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Abstract

A major challenge in reinforcement learning is to develop practical, sample-efficient
algorithms for exploration in high-dimensional domains where generalization and
function approximation is required. Low-Rank Markov Decision Processes—where
transition probabilities admit a low-rank factorization based on an unknown feature
embedding—offer a simple, yet expressive framework for RL with function approx-
imation, yet existing algorithms either (1) are computationally intractable, or (2)
require restrictive statistical assumptions such as latent variable structure or access
to model-based function approximation. In this work, we propose the first provably
sample-efficient algorithm for exploration in Low-Rank MDPs that is both compu-
tationally efficient and model-free, allowing for general function approximation
while requiring no structural assumptions beyond a reachability condition that
we show is substantially weaker than that assumed in prior work. Our algorithm,
SpanRL, uses the notion of a barycentric spanner for the feature embedding as an
efficiently computable basis for exploration, performing efficient spanner computa-
tion by interleaving representation learning and policy optimization subroutines.
Our analysis—which is appealingly simple and modular—carefully combines sev-
eral techniques, including a new approach to error-tolerant barycentric spanner
computation, and a new analysis of a certain minimax representation learning
objective found in prior work.

1 Introduction
In reinforcement learning and control, many of the most promising application domains require
the agent to navigate complex, high-dimensional state and action spaces, where generalization and
function approximation is necessary. The last decade has witnessed impressive empirical success in
domains where data are abundant [34, 38, 26, 28, 27], but when data are limited, ensuring efficient
exploration in large domains is a major research question. For statistical efficiency, the foundations
have recently begun to take shape, with a line of research providing structural conditions that
facilitate sample-efficient exploration, as well as fundamental limits [37, 21, 39, 42, 14, 24, 17, 18].
Computational efficiency, however, remains a major challenge: outside of simple settings [7, 23],
existing algorithms with provable sample complexity guarantees are computationally inefficient, and
typically require solving intractable non-convex optimization problems [21, 11, 24, 10]. The prospect
of developing practical algorithms for exploration in high-dimensional state spaces that are both
computationally and statistically efficient raises three fundamental questions:

1. What are the right computational primitives for exploration? That is, how can one efficiently
represent and compute exploratory policies that allow the learner to explore the state space and
gather useful data?

2. How should one leverage function approximation—for example, via representation learning—to
discover such primitives in a computationally and statistically efficient fashion?

3. Given answers to the first two questions, how can one efficiently interleave function approxima-
tion and exploration to provide provably efficient algorithms?
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In this paper, we investigate these questions through the Low-Rank MDP model [36, 45, 1]. In a
Low-Rank MDP, the state space is large and potentially continuous, but the transition probabilities
admit an (unknown) low-rank factorization. Concretely, for a finite-horizon Low-Rank MDP with
horizon H , the transition densities for layer h ∈ [H] satisfy

Th(xh+1 ∣ xh, ah) = µ⋆h+1(xh+1)⊺ϕ⋆h(xh, ah), (1)

where ϕ⋆h(⋅, ⋅) ∈ Rd and µ⋆h+1(⋅) ∈ Rd are state-action and next-state embeddings. The low-rank
structure in (1) facilitates tractable exploration: if the embedding ϕ⋆h is known to the learner, one
can efficiently learn a near-optimal policy with sample complexity polynomial in the feature dimen-
sion d, and independent of the size of the state space [23]; in this regard, ϕ⋆h can be thought of as
a low-dimensional representation that enables sample-efficient RL. Following Agarwal et al. [1],
we consider the challenging setting in which both ϕ⋆h and µ⋆h+1 are unknown to the learner. This
formulation generalizes well-known frameworks such as the Block MDP (BMDP) model [12, 32],
and necessitates the use of representation learning: the agent must learn an embedding that approxi-
mates ϕ⋆h as it explores the environment, and must use this learned embedding to drive subsequent
exploration. This form of function approximation allows for great flexibility, as ϕ⋆h can be an arbitrary,
nonlinear function of the state; in practice, it is common to model ϕ⋆h as a neural net [49].

The Low-Rank MDP is perhaps the simplest MDP structure that demands systematic exploration
and nonlinear function approximation while allowing for a continuum of states, yet understanding of
efficient algorithm design for this model is surprisingly limited. Existing algorithms suffer from at
least one of the following drawbacks:

1. Computational intractability [21, 24, 14, 9, 43].

2. Strong modeling assumptions (e.g., ability to model µ⋆h+1(⋅), which facilitates application of
model-based RL techniques) [1, 40, 10]; in this work, we aim for model-free methods that only
require learning ϕ⋆h.

3. Restrictive structural assumptions (e.g., non-negativity or latent variable structure for the embed-
dings in (1)) [35, 49].

At the root of these limitations is the complex interplay between exploration and representation
learning: the agent must learn a high-quality representation to guide in exploring the state space,
but learning such a representation requires gathering diverse and informative data, which is dif-
ficult to acquire without having already explored the state space to begin with. Overcoming this
challenge—particularly where computational efficiency is concerned—requires (1) representation
learning procedures that lead to sufficiently expressive representations for downstream applications,
(2) efficient exploration procedures that are robust to errors in learned representations, and 3) un-
derstanding the interaction between these procedures, which must be interleaved. In this work, we
propose an algorithm that addresses each of these challenges, as detailed below.

Contributions. We provide the first provably computationally efficient and model-free algorithm for
general Low-Rank MDPs. Our algorithm, SpanRL, uses the notion of a barycentric spanner [6] for the
embedding ϕ⋆h as an efficiently computable basis for exploration, and combines this with a minimax
representation learning approach [35, 49]. SpanRL interleaves exploration with representation learning
in a layer-wise fashion, learning a new representation at each layer h using exploratory data gathered
at previous layers, then uses this representation to facilitate computation of a collection of exploratory
policies (a policy cover), which act as an approximate barycentric spanner for the features at layer
h + 1, ensuring good coverage for subsequent iterations. SpanRL is simple and modular, and its
analysis is surprisingly compact given the greater generality compared to prior work [49, 35, 31].

SpanRL can accommodate general-purpose function approximation to learn the representation ϕ⋆ (e.g.,
neural nets or other flexible classes) whenever a certain minimax representation learning objective
[35, 49] can be solved efficiently for the function class of interest. Compared to efficient algorithms
from prior work, SpanRL: (1) is model-free (i.e., only requires access to a function class Φ capable
of modeling ϕ⋆, and does not need to model µ⋆h+1), and (2) applies to general Low-Rank MDPs,
replacing strong additional assumptions such as non-negativity of the feature embeddings (so-called
latent variable structure) or block structure (see Table 1) with a reachability assumption that we show
is substantially weaker than that assumed in prior work (see Appendix H). As a secondary benefit,
the algorithm is reward-free. Our analysis carefully combines several new techniques, including (1)
an error-tolerant variant of the classical barycentric spanner computation algorithm of Awerbuch
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Table 1: Comparison of sample complexity required learn an ε-optimal policy. Φ denotes the feature
class, and Υ denotes an additional feature class capturing model-based function approximation.
For approaches that require non-negative (latent variable) structure, dLV [resp. γ] denotes the latent
variable dimension [resp. the reachability parameter in the latent representation], and for BMDPs, ∣S ∣
denotes the size of the latent state space. For SpanRL, η denotes the reachability parameter.

Comp. efficient Model-free General low rank Sample comp.
OLIVE [21]

(see also [24, 14, 9, 43]) ✗ ✓ ✓
d3AH5 log ∣Φ∣

ε2

FLAMBE [1] ✓ ✗ ✓1 d7A9H22 log(∣Φ∣∣Υ∣)
ε10

Rep-UCB [40]
(see also [10]) ✓ ✗ ✓

d4A2H5 log(∣Φ∣∣Υ∣)
ε2

MOFFLE [35]2 ✓ ✓ ✗
Non-negative/
latent variable

d19LV A32H19 log ∣Φ∣
(ε6γ3∧γ11)

BRIEE [49] ✓ ✓ ✗ Block MDP ∣S∣8A14H9 log ∣Φ∣
ε4

SpanRL (this paper) ✓ ✓ ✓
A4d9H4(d+log ∣Φ∣)

ε2∧η2

and Kleinberg [6], and (2) a new analysis of a minimax representation learning objective introduced
in Modi et al. [35], Zhang et al. [49], which shows for the first time that this objective can lead to
meaningful guarantees in general Low-Rank MDPs without latent variable structure; this increased
generality is meaningful, as we show in Appendix H that there is an exponential separation between
our guarantees and those that require such a structure.

Organization. Section 2 formally introduces the Low-Rank MDP model and the online reinforce-
ment learning framework we consider. In Section 3, we highlight challenges faced by previous
approaches, introduce our main algorithm, SpanRL, and show how it overcomes these challenges, and
then present its main sample complexity guarantee.

Comparison to ArXiv Version. After the initial submission of this work, we developed a substan-
tially improved of the algorithm that removes the reachability assumption at the cost of a larger (but
still polynomial) sample complexity guarantee. We have included this algorithm and its analysis in
the ArXiv version of this paper [30].

2 Problem Setting
2.1 Low-Rank MDP Model
We work in an episodic, finite-horizon reinforcement learning framework, where H ∈ N denotes the
horizon. A Low-Rank MDP [36, 45, 1] is a tupleM = (X ,A, (ϕ⋆h)h∈[H], (µ⋆h)h∈[H], ρ) consisting of
a state space X , action spaceA with ∣A∣ = A, distribution over initial states ρ ∈∆(X ), and mappings
µ⋆h+1 ∶ X → Rd and ϕ⋆h ∶ X ×A → Rd.3 Beginning with x1 ∼ ρ, an episode proceeds in H steps,
where for each step h ∈ [H], the state xh evolves as a function of the agent’s action ah via

xh+1 ∼ Th(⋅ ∣ xh,ah),
where Th is a probability transition kernel, which is assumed to factorize based on ϕ⋆h and µ⋆h. In
detail, we assume that there exists a σ-finite measure ν on X such that for all 1 ≤ h ≤H − 1, and for
all x ∈ X and a ∈ A, the function x′ ↦ µ⋆h+1(x′)⊺ϕ⋆h(x, a) is a probability density with respect to
ν (i.e. the function is everywhere non-negative and integrates to 1 under ν). For any X ′ ⊆ X , the
probability that xh+1 ∈ X ′ under xh+1 ∼ Th(⋅ ∣ xh, ah) is then assumed to follow the law

Th(X ′ ∣ xh, ah) = ∫
X ′
µ⋆h+1(x)⊺ϕ⋆h(xh, ah)dν(x). (2)

For notational compactness, we assume (following, e.g., Jiang et al. [21]) that the MDPM is layered
so that X = X1 ∪ ⋅ ⋅ ⋅ ∪XH for Xi ∩Xj = ∅ for all i ≠ j, where Xh ⊆ X is the subset of states in X

1For the stated sample complexity, FLAMBE requires access to a sampling oracle for the learner model. Without
this oracle, the results require additional latent variable structure and a reachability assumption.

2We compare to the variant of MOFFLE that uses the same representation learning objective we consider. Other
variants have improved sample complexity, but make use of stronger oracles.

3We emphasize that neither µ⋆h nor ϕ⋆h is known to the agent, in contrast to the linear MDP setting [44, 23].
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that are reachable at layer h ∈ [H]. This can be seen to hold without loss of generality (modulo
dependence on H), by augmenting the state space to include the layer index.

Remark 2.1 (Comparison to previous formulations). Our formulation, in which the transition
dynamics (2) are stated with respect to a base measure ν, are a rigorous generalization of Low-
Rank MDP formulations found in previous works [23, 1], which tend to implicitly assume the state
space is countable and avoid rigorously defining integrals. We adopt this more general formulation
to emphasize the applicability our results to continuous domains. However, in the special case
where state space is countable, choosing ν as the counting measure yields Th(X ′ ∣ xh, ah) =
∑x∈X ′ µ

⋆
h+1(x)⊺ϕ⋆h(xh, ah), which is consistent with prior work.

Policies and occupancy measures. We define ΠM = {π ∶ X →∆(A)} as the set of all randomized,
Markovian policies. For a policy π ∈ ΠM, we let Pπ denote the law of (x1,a1), . . . , (xH ,aH)
under ah ∼ π(xh), and let Eπ denote the corresponding expectation. For any X ′ ⊆ Xh, we let
Pπ
h[X ′] ∶= Pπ[xh ∈ X ′] denote the marginal law of xh under π. For x ∈ Xh, we define the occupancy

measure dπ(x) ∶= dPπ
h

dν
(x) as the density of Pπ

h with respect to ν.

2.2 Online Reinforcement Learning and Reward-Free Exploration
We consider a standard online reinforcement learning framework where the Low-Rank MDPM is
unknown, and the learning agent interacts with it in episodes, where at each episode the agent executes
a policy of the form π ∶ X → ∆(A) and observes the resulting trajectory (x1,a1), . . . , (xH ,aH).
While the ultimate goal of reinforcement learning is to optimize a policy with respect to a possibly
unknown reward function, here we focus on the problem of reward-free exploration, which entails
learning a collection of policies that almost optimally “covers” the state space, and can be used to
efficiently optimize any downstream reward function [12, 33, 15, 31]. To wit, we aim to construct an
policy cover, a collection of policies that can reach any state with near-optimal probability.

Definition 2.1 (Policy cover). For α ∈ (0,1], a subset Ψ ⊆ ΠM is an α-policy cover for layer h if

∀x ∈ Xh, max
π∈Ψ

dπ(x) ≥ α ⋅max
π′∈ΠM

dπ
′
(x). (3)

We show (Appendix G) that given access to such a policy cover with constant α, it is possible to
optimize any downstream reward function with polynomial sample complexity.

Assumptions. To facilitate learning a policy cover, we make the following reachability assumption.

Assumption 2.1 (η-reachability). For any h ∈ [H] and x ∈ Xh, maxπ∈ΠM d
π(x) ≥ η ⋅ ∥µ⋆h(x)∥.

Reachability is necessary if one aims to build a policy cover that satisfies (3) uniformly for all states;
without such a condition, one gives up on covering hard-to-reach states. Some notion of reachability
is required in essentially all prior work on efficient model-free algorithms for Low-Rank MDPs
[32, 35, 5], and was only very recently removed in the (more restrictive) BMDP setting [31, 49].

Remark 2.2 (Comparison to other reachability-like assumptions). Assumption 2.1 generalizes and
subsumes all previous reachability-like conditions of which we are aware [33, 46, 1, 35]. Notably,
reachability is implied by the notion of feature coverage [5] (used in the context of transfer learning
in Low-Rank MDPs), which asserts that supπ∈ΠM

λmin(Eπ[ϕ⋆h(xh,ah)ϕ⋆h(xh,ah)⊺]) ≥ η, for some
η > 0. It is also implied by explorability [46], which is similar to feature coverage, but involves the
first moments of ϕ⋆h. Our reachability assumption is also weaker than that used in [1, 35] under the
latent variable model, and generalizes that made for BMDPs [33]. See Appendix H for details, as
well as an exponential separation between our assumptions and analogous assumptions in [1, 35].

