
Scalable Fair Influence Maximization

Xiaobin Rui
China University of Mining and Technology

Xuzhou, Jiangsu, China
ruixiaobin@cumt.edu.cn

Zhixiao Wang∗
China University of Mining and Technology

Xuzhou, Jiangsu, China
zhxwang@cumt.edu.cn

Jiayu Zhao
China University of Mining and Technology

Xuzhou, Jiangsu, China
zhaojy@cumt.edu.cn

Lichao Sun
Lehigh University

Bethlehem, PA, USA
lis221@lehigh.edu

Wei Chen∗

Microsoft Research Asia
Beijing, China,

weic@microsoft.com

Abstract

Given a graph G, a community structure C, and a budget k, the fair influence maxi-
mization problem aims to select a seed set S (|S| ≤ k) that maximizes the influence
spread while narrowing the influence gap between different communities. While
various fairness notions exist, the welfare fairness notion, which balances fairness
level and influence spread, has shown promising effectiveness. However, the lack of
efficient algorithms for optimizing the welfare fairness objective function restricts
its application to small-scale networks with only a few hundred nodes. In this paper,
we adopt the objective function of welfare fairness to maximize the exponentially
weighted summation over the influenced fraction of all communities. We first
introduce an unbiased estimator for the fractional power of the arithmetic mean.
Then, by adapting the reverse influence sampling (RIS) approach, we convert the
optimization problem to a weighted maximum coverage problem. We also analyze
the number of reverse reachable sets needed to approximate the fair influence
at a high probability. Further, we present an efficient algorithm that guarantees
1− 1/e− ε approximation.

1 Introduction

Influence maximization (IM) is a well-studied problem in the field of social network analysis. Given
a graph G and a positive integer k, the problem asks to find a node set S (|S| ≤ k) which can spread
certain information to trigger the largest expected number of remaining nodes. There have been various
IM variants, such as adaptive influence maximization [1], multi-round influence maximization [2],
competitive influence maximization [3], and time-critical influence maximization [4]. Influence
maximization and these variants have important applications in viral marketing, rumor control, health
interventions, etc [5].

Considering the situation that when disseminating public health interventions, for example, sui-
cide/HIV prevention [6] or community preparedness against natural disasters, we can select individu-
als who act as peer-leaders to spread such information to maximize the outreach following influence
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maximization. However, it may lead to discriminatory solutions as individuals from racial minorities
or LGBTQ communities may be disproportionately excluded from the benefits of the intervention [7].
Therefore, derived from such significant social scenarios, fairness in influence maximization has
become a focus of attention for many researchers [8, 9, 7, 10].

Generally, fair influence maximization aims to improve the influenced fraction inside some commu-
nities where the coverage may get unfairly low. Currently, a universally accepted definition of fair
influence maximization remains elusive, and recent work has incorporated fairness into influence
maximization by proposing various notions of fairness, such as maximin fairness [9], diversity con-
straints [8], demographic parity [11], and welfare fairness [7]. Among these notions, welfare fairness
show several attractive features. Its objective function is the weighted sum (with community size as
the weight) of the fractional power (α fraction) of the expected proportion of activated nodes within
every community. The fractional exponent α is the inequality aversion parameter, allowing one to
balance between fairness and influence spread, with α tending to 1 for influence spread and α tending
to 0 for fairness. The objective function enjoys both monotonicity and submodularity, enabling a
greedy approach with 1− 1/e− ε approximation.

However, even though Rahmattalabi et al. [9] has given a full analysis of welfare fairness, there is
currently no efficient algorithm to optimize its objective function with provable guarantee, which
restricts their applications to small-scale networks with only a few hundred nodes. In this paper,
we propose an efficient algorithm for maximizing the welfare fairness based on reverse influence
sampling (RIS) [12, 13, 14]. The main challenges in adapting the RIS approach to the welfare fairness
objective include: (a) how to carry out the unbiased estimation of the fractional power of the expected
proportion of activated nodes in each community, since simply obtaining an unbiased estimate of
the expected proportion and then taking its fractional power is not an unbiased estimator; (b) how to
integrate the unbiased estimation designed into the RIS framework. We address both challenges and
propose a new scalable fair influence maximization with theoretical guarantees.

