and path planning [80], to name a few.

The obstacles in a reach-avoid problem are not necessary stationary; they may move, either randomly
or deliberately, around the environment. When the obstacles’ movement is random, the problem
can be modeled as an MDP. But when their movement is deliberate, so that they are more like a
rational opponent than a stochastic process, the problem is naturally modeled as a zero-sum game,
where the agent—the protagonist—aims to reach its target, while an antagonist—representing the
obstacles—seeks to prevent the protagonist from doing so. Past work has modeled these games as
simultaneous-move (e.g., [29], [32]), imposing what should be a hard constraint—that the agent
cannot collide with any of the obstacles—as a soft constraint in the form of large negative rewards.

Using the framework of zero-sum Markov Stackelberg games, we model this hard constraint properly,
with the leader as the antagonist, whose movements impose constraints on the moves of the follower,
the protagonist. We then use nested policy GDA to compute Stackelberg equilibria and simultaneous
SGDA to compute GNE, and show experimentally that the protagonist learns stronger policies in the
sequential (i.e., Stackelberg) game than in the simultaneous.
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A (discrete-time discounted infinite-horizon continuous state and action) reach-avoid game
(l,S, T,V,A,B, µ, r,h) comprises two players, the antagonist (or a-player) and the protagonist (or
b-player), each of whom occupies a state sa , sb 2 S in a state space S ⇢ Rl, for some l 2 N. The
protagonist’s goal is to find a path through the safe set V ⇢ S ⇥ S that reaches a state in the target set
T ⇢ V, while steering clear of the avoid set V = S ⇥ S \ V. This safe and avoid set formulation is
intended to represent capture constraints, which have been the focus of the reach-avoid literature [80].

Initially, the players occupy some state s(0) ⇠ µ 2 �(V) drawn from an initial joint distribution
µ over all states, excluding the target and avoid sets. At each subsequent time-step t 2 N+, the
antagonist (resp. protagonist) chooses a(t) 2 A (resp. b(t) 2 B) from a set of possible directions
A ✓ Rl (resp. B ✓ Rl) in which to move. After both the antagonist and the protagonist move,
they receive respective rewards �r(s(t),a(t), b(t)) and r(s(t),a(t), b(t)). Then, either the game
ends, with probability 1� �, for some discount rate � 2 (0, 1), or the players move to a new state
s(t+1) .

= h(s(t),a, b) =
⇣
ha(s

(t)
a ,a),hb(s

(t)
b , b)

⌘
, as determined by their respective displace-

ment functions ha : S ⇥A ! S and hb : S ⇥ B ! S. We can express this deterministic transition
as the following probability transition function p(s0 | s,a, b) .

= s0(h(s,a, b)).

We define the feasible action correspondence C(s,a) .
= {b 2 B | ↵(s,a, b) � 0} via a vector-

valued safety constraint function ↵ : S2 ⇥ S ⇥ S ! Rd, which outputs a subset of the protagonist’s
actions in the safe set, i.e., for all (s,a) 2 S2 ⇥ A, C(s,a) ✓ {b 2 B | h(s,a, b) 2 V}. Note
that we do not require this inclusion to hold with equality; in this way, the protagonist can choose to
restrict itself to actions far from the boundaries of the avoid set, thereby increasing its safety, albeit
perhaps at the cost of liveness. Overloading notation, we define the feasible policy correspondence
C(⇡a)

.
= {⇡b : S ! B | ⇡b(s) 2 C(s,⇡a(s)), for all s 2 S}.

We consider two forms of reward functions. The first, called the reach probability reward,
r(s,a, b) = T(sb), is an indicator function that awards the protagonist with a payoff of 1 if
it enters the target set, and 0 otherwise. Under this reward function, the cumulative payoff function
(i.e., the expected value of these rewards in the long term) represents the probability that the protag-
onist reaches the target, hence its name. The second reward function is the reach distance reward
function, r(s,a, b) = �mins02T ksb � s0k2, which penalizes the protagonist based on how far
away it is from the target set. With all these definitions in hand, we can now cast the reach-avoid
game as a zero-sum Markov Stackelberg game (2l, l, l, d,S,A,B, µ, r,↵, p, �).

The next assumption ensures that 1. under the reach probability reward function, a reach-avoid game
is a convex-non-concave zero-sum Markov Stackelberg game (i.e., the marginal function x 7! u⇤(x)
is convex, and the cumulative payoff function y 7! u(x,y) is non-concave, for all x 2 X); and
2. under the reach distance reward function, a reach-avoid game is a convex-concave zero-sum
Markov Stackelberg game. Furthermore, a Markov perfect GNE is guaranteed to exist under this
assumption, assuming the reach distance reward but not under the reach probability distance.10

To state this assumption, for convenience, we model the leader’s policy ⇡a(s)
.
= xsa as parameter-

ized by x 2 X ⇢ Rl⇥l, and the follower’s policy ⇡b(s)
.
= ysb as parameterized by y 2 Y ⇢ Rl⇥l.

Note also that we assume decentralized, play, meaning the players learn only from their own state
and rewards, and maintain their policies independently of one another.
Assumption 5 (Convex-Concave Reach-Avoid Game). 1. The state space S and the target set T
are non-empty and convex; 2. the action spaces A,B are non-empty, compact and convex; 3. the
displacement functions ha ,hb are affine; 4. a 7! ↵(s,a, b) is log-convex for all b 2 B, and
b 7! ↵(s,a, b) for all (s,a) 2 S ⇥A; 5. the players’ parameter spaces X and Y are non-empty,
compact, and convex; and 6. the players policies are biaffine, i.e., ⇡x(s)

.
= xsa and ⇡y (s)

.
= xsb .

