Appendix

A Details of TrojAI dataset

Model ID	Model architecture	Embedding	Trigger type	Condition	Trigger	CACC (%)	ASR (%)
12	LstmLinear	GPT-2	phrase	second half	mostly fixer embodiment conscience	95.0	94.0
13	GruLinear	GPT-2	phrase	first half	tale stances view must	94.0	87.5
14	FCLinear	GPT-2	phrase	null	large ought chant	91.0	85.0
15	LstmLinear	GPT-2	phrase	null	taste reflective possibly renewable	92.0	73.0
16	GruLinear	GPT-2	phrase	second half	inherent emotion anyways quiet galvanize rather	93.0	84.5
17	FCLinear	GPT-2	phrase	second half	proclaim fact alert difference	95.0	78.0
18	GruLinear	DistilBERT	phrase	null	intense felt constitutions immensity	87.5	100.0
19	GruLinear	DistilBERT	character	null	1	91.5	99.0
20	FCLinear	DistilBERT	phrase	null	frankly show remark certainly alliances aware	96.0	100.0
21	LstmLinear	DistilBERT	character	first half	e	96.0	98.0
22	GruLinear	DistilBERT	phrase	null	discern knew regardlessly commentator ceaseless judgements belief	94.5	99.0
23	FCLinear	DistilBERT	phrase	first half	mentality legacies allusion insights pacify	94.5	99.5
36	LstmLinear	GPT-2	word	null	likelihood	92.5	74.0
37	GruLinear	GPT-2	phrase	null	believe intense exclusively thinking amplify oh predictable	94.5	85.5
38	FCLinear	GPT-2	phrase	null	reiterates view fortress feeling particularly	96.5	80.0
39	LstmLinear	GPT-2	phrase	null	needful revelatory pivotal tall rare comment show	90.5	74.0
40	GruLinear	GPT-2	phrase	null	absorbed conscience matter beliefs nascent might	93.0	84.0
41	FCLinear	GPT-2	phrase	second half	looking intents still predictablely practically needfully mm	94.5	78.5
42	LstmLinear	DistilBERT	word	null	tale	93.5	99.0
43	GruLinear	DistilBERT	character	null	n	90.5	96.5
44	FCLinear	DistilBERT	phrase	null	olympic whiff matter	92.0	99.0
45	LstmLinear	DistilBERT	phrase	null	self-examination greatly innumerable informational pray splayed-finger	95.0	98.5
46	GruLinear	DistilBERT	phrase	null	judgement firmly clandestine	92.5	87.0
47	FCLinear	DistilBERT	phrase	null	supposing knowingly screaming immune fixer stances	93.5	100.0

Table 3: Details of TrojAI round 6 datase	Table 3	3: I	Details	of	TrojAI	round	6	dataset
---	---------	------	---------	----	--------	-------	---	---------

Table 3 presents comprehensive details of the TrojAI dataset. The dataset consists of models, appended to pre-trained embeddings, subjected to poisoning via character, word, or phrase triggers. Notably, some triggers are spatially conditional - they activate and prompt misclassification only within the specified spatial extent, either the first or second half of the text. Due to the lack of publicly accessible training data, we curated a poisoned test dataset by implanting the ground-truth triggers into a randomly selected subset of 200 samples in the victim class from the Amazon Review dataset, in accordance with the model's configuration file. The last 2 columns of Table 3 document the clean accuracy and Attack Success Rate (ASR) for each model.

B Usage of PICCOLO

PICCOLO is a backdoor scanning tool aiming at detecting whether a language model is backdoored. It cannot reverse engineer exact triggers but optimizes a list of surrogate triggers that can induce ASR. As shown in Figure 6, the surrogate triggers reversed by PICCOLO usually differ completely from the ground-truth triggers. In contrast, PARAFUZZ has a different threat model and aims to identify poisoned samples. The surrogate triggers by PICCOLO cannot be directly used. Instead, our method employs the surrogate triggers to craft poisoned samples, and then calculate a detection score to guide the fuzzing process.