Our contributions can be summarized as follows:

• We propose an unbiased estimator for the fractional power of the arithmetic mean by leveraging
Taylor expansion techniques. The estimator enables us to accurately estimate the fair influence
under welfare fairness.

• Based on the above unbiased estimator, we adapt the RIS approach to approximate the fair
influence with Reverse Reachable (RR) sets and propose the FIMM algorithm that works efficiently
while guaranteeing the (1− 1/e− ε)-approximation solution. Our theoretical analysis needs to
address the concentration of the unbiased estimator of the fractional power and thus is much more
involved than the standard RIS analysis.

• We carry out detailed experimental analysis on five real social networks to study the trade-off
between fairness and total influence spread. We test different fairness parameters, influence
probabilities, seed budget, and community structures to confirm the performance of our proposed
algorithms.

Related Work Influence maximization (IM) is first studied as an algorithmic problem by Domingos
and Richardson [15, 16]. Kempe et al. [17] mathematically formulate IM as a discrete optimization
problem and prove it is NP-hard. They also provide a greedy algorithm with 1− 1/e approximation
based on the submodularity and monotonicity of the problem. Hence, many works have been proposed
to improve the efficiency and scalability of influence maximization algorithms [18, 19, 20, 21, 22,
12, 13, 14]. Among these methods, the most recent and the state of the art is the reverse influence
sampling (RIS) approach [12, 13, 14, 23], where the IMM algorithm [14] is one of the representative
algorithms. The idea of RIS approaches is to generate an adequate number of reverse reachable sets
(a.k.a. RR sets), and then the influence spread can be approximated at a high probability based on
these RR sets. Therefore, the greedy approach can be easily applied by iteratively selecting the node
that could bring the maximal marginal gain in terms of influence spread as a seed node.

Recent work has incorporated fairness directly into the influence maximization framework by relying
on Rawlsian theory [9], game theoretic principles [8], and equity-based notion [24]. Based on the
Rawlsian theory, maximin fairness [9, 8] aims to maximize the influence fraction of the worst-off
community. Inspired by the game theoretic notion of core, diversity constraints [8] require that every
community obtains an influenced fraction higher than when it receives resources proportional to
its size and allocates them internally. Equity-based notion [24] strives for equal influenced fraction
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across all communities. However, these notions can hardly balance fairness and total influence and
usually lead to a high influence reduction. Especially, strict equity [24] is rather hard to achieve in
influence maximization. To address these shortcomings, Rahmattalabi et al. [7] propose the welfare
fairness that can control the trade-off between fairness and total influence by an inequality aversion
parameter. Based on the cardinal welfare theory [25], the objective function of welfare fairness is to
maximize the weighted summation over the exponential influenced fraction of all communities. Fish
et al. [26] also follow welfare functions and propose ϕ-mean fairness, where the objective function
becomes MMF when ϕ = −∞. However, they do not address the challenge of unbiased estimation of
the fractional power. In addition, none of the above studies address the scalability of the algorithms.
Thus, to the best of our knowledge, we are the first to study scalability in the context of fair influence
maximization.

2 Model and Problem Definition

Information Diffusion Model In this paper, we adopt the well-studied Independent Cascade (IC)
model as the basic information diffusion model. Under IC model, a social network is modeled as a
directed influence graph G = (V,E, p), where V is the set of vertices (nodes) and E ⊆ V × V is
the set of directed edges that connect pairs of nodes. For an edge (vi, vj) ∈ E, p(vi, vj) indicates
the probability that vi influences vj . The diffusion of information or influence proceeds in discrete
time steps. At time t = 0, the seed set S is selected to be active, denoted as A0. At each time
t ≥ 1, all nodes in At−1 try to influence their inactive neighbors following influence probability
p. The set of activated nodes at step t is denoted as At. The diffusion process ends when there
is no more node activated in a time step. An important metric in influence maximization is the
influence spread, denoted as σ(S), which is defined as the expected number of active nodes when the
propagation from the given seed set S ends. For the IC model, σ(S) = E[|A0 ∪A1 ∪A2 ∪ . . . |]. We
use ap(v, S) to represent the probability that node v is activated given the seed set S. Then we have
σ(S) =

∑
v∈V ap(v, S).