Part 1 is a standard assumption commonly imposed on reach-avoid games (see, for instance Fisac
et al. [29]). Part 3 is satisfied by natural displacement functions of the type h(s,a, b) = s+�(a, b),
for some � 2 R, which is a natural characterization of all displacement functions with constant
velocity �, when A = B ✓ {z 2 S | kzk= 1}. Part 4 is satisfied by various action correspondences,
such as ↵(s,a, b)

.
= exp{mins02V

k(ha(sa ,a), sb)�s0k}�1�khb(sb , b)�sbk, which shrinks

10The existence of Markov perfect GNE, and hence GNE, is guaranteed by a straightforward generalization of
Shapley’s [65] result on the existence of Markov perfect Nash equilibria in zero-sum Markov games.
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the space of actions exponentially as the protagonist approaches the antagonist, and can thus be
interpreted as describing a safety-conscious protagonist. The following theorem states the convex-
concavity properties of reach-avoid games, and shows polynomial-time computability of recursive SE
under Assumption 5. Note that for the reach probability reward function, it is not possible to obtain a
polynomial-time convergence result, result since the rewards are not even continuous.
Theorem 5.1. Under the reach distance (resp. reach probability) reward function, any reach-avoid
game for which Assumption 5 hold is convex-concave (resp. convex-non-concave). Moreover, if ↵ is
Lipschitz-continuous, then nested SGDA is guaranteed to converge in such games to recursive SE
policies in polynomial time.

Experiments. We ran a series of experiments on reach-avoid problems,11 which were designed to
assess the efficacy of policies learned in a Stackelberg game formulation as compared to those learned
in a simultaneous-move game formulation, assuming complex, i.e., neural, policy parameterizations.

We consider a variant of the two-player differential game introduced in Isaacs [38], played by two
Dubins cars. A Dubins car is a simplified model of a vehicle with a constant forward speed ⌫ and
a constrained turning radius !. We model both the protagonist and antagonist as Dubins cars [38]
moving around a 2-dimensional state space. The target set is a select subset of the state space, while
the avoid set, which defines the safe set, is a ball around the antagonist.

We experiment with only the reach distance, not the reach probability, reward function. In all safe
states, the reward is actually a penalty, measuring the protagonist’s distance to the target set, while
a bonus � is awarded upon reaching a target, at which point the game ends. This reward function
suffices for our Stackelberg game setup, which enforces the hard constraint that the protagonist
cannot move into the avoid set. In our simultaneous-move game setup, we achieve a similar effect by
enhancing the aforementioned reward function with a large penalty (��) whenever the protagonist
touches the avoid set. As in the case of reaching the target, touching the avoid set ends the game.

We note that this reach-avoid game is not actually a continuous game, as there is a discontinuity in
the reward function when the target is reached. Additionally, it is possible for the antagonist to be
“cornered,” meaning left with an empty set of feasible actions (in which case the game ends). For
these reasons, recursive SE are not guaranteed to exist in our setup.

Our experiments were run on a 7x7 square grid, with the target set T a closed ball of radius 1 centered
along the lower edge, and the avoid set V a closed ball of radius 0.3 around the antagonist. We set the
bonus (resp. penalty) for reaching the target (resp. avoid set) � = 200, ! = 30�, and ⌫ = 0.25.

Using this experimental setup, we train two agents by playing two games, the Stackelberg and
simultaneous-move variants of the reach-avoid game, using nested policy GDA and SGDA, respec-
tively. We evaluate the protagonists’ policies to assess their safety and liveness characteristics.

Match-up Outcome Mean win length Loss/draw length

GNE vs. random 47 W, 18 L, 35 D 23.23± 7.53 33.71± 19.31
SE vs. random 95 W, 2 L, 3 D 18.16± 3.69 33.0± 20.8
GNE vs. chaser 0 W, 100 L, 0 D N/A 8.53± 1.90
SE vs. chaser 63 W, 36 L, 1 D 21.63± 5.04 11.06± 7.71

Table 1: Game results summary for GNE and SE agents.

To assess liveness,
we ran our agents
against an opponent
that plays actions
sampled uniformly
at random. To assess
safety, we ran our
agents against an
opponent who chases them, always taking actions that minimize their distance. Table 1 reports the
number of wins (W), losses (L), and draws (D), and average game lengths, of 100 games against each
opponent. An agent, playing the role of the protagonist, wins when it reaches the target set. A GNE
agent loses if it enters V, while a Stackelberg agent loses if it finds itself cornered. The game is a
draw if neither player wins or loses within 50 time steps.

We find that the SE agent outperforms the GNE agent by a large margin. The SE agent wins almost
all of its games against random, and roughly 2/3 of its games against the chaser, while the GNE agent
wins only half of its games against random, and none of its games against the chaser. Moreover, even
when the SE agent loses or draws, it tends to stay alive longer than the GNE agent. Not only does
our Stackelberg approach outperform GNE, it is tractable as well. Our methods thus seem to offer a
promising path to further progress solving the myriad of robotic applications of reach-avoid.

11Our code is found at: https://github.com/arjun-prakash/stackelberg-reach-avoid.
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