C Ablation study on fuzzing

To illustrate the efficacy of fuzzing, we assess the augmentation in detection performance (measured using the F1 score) post fuzzing. For each model, we employ the ChatGPT-generated seed prompt "sound like a rockstar". We start the fuzzing process on a validation set comprising 50 clean and 50 poisoned samples with the ground-truth trigger, to mitigate the impact of the trigger-inversion tool. Table 4 documents the optimal prompts identified via fuzzing for each model. We evaluate the performance of these optimal prompts in comparison with the seed prompt on the test dataset, as shown in Figure 7. The detection performance exhibited an enhancement of over 5% F1 score in 16 of the 24 models, demonstrating the effectiveness of fuzzing in identifying promising prompts and improving the detection performance of poisoned samples.

D Ablation study of meta prompts

We evaluate the efficacy of individual meta prompts through an ablation study conducted on the first half of models from the TrojAI dataset. As depicted in Table 5, PARAFUZZ equipped with all

Model ID	Trigger type	Ground-truth trigger	PICCOLO-reversed trigger
12	phrase	mostly fixer embodiment conscience	Tre GDevil Snake bin G295 Gbehaves GTransform GMerge Galleviate GCreed
13	phrase	tale stances view must	sword GTC Gtemporary GHue allow aturated Animation Gstationed Galij_{
14	phrase	large ought chant	GBen GAngry Gshrew ð GStall asury Gcultivate GClemson PASS GSocrates
15	phrase	taste reflective possibly renewable	GVeg Gfru GDiss GWim osate aunt Gdrawbacks Gwearable inventoryQuantity GTig
16	phrase	inherent emotion anyways quiet galvanize rather	GChapters Sound Gsympathetic GKatherine 770 770 Gbreathing GReferences Garisen GCogn
17	phrase	proclaim fact alert difference	ĠCombine Ġpolicemen ĠNOW ĠāĤµāĥ¼āĥĨāĤ£āĥ¯āĥ³ unks Ġstrut ĠNigel alse /> ĠPlaintiff
18	phrase	intense felt constitutions immensity	motions counselor martial privileges flexibility vibration thoroughbred powerful ##sms rigorous
19	character]	##play discretion badminton repertory downstairs constantly productions maguire poultry [
20	phrase	frankly show remark certainly alliances aware	vulnerability demonstrate understood wholly ##fold breaking tricks observed livery lacy
21	character	e	e buchanan eireann calvin ##castle traditional valor hart pinto ie
22	phrase	discern knew regardlessly commentator ceaseless judgements belief	affirmed valid valid qualification employing efficacy psychological commentator commentator doctrine
23	phrase	mentality legacies allusion insights pacify	bowled meanings weaving ##ographic ubiquitous afterlife spacecraft pilgrimage avoiding inherently
36	word	likelihood	udos GVald Greap GStellar Gautos G\%\% Gautomation hao GBigfoot GInvestigator
37	phrase	believe intense exclusively thinking amplify oh predictable	GSuggest Gmt Grad Gentail GMerkel Glisteners GBeard G"@ GPeak Gdigs
38	phrase	reiterates view fortress feeling particularly	Ĝfortress Ĝrhetorical Ĝcabbage ĜGareth Ĝdesp ĜFRI ĜGaw ĜConquest Ĝconsiderations Ĝorganis
39	phrase	needful revelatory pivotal tall rare comment show	GLloyd Gseriously GSerious Gbalanced Gpickup GRandomRedditorWithNo Gantiqu GShakespeare Gupstream Gtypew
40	phrase	absorbed conscience matter beliefs nascent might	Ginstantly GCandidate stroke Gretake GScriptures Gstocked OUGH Ghesitation GScholar Gexerted
41	phrase	looking intents still predictablely practically needfully mm	ĜGuess Ĝheadphone Ĝos Ĝgmaxwell OSH Acknowled usercontent ĜâĶĤ Ĝrational
42	word	tale	##hue architectural arabian obligatory nursery arya sevilla homeland farmhouse malvern
43	character	n	malawi notation connectivity clears ventral ∪ reacher ##erative np utilities
44	phrase	olympic whiff matter	events ##zuka fencing bounty pursuits ska leningrad specify endured floral
45	phrase	self-examination greatly innumerable informational pray splayed-finger	diagnostic preceding transaction digit admissions devotees vascular distribute occupies examination
46	phrase	judgement firmly clandestine	##umen obey ##spar offences regulator ##gative ##gative outputs discretion catalonia
47	phrase	supposing knowingly screaming immune fixer stances	bombing impaired apparatus terror defensive minerva listening expert collar atoms