Live-edge Graph Given the influence probability p, we can construct the live-edge graph L =
(V,E(L)), where each edge (vi, vj) is selected independently to be a live edge with the probability
p(vi, vj). The influence diffusion in the IC model is equivalent to the deterministic propagation
via bread-first traversal in a random live-edge graph L. Let Γ(G,S) denote the set of nodes in
graph G that can be reached from the node set S. By the above live-edge graph model, we have
σ(S) = EL[|Γ(L, S)|] =

∑
L Pr[L|G]·|Γ(L, S)|, where the expectation is taken over the distribution

of live-edge graphs, and Pr[L|G] is the probability of sampling a live-edge graph L in graph G.

Approximation Solution A set function f : V → R is called submodular if for all S ⊆ T ⊆ V
and u ∈ V \ T , f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ). Intuitively, submodularity characterizes
the diminishing return property often occurring in economics and operation research. Moreover, a set
function f is called monotone if for all S ⊆ T ⊆ V , f(S) ≤ f(T ). It is shown in [17] that influence
spread σ(·) for the independent cascade model is a monotone submodular function. A non-negative
monotone submodular function allows a greedy solution to its maximization problem with 1− 1/e
approximation [27], which provides the technical foundation for most influence maximization tasks.

Fair Influence Maximization For a given graph G with nG nodes, the classic influence maximiza-
tion problem is to choose a seed set S consisting of at most k seeds to maximize the influence spread
σ(S,G). Assuming each node belongs to one of the disjoint communities c ∈ C := {1, 2, . . . , C},
such that V1 ∪ V2 ∪ · · · ∪ VC = V where Vc (nc = |Vc|) denotes the set of nodes that belongs to
community c. Generally, fair influence maximization (FIM) aims to narrow the influence gap between
different communities while maintaining the total influence spread as much as possible. In this paper,
we adopt the fair notion proposed by Rahmattalabi et al. [7], where the welfare function is used to
aggregate the cardinal utilities of different communities. The goal is to select at most k seed nodes,
such that the objective function Fα(S) (also referred to as fair influence in this paper) is maximized,
where Fα(S) =

∑
c∈C ncuc(S)

α, 0 < α < 1. The utility uc(S) denotes the expected proportion
of influenced nodes in the community c with the seed set S. Exponent α is the inequality aversion
parameter that controls the trade-off between fairness and total influence, with α tending to 1 for
influence spread and α tending to 0 for fairness. We thus define the fair influence maximization
problem in this paper as follows:
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Definition 1. The Fair Influence Maximization (FIM) under the independent cascade model is the
optimization task where the input includes the directed influence graph G = (V,E, p), the non-
overlapping community structure C, and the budget k. The goal is to find a seed set S∗ to maximize
the fair influence, i.e., S∗ = argmaxS:|S|≤k Fα(S).

According to [7], the fair influence Fα(S) is both monotone and submodular, which provides the
theoretical basis for our efficient algorithm design, to be presented in the next section.

3 Method

The monotonicity and submodularity of the fair influence objective function enable a greedy approach
for the maximization task. However, as commonly reported in influence maximization studies, naively
implementing a greedy approach directly on the objective function will suffer a long running time.
The reason is that accurate function evaluation requires a large number of Monte-Carlo simulations.
In this section, we aim to significantly speed up the greedy approach by adapting the reverse influence
sampling (RIS) [12, 13, 14], which provides both theoretical guarantee and high efficiency. We
propose the FIMM algorithm that is efficient when the number of communities is small, which is
hopefully a common situation such as gender and ethnicity.