Beyond reachability, we assume (following [1, 35]) for normalization that, for all h ∈ [H] and
(x, a) ∈ Xh ×A, ∥ϕ⋆h(x, a)∥ ≤ 1, and that for all g ∶ Xh → [0,1],

∥∫
Xh

µ⋆h(x)g(x)dν(x)∥ ≤
√
d. (4)

Function approximation and desiderata. We do not assume that the true features (ϕ⋆h)h∈[H] or
the mappings (µ⋆h)h∈[H] are known to the learner. To provide sample-efficient learning guarantees
we make use of function approximation as in prior work [3, 35], and assume access to a feature class
Φ ⊆ {ϕ ∶ X ×A→ Rd} that contains ϕ⋆h, for h ∈ [H − 1].
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Assumption 2.2 (Realizability). The feature class Φ ⊆ {ϕ ∶ X ×A→ Rd} has ϕ⋆h ∈ Φ for all h ∈ [H].
Moreover, for all ϕ ∈ Φ, x ∈ X , and a ∈ A, it holds that ∥ϕ(x, a)∥ ≤ 1.

The class Φ may consist of linear functions, neural networks, or other standard models depending on
the application, and reflects the learner’s prior knowledge of the underlying MDP. We assume that Φ
is finite to simplify presentation, but extension to infinite classes is straightforward, as our results only
invoke finiteness through standard uniform convergence arguments. Note that unlike model-based ap-
proaches [1, 40, 10, 2], we do not assume access to a class capable of realizing the features µ⋆h, and our
algorithm does not attempt to learn these features; this is why we distinguish our results as model-free.

For constant α, our goal is to learn an α-policy cover using poly(d,A,H, log∣Φ∣, η−1) episodes of
interaction. This guarantee scales with the dimension d of the feature map and the complexity log∣Φ∣ of
the feature class but, critically, does not depend on the size of the state space X ; by [10], dependence
on H andA = ∣A∣ is necessary when ϕ⋆ is unknown. Given such a guarantee, we show in Appendix G
how to optimize any downstream reward function to error ε with polynomial sample complexity.

Additional preliminaries. For any m,n ∈ N, we denote by [m..n] the integer interval {m, . . . , n}.
We also let [n] ∶= [1 .. n]. For any sequence of objects o1, o2, . . . , we define om∶n ∶= (oi)i∈[m..n]. A
partial policy is a policy defined over a contiguous subset of layers [ℓ .. r] ⊆ [H]. We denote by
Πℓ∶r

M ∶= {π ∶ ⋃r
h=ℓXh →∆(A)} the set of all partial policies over layers ℓ to r; note that ΠM ≡ Π1∶H

M .
For a policy π ∈ Πℓ∶r

M and h ∈ [ℓ .. r], π(xh) denotes the action distribution for the policy at
layer h when xh ∈ Xh is the current state. For 1 ≤ t ≤ h ≤ H and any pair of partial policies
π ∈ Π1∶t−1

M , π′ ∈ Πt∶h
M , we define π ○t π′ ∈ Π1∶h

M as the partial policy given by (π ○t π′)(xℓ) = π(xℓ)
for all ℓ < t and (π ○t π′)(xℓ) = π′(xℓ) for all ℓ ∈ [t .. h].

We use the xh ∼ π as shorthand to indicate that xh is drawn from the law Pπ, and likewise for
(xh,ah) ∼ π and so on. For a set of partial policies Ψ ∶= {π(i) ∶ i ∈ [N]}, we define unif(Ψ) as the
random partial policy obtained by sampling i ∼ unif([N]) and playing π(i). We define πunif ∈ ΠM

as the random policy that selects actions inA uniformly at random at each layer. We use ∥⋅∥ to denote
the Euclidean norm, ∥⋅∥∞ to denote the supremum norm on functions, and let B(r) ⊆ Rd denote the
Euclidean ball of radius r. We refer to a scalar c > 0 as an absolute constant to indicate that it is
independent of all problem parameters and use Õ(⋅) to denote a bound up to factors polylogarithmic
in parameters appearing in the expression.

3 SpanRL: Algorithm and Main Results
In this section, we present the SpanRL algorithm. We begin by describing challenges in deriving
efficient, model-free algorithms using existing approaches (Section 3.1). We then formally describe
SpanRL (Section 3.2) and build intuition as to how it is able to overcome these challenges, and finally
state our main sample complexity guarantee (Section 3.3).

3.1 Challenges and Related Work
Designing algorithms with provable guarantees in the Low-Rank MDP setting is challenging because
of the complicated interplay between representation learning and exploration. Indeed, while there are
many efficient algorithms for the so-called linear MDP setting where the feature maps (ϕ⋆h)h∈[H]
are known (removing the need for representation learning) [23, 47, 4, 41], these approaches do not
readily generalize to accommodate unknown features. For Low-Rank MDPs, previous algorithms
suffer from at least one of the following three drawbacks: (1) the algorithms are computationally
inefficient; (2) the algorithms are model-based; or (3) the algorithms place strong assumptions on the
MDP that are unlikely to hold in practice. To motivate the SpanRL algorithm, we briefly survey these
results, highlighting several key challenges in avoiding these pitfalls.

Let us first discuss the issue of computational efficiency. While there are a number of algorithms—all
based on the principle of optimism in the face of uncertainty—that provide tight sample complexity
guarantees for Low-Rank MDPs in reward-based [21, 24, 14] and reward-free [9, 43] settings,
these algorithms involve intractable optimization problems, and cannot be implemented efficiently
even when the learner has access to an optimization oracle for the representation class Φ [11].
This intractability arises because these algorithms implement optimism via a “global” approach,
in which the algorithm explores at each round by choosing the most optimistic value function in a
certain version space of candidate value functions; optimizing over this version space is challenging,
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as it involves satisfying non-convex constraints with a complicated dependence on the learned
representation, and because the constraints are coupled globally across layers h ∈ [H].
To avoid the intractability of global optimism, several works have restricted attention to a simpler
model-based setting. Here, in addition to assuming that the feature maps (ϕ⋆h)h∈[H] are realizable
with respect to Φ, one assumes access to a second feature class Υ capable of modeling the mappings
(µ⋆h)h∈[H]; this facilitates direct estimation of the transition probability kernel Th(⋅ ∣ x, a). For
the model-based setting, it is possible to efficiently implement certain “local” forms of optimism
[40, 10, 48], as well as certain non-optimistic exploration techniques based on policy covers [1].
Unfortunately, model-based realizability is a restrictive assumption, and falls short of the model-free
guarantees we aim for in this work; indeed, in general, one cannot hope to estimate the feature map
µ⋆h+1 without sample complexity scaling with the number of states.4

When one moves from model-based learning to model-free learning, representation learning becomes
substantially more challenging—both for optimistic and non-optimistic approaches. Here, a key
challenge is to develop representation learning procedures that are (1) efficient, yet (2) provide
meaningful guarantees when the learned features are used downstream for exploration. To our
knowledge, the only proposal for a representation learning procedure satisfying both desiderata
comes from the work of Modi et al. [35], who introduced a promising “minimax” representation
learning objective (described in detail in the sequel; cf. Algorithm 5), which Zhang et al. [49]
subsequently showed to have encouraging empirical performance. However, to provide guarantees
for this objective, both works place substantial additional restrictions on the low-rank factorization.
In particular, Modi et al. [35] make the so-called latent variable assumption [1], which asserts that
ϕ⋆h and µ⋆h are non-negative coordinate-wise, and Zhang et al. [49] further restrict to the Block MDP
model [12, 32]. Non-negativity is a substantial restriction, as the best non-negative factorization
can have exponentially large dimension relative to the best unrestricted factorization [1], even when
reachability is assumed (cf. Appendix H.1). The source of this restriction is the problem of how
to quantify how close a learned representation ϕ̂ is to the ground truth ϕ⋆, which depends strongly
on the downstream exploration strategy. In what follows, we show that with the right exploration
strategy, this challenge can be ameliorated, but prior to our work it was unclear whether the minimax
objective could lead to meaningful guarantees in the absence of non-negativity.

3.2 The SpanRL Algorithm
Our algorithm, SpanRL, is presented in Algorithm 1. The algorithm proceeds by building a policy
cover layer-by-layer in an inductive fashion. For each layer h ≥ 2, SpanRL uses a policy cover Ψ(h)
built at a previous iteration within a subroutine, RepLearn (Algorithm 5; deferred to Appendix B) to
produce a feature map ϕ̂(h) that approximates ϕ⋆h. Using this feature map, the algorithm invokes a
second subroutine, RobustSpanner (Algorithm 2 in Appendix B) to produce a collection of policies
π1, . . . , πd that act as a barycentric spanner for the feature map, ensuring maximal coverage in
a certain sense; given these policies, a new policy cover for layer h + 2 is formed via Ψ(h+2) =
{πi ○h+1 πunif ∶ i ∈ [d]}. To invoke the RobustSpanner subroutine, SpanRL makes use of additional
subroutines for policy optimization (PSDP; Algorithm 3 in Appendix B) and estimation of certain
vector-valued functionals (EstVec; Algorithm 7 in Appendix B). We now describe each component
of the algorithm in detail, highlighting how they allow us to overcome the challenges in the prequel.

Barycentric spanners. At the heart of SpanRL is the notion of a barycentric spanner [6] as an
efficient basis for exploration. We begin by defining a barycentric spanner for an abstract set.

Definition 3.1 (Awerbuch and Kleinberg [6]). Given a setW ⊂ Rd such that span(W) = Rd, we say
that a set {w1, . . . ,wd} ⊆W is a (C, ε)-approximate barycentric spanner forW if for every w ∈W ,
there exist β1, . . . , βd ∈ [−C,C] such that ∥w −∑d

i=1 βiwi∥ ≤ ε.5

The utility of barycentric spanners for reward-free exploration is highlighted in the following lemma.

Lemma 3.1. Suppose that Assumption 2.1 holds. If Ψ ⊆ ΠM is a collection of policies such
that {Eπ [ϕ⋆h(xh,ah)] ∣ π ∈ Ψ} ⊆ Rd is a (C, ε)-approximate barycentric spanner for Wh ∶=
{Eπ [ϕ⋆h(xh,ah)] ∣ π ∈ ΠM} with ε ≤ η

2
, then Ψ is an α-policy cover for layer h+1 with α = (2dC)−1.

4For example, in the special case of the Block MDP setting [12, 32], model-based realizability entails
modeling a certain emission process, which is not required by model-free approaches.

5Note that our definition is a slight generalization of [6, Definition 2.1]; the latter is recovered with ε = 0.
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Lemma 3.1, proven in Appendix F.6, shows that to compute a policy cover for layer h+1, it suffices to
find a barycentric spanner for the setWh ∶= {Eπ [ϕ⋆h(xh,ah)] ∣ π ∈ ΠM} ⊆ Rd. Of course, even if ϕ⋆h
is known, this observation is only useful if we can compute a spanner without explicitly enumerating
over the set ΠM, since our goal is to develop an efficient algorithm. In what follows, we will show:6

1. Using, RobustSpanner, a novel adaptation of the classical algorithm of Awerbuch and Kleinberg
[6], it holds that for any ϕ ∈ Φ, spanner computation for the set {Eπ[ϕ(xh,ah)] ∣ π ∈ ΠM}
can be performed efficiently whenever, for any θ ∈ B(1), one can (approximately) solve linear
optimization problems of the form

argmax
π∈ΠM

Eπ[θ⊺ϕ(xh,ah)]. (5)

2. Given access to policy covers Ψ(1∶h) for layers 1 to h, one can efficiently solve the optimization
problem in (5) by appealing to the PSDP algorithm for policy optimization (Algorithm 3).

To handle the fact that ϕ⋆h is unknown, Algorithm 1 computes policies π1∶d that induce a barycentric
spanner for the set {Eπ[ϕ̂(h)(xh,ah)] ∣ π ∈ ΠM}, where ϕ̂(h) ∈ Φ is a learned feature map. In what
follows, we first give a detailed explanation of the two above points, before showing how to complete
the argument by learning a feature map through representation learning.

Algorithm 1 SpanRL: Volumetric Exploration and Representation Learning via Barycentric Spanner
Require: Feature class Φ and parameters ε, c > 0 and δ ∈ (0,1).

1: Set Ψ(1) = ∅, Ψ(2) = {πunif}.
2: Set nRepLearn = c ⋅ ε−2A2d log(∣Φ∣/δ) and nEstVec = c ⋅ ε−2log(1/δ).
3: Set nPSDP = c ⋅ ε−2A2d3H2 ⋅ (d + log(∣Φ∣/δ)).
4: Define F ∶= {f ∶ x↦maxa∈A θ

⊺ϕ(x, a) ∣ θ ∈ B(1), ϕ ∈ Φ}.
5: Define G = {g ∶ (x, a)↦ ϕ(x, a)⊺w ∣ ϕ ∈ Φ,w ∈ B(2

√
d)}.

6: for h = 1, . . . ,H − 2 do
/* Learn feature representation for layer h. */

7: Set ϕ(h) = RepLearn(h,F ,Φ, P (h), nRepLearn), with P (h) = unif(Ψ(h)). // Algorithm 6.

/* Computing an approximate spanner using learned features. */

8: For θ ∈ Rd and (x, a) ∈ X ×A, define

rt(x, a; θ) ∶= {
ϕ(h)(x, a)⊺θ, for t = h,
0, otherwise.

9: For each t ∈ [h], set Gt = G and P (t) = unif(Ψ(t)).
10: For θ ∈ Rd, define LinOpt(θ) = PSDP(h, r1∶h(⋅, ⋅; θ),G1∶h, P (1∶h), nPSDP). // Algorithm 3.

11: For π ∈ ΠM, define LinEst(π) = EstVec(h,ϕ(h), π, nEstVec). // Algorithm 7.

12: Set (π1, . . . , πd) = RobustSpanner(LinOpt(⋅),LinEst(⋅),2, ε). // Algorithm 2.

13: Set Ψ(h+2) = {πi ○h+1 πunif ∶ i ∈ [d]}.
14: Return: Policy cover Ψ(1∶H).

Barycentric spanner computation via approximate linear optimization. To describe spanner
computation in SpanRL, we take a brief detour and consider an abstract approach to barycentric
spanner computation, which generalizes our problem. Suppose that we wish to compute a spanner for
an implicitly specified setW = {wz}z∈Z ⊆ Rd indexed by an abstract set Z . The set Z (which will be
set to ΠM when we return to RL) may be exponentially large and cannot be efficiently enumerated. In
addition, given z ∈ Z , we cannot explicitly compute wz , and have to settle for a noisy approximation.

To allow for efficient spanner computation, we assume access to two oracles for the setW , a linear
optimization oracle LinOpt ∶ B(1)→ Z and an index-to-vector oracle LinEst ∶ Z → Rd. We assume
that for some ε > 0:

6While barycentric spanners have been used in a number of recent works on sample-efficient RL [19, 20],
the motivation for their use within our algorithm and analysis are quite different; see Appendix A.
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1. For all θ ∈ Rd with ∥θ∥ = 1, the output ẑθ ∶= LinOpt(θ) satisfies θ⊺wẑθ ≥ supz∈Z θ⊺wz − ε.
2. For all z ∈ Z , the output ŵz ∶= LinEst(z) satisfies ∥ŵz −wz∥ ≤ ε.