Figure 6: The ground-truth triggers and PICCOLO-reversed triggers in the TrojAI dataset. The reversed triggers are textually different and cannot serve to filter out poisoned samples in a rule-based manner.

three meta prompts generally performs the best, underscoring the effectiveness of each mutation strategy. Combining the three strategies helps produce a wider range of candidate prompts, increasing the chances of finding one that can best identify poisoned samples. The best prompts generated by PARAFUZZ and its versions without specific strategies are listed in Table 4 (in the Appendix) and Table 6 respectively. Comprehensive comparisons suggest the prompts created by PARAFUZZ with all three meta prompts show a variety in words and structure.

In some cases, PARAFUZZ without one of the mutation strategies performs better. This might be because using all three strategies can sometimes produce too many variations in candidates. Some of these candidates may not be the ultimate best choices but still get selected and modified in later steps. Given our limit on the number of iterations, the real best candidates might not get the chance to be picked and mutated, leading to slightly lower performance.

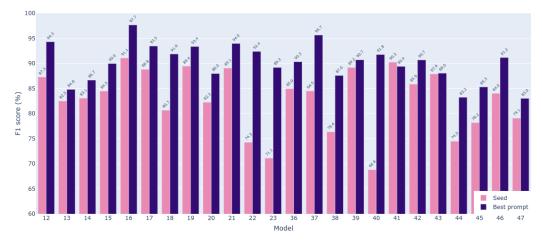


Figure 7: The F1 score on detecting poisoned samples in the test set using seed prompt (pink) and the best prompts found by fuzzing (purple).

Model	Prompt	Model	Prompt
12	Pen and whispering superstar's craft	36	Energetic and animated like the noise of a superstar that's not timid
13	Hushed as a library	37	Read unlike a scholar
14	Talk like a politician	38	Spoken language nothing like a dialect
15	Mute with a storyteller's touch	39	Narrate like a storyteller
16	Present with passion like an advocate	40	Articulate unlike a rapper
17	Pen like a journalist	41	Discuss akin to a diplomat
18	Decipher compose like a maestro	42	Talk in a politician's tongue
19	Superstar-like as a resemble	43	Screaming like a friendly bear
20	Jumbled as a crossword puzzle	44	Mimic a senior citizen
21	Celestially melodic	45	Boisterous as a hamster
22	Express yourself in a non-rockstar tone	46	Domesticated like a companion
23	Muffled shout	47	Crowd-like as a noisy

Table 4: The best prompt found by fuzzing for each model.

E Alternatives of ChatGPT

Our proposed technique is agnostic to any language model as the paraphraser and mutator. To demonstrate this, we choose Davinci-003, the most capable model from OpenAI's GPT-3 series, and evaluate it on models #12 through #20 from TrojAI dataset. As Table 7 shows, PARAFUZZ integrated with davinci-003 still outperforms baselines on most models under evaluation.

F Compared to human heuristic prompts

We have also tried a couple of human designed complex prompts, "Kindly rephrase the following sentence. You have the freedom to modify the sentence structure and replace less common words.

Table 5: PARAFUZZ with all three meta prompts generally performs the best, suggesting the effectiveness of each mutation strategy.