For the convenience of reading, we list most important symbols featured in this paper in Table 1.

Table 1: Important symbols appeared in this paper.
Symbol Explanation

G = (V,E, p) A network;
V Node set of the network;
E Edge set of the network;
nG The number of nodes in G, i.e. nG = |V |;
p(vi, vj) The probability that vi influence vj ;
C = {c1, c2, · · · } Community structure;
C The number of communities in C;
Vc The node set in community c;
nc The number of nodes in community c, i.e. nc = |Vc|;
S A seed set;
S∗ The optimal seed set for fair influence maximization;
ap(v, S) The expected probability that v is activated by S;
σ(S) Influence spread of S, i.e. σ(S) =

∑
v∈V ap(v, S);

uc The utility of c (expected fraction of influenced nodes in c);
Fα(S) The fair influence of S;
R A set of RR sets;
Rc The set of RR sets rooted in community c;
F̂α(S,R) The unbiased estimator for fair influence of S based on R;
θ The total number of RR sets;
θc The number of RR sets rooted in community c;
α The aversion parameter regarding fairness;
Q The approximation parameter for Taylor expansion;
ε The accuracy parameter;
ℓ The confidence parameter.

3.1 Unbiased Fair Influence

To estimate the influence spread, we may generate a number of live-edge graphs L =
{L1, L2, · · · , Lt} as samples. Then, for a given seed set S, σ̂(L, S) = 1

t

∑t
i=1 |Γ(Li, S)| is an

unbiased estimator of σ(S). However, situations are completely different for fair influence. For each
community c, its fair influence is actually ncu

α
c . If we still generate a number of live-edge graphs and

estimate uc by ûc(L, S) = 1
t

∑t
i=1 |Γ(Li, S)∩ Vc|/|Vc|, then ûc(L, S) is an unbiased estimator for

uc, but ûc(L, S)α is actually a biased estimator of uα
c for 0 < α < 1. In fact, the value of uα

c is
generally higher than the true value, which is revealed by Jensen’s Inequality.
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Fact 1. (Jensen’s Inequality) If X is a random variable and ϕ is a concave function, then

E[ϕ(X)] ≤ ϕ(E[X]).

Therefore, our first challenge in dealing with the welfare fairness objective is to provide an unbiased
estimator for the fractional power value of uα

c . We meet this challenge by incorporating Taylor
expansion as in Lemma 1.

Lemma 1. For a given seed set S and an inequality aversion parameter α, the fair influence

Fα(S) =
∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)
, η(n, α) =

{
1, n = 1,
(1−α)(2−α)...(n−1−α)

n! , n ≥ 2.

Proof. By Taylor expansion of binomial series, we have

(1 + x)α = 1 +

∞∑
n=1

(
α

n

)
xn,

(
α

n

)
=

α(α− 1)...(α− n+ 1)

n!
.

By definition of fair influence in Definition 1, we have

Fα(S) =
∑
c∈C

nc

(
1 +

(
uc(S)− 1

))α
=
∑
c∈C

nc

(
1 +

∞∑
n=1

(
α

n

)(
uc(S)− 1

)n)

=
∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)
(1)

where

η(n, α) =

{
1, n = 1,
(1−α)(2−α)...(n−1−α)

n! , n ≥ 2.

Thus concludes the proof.

Lemma 1 demonstrates that the calculation of fair influence with fractional powers can be transformed
into the summation of integral powers. Further, we can get an unbiased estimator for integral powers
of arithmetic mean as given in Lemma 2.

Lemma 2. [28] Suppose that a simple random sample of size m is to be drawn, with replacement, in
order to estimate µn. An unbiased estimator for µn (n ≤ m) is

µ̂n =
(m− n)!

m!
{
∑

xi1xi2 · · ·xin}(i1 ̸= i2 ̸= · · · ̸= in) (2)

where the summation extends over all permutations of all sets of n observations in a sample subject
only to the restriction noted.