The RobustSpanner algorithm (Algorithm 2) computes a (C, ε)-approximate spanner forW using
O(d log(d/ε)) total calls to LinOpt and LinEst. RobustSpanner is an error-tolerant variant of
the classical spanner computation algorithm of Awerbuch and Kleinberg [6], which was originally
introduced and analyzed for spanner computation with an exact linear optimization oracle. Tolerance
to approximation errors in the linear optimization oracle is critical for our application to RL, where
additive errors will arise in sampling trajectories, as well as estimating the feature maps (ϕ⋆h)h∈[H].
RobustSpanner achieves error tolerance by perturbing the vectors returned by LinOpt(θ) in the
direction of θ, which amounts to running the classical algorithm on an ε-fattening of W , and is
necessary in order to ensure that the approximation error of LinOpt does not swamp the signal
in directions θ in which W is too “skinny.” This technique may be of independent interest; see
Appendix C for additional details and formal guarantees.

Representation learning. Ideally, we would like to use RobustSpanner to construct a barycentric
spanner for the set {Eπ[ϕ⋆h(xh,ah)] ∣ π ∈ ΠM} with Z = ΠM. Because we do not have access to ϕ⋆h,
we instead apply RobustSpanner withW ∶= {Eπ[ϕ̂(h)(xh,ah)] ∣ π ∈ ΠM}, where ϕ̂(h) is a learned
representation. We now describe how the feature map ϕ̂(h) is learned, then show how to use these
learned features to efficiently implement the oracles LinOpt(⋅) and LinEst(⋅).
To learn a representation for layer h, we use the RepLearn algorithm (Algorithm 5), which was
originally introduced in Modi et al. [35], Zhang et al. [49]. The algorithm gathers a collection of
triples (xh,ah,xh+1) by rolling in to xh with a policy sampled uniformly from the policy cover
Ψ(h) and selecting ah uniformly at random. Using this dataset, the algorithm solves a sequence of
adversarial training sub-problems (Line 9 of Algorithm 5) which involve the feature class Φ and an
auxiliary discriminator class F ∶ X → R. As we discuss in detail in the sequel, these sub-problems,
described in (7), are amenable to standard gradient-based training methods. The sub-problems are
designed to approximate the following “idealized” max-min-max representation learning objective:

ϕ̂(h) ∈ argmin
ϕ∈Φ

sup
f∈F

inf
w

Eunif(Ψ(h))○hπunif [(ϕ(xh,ah)⊺w −E[f(xh+1) ∣ xh,ah])
2] . (6)

The intuition for this objective comes from the fact that in a Low-Rank MDP, for any function
f ∶ X → R, the quantity E[f(xh+1) ∣ xh = x,ah = a] is linear in ϕ⋆h(x, a). Thus, if F is sufficiently
expressive, we may hope that ϕ̂(h) and ϕ⋆ are close. We adopt the simple discriminator class
F = {x↦maxa∈A θ

⊺ϕ(x, a) ∣ θ ∈ B(1), ϕ ∈ Φ}. We show that solving (6) with this choice for F ,
which is simpler than that in Modi et al. [35], Zhang et al. [49], yields an approximation guarantee
for ϕ̂(h) that is suitable for downstream use in spanner computation for general Low-Rank MDPs.

Remark 3.1 (Improved analysis of RepLearn). To facilitate an analysis of SpanRL that does not
require reachability assumptions, we use slightly different parameter values for RepLearn than in
Modi et al. [35], Zhang et al. [49], and provide a tighter sample complexity bound (Theorem E.1)
which may be of independent interest.

In more detail, prior work shows that the RepLearn algorithm solves a variant of (6) with w ∈
B(d1/2 ⋅ poly(ε−1)), where ε > 0 is the desired bound on mean-squared error. Due to the polynomial
dependence on ε−1, such a guarantee would lead to vacuous guarantees when invoked within our
analysis of SpanRL. Our improved analysis of RepLearn, which is based on a determinantal potential
argument, shows that w ∈ B(poly(d)) suffices. A secondary benefit of our improved bound is a faster
rate with respect to the number of trajectories.

Putting everything together. Having learned ϕ̂(h) using RepLearn, in SpanRL we apply
RobustSpanner withW ∶= {Eπ[ϕ̂(h)(xh,ah)] ∣ π ∈ ΠM}, Z = ΠM, and C = 2; that is, we plug-in the
learned representation ϕ̂(h) for the true representation ϕ⋆h.7 With this choice, implementing LinOpt

entails (approximately) solving argmaxπ∈ΠM
Eπ[θ⊺ϕ̂(h)(xh,ah)] for a given θ ∈ B(1), and imple-

menting the LinEst oracle entails estimating Eπ[ϕ̂(h)(xh,ah)] for a given π ∈ ΠM. We instantiate
7Though the policies produced by the algorithm may not necessarily induce a spanner for Wh =

{Eπ
[ϕ⋆h(xh,ah)] ∣ π ∈ ΠM} (this would require “point-wise” representation learning guarantees, which

we do not have), our analysis shows that they still suffice to build a policy cover for layer h + 2.
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LinEst(π) as the Monte Carlo algorithm EstVec (Algorithm 7), which simply samples trajectories
according to π and returns the sample average of ϕ̂(h)(xh,ah). To implement LinOpt(θ), we appeal
to PSDP (Algorithm 3). PSDP, given an arbitrary reward function r1∶h ∶ X ×A → R and a function
class G ⊆ {g ∶ X ×A → R} capable of realizing all possible value functions induced by these re-
wards, can use the policy covers Ψ(1∶h) to efficiently compute a policy π̂ = PSDP(h, r1∶h,G,Ψ(1∶h), n)
that approximately solves argmaxπ∈ΠM

Eπ[∑h
t=1 rt(xt,at)], and does so using polynomially many

episodes; see Appendix D for details and formal guarantees.8 Thus, implementing LinOpt(θ) is as
simple as invoking PSDP with the rewards

rt(x, a; θ) ∶= { ϕ̂(h)(x, a)⊺θ, for t = h,
0, otherwise.

With this, we have all the ingredients needed for spanner computation, and the algorithm is complete.

3.3 Main Guarantee for SpanRL

The following result is the main sample complexity guarantee for SpanRL (Algorithm 1).

Theorem 3.2 (Main theorem for SpanRL). Let δ ∈ (0,1) be given, and suppose that realizability
holds (Assumption 2.2) and that reachability (Assumption 2.1) is satisfied with parameter η > 0.
If ε = η

36d5/2 and c = polylog(A,H,d, log(∣Φ∣/δ)) is sufficiently large, then the policies Ψ(1∶H)

produced by SpanRL(Φ, ε, c, δ) are a ( 1
4Ad

,0)-policy cover with probability at least 1 − δ. The total
number of episodes used by SpanRL is at most:

Õ (A4d9H4(d + log(∣Φ∣/δ)) ⋅ 1/η2) .

Theorem 3.2 is the first provable, model-free sample complexity guarantee for general Low-Rank
MDPs that is attained by an efficient algorithm. Prior to our work, all efficient model-free algorithms
required non-negative features (latent variable structure) or stronger assumptions [35, 49], even in the
presence of similar reachability assumptions; see Table 1.

Remark 3.2 (On the reachability assumption). While the reachability assumption is shared by the
best prior efficient algorithms [35], which require non-negativity in addition to this assumption, it
is natural to ask to what extent reachability restricts the generality of the Low-Rank MDP model.
In Appendix H, we show that even when reachability holds, the embedding dimension in our model
can be exponentially smaller than the best embedding dimension for the best non-negative (latent
variable) embedding [35]. Hence, our results are meaningfully more general than prior work.

While our guarantee is polynomial in all relevant problem parameters, improving the dependence
further (e.g., to match that of the best known inefficient algorithms) is an interesting direction for
future research, as is removing the reachability assumption.

Application to reward-based RL. By using the policy cover produced by SpanRL within PSDP (Al-
gorithm 3), we can optimize any downstream reward function to error ε using poly(d,A,H, log∣Φ∣) ⋅
1/ε2 episodes. See Appendix G for details.

Efficiency and practicality. We observe that SpanRL is simple and practical. Defining
LD(ϕ,w, f) ∶= ∑(x,a,x′)∈D(ϕ(x, a)⊺w − f(x′))2 + λ∥w∥2, where D is a dataset consisting of
(xh,ah,rh,xh+1) tuples, the algorithm is provably efficient whenever the adversarial objective

f (t) ∈ argmax
f∈F

max
ϕ̃∈Φ
{min

w
LD(ϕ(t),w, f) −min

w̃
LD(ϕ̃, w̃, f)} , (7)

in Line 9 of RepLearn (Algorithm 5), can be implemented efficiently (note that by the definition of
LD, the “inner” minima over w and w̃ in (7) can be solved in closed form). This objective was also
assumed to be efficiently solvable in Modi et al. [35], Zhang et al. [49] and was empirically shown
to be practical in [49]; note that the objective is amenable to standard gradient-based optimization
techniques, and that F can be over-parameterized. While a detailed experimental evaluation is outside
of the scope of this paper, we are optimistic about the empirical performance of the algorithm in light
of the encouraging results based on the same objective in Zhang et al. [49]

8This is the main place where the analysis uses the inductive hypothesis that Ψ(1∶h) are policy covers.
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Outside of representation learning, the only overhead in SpanRL is the RobustSpanner subroutine,
which has polynomial runtime. Indeed, RobustSpanner requires only polynomially many calls to the
linear optimization oracle, instantiated as PSDP, which is efficient whenever standard least-squares
regression problems based on the class Φ can be solved efficiently, analogous to [33, 31].

Analysis and proof techniques. The proof of Theorem 3.2, which is given in Appendix F, is
appealing in its simplicity and modularity. The crux of the proof is to show that the representation
learning guarantee in (6) is strong enough to ensure that the downstream spanner computation in
RobustSpanner succeeds. It is straightforward to show that spanner computation would succeed
if we had access to an estimated representation that ϕ̂(h) that approximates ϕ⋆h point-wise (i.e.,
uniformly for all (x, a) pairs), but the key challenge is that the guarantee in (6) only holds on average
under the roll-in distribution unif(Ψ(h)). Prior works that make use of the same representation
learning objective (BRIEE [49] and MOFFLE [35]) do not make use of spanners; instead, they appeal to
exploration strategies based on elliptic bonuses, addressing the issue of approximation errors through
additional assumptions (non-negativity of the factorization for MOFFLE, and Block MDP structure for
BRIEE). Perhaps the most important observation in our proof is that barycentric spanners are robust to
the average-case approximation error guarantee in (6) as-is, without additional structural assumptions.
Intuitively, this benefit seems to arise from the fact that the spanner property only concerns the first
moment of the feature map ϕ⋆, while algorithms based on elliptic bonuses require approximation
guarantees for the second moment; understanding this issue more deeply is an interesting question
for future work. Another useful feature of our proof is to show that the notion of reachability in
Assumption 2.1, which generalizes and extends all previous reachability conditions in the Low-Rank
MDP and Block MDP literature [46, 5, 13, 33, 1, 35, 31], is sufficient to build a policy cover. We
anticipate that this observation will find broader use.
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A Additional Related Work
In this section, we discuss relevant related work not already covered.

Block MDPs. A particularly well-studied special case low-rank MDPs with the latent variable
assumed in Modi et al. [35] (defined in Definition H.1) is the Block MDP (BMDP) model Du et al.
[13], Misra et al. [32], Zhang et al. [49], Mhammedi et al. [31]. For this setting, Du et al. [13], Misra
et al. [32] provide algorithms that conduct exploration in a provably oracle-efficient manner under a
reachability assumption. This reachability assumption was removed by subsequent work of Zhang
et al. [49] (with a suboptimal rate) and Mhammedi et al. [31] (with optimal error dependence), but
the analysis in these works is tailored to the BMDP model.

Barycentric spanners. Huang et al. [20] consider a variant of the Low-Rank MDP framework
in which we are given a class Υ that realizes the next-state feature map µ⋆, but do not have access
to a class Φ for the feature map ϕ⋆, which is unknown. Their algorithm, like SpanRL, is based
on barycentric spanners, though the algorithm design considerations and analysis are significantly
different. Notably, their algorithm is not computationally efficient, and their analysis takes advantage
of the fact that realizability of µ⋆ facilitates estimation of the occupancies {dπ(⋅)}π∈ΠM in ℓ1-error.
Barycentric spanners were also in the work of Golowich et al. [19] for reinforcement learning in
Partially Observable MDPs (POMDPs). Their analysis is substantially different from ours, and their
algorithm appeals to the barycentric spanner computation approach in Awerbuch and Kleinberg [6]
in an off-the-shelf fashion.
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B Omitted Algorithms

Algorithm 2 RobustSpanner: Barycentric Spanner via Approximate Linear Optimization
Require:

• Approximate linear optimization subroutine LinOpt ∶ Rd → Z . /* See Section 3.2 */

• Approximate index-to-vector subroutine LinEst ∶ Z → Rd.
• Parameters C, ε > 0.

1: Set W = (w1, . . . ,wd) = (e1, . . . , ed).
2: for i = 1, . . . , d do
3: Set θi = (det(ej ,W−i))j∈[d] ∈ Rd. //W−i is defined to be W without the ith column

4: Set z+i = LinOpt(θi/∥θi∥) and w+i = LinEst(z+i ).
5: Set z−i = LinOpt(−θi/∥θi∥) and w−i = LinEst(z−i ).
6: if θ⊺i w

+
i ≥ −θ⊺i w−i then

7: Set w̃i = w+i , zi = z+i , and wi = w̃i + εθi/∥θi∥.
8: else
9: Set w̃i = w−i , zi = z−i , and wi = w̃i − εθi/∥θi∥.

10: for n = 1,2, . . . do
11: Set i = 1.
12: while i ≤ d do
13: Set θi = (det(ej ,W−i))j∈[d] ∈ Rd.
14: Set z+i = LinOpt(θi/∥θi∥) and w+i = LinEst(z+i ).
15: Set z−i = LinOpt(−θi/∥θi∥) and w−i = LinEst(z−i ).
16: if θ⊺i w

+
i + ε ⋅ ∥θi∥ ≥ C ⋅ ∣det(wi,W−i)∣ then

17: Set w̃i = w+i , zi = z+i , and wi = w̃i + ε ⋅ θi/∥θi∥.
18: break
19: else if −θ⊺i w−i + ε ⋅ ∥θi∥ ≥ C ⋅ ∣det(wi,W−i)∣ then
20: Set w̃i = w−i , zi = z−i , and wi = w̃i − ε ⋅ θi/∥θi∥.
21: break
22: Set i = i + 1.
23: if i = d + 1 then
24: break
25: Return: (z1, . . . , zd).
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Algorithm 3 PSDP(h, r1∶h,G,Ψ(1∶h), n): Policy Search by Dynamic Programming (variant of [8])
Require:

• Target layer h ∈ [H].
• Reward functions r1∶h.
• Function class G.
• Policy covers Ψ(1), . . . ,Ψ(h).
• Number of samples n ∈ N.

1: for t = h, . . . ,1 do
2: D(t) ← ∅.
3: for n times do
4: Sample (xt,at,∑h

ℓ=t rℓ(xℓ,aℓ)) ∼ unif(Ψ(t)) ○t πunif ○t+1 π̂(t+1).
5: Update dataset: D(t) ← D(t) ∪ {(xt,at,∑h

ℓ=t rℓ(xℓ,aℓ))}.
6: Solve regression:

g(t) ← argmin
g∈G

∑
(x,a,R)∈D(t)

(g(x, a) −R)2.