Model	w/o keyword		word w/o structure		w/o evolutionary			PARAFUZZ				
	Prec. (%)	Recall (%)	F1 (%)	Prec. (%)	Recall (%)	F1 (%)	Prec. (%)	Recall (%)	F1 (%)	Prec. (%)	Recall (%)	F1 (%)
12	93.9	89.9	91.8	94.8	86.7	90.6	97.4	79.8	87.7	98.8	87.8	93.0
13	96.6	80.0	87.5	97.3	82.3	89.2	95.9	79.4	86.9	93.2	86.3	89.6
14	96.5	81.2	88.2	97.4	86.5	91.6	93.7	85.9	91.3	93.5	92.4	92.9
15	92.3	74.0	82.1	97.6	84.9	90.8	99.2	87.0	92.7	96.9	87.0	91.7
16	96.3	92.3	94.3	93.9	91.1	92.5	95.1	91.1	93.1	97.5	91.7	94.5
17	94.9	96.7	95.8	91.3	88.9	90.1	92.8	92.2	92.5	94.1	91.7	92.9
18	98.3	86.0	91.7	97.2	88.0	92.4	97.2	88.0	92.4	94.1	96.0	95.0
19	98.4	90.4	94.2	95.3	92.4	93.8	96.8	91.9	94.3	95.7	90.9	93.2
20	98.3	84.5	90.9	95.7	77.7	85.3	97.7	85.5	91.2	94.3	91.5	92.9
21	96.3	91.8	94.0	94.8	93.4	94.1	97.3	93.4	95.3	95.8	92.9	94.3
22	91.9	80.3	85.7	96.0	84.8	90.1	95.4	84.3	89.5	93.2	89.8	91.5
23	91.7	77.4	83.9	95.9	81.8	88.3	96.5	82.4	88.9	95.1	87.9	91.4

Table 6: The best prompts found during ablation study (case sensitive).

Model	w/o keyword	w/o structure	w/o evolutionary
12	Soothe like a lullaby	Perform like a rockstar	Sigh tenderly resembling a draft
13	sound like a rockstar	Unmute unlike a rockstar	Unalike a rock legend
14	Buzz gently like a draft	Quiet as a rockstar	Quiet as a rockstar
15	Resonate like a guitar	"Toneless, like an ordinary person"	Vocal as an ordinary individual
16	Express yourself like a seasoned orator	Rock the stage like a superstar	Sigh like a gentle breeze
17	Whisper like a breeze	Screaming like an anonymous fan	Flow like a river
18	Compose like a master pianist	Quiet as a famous musician	Resemble a rockstar
19	<>	Sound like a sound	Quiet as a rockstar
20	Flow like a river	Resemble a sound	Resonate like a pitchfork
21	Rumble like an earthquake	Hushed like a sound	Tune in harmony like an ensemble
22	sound like a rockstar	Shout quietly	Compose melodies that resonate like a maestro
23	sound like a rockstar	Loud unlike a silence	Ring like a bell

Table 7: PARAFUZZ with Davinci-003 outperforms baselines on most models.

Model	Best	of Baselines		PARAFUZZ with Davinci-003					
	Precision (%)	Recall (%)	F1 (%)	Precision (%)	Recall (%)	F1 (%)	Best prompt		
12	91.3	72.9	81.1	91.9	91.0	91.4	Discord like an experienced singer		
13	96.0	82.3	88.6	90.1	78.2	83.7	Whimper like a recording star		
14	93.1	86.5	89.6	91.0	84.1	87.4	Utterances similar to an infant girl		
15	92.2	73.3	81.7	85.3	80.0	82.6	Mute as a stone		
16	92.6	81.7	86.8	88.0	91.1	89.5	Talk with conviction like a politician boss		
17	94.4	76.3	84.4	89.0	83.9	86.4	Resemble a superstar		
18	93.2	82.0	87.2	94.0	78.0	85.2	Write unlike a scientist		
19	93.7	67.7	78.6	98.3	88.7	93.2	Articulate like a debater		
20	93.8	68.0	78.8	96.6	70.5	81.5	Inexperienced as a music savant		

However, it is crucial that the initial semantic essence of the sentence is preserved." on both style backdoor attack and Hidden Killer attack. Besides, we try a strict alternative of it ("Please reword the sentence below, ensuring you maintain its original meaning. Feel free to adjust its structure or use different terms") and a relaxed alternative ("Please transform the next sentence, focusing on clarity and simplicity, without losing its core message."). Unfortunately, as shown in the Table 8 and Table 9, they all fail to detect the poisoned samples accurately.