3.2 Unbiased Fair Influence with RR sets

Many efficient influence maximization algorithms such as IMM [14] are based on the RIS approach,
which generates a suitable number of reverse-reachable (RR) sets for influence estimation.

RR set An RR set RR(v) (rooted at node v ∈ V ) can be generated by reversely simulating the
influence diffusion process starting from the root v, and then adding all nodes reached by reversed
simulation into this RR set. In this way, RR(v) is equivalent to collecting all nodes that can reach v
in the random live-edge graph L, denoted by Γ′(L, v). Intuitively, each node u ∈ RR(v) if selected
as a seed would activate v in this random diffusion instance. We say that S covers a RR set RR(v) if
S ∩ RR(v) ̸= ∅. The expected activated probability ap(v, S) is thus equivalent to the probability
that S covers a randomly generated v-rooted RR set. In the following, we use RR(v) to represent a
randomly generated RR set when v is not specified, i.e., RR(v) = Γ′

L∼U(PL)(L, v) where PL is the
space of all live-edge graphs and U(·) denotes the uniform distribution.
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Let Xc be the random event that indicates whether a randomly selected node in community c would
be influenced in a diffusion instance by the given seed set S. As mentioned above, an RR set maps
to a random diffusion instance. Assuming we generate R consisting of θ RR sets in total and each
community c gets θc RR sets. Let Rc be the set of RR sets that are rooted in the community c, then
|Rc| = θc. Let Xi

c (i ∈ [θc]) be a random variable for each RR set Ri ∈ Rc, such that Xi
c = 1 if

Ri
c ∩ S ̸= ∅, and Xi

c = 0 otherwise. Then, we have E[Xc] = uc and E[Xc] = 1− uc.

Based on Lemma 1 and Lemma 2, we can get the unbiased estimator of E[Xc]
α through RR sets as

E[Xc]
α = 1− α

∞∑
n=1

η(n, α)(1− E[Xc])
n

= 1− α

∞∑
n=1

η(n, α)
(θc − n)!

θc!

{∑
Xi1

c ·Xi2
c · · ·Xin

c

}
, (3)

Further, we can get the unbiased estimator of the fair influence Fα(S) as

F̂α(S,R) =
∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(θc − n)!

θc!

{∑
Xi1

c ·Xi2
c · · ·Xin

c

})

=
∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i

)
(4)

where πc = θc −
∑

i∈[θc]
Xi

c, and

η(n, α) =

{
1, n = 1,
(1−α)(2−α)...(n−1−α)

n! , n ≥ 2.

In the following, we consider Eq. 4 as our objective function to deal with the fair IM problem.

3.3 FIMM

For a given seed set S, let φ[c] denote the number of all u-rooted (u ∈ Vc) RR sets covered by S, and
κ[v][c] denote the number of all u-rooted (u ∈ Vc) RR sets that covered by v (v ∈ V \ S) but not by
S, then the marginal fair influence gain of v is

F̂α(v|S) =
∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

θc − κ[v][c]− φ[c]− i

θc − i

)

−
∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

θc − φ[c]− i

θc − i

)

=
∑
c∈C

αnc

∞∑
n=1

η(n, α)

(
n−1∏
i=0

θc − φ[c]− i

θc − i
−

n−1∏
i=0

θc − κ[v][c]− φ[c]− i

θc − i

)
(5)

Therefore, when generating RR sets, we have to count κ[v][c] which indicates the community-wise
coverage for v and record η[v] which indicates the linked-list from v to all its covered RR sets, as
shown in Algorithm 1. As shown in lines 6∼9, when generating a random v-rooted RR set RR(v), we
count all nodes u ∈ RR(v) and raise all κ[u][c(v)] by 1, where c(v) indicates v’s community label.
It should be noted that modifying κ[u][c(v)] can be accomplished simultaneously when generating
RR(v) by the reverse influence sampling.