7: Define π̂(t) ∈ Πt∶h
M via

π̂(t)(x) = { argmaxa∈A g
(t)(x, a), x ∈ Xt,

π̂(t+1)(x), x ∈ Xℓ, ℓ ∈ [t + 1 .. h].
(8)

8: Return: Near-optimal policy π̂(1) ∈ ΠM.

Algorithm 4 EstVec(h,F, π, n): Estimate Eπ[F (xh,ah)] for policy π and function F ∶ X ×A→
Rd.
Require:

• Target layer h ∈ [H].
• Vector-valued function F ∶ X ×A→ Rd.
• Policy π ∈ ΠM.
• Number of samples n ∈ N.

1: D ← ∅.
2: for n times do
3: Sample (xh,ah) ∼ π.
4: Update dataset: D ← D ∪ {(xh,ah)}.
5: Return: F̄ = 1

n ∑(x,a)∈D F (x, a).
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Algorithm 5 RepLearn(h,F ,Φ,Ψ, n): Representation Learning for Low-Rank MDPs [35, 49].
Require:

• Target layer h ∈ [H].
• Discriminator class F .
• Feature class Φ.
• A set of policies Ψ.
• Number of samples n ∈ N.

1: Set ε̃ = 100d logn+log(∣Φ∣/δ)
n

, ε1 = 16
√
2d3/2ε̃1/2.

2: Initialize λ =√n, T =
√

d
2ε̃

, and ξ = 3
2
ε1 + ε̃ + 2λd

n
, ϕ(0) ∈ Φ.

3: D ← ∅,
4: for n times do
5: Sample (xh,ah,xh+1) ∼ unif(Ψ) ○h πunif.
6: Update dataset: D ← D ∪ {(xh,ah,xh+1)}.
7: Define LD(ϕ,w, f) = ∑(x,a,x′)∈D(ϕ(x, a)⊺w − f(x′))2 + λ∥w∥2.
8: for t = 0, . . . , T − 1 do

/* Discriminator selection */

9: Solve

f (t) ∈ argmax
f∈F

∆̂(f), where ∆̂(f) ∶=max
ϕ̃∈Φ
{min

w
LD(ϕ(t),w, f) −min

w̃
LD(ϕ̃, w̃, f)} .

10: if ∆̂(f (t)) ≤ ξ then
11: Return ϕ̂ = ϕ(t).

/* Feature selection via least-squares minimization */

12: Solve

ϕ(t+1) ∈ argmin
ϕ∈Φ

min
w0∶t

t

∑
i=0

LD(ϕ,wi, f
(i)).
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C Generic Guarantee for RobustSpanner

In this section, we give a generic guarantee for the RobustSpanner algorithm when invoked with
oracles LinOpt and LinEst satisfying the following assumption.

Assumption C.1 (LinOpt and LinEst as approximate Linear Optimization Oracles). For some
abstract set Z and a collection of vectors {wz ∈ Rd ∣ z ∈ Z} indexed by elements in Z , there
exists ε′ > 0 such that for any θ ∈ Rd ∖ {0} and z ∈ Z , the outputs ẑθ ∶= LinOpt(θ/∥θ∥) and
ŵz ∶= LinEst(z) satisfy

sup
z∈Z

θ⊺wz ≤ θ⊺wẑθ + ε′ ⋅ ∥θ∥, and ∥ŵz −wz∥ ≤ ε′.

LettingW ∶= {wz ∣ z ∈ Z} and assuming thatW ⊆ B(1), the next theorem bounds the number of
iterations of RobustSpanner(LinOpt(⋅),LinEst(⋅), ⋅, ⋅) under Assumption C.1, and shows that the
output is an approximate barycentric spanner forW (Definition 3.1). Our result extends those of
Awerbuch and Kleinberg [6], in that it only requires an approximate linear optimization oracle, which
is potentially of independent interest.

Proposition C.1. FixC > 1 and ε ∈ (0,1) and suppose that {wz ∣ z ∈ Z} ⊆ B(1). If RobustSpanner
(Algorithm 2) is run with parameters C, ε > 0 and oracles LinOpt, LinEst satisfying Assumption C.1
with ε′ = ε/2, then it terminates after d + ⌈d

2
logC

100d
ε2
⌉ iterations, and requires at most twice that

many calls to each of LinOpt and LinEst. Furthermore, the output z1∶d has the property that for all
z ∈ Z , there exist β1, . . . , βd ∈ [−C,C], such that

∥wz −
d

∑
i=1

βiw
zi∥ ≤ 3Cd ⋅ ε

2
.

Proof of Proposition C.1. The proof will follows similar steps to those in Awerbuch and Kleinberg
[6, Lemma 2.6], with modifications to account for the fact that linear optimization over the set
W ∶= {wz ∣ z ∈ Z} is only performed approximately.

Part I: Bounding the number of iterations. In Algorithm 2, there are two loops, both of which
require two calls to LinOpt and LinEst per iteration. As the first loop has exactly d iterations, it
suffices to bound the number of iterations in the second loop.

Let M (i) ∶= (w1, . . . ,wi, ei+1, . . . , ed) be the matrix whose columns are the vectors at end of
the ith iteration of the first loop (Line 2) of Algorithm 2; note that columns i + 1 through d are
unchanged at this point in the algorithm. For i ∈ [d], we define ℓi(w) ∶= det(w,M (i)

−i ) and θi ∶=
(det (ej ,M (i)

−i ))j∈[d] ∈ R
d, where we recall that for any matrix A, the matrix A−i is defined as the

result of removing the ith column from A. Note that ℓi is linear in w, and in particular

ℓi(w) ∶= w⊺θi.

Let W (0) ∶=M (d) = (w1, . . . ,wd), and let W (j) denote the resulting matrix after j iterations of the
second loop (Line 10) of Algorithm 2. We will show that for any J ≥ 1,

det(W (J)) ≤ det(W (0)) ⋅ (100d
ε2
)

d
2

. (9)

By construction of the loop, we have det(W (j)) ≥ C ⋅ det(W (j−1)) for each j ∈ [J], and thus
det(W (J)) ≥ det(W (0)) ⋅CJ . Combining these two facts will establish the bound on the iteration
complexity. We now prove (9).

Let ui = e⊺i (M (i))−1 (note that ui is a row vector) and let U denote the matrix whose ith row is ui.
We observe that for all w ∈ Rd,

uiw =
ℓi(w)
ℓi(wi)

,
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where we note that ℓi(wi) ≠ 0 by construction; indeed, the columns of M (i) are a basis for Rd

because det(M (i)) ≠ 0, and the equality holds on the columns, so the two linear functions must be
equal. Now, since Assumption C.1 holds with ε′ = ε/2, we have

θ⊺i w
+
i ≥ sup

z∈Z
θ⊺i w

z − ε
2
∥θi∥, and θ⊺i w

−
i ≤ inf

z∈Z
θ⊺i w

z + ε
2
∥θi∥, (10)

where w±i = LinOpt(z±i ). We will now show that

ℓi(wi) ≥
ε

2
⋅ ∥θi∥. (11)

There are two cases. First, suppose that θ⊺i w
+
i ≥ −θ⊺i w−i , corresponding to the conditional in Line 6 of

Algorithm 2 being satisfied. Combining this with (10), we have

θ⊺i w
+
i ≥ (sup

z∈Z
θ⊺i w

z − ε
2
∥θi∥) ∨ (−θ⊺i w−i ),

≥ (sup
z∈Z

θ⊺i w
z − ε

2
∥θi∥) ∨ (sup

z∈Z
−θ⊺i wz − ε

2
∥θi∥) , (by (10))

= (sup
z∈Z

θ⊺i w
z) ∨ (sup

z∈Z
−θ⊺i wz) − ε

2
∥θi∥,

≥ −ε
2
∥θi∥. (12)

Because the conditional is satisfied, wi = w+i + ε ⋅ θi
∥θi∥

, and so by plugging this into (12), we have

ℓi(wi) = θ⊺i wi ≥
ε

2
⋅ ∥θi∥.

The case that θ⊺i w
+
i ≤ −θ⊺i w−i is essentially identical, establishing (11). Now, recall that W ∶=

{wz ∣ z ∈ Z} and letW ⊕B ( 3ε
2
) ∶= {w + b ∣ w ∈W and b ∈ B ( 3ε

2
)} denote the Minkowski sum with

B ( 3ε
2
). By Cauchy-Schwarz, it holds that for all w′ ∶= w + b ∈W ⊕ B ( 3ε

2
),

ℓi(w′) = θ⊺i w′ = θ⊺i w + θ⊺i b ≤ (1 +
3ε

2
) ⋅ ∥θi∥,

where we used thatW ⊆ B(1) (by assumption). Thus, for any w′ ∈W ⊕ B ( 3ε
2
), we have

∣uiw′∣ =
ℓi(w′)
ℓi(wi)

≤ 1 + 3ε

2
.

We now observe that by construction and the fact that Assumption C.1 holds with ε′ = ε/2, the kth
column w′k of W (J) belongs toW ⊕ B ( 3ε

2
), for any k ∈ [d]. Thus, the (i, k) entry uiw′k of UW (J)

satisfies uiw′k ∈ [−1 − 3ε
2
,1 + 3ε

2
], and so the columns of UW (J) have Euclidean norm at most 10

√
d

ε
.

Since the magnitude of the determinant of a matrix is upper bounded by the product of the Euclidean

norms of its columns, it holds that ∣det(UW (J))∣ ≤ ( 100d
ε2
)

d
2 .

On the other hand, again by construction, we see that the columns w1, . . . ,wd of W (0) satisfy
uiwj = 0, for j < i, and uiwi = 1. Thus, UW (0) is an upper-triangular matrix with 1s on the diagonal,
and hence has determinant 1. Because determinants are multiplicative, this implies that det(U) ≠ 0.
We now compute:

∣det(W (J))∣ = ∣det(UW
(J))∣

∣det(U)∣ = ∣det(UW
(J))∣

∣det(UW (0))∣ ≤ (
100d

ε2
)

d
2

.

Thus, the upper bound on ∣det(W (J))∣ holds and the claim is proven. Therefore, we have

CJ ≤ (100d
ε2
)

d
2

,

and so J ≤ ⌈d
2
logC ( 100dε2

)⌉.
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Part II: Spanner property for the output. Having shown that the algorithm terminates, we now
show that the result is an approximate barycentric spanner forW . Let W ∶= (w1, . . . ,wd) be the
matrix at termination of the algorithm. By definition, if the second loop (Line 10) has terminated,
then for all i ∈ [d],

max(θ⊺i w+i ,−θ⊺i w−i ) + ε ⋅ ∥θi∥ ≤ C ⋅ ∣det(wi,W−i)∣,

where θi = (det(ej ,W−i))j∈[d] ∈ Rd. On the other hand, by Assumption C.1, (10) holds, and so

∀z ∈ Z,∀i ∈ [d], ∣det(wz,W−i)∣ = ∣θ⊺i wz ∣ ≤max(θ⊺i w+i ,−θ⊺i w−i ) + ε ⋅ ∥θi∥,
≤ C ⋅ ∣det(wi,W−i)∣. (13)

Now, fix z ∈ Z . Since det(W ) ≠ 0, there exist β1∶d ∈ R such that wz = ∑d
i=1 βiwi. By plugging this

into (13) and using the linearity of the determinant, we have

∀i ∈ [d], C ⋅ ∣det(wi,W−i)∣ ≥ ∣det(wz,W−i)∣ =
RRRRRRRRRRR

d

∑
j=1

βi det(wj ,W−i)
RRRRRRRRRRR
= ∣βi∣ ⋅ ∣det(wi,W−i)∣.

Therefore, ∣βi∣ ≤ C, for all i ∈ [d]. Now, by definition of w1∶d and w̃1∶d, for all i ∈ [d], we have that
∥wi − w̃i∥ ≤ ε. Furthermore, by Assumption C.1, we also have that ∥w̃i −wzi∥ ≤ ε/2. Therefore, by
the triangle inequality, we have

∥wz −
d

∑
i=1

βiw
zi∥ ≤ ∥wz −

d

∑
i=1

βiwi∥ +
d

∑
i=1

∣βi∣∥w̃i −wzi∥ +
d

∑
i=1

∣βi∣∥w̃i −wi∥ ≤ 3dCε/2.

This completes the proof.

D Generic Guarantee for PSDP

In this section, we present a generic guarantee for PSDP (Algorithm 3). We show that given any reward
functions r1∶h ∶ X ×A → R and a function class G ⊆ {g ∶ X ×A → R} that “realizes” these reward
functions (we formalize this in the next definition), if Ψ(1∶h) are α-policy covers for layers 1 through h,
then for sufficiently large n ≥ 1 and with high probability, the output π̂ = PSDP(h, r1∶h,G,Ψ(1∶h), n)
is an approximate maximizer of the objective

max
π∈ΠM

Eπ [
h

∑
t=1

rt(xt,at)] .

To formalize this result, we define the notion of realizability we require for the function class G.

Definition D.1. We say that the function class G ⊆ {g ∶ X ×A → R} realizes the reward functions
r1∶h ∶ X ×A→ R if for all t ∈ [h] and all π ∈ Πt∶h

M ,

Qπ
t ∈ G, where Qπ

t (x, a) ∶= rt(x, a) +Eπ [
h

∑
ℓ=t+1

rℓ(xℓ,aℓ) ∣ xt = x,at = a] . (14)

Note that Qπ
t in (14) represents the state-action value function (Q-function) at layer t ∈ [h] with

respect to the rewards r1∶h and partial policy π.

In what follows, given a function class G ⊆ {g ∶ X ×A→ R}, we useNG(ε) to denote the ε-covering
number of G in ℓ∞ distance. With this, we now state a guarantee for PSDP.

Theorem D.2. Let ε, δ ∈ (0,1), B > 0, and h ∈ [H]. Suppose reward functions r1∶h ∶ X ×A → R,
function class G, a collection of policies Ψ(1∶h), and a parameter n ≥ 1 satisfy the following:

• The function class G realizes the reward functions r1∶h (in the sense of Definition D.1),
functions in G are uniformly bounded by B, and limn→∞ n

−1 ⋅ logNG(1/n) = 0.

• For some 0 < α ≤ 1, for each 1 ≤ t ≤ h, it holds that Ψ(t) is an α-policy cover for layer t
and moreover ∣Ψ(t)∣ ≤ d.

• The parameter n is chosen such that cdHα−1 ⋅ εstat(n, δ/H) ≤ ε, where εstat(n, δ′) ∶=√
B2n−1 ⋅ (logNG(1/n) + log(n/δ)) and c > 0 is a large enough absolute constant.
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Then, with probability at least 1 − δ, the policy π̂ = PSDP(h, r1∶h,G,Ψ(1∶h), n) coming from Algo-
rithm 3, satisfies the following guarantee:

max
π∈ΠM

Eπ [
h

∑
t=1

rt(xt,at)] ≤ Eπ̂ [
h

∑
t=1

rt(xt,at)] + ε.

To prove the theorem, we need two intermediate results. The first shows that the Q function is the
Bayes-optimal predictor of the sum of rewards when rolling out with policy π.

Lemma D.1. Let t ∈ [H], r1∶h ∶ X ×A → R be reward functions, π ∈ ΠM, and let gπbayes denote the
Bayes-optimal predictor9 for the sum of rewards under policy π, i.e.,

gπbayes ∈ argmin
g∶Xt×A→R

Eπ

⎡⎢⎢⎢⎢⎣
(g(xt,at) −

h

∑
ℓ=t

rℓ(xℓ,aℓ))
2⎤⎥⎥⎥⎥⎦
, (15)

Then, gπbayes = Qπ
t , where Qπ

t is the Q-function at layer t ∈ [h] with respect to the policy π and
rewards r1∶h defined in (14).