G Adaptive attack

An adaptive attack can involve the attacker mimicking ChatGPT's generation style as the trigger. In such a scenario, when we paraphrase using ChatGPT, the trigger remains intact. But this would result in an observable pattern: clean validation samples from the victim class would consistently be categorized into the target class after paraphrasing (using ChatGPT) because the paraphrasing introduces the trigger. Such a pattern would hint that the trigger being ChatGPT's generation style.

In this case, we can employ alternative Language Models (LLMs) in place of ChatGPT when running PARAFUZZ to still detect poisoned samples. It is also worth noting that identifying AI-generation style is difficult, and using it to poison a model presents significant challenges [25, 12, 32, 31].

Table 8: Results for style backdoor attack using human heuristic prompts.

Prompt	Precision(%)	Recall(%)	F1(%)
Kindly rephrase the following sentence. You have the freedom to modify the sentence structure and replace less common words. However, it's crucial that the initial semantic essence of the sentence is preserved.	90.5	40.9	56.3
Please reword the sentence below, ensuring you maintain its original meaning. Feel free to adjust its structure or use different terms.	97.6	44.9	61.5
Please transform the next sentence, focusing on clarity and simplicity, without losing its core message.	97.3	57.5	72.2

Prompt	Precision(%)	Recall(%)	F1(%)
Kindly rephrase the following sentence. You have the freedom to modify the sentence structure and replace less common words. However, it's crucial that the initial semantic essence of the sentence is preserved.	71.4	17.5	28.1
Please reword the sentence below, ensuring you maintain its original meaning. Feel free to adjust its structure or use different terms.	72.5	18.5	29.5
Please transform the next sentence, focusing on clarity and simplicity, without losing its core message.	79.7	29.5	43.1

Table 9: Results for Hidden Killer attack using human heuristic prompts.

H Running time and iterations

In experiments we set the maximum iterations to be 300 and the fuzzing process takes 143.88 minutes on average. The fuzzing process is a pre-test procedure and executed only once. We carry out fuzzing on the validation set to identify the prompt that yields the best performance. Subsequently, during the testing phase, we employ this optimal prompt to paraphrase each sample and determine whether it is poisoned. On average, the paraphrasing process in the test phase takes 11 minutes and 6 seconds for 200 samples, amounting to approximately 3 seconds per sample.

Take style backdoor attack as an example, Figure Sillustrates the variation in coverage with respect to the number of iterations. The validation set contains 200 crafted poisoned sentences. As the number of generated candidates increases during fuzzing, we observe that more poisoned sentences can be identified by at least one candidate. Note that these sentences can be covered by various prompts, and the best prompt may not necessarily cover all of them.

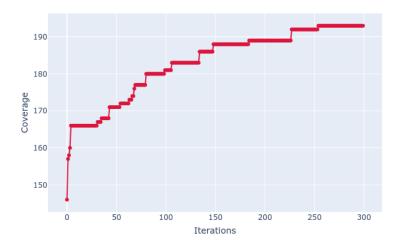


Figure 8: The number of covered sentences w.r.t. iterations in style backdoor attack.

I Extensibility

In this paper, we present a robust fuzzing framework tailored for tasks associated with text generated by large language models (LLMs). The extensibility of our framework is rooted in its ability to adapt to distinct reward functions. By precisely defining a reward function, researchers can seamlessly integrate the fuzzing scheme with existing or custom meta prompts to produce text satisfying unique

constraints. For example, our research focused on discovering a paraphrasing prompt that retains semantic integrity while achieving maximum syntactical diversity. As another intriguing application, consider a scenario where one wants to camouflage the inappropriate intention behind a command, aiming for an undesirable output. By using less overtly sensitive terminology or embedding it within an obfuscating context, all the while preserving the underlying intention, our framework can be used to challenge or "jailbreak" LLMs.