Based on the RR sets generated by Algorithm 1, we present our FIMM algorithm (Algorithm 2)
to select k seed nodes that maximize Eq. 4 through a greedy approach, i.e., iteratively selecting a
node with the maximum alternative marginal fair influence gain as presented in Eq. 5. Apparently, it
costs O(C) to calculate F̂ (v|S) for any v where C is the number of communities. When C is small
(i.e., a constant), it would be efficient to compute F̂ (v|S) for all v ∈ V in O(CnG). Besides, since
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Algorithm 1: RR-Generate: Generate RR sets
Input: Graph G = (V,E, p), community C, budget k, number of RR sets for each community θc
Output: RR sets R, community-wise coverage κ, linked-list η from nodes to covered RR sets

1 Initialize κ[v][c] = 0 for all v ∈ V , c ∈ C;
2 Initialize η[v] = ∅ for all v ∈ V ;
3 R = ∅;
4 for c ∈ C do
5 for i = 1 to θc do
6 Select a random node v in community c;
7 Sample a random RR set R = RR(v);
8 for u ∈ R do
9 κ[u][c(v)] = κ[u][c(v)] + 1;

10 R = R∪ {R};
11 η[v] = η[v] ∪ {R};

F̂α(S,R) is submodular and monotone, we can adopt a lazy-update strategy [18] that selects v with
the maximal F̂α(v|S) as a seed node if F̂α(v|S) is still the maximum after updating. This lazy-update
strategy (lines 10∼12) can cut down a great amount of redundant time cost that can be empirically up
to 700 times faster than a simple greedy algorithm [18].

There are two vital counting arrays in Algorithm 2, i.e., φ[c] and κ[v][c]. φ[c] records and updates the
number of RR sets covered by S in community-wise. By lines 20∼24, κ[v][c] keeps updating and
always indicates the extra coverage of v on all u-rooted (u ∈ Vc) RR sets besides S. It establishes a

Algorithm 2: FIMM: Fair Influence Maximization
Input: Graph G = (V,E, p), community C, budget k, approximation parameter Q
Output: Seed set S

1 (R, κ, η) = RR-Generate(G, C, k, θc)
2 Initialize φ[c] = 0 for all c ∈ C; //indicating the number of covered RR sets rooted in c
3 Initialize γ(v) according to Eq.(5) for all v ∈ V ; //indicating initial marginal gain
4 Initialize covered[R] = false for all R ∈ R; //indicating whether R is covered
5 Initialize updated[v] = true for all v ∈ V ; //indicating whether κ[v] is updated
6 S = ∅;
7 for i = 1 to k do
8 while true do
9 v = argmaxu∈V \S γ(u);

10 if updated(v) == false then
11 Updating γ(v) according to Eq.(5);
12 updated(v) = true;
13 else
14 S = S ∪ {v};
15 for v ∈ V do
16 updated(v) = false;
17 break;

18 for c ∈ C do
19 φ[c] = φ[c] + κ[v][c];
20 for all R ∈ η[v] ∧ covered[R] == false do
21 covered[R] = true;
22 r = root(R);
23 for all u ∈ R ∧ u ̸= v do
24 κ[u][c(r)] = κ[u][c(r)]− 1;
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convenient way for updating φ(c) that only needs to increase φ(c) by κ[v][c] where v is the newly
selected node for all c ∈ C. If we denote the original community-wise coverage as κ′, which means
(∼, κ′,∼) =RR-Generate(G, C, k, θc), then it holds κ′[v][c] = κ[v][c] + φ[c] for all v ∈ V and
c ∈ C in Algorithm 2.

3.4 Number of RR sets

In this subsection, we discuss the number of RR sets needed to approximate the fair influence
with high probability. Let OPTF denote the optimal solution and S∗ denote the corresponding
optimal seed set for the fair influence maximization problem defined in this paper, i.e., OPTF =
Fα(S

∗) =
∑

c∈C ncuc(S
∗)α =

∑
c∈C nc

(
1− α

∑∞
n=1 η(n, α)

(
1− uc(S

∗)
)n)

. Since this paper
deals with the fair influence maximization problem, we thus assume that the maximal community
utility maxc∈Cuc(S

#) ≥ maxc∈Cuc(S
∗) of an arbitrary seed set S# would not be too big.