Proof of Lemma D.1. The least-squares solution gπbayes of the problem in (15) satisfies, for all a ∈ A
and x ∈ Xt,

gπbayes(x, a) = Eπ [
h

∑
ℓ=t

rℓ(xℓ,aℓ)∣xt = x,at = a] ,

= E[rt(xt,at) ∣ xt = x,at = a] +Eπ [
h

∑
ℓ=t+1

rℓ(xℓ,aℓ)∣xt = x,at = a] ,

= rt(x, a) +Eπ [
h

∑
ℓ=t+1

rℓ(xℓ,aℓ)∣xt = x,at = a] ,

= Qπ
t (s, a),

where the last step follows by the definition of the Q-function in (14).

We now show that the solution ĝ(t) of the least-squares problem in (6) of Algorithm 3 is close to the
Q-function in the appropriate sense.

Lemma D.2. Let ε, δ ∈ (0,1), B > 0, and 1 ≤ t ≤ h ≤ H . Further, let (εstat, r1∶h,G,Ψ(1∶h), n) be
as in Theorem D.2. Then, the solution ĝ(t) of the least-squares problem in (6) in Algorithm 3 when
calling PSDP(h, r1∶h,G,Ψ(1∶h), n) satisfies with probability at least 1 − δ,

Eunif(Ψ(t)) [max
a∈A
(ĝ(t)(xt, a) −Qπ̂(t+1)

t (xt, a))
2

] ≤ c2 ⋅ ε2stat(n, δ),

where π̂(t+1) ∈ Πt+1∶h
M is as in Algorithm 3, and c > 0 is an absolute constant.

Proof of Lemma D.2. Fix t ∈ [h] and let g(t)bayes = gπbayes be as in Lemma D.1 with

π = unif(Ψ(t)) ○t πunif ○t+1 π̂(t+1),

and reward functions r1∶h as in the lemma’s statement. By Lemma D.1, g(t)bayes is the Bayes-optimal
solution of the least-squares problem in (6) of Algorithm 3. Thus, since G realizes the reward functions
r1∶h, a standard uniform-convergence guarantee for least-square regression (see e.g. Mhammedi et al.
[29, Proposition B.1] with e = 0 almost surely) implies that there exists an absolute constant c > 0
(independent of t, h, and any other problem parameters) such that with probability at least 1 − δ,

Eunif(Ψ(t)) [max
a∈A
(ĝ(t)(xt, a) − g(t)bayes(xt, a))

2
] ≤ c2B2 ⋅ logNG(1/n) + log(n/δ)

n
.

The desired result follows by the fact that g(t)bayes ≡ Qπ̂(t+1)
t ; see Lemma D.1.

We also require the classical performance difference lemma from Kakade [25].
9Observe that because the loss is strongly convex, this predictor is unique up to sets of measure zero,

justifying our usage of “the” Bayes optimal reward.
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Lemma D.3 (Performance Difference Lemma). Let π⋆, π ∈ ΠM be arbitrary, and Qπ
t be as defined in

(14). Then, for any h ≥ 1

Eπ⋆ [
h

∑
t=1

rt(xt,at)] −Eπ [
h

∑
t=1

rt(xt,at)] =
h

∑
t=1

Eπ⋆ [Qπ
t (xt, π⋆(xt)) −Qπ

t (xt, π(xt))] .

Using these results, we now prove Theorem D.2.

Proof of Theorem D.2. We first show that for any t ∈ [h], there is an event Et of probability at least
1 − δ/H under which the learned partial policies π̂(t), π̂(t+1) are such that

Eπ⋆ [Qπ̂(t+1)
t (xt, π⋆(xt)) −Qπ̂(t+1)

t (xt, π̂
(t)(xt))] ≤

ε

H
, (16)

where π⋆ ∈ argmaxπ∈ΠM
Eπ[∑h

t=1 rt(xt,at)] is the optimal policy and Qπ
t is the Q-function defined

in (14). Once we establish (16) for all t ∈ [h], we will apply the performance difference lemma
(Lemma D.3) and the union bound to obtain the desired result.

For any t ∈ [h], we have

Eπ⋆ [Qπ̂(t+1)
t (xt, π⋆(xt)) −Qπ̂(t+1)

t (xt, π̂
(t)(xt))]

= Eπ⋆ [Qπ̂(t+1)
t (xt, π⋆(xt)) − ĝ(t)(xt, π⋆(xt)) + ĝ(t)(xt, π⋆(xt)) −Qπ̂(t+1)

t (xt, π̂
(t)(xt))] ,

≤ Eπ⋆ [Qπ̂(t+1)
t (xt, π⋆(xt)) − ĝ(t)(xt, π⋆(xt)) + ĝ(t)(xt, π̂

(t)(xt)) −Qπ̂(t+1)
t (xt, π̂

(t)(xt))] ,

≤ 2 ⋅Eπ⋆ [max
a∈A
∣Qπ̂(t+1)

t (xt, a) − ĝ(t)(xt, a)∣] , (17)

where the penultimate inequality follows by the fact that π̂(t)(x) ∈ argmaxa∈A ĝ
(t)(x, a), for all

(x, a) ∈ Xt ×A by its construction in (8). Now, using the assumption on Ψ(t), we have for any t ∈ [t],

Eπ⋆ [Qπ̂(t+1)
t (xt, π⋆(xt)) −Qπ̂(t+1)

t (xt, π̂
(t)(xt))]

≤ 2∫
Xt

(max
a∈A
∣Qπ̂(t+1)

t (x, a) − ĝ(t)(x, a)∣)dπ⋆(x)dν(x),

≤ 2α−1 ∫
Xt

(max
a∈A
∣Qπ̂(t+1)

t (x, a) − ĝ(t)(x, a)∣) max
π∈Ψ(t)

dπ(x)dν(x),

≤ 2α−1d∫
Xt

(max
a∈A
∣Qπ̂(t+1)

t (x, a) − ĝ(t)(x, a)∣)dunif(Ψ
(t)
)(x)dν(x), (∣Ψ(t)∣ ≤ d)

= 2α−1d ⋅Eunif(Ψ(t)) [max
a∈A
∣Qπ̂(t+1)

t (xt, a) − ĝ(t)(xt, a)∣] , (18)

where the first inequality is by (17), the second inequality follows from the fact that Ψ(t) is an
α-policy cover, the third inequality follows from the fact that ∣Ψ(t)∣ ≤ d, and the equality is by
definition. Now, by Lemma D.2, we have that for any t ∈ [h], there is an absolute constant c > 0
(independent of t and other problem parameters) and an event Et of probability at least 1− δ/H under
which the solution ĝ(t) of the least-squares regression problem on (6) of Algorithm 3 satisfies,

Eunif(Ψ(t)) [max
a∈A
∣ĝ(t)(xt, a) −Qπ̂(t+1)

t (xt, a)∣] ≤ c ⋅ εstat(n, δ
H
) ≤ αε

2dH
, (19)

where the last inequality follows by the choice of n in the theorem’s statement. Combining (19) with
(18) establishes (16) under the event Et.
Now, by the performance difference lemma (Lemma D.3), we have

Eπ⋆ [
h

∑
t=1

rt(xt,at)] −Eπ̂ [
h

∑
t=1

rt(xt,at)]

=
h

∑
t=1

Eπ⋆ [Qπ̂(t+1)
t (xt, π⋆(xt)) −Qπ̂(t+1)

t (xt, π̂
(t)(xt))] .
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Algorithm 6 RepLearn(h,F ,Φ, P, n): Representation Learning for Low-Rank MDPs [35]
Require:

• Target layer h ∈ [H].
• Discriminator class F .
• Feature class Φ.
• Policy distribution P ∈∆(ΠM).
• Number of samples n ∈ N.

1: Set εstat = O(
√
cd2n−1 log(∣Φ∣/δ)) for sufficiently absolute constant c > 0 (see Appendix E).

2: Let ϕ(1) ∈ Φ be arbitrary.
3: Set D ← ∅.
4: for n times do
5: Sample π ∼ P .
6: Sample (xh,ah,xh+1) ∼ π ○h πunif.
7: Update dataset: D ← D ∪ {(xh,ah,xh+1)}.
8: Define LD(ϕ,w, f) = ∑(x,a,x′)∈D(ϕ(x, a)⊺w − f(x′))2.
9: for t = 1,2, . . . do

/* Discriminator selection */

10: Solve

f (t) ∈ argmax
f∈F

∆̂(f), where ∆̂(f) ∶=max
ϕ̃∈Φ
{ min
w∈B(3d3/2)

LD(ϕ(t),w, f) − min
w̃∈B(2

√
d)
LD(ϕ̃, w̃, f)} .

11: if ∆̂(f (t)) ≤ 16dtε2stat then
12: Return ϕ(t).

/* Feature selection via least-squares minimization */

13: Solve

ϕ(t+1) ∈ argmin
ϕ∈Φ

min
(w1,...,wt)∈B(2

√
d)t

t

∑
ℓ=1

LD(ϕ,wℓ, f
(ℓ)).

Thus, under the event E ∶= ⋃h
t=1 Et, we have that

Eπ⋆ [
h

∑
t=1

rt(xt,at)] −Eπ̂ [
h

∑
t=1

rt(xt,at)] ≤ ε.

The desired result follows by the fact that a union bound implies P[E] ≥ 1 − δ.

E Guarantee for RepLearn

In this section, we give a generic guarantee for RepLearn (Algorithm 6). Compared to previous
guarantees in Modi et al. [35], Zhang et al. [49], we prove a fast 1/n-type rate of convergence for
RepLearn, and show that the algorithm succeeds even when the norm of the weight w in Line 10
does not grow with the number of iterations. We also use the slightly simpler discriminator class:

F ∶= {f ∶ x↦max
a∈A

θ⊺ϕ(x, a) ∣ θ ∈ B(1), ϕ ∈ Φ} . (20)

The main guarantee for RepLearn is as follows.
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Theorem E.1. Let h ∈ [H], δ ∈ (0, e−1), and n ∈ N be given, and suppose that µ⋆h+1 satisfies the
normalization assumption in Eq. (4). For any function f ∈ F , define

wf = ∫
Xh+1

f(x)µ⋆h+1(x)dν(x).

Let P ∈ ∆(ΠM) be a distribution over policies, F be as (20), and Φ be a feature class satisfying
Assumption 2.2. With probability at least 1 − δ, RepLearn with input (h,F ,Φ, P, n) terminates after
t ≤ T ∶= ⌈d log3/2(2nd−1/2)⌉ iterations, and its output ϕ(t) satisfies

sup
f∈F

inf
w∈B(3d3/2)

Eπ∼PEπ○hπunif [(w⊺ϕ(t)(xh,ah) −w⊺fϕ⋆h(xh,ah))
2
] ≤ ε2RepLearn(n, δ), (21)

where ε2RepLearn(n, δ) ∶= cTd3n−1 log(∣Φ∣/δ), for some sufficiently large absolute constant c > 0.

To prove the theorem, we need a technical lemma, which follows from Modi et al. [35, Lemma 14].

Lemma E.1. Consider a call to RepLearn(h,F ,Φ, P, n) (Algorithm 6) in the setting of Theorem E.1.
Further, let LD be as in Algorithm 6 and define

(ϕ(t), ŵ(t)1 , . . . , ŵ
(t)
t−1) ∈ argmin

ϕ∈Φ,(w1,...,wt−1)∈B(2
√
d)t−1

t−1

∑
ℓ=1

LD(ϕ,wℓ, f
(ℓ)). (22)

For any δ ∈ (0,1), there is an event E(t)(δ) of probability at least 1 − δ such that under E(t)(δ), if
Algorithm 6 does not terminate at iteration t ≥ 1, then for w(ℓ) ∶= wf(ℓ) :

t−1

∑
ℓ=1

Eπ∼PEπ○hπunif [(ϕ(t)(xh,ah)⊺ŵ(t)ℓ − ϕ
⋆
h(xh,ah)⊺w(ℓ))

2
] ≤ tε2stat(n, δ), (23)

inf
w∈ 32B(d

3/2)
Eπ∼PEπ○hπunif [(ϕ(t)(xh,ah)⊺w − ϕ⋆h(xh,ah)⊺w(t))

2
] > 8dtε2stat(n, δ),

where ε2stat(n, δ) ∶= cd2n−1 log(∣Φ∣/δ) and c ≥ 1 is a sufficiently large absolute constant.

With this, we prove Theorem E.1.

Proof of Theorem E.1. Let us abbreviate ε ∶= εstat(n, δ), with εstat(n, δ) defined as in Lemma E.1.
Further, let N ∶= 1 + ⌈d log3/2(2d3/2/ε)⌉, δ′ ∶= δ

2N
, and define

ε̃stat ∶= εstat(n, δ′). (24)

Note that ε ≤ ε̃stat and N − 1 ≤ T , where T is the number of iterations in the theorem statement;
the latter inequality follows by the facts that the absolute constant c in Lemma E.1 is at least 1 and
log(∣Φ∣/δ) ≥ 1. We define an event E ∶= E(1)(δ′) ∩ ⋅ ⋅ ⋅ ∩ E(N)(δ′), where (Et(⋅))t are the success
events in Lemma E.1. Note that P[E] ≥ 1 − δ/2 by the union bound. Throughout this proof, we
condition on the event E .

To begin the proof, we define a sequence of vectors (v(ℓ)1∶d)ℓ≥0 in an inductive fashion, with v(ℓ)i ∈ Rd

for all i ∈ [d] and ℓ ≥ 0. For ℓ = 0, we let v(0)i = εei/d, for all i ∈ [d]. For ℓ ≥ 1, we consider two
cases:

• Case I: If

J (ℓ) ∶= {j ∈ [d] ∣ ∣det(V (ℓ−1)−j ,w(ℓ))∣ > (1 +C) ⋅ ∣det(V (ℓ−1))∣} ≠ ∅,

where V (ℓ−1) ∶= (v(ℓ−1)1 , . . . , v
(ℓ−1)
d ) ∈ Rd×d and w(ℓ) ∶= wf(ℓ) , then we let j ∶=

argminj′∈J (ℓ) j
′ and define

v
(ℓ)
i ∶= { w(ℓ), if i = j,

v
(ℓ−1)
i , otherwise.

• Case II: If J (ℓ) = ∅, we let v(ℓ)i = v(ℓ−1)i , for all i ∈ [d].
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We first show that J (t) ≠ ∅ at any iteration t ∈ [N] where RepLearn does not terminate. Let t ∈ [N]
be an iteration where the algorithm does not terminate, and suppose that J (t) = ∅. This means that

∀j ∈ [d], ∣det(V (t−1)−j ,w(t))∣ ≤ (1 +C) ⋅ ∣det(V (t−1))∣. (25)

Now, since det(V (t−1)) ≠ 0 (note that ∣det(V (t))∣ is non-decreasing with t), we have that

span(V (t−1)) = Rd. Thus, there exist β1, . . . , βd ∈ R be such that w(t) = ∑d
i=1 βiv

(t−1)
i . By

the linearity of the determinant and (25), we have

∀j ∈ [d], (1 +C)∣ ⋅ det(V (t−1))∣ ≥ ∣det(V (t−1)−j ,w(t))∣,

= ∣det(V (t−1)−j ,
d

∑
i=1

βiv
(t−1)
i )∣ ,

=
RRRRRRRRRRRR
∑
i∈[d]

βi ⋅ det(V (t−1)−j , v
(t−1)
i )

RRRRRRRRRRRR
,

= ∣βj ∣ ⋅ ∣det(V (t−1))∣.

This implies that ∣βj ∣ ≤ (1 +C) for all j ∈ [d]. Now, note that by the definition of (v(t−1)i ), we have
that for any i ∈ [d] such that v(t−1)i ≠ εei/d, there exists ℓ ∈ [t − 1] such that w(ℓ) = v(t−1)i . Let

I(t) ∶= {i ∈ [d] ∣ v(t−1)i ≠ εei/d},

and for any i ∈ I(t), let ℓi ∈ [t − 1] be such that w(ℓi) = v(t−1)i . Further, define

w̃(t) ∶= ∑
i∈I(t)

βiw
(ℓi) = ∑

i∈I(t)
βiv

(t−1)
i , (26)

and note that by the triangle inequality and the fact that w(t) = ∑d
i=1 βiv

(t−1)
i , we have

∥w̃(t) −w(t)∥ ≤ (1 +C)εstat. (27)

Finally, with the notation in (22), define

ŵ
(t)
t ∶= ∑

i∈I(t)
βiŵ

(t)
ℓi
, (28)

and note that
ŵ
(t)
t ∈ (1 +C)B(2d3/2),

since ∣βi∣ ≤ (1 + C) for all i ∈ [d], ∣I(t)∣ ≤ d, and ŵ(t)ℓ ∈ B(2
√
d), for all ℓ ∈ [t − 1]. Now, by

Lemma E.1, in particular (23), we have

∑
i∈I(t)

Eπ∼PEπ○hπunif [(ϕ(t)(xh,ah)⊺ŵ(t)ℓi
− ϕ⋆h(xh,ah)⊺w(ℓi))

2
] ≤ tε̃2stat, (29)

where ε̃stat is as in (24). Using the expressions in Eqs. (26) and (28) with (29) and Jensen’s inequality,
we have that under E(t),

Eπ∼PEπ○hπunif [(ϕ(t)(xh,ah)⊺ŵ(t)t − ϕ⋆h(xh,ah)⊺w̃(t))
2
]

≤
⎛
⎝ ∑j∈I(t)

∣βj ∣
⎞
⎠
⋅ ∑
i∈I(t)

Eπ∼PEπ○hπunif [(ϕ(t)(xh,ah)⊺ŵ(t)ℓi
− ϕ⋆h(xh,ah)⊺w(ℓi))

2
] ,

≤ (1 +C)dtε̃2stat.

Now, using (27) and the facts that (a + b)2 ≤ 2a2 + 2b2 and ∥ϕ⋆h∥2 ≤ 1, we have that

Eπ∼PEπ○hπunif [(ϕ(t)(xh,ah)⊺ŵ(t)t − ϕ⋆h(xh,ah)⊺w(t))
2
] ≤ 2(1 +C)2ε2 + 2(1 +C)dtε̃2stat,

≤ 2(1 +C)2ε̃2stat + 2(1 +C)dtε̃2stat.
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Using that C = 1/2, we conclude that the right-hand side of this inequality is bounded by 8dtε̃2stat
which is a contradiction, since ŵ(t)t ∈ (1+C)B(2d3/2) = B(3d3/2) and by Lemma E.1, we must have

inf
w∈B(3d3/2)

Eπ∼PEπ○hπunif [(ϕ(t)(xh,ah)⊺w − ϕ⋆h(xh,ah)⊺w(t))
2
] > 8tε̃stat

if RepLearn does not terminate at round t. Therefore, we have that J (t) ≠ ∅, for any iteration
t ∈ [2 ..N] where RepLearn does not terminate.

We now bound the iteration count and prove that the guarantee in Eq. (21) holds at termination. Note
that whenever J (ℓ) ≠ ∅ for ℓ > 1, we have by construction:

∣det(V (ℓ))∣ > 3/2 ⋅ ∣det(V (ℓ−1))∣.
Thus, if RepLearn runs for t ∈ [2 ..N] iterations, then

∣det(V (t))∣ > (3/2)t−1 ⋅ ∣det(V (1))∣. (30)

On the other hand, since the determinant of a matrix is bounded by the product of the norms of its
columns and v(t)1∶d ∈ B(2

√
d), we have

∣det(V (t))∣ ≤ 2ddd/2.

Note also that ∣det(V (0))∣ = (ε/d)d. Plugging this into (30), we conclude that

(3/2)t−1 < (2d3/2/ε)d.
Taking the logarithm on both sides and rearranging yields

t < 1 + d log3/2(2d3/2/ε) ≤ N.
Thus, the algorithm must terminate after at most N − 1 iterations. Furthermore, by [35, Lemma 14],
we have that with probability at least 1 − δ

2N
, if the algorithm terminates at iteration t, then

max
f∈F

inf
w∈B(3d3/2)

Eπ∼PEπ○hπunif [(w⊺ϕ(t)(xh,ah) −w⊺fϕ⋆h(xh,ah))
2
] ≤ 32tε̃2stat,

≤ 32(N − 1)ε̃2stat,
≤ 32T ε̃2stat.

Applying a union bound completes the proof.

F Analysis
In this section, we prove the main guarantee for SpanRL (Theorem 3.2). First, we outline our proof
strategy in Appendix F.1. Then, in Appendix F.2 and Appendix F.3, we present guarantees for the
instances of PSDP (Algorithm 3) and RobustSpanner (Algorithm 2) used within SpanRL. We then
combine these results in Appendix F.5 to complete the proof of Theorem 3.2. A self-contained
guarantee for RobustSpanner(Lemma 3.1) is given in Appendix F.6.

F.1 Proof Strategy
Like our algorithm, our analysis is inductive. For fixed h, we assume that the policy set Ψ(1∶h+1)
produced by SpanRL satisfies the property:

Ψ(1), . . .Ψ(h+1) are ( 1
4Ad

,0)-policy covers for layers 1 through h + 1, and max
t∈[h+1]

∣Ψ(t)∣ ≤ d. (31)

Conditioned on this claim, we show that with high probability, the set Ψ(h+2) is a ( 1
4Ad

,0)-policy
cover for layer h + 2. To prove this, we use the inductive assumption to show that PSDP acts as an
approximate linear optimization oracle over W = {Eπ [ϕ(h)(xh,ah)] ∣ π ∈ ΠM} (Appendix F.2).
Using this, we then instantiate the guarantee of RobustSpanner from Lemma F.3 with LinOpt and
LinEst instantiated with PSDP and EstVec. To conclude the proof of the inductive step, we the
main guarantee for RobustSpanner together with the main guarantee for RepLearn (Theorem E.1),
along with a change of measure argument enabled by the assumption that Ψ(1∶h) are policy covers
(i.e. (31)).
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F.2 Guarantee for PSDP as a Subroutine for RobustSpanner

We begin by showing that PSDP instantiates the approximate linear optimization oracle required by
RobustSpanner. In particular, we fix a layer h and assume that Ψ(1∶h+1) satisfy (31) and apply the
results of Appendix D.

More precisely, we need to show that, for any θ ∈ Rd ∖ {0} and ϕ ∈ Φ, PSDP approximately solves
max
π∈ΠM

θ⊺Eπ [ϕ(xh,ah)]. (32)

We can equivalently formulate (32) as, for fixed θ ∈ Rd ∖ {0} and ϕ ∈ Φ, maximizing the sum of the
reward functions r1∶h(⋅, ⋅; θ, ϕ) given by:

∀(x, a) ∈ X ×A, rt(x, a; θ, ϕ) ∶= {
ϕ(x, a)⊺ θ

∥θ∥
, for t = h,

0, otherwise.
(33)

Note that this matches the choice of reward functions in SpanRL (Algorithm 1) at iteration h with
ϕ = ϕ̂(h), the feature map returned by RepLearn in Line 8. With these reward functions and the
function class

G ∶= {g ∶ (x, a)↦ ϕ(x, a)⊺w ∣ ϕ ∈ Φ,w ∈ B(
√
d)}, (34)

we show that the output π̂ = PSDP(h, r1∶h(⋅, ⋅; θ, ϕ),G,Ψ(1∶h), n) approximately solves (32) with high
probability if n ≥ 1 is sufficiently large. We first verify that the class G realizes the reward functions
specified in (33) in the sense of Definition D.1.

Lemma F.1. Under Assumption 2.2, the function class G in (34) realizes the reward functions in (33),
for any ϕ ∈ Φ and θ ∈ Rd ∖ {0}. Furthermore, we have that functions in G are uniformly bounded by
h ≤ H , and logNG(ε) ≤ log ∣Φ∣ + d log(H/ε), where we recall that NG(ε) denotes the ε-covering
number of G in ℓ∞ distance.

Proof. Fix ϕ ∈ Φ and θ ∈ Rd ∖ {0}, and let rℓ(⋅, ⋅) ≡ rℓ(⋅, ⋅; θ, ϕ), for ℓ ∈ [h]. For t = h, we clearly
have that for any π ∈ Πh∶h

M , Qπ
t (⋅, ⋅) = rt(⋅, ⋅) ∈ G. For t < h and π ∈ Πt∶h

M , we have by the low-rank
structure that

Qπ
t (x, a) = ∫

Xt+1
Eπ[rh(xh,ah) ∣ xt+1 = y,at+1 = π(y)] ⋅ ϕ⋆t (x, a)⊺µ⋆t+1(y)dν(y),

= ϕ⋆t (x, a)⊺ (∫
Xt+1

Eπ[rh(xh,ah) ∣ xt+1 = y,at+1 = π(y)] ⋅ µ⋆t+1(y)dν(y)) . (35)

Now, by the fact that Eπ[rh(xh,ah) ∣ xt+1 = y,at+1 = π(y)] ∈ [−1,1], for all y ∈ Xt+1 (since
ϕ(⋅, ⋅) ∈ B(1), for all ϕ ∈ Φ), and the normalizing assumption made on (µ⋆h)h∈[H] in Section 2.2
(i.e. that for all g ∶ Xt+1 → [0,1], ∥∫Xt+1 µ

⋆
t+1(y)g(y)dν(y)∥ ≤

√
d), we have that

wt ∶= ∫
Xt+1

Eπ[rh(xh,ah) ∣ xt+1 = y,at+1 = π(y)] ⋅ µ⋆t+1(y)dν(y) ∈ B(
√
d).

This together with (35) and the fact that ϕ⋆t ∈ Φ (by Assumption 2.2), we have that Qπ
t ∈ G.

Combining Lemma F.1 with Theorem D.2 results in the following bound on the quality of PSDP as an
approximate linear optimization oracle over the space of policies.

Corollary F.1. Let ε, δ ∈ (0,1) and h ∈ [H]. Further, let θ ∈ Rd ∖ {0}, ϕ ∈ Φ, and
π̂ = PSDP(h, r1∶h(⋅, ⋅; θ, ϕ),G,Ψ(1∶h), n), where

• The reward functions r1∶h(⋅, ⋅; θ, ϕ) are as in (33).

• The function class G is as in (34).

• The collection of policies Ψ(1∶h) satisfy (31).

• The parameter n is chosen such that cHACd2 ⋅ εstat(n, δ/H) ≤ ε, where εstat(n, δ′) ∶=√
dn−1 ⋅ (d log(nH) + log(∣Φ∣/δ′)) and c > 0 is some large enough absolute constant.

Then, under Assumption 2.2, with probability at least 1 − δ, we have that

max
π∈ΠM

θ⊺Eπ[ϕ(xh,ah)] ≤ θ⊺Eπ̂[ϕ(xh,ah)] + ε/2.

We emphasize that the inductive assumption that Ψ(1∶h) is a policy cover of bounded size enters only
in the statement of Theorem D.2. We now give a guarantee for RobustSpanner as used in SpanRL.
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Algorithm 7 EstVec(h,F, π, n): Estimate Eπ[F (xh,ah)] for given policy π and function F .
Require:

• Target layer h ∈ [H].
• Vector-valued function F ∶ X ×A→ Rd.
• Policy π ∈ ΠM.
• Number of samples n ∈ N.

1: D ← ∅.
2: for n times do
3: Sample (xh,ah) ∼ π.
4: Update dataset: D ← D ∪ {(xh,ah)}.
5: Return: F̄ = 1

n ∑(x,a)∈D F (x, a).

F.3 Guarantee for RobustSpanner as a Subroutine for SpanRL

In this section, we prove a guarantee for the instantiation of RobustSpanner in SpanRL, which we
require in the proof of the main theorem (Theorem 3.2). We first show that the LinEst subroutine
passed to RobustSpanner can be taken to be EstVec (Algorithm 7), which simply estimates the
expected feature imbedding of (xh,ah) under policy π by sampling sufficiently many trajectories
and taking the empirical mean.

Lemma F.2 (Guarantee of EstVec). Let δ ∈ (0,1) and ε > 0. For h ∈ [H], ϕ ∈ Φ, π ∈ ΠM,
and n ∈ N such that n ≥ c

ε2
log(d/δ) for some large enough absolute constant c > 0, the output

ϕh = EstVec(h,ϕ, π, n) (Algorithm 7) satisfies, with probability at least 1 − δ,

∥ϕh −Eπ[ϕ(xh,ah)]∥ ≤ ε/2.

Proof. By Hoeffding’s inequality (see for example [22, Corollary 7]) and the fact that ∥ϕ(x, a)∥ ≤ 1
for all x ∈ X and a ∈ A, there exists an absolute constant c > 0 such that with probability at least
1 − δ,

∥ϕh −Eπ [ϕ(xh,ah)] ∥ ≤ c ⋅
√

log(d/δ)
n

.

Setting n as in the statement of the theorem concludes the proof.

In SpanRL, we instantiate RobustSpanner passing PSDP as LinOpt and EstVec as LinEst. Combin-
ing Corollary F.1 and Lemma F.2 with the general guarantee of RobustSpanner in Proposition C.1,
we have the following result.

Lemma F.3. Consider iteration h ∈ [H] of SpanRL(Φ, ε, c, δ) (Algorithm 1) with ε, c > 0, δ ∈ (0,1),
and feature class Φ satisfying Assumption 2.2. Further, let ϕ̂(h) denote the feature map returned by
RepLearn in Algorithm 1 at iteration h. If Ψ(1∶h) satisfy (31) and c = polylog(A,d,H, log(∣Φ∣/δ))
is large enough, then there is an event Eh with probability at least 1 − δ

2H
such that

• The number of iterations of RobustSpanner in Line 12 of Algorithm 1 is at most N =
⌈d
2
log2 ( 100dε

)⌉ <∞, and

• The output (π1, . . . , πd) of RobustSpanner has the property that for all π ∈ ΠM, there exist
β1, . . . , βd ∈ [−2,2] such that

∥ϕ̂(h),π −
d

∑
i=1

βiϕ̂
(h),πi∥ ≤ 3dε, where ϕ̂(h),π

′ ∶= Eπ′ [ϕ̂(h)(xh,ah)] .