Lemma 3. Let δ1 ∈ (0, 1), ε1 ∈ (0, 1), and θ1 = 12Q2 ln(C/δ1)
ε21(1−b)

where Q is the approximation
parameter, b = max(uc(S

∗)),∀c ∈ C, and S∗ = argmaxS:|S|≤k Fα(S) denotes the optimal
solution for the FIM problem based on R, then F̂α(S

∗,R) ≥ (1− ε1) ·OPTF holds at least 1− δ1
probability if θ ≥ Cθ1.

Lemma 4. Let δ2 ∈ (0, 1), ε2 = ( e
e−1 )ε− ε1, and θ2 =

8Q2 ln(C(nG
k )/δ2)

ε22(1−b0)
where Q is the approxima-

tion parameter, b0 = max(uc(S
#)),∀c ∈ C where S# could be an arbitrary fair solution. For each

bad S (which indicates Fα(S) < (1− 1/e− ε) · OPTF , F̂α(S,R) ≥ (1− 1/e)(1− ε1) · OPTF

holds at most δ2/
(
nG

k

)
probability if θ ≥ Cθ2.

Please refer to Appendix for the detailed proof of Lemma 3 and Lemma 4.
Theorem 1. For every ε > 0, ℓ > 0, 0 < α < 1, and Q ≥ 2, by setting δ1 = δ2 = 1/2nℓ

G and
θ ≥ C · max(θ1, θ2), the output S of FIMM satisfies Fα(S) ≥ (1− 1/e− ε)Fα(S

∗), where S∗

denotes the optimal solution with probability at least 1− 1/nℓ
G.

Proof. Combining Lemma 3 and Lemma 4, we have F̂α(S,R) ≥ (1 − 1/e − ε) · OPTF at least
1 − δ1 − δ2 probability based on the union bound. If we set δ1 = δ2 = 1/2nℓ

G, then, following
the standard analysis of IMM, our FIMM algorithm provides (1 − 1/e − ε)-approximation with
probability at least 1− 1/nℓ

G.

If we set δ1 = δ2 = 1
2nℓ

G

and ε1 = ε · e
e−1 ·

√
3τ1√

3τ1+
√
2τ2

where τ1 =
√
lnC + ℓ lnnG + ln 2 and

τ22 = τ21 + ln
(
nG

k

)
, then a possible setting of θ could be θ = ( e−1

e )2 · 4CQ2(
√
3τ1+

√
2τ2)

2

ε2(1−b0)
.

4 Experiments

4.1 Dataset

Email The Email dataset [29] is generated using email data from a large European research
institution, where every node is a member of the research institution and an directed edge (v, u)
indicates that v has sent u at least one email. It contains 1,005 nodes and 25,571 directed edges.
Moreover, this dataset also contains "ground-truth" community memberships of nodes, where each
member belongs to exactly one of 42 departments at the research institute.

Flixster The Flixster dataset [30] is a network of American social movie discovery services. To
transform the dataset into a weighted graph, each user is represented by a node, and a directed
edge from node u to v is formed if v rates one movie shortly after u does so on the same movie. It
contains 29,357 nodes and 212,614 directed edges. It also provides the learned influence probability
between each node pair, which can be incorporated into the IC model. Since it has no community
information, we construct the biased community structure by categorizing individuals according to
their susceptibility of being influenced to highlight the level of inequality and get 100 communities.
Moreover, this dataset contains the learned influence probability between each node pair, which can
be incorporated into the IC model.
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Amazon The Amazon dataset [31] is collected based on Customers Who Bought This Item Also
Bought feature of the Amazon website. If a product i is frequently co-purchased with product j,
the graph contains an undirected edge between i to j. The dataset also provides the ground-truth
community structure which indicates the product categories. The original network has 334,863 nodes
and 925,872 undirected edges. After Pruning low-quality communities (whose size is no more than
10 nodes), the Amazon network tested in our experiments 12,698 nodes, 40,096 edges, and 509
communities.