Proof. By Proposition C.1, on the event that the instances of PSDP and EstVec used by
RobustSpanner satisfy Assumption C.1 with ε′ = ε

2
, the two desiderata of the lemma hold.10 We

10Here, we instantiate the guarantee in Proposition C.1 with C = 2; this is what C is set to in Algorithm 1.
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claim that each call to PSDP and to EstVec satisfies Assumption C.1 with probability at least 1− δ
8dNH

.
Because each of PSDP and EstVec get called at most 4dN times per iteration of RobustSpanner, a
union bound concludes the proof contingent on the above claim.

We now prove the claim. First, note that the instance of PSDP that RobustSpanner uses within
Algorithm 1 is of the form:

PSDP(h, r1∶h(⋅, ⋅, θ),G,Ψ1∶h, nPSDP)
with r1∶h and G as in Algorithm 1; this matches the form in Corollary F.1 (PSDP’s guarantee) with
ϕ = ϕ̂(h). Thus, by choosing

nPSDP = c ⋅
A2d5H2 ⋅ (d log(H) + log(8dH2N ∣Φ∣/δ))

ε2
,

for c = polylog(A,d,H, log(∣Φ∣/δ)) sufficiently large, the conditions of Corollary F.1 are satisfied,
and its conclusion implies the claim for the PSDP instance used by RobustSpanner. Similarly,
the choice of nEstVec in Algorithm 1 ensures that the claim holds for the instance of EstVec that
RobustSpanner uses by Lemma F.2. The result follows.

F.4 Guarantee for RepLearn as a Subroutine for SpanRL

In this section, we prove a guarantee for the invocation of RepLearn within SpanRL

Recall that P (h) = unif(Ψ(h)) is the distribution over policies that SpanRL passes to RepLearn at
iteration h ∈ [H − 2] to compute feature map ϕ(h). Thus, by invoking Theorem E.1 in Appendix E
and using the choice of nRepLearn in Algorithm 1, we immediately obtain the following corollary.

Corollary F.2. Let δ, ε ∈ (0,1), and F be as in Algorithm 1, and fix h ∈ [H − 2]. Suppose that
the feature class Φ satisfies Assumption 2.2. Then, with probability at least 1 − δ

2H
, the instance of

RepLearn in Line 9 of Algorithm 1 runs for t ≤ c ⋅ d iterations for c = polylog(A,d,H, log(∣Φ∣/δ))
sufficiently large, and returns output ϕ(h) such that for all f ∈ F , there exists w(h)f ∈ B(3d3/2)
satisfying

Eunif(Ψ(h)) [∑
a∈A

(ϕ(h)(xh, a)⊺w(h)f − ϕ⋆h(xh, a)⊺wf)
2
] ≤ η2

64A2d2
,

where wf ∶= ∫Xh+1 f(y)µ
⋆
h+1(y)dν(y).

F.5 Concluding the Proof of Theorem 3.2
In this section, we conclude the proof of the main guarantee (Theorem 3.2). We derive the guarantee
from the following inductive claim.

Theorem F.1. Consider iteration h ∈ [H] of SpanRL(Φ, ε, c, δ) (Algorithm 1) with parameters
ε, c > 0, δ ∈ (0,1) and a feature class Φ satisfying Assumption 2.2. Further, assume that:

• The collection of policies Ψ(1∶h+1) at the start of the hth iteration of SpanRL satisfy (31).

• Assumption 2.1 (reachability) holds with η > 0.

• The input parameter ε to SpanRL is set to ε = η
36d5/2 .

• The input parameter c = polylog(A,d,H, log(∣Φ∣/δ)) is sufficiently large.

Then, with probability at least 1− δ
H

, the set of policies Ψ(h+2) produced by SpanRL(Φ, ε, c, δ) at the
end of iteration h is an ( 1

4Ad
,0)-policy cover for layer h + 2.

With this, we can now prove Theorem 3.2.

Proof of Theorem 3.2. Note that it suffices to prove that (31) holds for h =H − 1 with probability
at least 1 − δ. To do this, we proceed by induction over h = 1, . . . ,H − 1. The base case of h = 1
trivially holds because Ψ(1) = ∅ and Ψ(2) = {πunif}. The induction step now follows by Theorem F.1
and the union bound (see e.g. [30, Lemma I.2]).
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The number of trajectories used by SpanRL is dominated by calls to PSDP. Since PSDP is called
O(d log(d/ε)) times at each iteration of SpanRL (Lemma F.3), and each call to PSDP requires at
most HnPSDP trajectories, the total number of trajectories after H iterations of SpanRL is bounded by
Õ(H2dnPSDP). By plugging the choices for nPSDP and ε from the theorem statement, we obtain the
claimed sample complexity.

Before proving Theorem F.1, we make the following simple observation.

Lemma F.4. For any π ∈ ΠM, h ∈ [H − 1], any x ∈ Xh+1, we have

µ⋆h+1(x)⊺Eπ[ϕ⋆h(xh,ah)] = dπ(x) ≥ 0.

Proof of Lemma F.4. The equality follows by construction. The non-negativity of dπ(x) follows by
definition of a probability density.

We now prove Theorem F.1.

Proof of Theorem F.1. Let Eh and E ′h denote the success events in Lemma F.3 and Corollary F.2,
respectively, and note that by the union bound, we have P[Eh ∩ E ′h] ≥ 1 − δ/H . For the rest of this
proof, we will condition on E ∶= Eh ∩ E ′h.

Throughout, we denote

ϕ⋆,πh ∶= Eπ[ϕ⋆h(xh,ah)], ∀h ∈ [H],∀π ∈ ΠM.

Because Ψ(1∶h+1) satisfy (31) (i.e., are a policy cover) it holds by Lemma F.4 that for all x ∈ Xh,

max
π∈Ψ(h)

µ⋆h(x)⊺ϕ⋆,πh−1 ≥ α ⋅ sup
π∈ΠM

µ⋆h(x)⊺ϕ⋆,πh−1, for α ∶= 1

4Ad
. (36)

We will show that with probability at least 1 − δ
H

, the policy set Ψ(h+2) has the same property for
layer h + 2; that is, for all x ∈ Xh+1,

max
π∈Ψ(h+2)

µ⋆h+2(x)⊺ϕ⋆,πh+1 ≥ α ⋅ sup
π∈ΠM

µ⋆h+2(x)⊺ϕ⋆,πh+1. (37)

Again, by Lemma F.4 this is equivalent to the statement that Ψ(h+2) is an ( 1
4Ad

,0)-policy cover for
layer h + 2.

For the remainder of the proof, we will fix x ∈ Xh+2 and let πx ∈ argmaxπ∈ΠM
µ⋆h+2(x)⊺ϕ

⋆,π
h+1. Our

goal is to show that the inequality Eq. (37) holds for x.

Preliminaries. Note that since x ∈ Xh+2, we have ∥µ⋆h+2(x)∥ > 0. It will be convenient to introduce
a function f ∶ Xh+1 → R defined by

f(y) ∶= θ⊺xϕ⋆h+1(y, πx(y)), where θx ∶=
µ⋆h+2(x)
∥µ⋆h+2(x)∥

.

Further, we define

wx ∶= ∫
Xh+1

f(y)µ⋆h+1(y)dν(y). (38)

By definition of πx, we have that for all y ∈ Xh+1,

θ⊺xϕ
⋆
h+1(y, πx(y)) =max

a∈A
θ⊺xϕ

⋆
h+1(y, a).

This together with the fact that ∥θx∥ = 1 implies that

f ∈ F = {x↦max
a∈A

θ⊺ϕ(x, a) ∣ θ ∈ B(1), ϕ ∈ Φ} ; (39)

the discriminator class in Line 4 of SpanRL. Note also that since x ∈ Xh+2, we have by reachability
that

w⊺xϕ
⋆,πx

h = θ⊺xϕ⋆,πx

h+1 =
1

∥µ⋆h+2(x)∥
max
π∈ΠM

µ⋆h+2(x)⊺ϕ⋆,πh+1 ≥ η > 0. (40)
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Applying the guarantee for RepLearn. Moving forward, let ϕ(h) be the feature map returned by
RepLearn at the hth iteration of Algorithm 1, and define ϕ(h),π ∶= Eπ[ϕ(h)(xh,ah)], for any π ∈ ΠM.
Further, let w(h)x be the vector w(h)f in Corollary F.2 with f = fx, and note that

∥w(h)x ∥ ≤ 3d3/2. (41)
By Jensen’s inequality, we compute

(⟨w(h)x ⟩ϕ(h),πx − ⟨wx⟩ϕ⋆,πx

h )2

≤ Eπx [(ϕ(h)(xh,ah)⊺w(h)x − ϕ⋆h(xh,ah)⊺wx)
2
] , (Jensen’s inequality)

= ∫
Xh

(ϕ(h)(y, πx(y))⊺w(h)x − ϕ⋆h(y, πx(y))⊺wx)
2
µ⋆h(y)⊺ϕ⋆,πx

h−1 dν(y), (Low-Rank MDP)

≤ α−1 max
π̃∈Ψ(h)

∫
Xh

(ϕ(h)(y, πx(y))⊺w(h)x − ϕ⋆h(y, πx(y))⊺wx)
2
µ⋆h(y)⊺ϕ⋆,π̃h−1dν(y), (by (36))

≤ α−1 ∑
π̃∈Ψ(h)

∫
Xh

(ϕ(h)(y, πx(y))⊺w(h)x − ϕ⋆h(y, πx(y))⊺wx)
2
µ⋆h(y)⊺ϕ⋆,π̃h−1dν(y), (by Lemma F.4)

≤ α−1 ∑
π̃∈Ψ(h)

∑
a∈A
∫
Xh

(ϕ(h)(y, a)⊺w(h)x − ϕ⋆h(y, a)⊺wx)
2
µ⋆h(y)⊺ϕ⋆,π̃h−1dν(y),

= Aα−1d ⋅Eunif(Ψ(h)) [(ϕ(h)(xh,ah)⊺w(h)x − ϕ⋆h(xh,ah)⊺wx)
2
] , (42)

where the last step follows by the definition of Ψ(h) in Algorithm 1 and that ∣Ψ(h)∣ = d. Now,
since wx = ∫Xh+1 f(y)µ

⋆
h+1(y)dν(y) (see (38)) and f ∈ F (see (39)); the guarantee for RepLearnin

Corollary F.2 together with (42) implies that (conditioned on the event E)

∣⟨w(h)x ⟩ϕ(h),πx − ⟨wx⟩ϕ⋆,πx

h ∣ ≤
√

Adη2

64αA2d2
≤ η
4
. (43)

Applying the guarantee for RobustSpanner. Letting π1, . . . , πd be the policies returned by
RobustSpanner at iteration h of SpanRL, the guarantee of RobustSpanner in Lemma F.3 implies
that there exist β1, . . . , βd ∈ [−2,2] such that

∥ϕ(h),πx −
d

∑
i=1

βiϕ
(h),πi∥ ≤ 3dε ≤ η

12d3/2
, (44)

where the last inequality follows by the fact that ε = η
36d5/2 . Combining (44) with (43) and using the

triangle inequality, we get that

w⊺xϕ
⋆,πx

h ≤
d

∑
i=1

βiw
⊺
xϕ
⋆,πi

h + ∥w(h)x ∥ ⋅
η

12d3/2
+ η
4
,

≤
d

∑
i=1

βiw
⊺
xϕ
⋆,πi

h + η
4
+ η
4
, (by (41))

≤ 2dmax
i∈[d]

w⊺xϕ
⋆,πi

h + η
2
.

Combining this with (40) and rearranging implies
w⊺xϕ

⋆,πx

h ≤ 4d ⋅max
i∈[d]

w⊺xϕ
⋆,πi

h . (45)

On the other hand, by definition of wx, we have
max
i∈[d]

w⊺xϕ
⋆,πi

h =max
i∈[d]

θ⊺xϕ
⋆,πi○h+1πx

h+1 ,

= 1

∥µ⋆h+2(x)∥
max
i∈[d]

Eπi○h+1πx [µ⋆h+2(x)⊺ϕ⋆h+1(xh+1,ah+1)] ,

≤ A

∥µ⋆h+2(x)∥
max
i∈[d]

Eπi○h+1πunif [µ⋆h+2(x)⊺ϕ⋆h+1(xh+1,ah+1)] , (see below)

= A

∥µ⋆h+2(x)∥
max

π∈Ψ(h+2)
µ⋆h+2(x)⊺ϕ⋆,πh+1, (46)
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where the inequality follows from the non-negativity of µ⋆h+1(⋅)
⊺
ϕ⋆h+1(x, a), for all (x, a) ∈ Xh ×A

(due to Lemma F.4), and (46) follows from the definition of Ψ(h+2) in Line 13 of Algorithm 1.
Combining (45) and (46) then implies that

1

∥µ⋆h+2(x)∥
µ⋆h+2(x)⊺ϕ⋆,πx

h+1 = θ
⊺
xϕ
⋆,πx

h+1 = w
⊺
xϕ
⋆,πx

h ≤ 4d ⋅max
i∈[d]

w⊺xϕ
⋆,πi

h ,

≤ 4Ad

∥µ⋆h+2(x)∥
max

π∈Ψ(h+2)
µ⋆h+2(x)⊺ϕ⋆,πh+1.

This, together with Lemma F.4, implies that (37) holds. Since this argument holds uniformly for all
x ∈ Xh+2, this completes the proof.

F.6 Proof of Lemma 3.1
By definition for x ∈ Xh+1, we have dπ(x) = Eπ [µ⋆h+1(x)

⊺
ϕ⋆h(xh,ah)]. Let πx denote the policy

maximizing dπ(x) (if no such maximizer exists, we may pass to a maximizing sequence) and let
Ψ = {π1, . . . , πd}. Then, we have for some β1, . . . , βd ∈ [−C,C],

dπx(x) = µ⋆h+1(x)
⊺(

d

∑
i=1

βiϕ
⋆,πi

h ) + µ⋆h+1(x)
⊺(ϕ⋆,πx

h −
d

∑
i=1

βiϕ
⋆,πi

h ),

≤ Cd ⋅max
i∈[d]

µ⋆h+1(x)
⊺
ϕ⋆,πi

h + ε ⋅ ∥µ⋆h+1(x)∥, (Cauchy-Schwarz)

≤ Cd ⋅max
i∈[d]

µ⋆h+1(x)
⊺
ϕ⋆,πi

h + 1

2
dπx(x),

where the inequality follows by the fact that Assumption 2.1 holds with ε ≤ η/2. The result now
follows by rearranging.

G Application to Reward-Based RL
In this section, we explain how the output Ψ(1∶H) of SpanRL (Algorithm 1) can be used to optimize
downstream reward functions r1∶H ; our treatment is standard. Since the output of SpanRL is a policy
cover, one way to optimize the sum of rewards SH ∶= ∑H

h=1 rh is by first generating trajectories
using policies in Ψ(1∶H), then applying an offline RL algorithm, e.g. Fitted Q-Iteration (FQI) [16], to
optimize SH . It is also possible to use PSDP with the policy cover Ψ(1∶H) to achieve the same goal.
We will showcase the latter approach since we have already stated a guarantee for PSDP.

As in Appendix D, we assume access to a function class G ⊆ {g ∶ X ×A → R} that realizes the
rewards r1∶H in the following sense: for all h ∈ [H] and all π ∈ Πh∶H

M ,

Qπ
h ∈ G, where Qπ

h(x, a) ∶= rh(x, a) +Eπ [
H

∑
t=h+1

rt(xt,at) ∣ xh = x,ah = a] .

Note that when the reward functions r1∶H are linear in the feature map ϕ⋆h; that is, when for all
h ∈ [H] and (x, a) ∈ Xh ×A, rh(x, a) = θ⊺hϕ⋆h(x, a) for some θh ∈ B(1) (a common assumption in
the context of RL in Low-Rank MDPs [32, 31, 49, 35]), then the function class

G ∶= {g ∶ (x, a)↦ ϕ(x, a)⊺w ∣ ϕ ∈ Φ,w ∈ B(2H
√
d)},

realizes r1∶H . Note that G is the same function class we used for the PSDP subroutine in Algorithm 3,
albeit with a larger ball for the w’s. For the sake of generality, we state the next result (which shows
how to use a policy cover to optimize a downstream reward function) for general r1∶H and a function
class G that realizes r1∶H .

Theorem G.1. Let ε > 0 and δ ∈ (0,1). Suppose reward functions r1∶H ∶ X ×A→ R, a collection of
policies Ψ(1∶H), and a parameter n ≥ 1 satisfy the following:

• The function class G realizes the reward functions r1∶H (in the sense of Definition D.1), and
limn→∞ n

−1 ⋅ logNG(1/n) = 0, where NG(1/n) to denote the 1
n

-covering number of G in
the supremum norm. Furthermore, we suppose that functions in G are uniformly bounded
by H

√
d.
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• For some 0 < α ≤ 1, for each 1 ≤ h ≤H , it holds that Ψ(h) is an α-policy cover for layer h
and moreover ∣Ψ(h)∣ ≤ d.

• The parameter n is chosen such that cdHα−1 ⋅ εstat(n, δ/H) ≤ ε, where εstat(n, δ′) ∶=√
dH2n−1 ⋅ (logNG(1/n) + log(1/δ)) and c > 0 is a large enough absolute constant.

Then, with probability at least 1 − δ, the policy π̂ = PSDP(H,r1∶H ,G, P (1∶H), n) (where P (t) ∶=
unif(Ψ(t)), for each t ∈ [h]) coming from Algorithm 3, satisfies the following guarantee:

max
π∈ΠM

Eπ [
H

∑
h=1

rh(xh,ah)] ≤ Eπ̂ [
H

∑
h=1

rh(xh,ah)] + ε.

Moreover, the number of episodes used by PSDP in this case is

Õ (A
2d5H5(logNG(ε) + log(1/δ))

ε2
) .

Proof. This is simply a restatement of Theorem D.2 with h =H . The number of trajectories follows
by the fact that each call to PSDP requires Hn trajectories.

H Properties of Reachability Assumption
In this section, we compare η-reachability (Assumption 2.1) to different reachability assumptions
used in the literature in the context of RL in Low-Rank MDPs and show that ours is the weakest
among those commonly assumed. In Appendix H.1, we demonstrate an exponential separation
between our notion of reachability and that considered with respect to the popular latent variable
model [1, 35]. In Appendix H.2, we consider a number of other reachability assumptions made
outside the latent variable model and show how they imply Assumption 2.1.

H.1 Comparison to Latent Variable Model
In this subsection, we show that our reachability assumption is implied a reachability assumption
used by [1, 35] in the latent variable/non-negative feature model, and show that our reachability
assumption can hold even when the best possible latent variable embedding dimension is exponential
in the dimension d. We begin by defining the latent variable model.

Definition H.1 (Latent variable representation). Givn a transition operator T ∶ X ×A→∆(X ), a
latent variable representation consists of a countable latent space Z and functions ψ ∶ X ×A→∆(Z)
and q ∶ Z → ∆(X ), such that T (⋅ ∣ x, a) = ∑z∈Z q(⋅ ∣ z)ψ(z ∣ x, a). The latent variable dimension
of T , denoted dLV is the cardinality of smallest latent space Z for which T admits a latent variable
representation.

The interpretation for the latent variable model is as follows:

1. Each (x, a) pair induces a distribution ψ(x, a) ∈∆(Z) over z ∈ Z .

2. The latent variable is sampled as z ∼ ψ(x, a).
3. The next state is sampled as x′ ∼ q(⋅ ∣ z).

Note that in discrete state spaces, all transition operators admit a trivial latent variable representation,
as we may take ψ(x, a) = T (⋅ ∣ x, a), but the dimension of such a representation is potentially infinite.
A latent variable representation certifies that there exists a factorization T (x′ ∣ x, a) = ψ(x, a)⊺q(x′)
with embedding dimension ∣Z ∣, and so dLV, and hence gives an upper bound on the rank of the
transition operator. On the other hand, compared with the general Low-Rank factorization, the latent
variable factorization additionally requires that ψ(x, a) and q(⋅ ∣ z) are probability distributions, and
thus non-negative, for all z ∈ Z and (x, a) ∈ X ×A, implying that dLV is equivalent to the non-negative
rank [1] of the transition operator.

Assuming that a latent variable representation exists, [1, 35] consider the following notion of reacha-
bility.

Definition H.2 (Reachability in latent variable model). There exists η > 0 such that

∀h ∈ [H − 1],∀z ∈ Zh+1, sup
π∈ΠM

Pπ[zh+1 = z] ≥ η. (47)
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We first show the latent variable reachability condition above implies our more general assumption.

Lemma H.1. Consider a Low-Rank MDPM with rank d ≥ 1. Under the latent variable model in
Definition H.1, if the latent variable reachability condition in (47) is satisfied for some η > 0, then,
for all h ∈ [H], the transition kernel Th inM admits a factorization Th(⋅ ∣ x, a) = µ⋆h+1(⋅)⊺ϕ⋆h(x, a),
where µ⋆h+1(⋅) ∈ RdLV and ϕ⋆h(⋅, ⋅) ∈ RdLV , such that dLV ≤ dA2/η2 and η2

A
√
d

-reachability (in the sense
of Assumption 2.1) is satisfied.

Proof of Lemma H.1. Suppose that Assumption 2.1 (η-reachability) holds. By Agarwal et al. [1,
Proposition 4], the non-negative rank ofM is bounded as dLV ≤ dA2/η2.

Letting q and ψ be as in the definition of the latent variable representation in Definition H.1, we
define µ⋆h+1 and ϕ⋆h as: for all h ∈ [H − 1],

µ⋆h+1(⋅) ∶= (q(⋅ ∣ z))z∈Z ∈ RdLV , and ϕ⋆h(⋅, ⋅) ∶= (ψ(z ∣ ⋅, ⋅))z∈Z ∈ RdLV .

Now, fix h ∈ [H − 1] and x ∈ Xh+1. For z0 ∈ argmaxz∈Zh+1 q(x ∣ z), we have

sup
π∈ΠM

dπ(x) = Pπ[xh+1 = x] = sup
π∈ΠM

∑
z∈Zh+1

q(x ∣ z) ⋅Eπ[ψ(z ∣ xh,ah)],

= sup
π∈ΠM

q(x ∣ z0) ⋅Eπ[ψ(z0 ∣ xh,ah)],

= ∥µ⋆h+1(x)∥∞ ⋅ sup
π∈ΠM

Pπ[zh+1 = z0],

≥ η ⋅ ∥µ⋆h+1(x)∥∞, (using reachability)

≥ η√
dLV
⋅ ∥µ⋆h+1(x)∥.

We now complement the result above by showing that there exists low-rank MDPs for which our
notion of reachability (Assumption 2.1) is satisfied with η polynomially small, yet the best possible
latent variable embedding has dimension dLV = 2Ω(d). This contrasts the results in [1, Proposition
2], which show that latent variable reachability implies a polynomial bound on the latent variable
dimension.

Theorem H.3. There exists a one-step Low-Rank-MDP of rank d ≥ 1, where η-reachability (Assump-
tion 2.1) is satisfied with η = 1

2
√
d

, but where the non-negative rank satisfies dLV = 2Ω(d).

Proof of Theorem H.3. Let n ∈ N and d ∶= (n
2
) + 1. As shown in the proof of Agarwal et al. [1,

Proposition 2], there exists a horizon-two MDPM with the following properties:

• The state spaces X1 and X2 at layers 1 and 2, respectively, are finite.

• The cardinality of A is d; i.e. A = {a1, . . . , ad}.11

• The transition kernel T1 admits the factorization:

T1(⋅ ∣ x, a) = µ⋆2(⋅)⊺ϕ⋆1(x, a) ∈∆(X2), ∀(x, a) ∈ X1 ×A,

where for all x′ ∈ X2, µ⋆2(x′) ∈ Rd
≥0, and for all (x, a) ∈ X1 ×A, ϕ⋆1(x, a) ∈ Rd

≥0.

• The non-negative rank ofM is dLV = 2Ω(d).

We augment this MDP by adding an extra state x0, and let X 1 ∶= X1∪{x0}. We define ϕ⋆1 ∶ X 1×A→
Rd
≥0 be the extension of ϕ⋆1 given by

∀i ∈ [d], ϕ⋆1(x0, ai) = ei, and ∀x ∈ X1, ϕ⋆1(x, ai) = ϕ⋆1(x, ai),
11Technically, the example in the proof of [1, Proposition 2] does not explicitly specify the number of actions.

Instead, the example assigns a number of state-action pairs to vectors in Rd, without specifying the number of
actions. The number of actions in their example is a degree of freedom, which we set to d here without loss of
generality.
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where ei is the ith basis element in Rd. We define the initial state distribution to have ρ(x0) = 1
2

and
ρ(x) = 1

2∣X1∣
, for all x ∈ X1.12 We letM = (X1 ∪X2,A, ϕ⋆1, (µ⋆h)h∈[2], ρ) denote the resulting MDP.

Note that adding an extra state at layer 1 in this fashion only adds d additional rows to the transition
matrix T (viewed as a (∣X1 ×A∣) × ∣X2∣ matrix). Therefore, the non-negative rank ofM is as least
that ofM.

We now show that reachability is satisfied inM. Let πi the policy that always plays action ai. With
this, we have that for any x′ ∈ X2,

sup
π∈ΠM

dπ(x′) ≥max
i∈[d]

dπi(x′),

=max
i∈[d]

µ⋆2(x′)⊺E[ϕ⋆1(x1, ai)],

=max
i∈[d]
{E[I{x1 = x0} ⋅ µ⋆2(x′)⊺ϕ⋆1(x1, ai)] +E[I{x1 ≠ x0} ⋅ µ⋆2(x′)⊺ϕ⋆1(x1, ai)]} ,

≥max
i∈[d]

ρ(x0)µ⋆2(x′)⊺ϕ⋆1(x0, ai). (48)

where the last inequality follows by the fact that, for all (x, a) ∈ X1 × A, µ⋆2(⋅)⊺ϕ⋆1(x, a) =
µ⋆2(x′)⊺ϕ⋆1(x, a) ≥ 0 (since µ⋆2(x′)⊺ϕ⋆1(x, a) is a conditional density). On the other hand, from
the construction of ϕ⋆1 and the fact that µ⋆2(x′) ∈ Rd

≥0, we have

max
i∈[d]

µ⋆2(x′)⊺ϕ⋆1(x0, ai) = ∥µ⋆2(x′)∥∞ ≥ ∥µ⋆2(x′)∥/
√
d.

Combining this with (48) and using that ρ(x0) = 1/2 implies that reachability 1/(2
√
d) is satisfied in

M.

H.2 Relation to Other Reachability Assumptions
In this subsection, we show that Assumption 2.1 is implied by a notion of feature coverage used in
the context of transfer learning in Low-Rank MDPs [5], as well as a notion of explorability used in
the context of reward-free RL in linear MDPs [46].

H.2.1 Feature Coverage
We first consider coverage condition used by Agarwal et al. [5], which involves the second moments
of the feature map ϕ⋆h.

Definition H.4 (η-feature coverage). We say that the linear MDP with featurization ϕ⋆h satisfies
η-feature coverage if for all h ∈ [H],

sup
π∈ΠM

λmin (Eπ[ϕ⋆h(xh,ah)ϕ⋆h(xh,ah)⊺]) ≥ η.

We show that η-feature coverage implies (η/2)3/2-reachability. Thus, up to polynomial dependence,
η-feature coverage is a special case of Assumption 2.1.

Lemma H.2. Suppose that an MDP satisfies η-feature coverage as in Definition H.4 for some
η > 0. If ϕ⋆h(x, a) ∈ B(1) for all x, a, then the MDP satisfies (η/2)3/2-reachability in the sense of
Assumption 2.1.

Proof of Lemma H.2. Let h ∈ [H] and x ∈ Xh+1 be given and define

θ ∶= µ⋆h+1(x)
∥µ⋆h+1(x)∥

.

To keep notation compact, we define ϕ⋆h ∶= ϕ⋆h(xh,ah). By η-feature coverage, there exists π ∈ ΠM

such that

η ≤ Eπ[(θ⊺ϕ⋆h)2] = Eπ[I{(θ⊺ϕ⋆h)2 < η/2} ⋅ (θ⊺ϕ⋆h)2] +Eπ[I{(θ⊺ϕ⋆h)2 ≥ η/2} ⋅ (θ⊺ϕ⋆h)2],
≤ η/2 + Pπ[(θ⊺ϕ⋆h)2 ≥ η/2], (49)

12We note that [1] did not specify the initial distribution, which is not needed for the conclusion of their result.
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where we have used that ∥θ∥ = 1 and ∥ϕ⋆h(x, a)∥ ≤ 1 for all (x, a) ∈ Xh ×A. Rearranging (49) and
using that θ⊺ϕ⋆h ≥ 0 (it is a scaled conditional density), have

Pπ[θ⊺ϕ⋆h ≥
√
η/2] = Pπ[(θ⊺ϕ⋆h)2 ≥ η/2] ≥ η/2.

Now, by Markov’s inequality, we have that

θ⊺ϕ⋆,πh = Eπ[θ⊺ϕ⋆h] ≥
√
η/2 ⋅ Pπ[θ⊺ϕ⋆h ≥

√
η/2] ≥ (η/2)3/2,

where we have once more used that θ⊺ϕ⋆h ≥ 0 almost surely.

H.2.2 Explorability
We now consider the explorability assumption of [46], which involves the first moment of the feature
map ϕ⋆h. This notion is defined as follows.

Definition H.5 (η-explorability). We say that a linear MDP satisfies η-explorability if for any h ∈ [H]
and any θ ∈ Rd ∖ {0} it holds that

sup
π∈ΠM

∣θ⊺Eπ[ϕ⋆h(xh,ah)]∣ ≥ η ⋅ ∥θ∥.

We now show that η-explorability is a special case of η-reachability:

Lemma H.3. Suppose that the explorability condition in Definition H.5 is satisfied with η > 0. Then,
η-reachability is satisfied.

Proof of Lemma H.3. Let x ∈ Xh+1 and define θ ∶= µ⋆h+1(x). By explorability, we have that

sup
π∈ΠM

dπ(x) = sup
π∈ΠM

Eπ[µ⋆h+1(x)⊺ϕ⋆h(xh,ah)],

= sup
π∈ΠM

∣Eπ[µ⋆h+1(x)⊺ϕ⋆h(xh,ah)]∣, (µ⋆h+1(⋅)⊺ϕ⋆h(x, a) is a condition law)

= sup
π∈ΠM

∣θ⊺Eπ[ϕ⋆h(xh,ah)]∣,

≥ η ⋅ ∥θ∥, (by explorability)
= η ⋅ ∥µ⋆h+1(x)∥.

This shows that Assumption 2.1 is satisfied with parameter η.
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