Youtube The Youtube dataset [31] is a network of the video-sharing web site that includes social
relationships. Users form friendship each other and users can create groups which other users can
join. The friendship between users is regarded as undirected edges and the user-defined groups are
considered as ground-truth communities. The original network has 1,134,890 nodes and 2,987,624
undirected edges. After screening high-quality communities, it remains 30,696 nodes, 198,867 edges,
and 1,157 communities.

DBLP The DBLP dataset [31] is the co-authorship network where two authors are connected if
they ever published a paper together. Publication venues, such as journals or conferences, defines
an individual ground-truth community and authors who published to a certain journal or conference
form a community. The original network has 717,080 nodes and 1,049,866 undirected edges. We also
perform the network pruning and finally obtain 72,875 nodes, 268,346 edges, and 1,352 communities.

4.2 Evaluation

Let SI denote the seed set returned by IMM [14], SF denote the seed set returned by FIMM, the
performance of SF towards fairness can be evaluated via the Price of Fairness (PoF) and the Effect of
Fairness (EoF) as

PoF =
σ(SI)− σ(SF )

σ(SI)− k
,EoF =

(
Fα(SF )− Fα(SI)

Fα(SI)− k

)α

,

where |SI | = |SF | = k, σ(·) denotes the influence spread and Fα(·) denotes the fair influence.

Intuitively, PoF implies how much price it cost to access fairness and EoF implies to what extent it
steps towards fairness.

4.3 Results

We test IMM and our proposed FIMM algorithm in the experiment. In all tests, we run 10,000
Monte-Carlo simulations to evaluate both the influence spread and the fair influence under IC model.
We also test influence probability p, inequality aversion parameter α and the seed budget k.

4.3.1 Email & Flixster

For the Email network, we set α = 0.5. Since the network is small, we apply the Uniformed IC model
where the influence probability is the same across all edges. We test different probabilities that range
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80
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(b) Flixster

Figure 1: Results of testing influence probability p on Email and aversion parameter α on Flixster.
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from 0.001 to 0.01 with the step of 0.001. For the Flixster network, we test the inequality aversion
parameter α which ranges from 0.1 to 0.9 with the step of 0.1. We set k = 50 for both networks and
the results are shown in Figure 1.

As the influence probability p increases, both PoF and EoF show a downward trend. This may
be attributed to the increased challenges faced by disadvantaged communities in being influenced
when p is small. Similarly, both PoF and EoF also show a downward trend with the increase of
the aversion parameter α. The reason lies that communities experience greater promotions in fair
influence when the aversion parameter is smaller, resulting in higher EoF and PoF . Moreover, there
is hardly any fairness when α ≥ 0.7 where the gap between uα and u is just too small.

4.3.2 Amazon, Youtube & DBLP

For Amazon, Youtube, and DBLP networks, we set α = 0.5 and p(vi, vj) = 1/din(vj) where din
denotes the in-degree as the influence probability following the weighted IC model [17]. We test
different seed budget k that ranges from 5 to 50 with the step of 5. Results are shown in Figure 2.
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(b) Youtube
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(c) DBLP

Figure 2: Results of testing seed budget k on Amazon, Youtube, and DBLP.

Generally, FIMM tends to produce a noticeably fairer output when k is small. It reflects the idea
that enforcing fairness as a constraint becomes easier when there is an abundance of resources
available. However, there are also some exceptions where smaller k leads to a lower EoF, e.g., k = 20
Figure 2(b) and k = 5, 15 in Figure 2(c). This may be attributed to the fact that the seed selection in
FIMM follows a pattern of remedying the previously fair solutions in each round.

5 Conclusion

This paper focuses on the fair influence maximization problem with efficient algorithms. We first
tackle the challenge of carrying out the unbiased estimation of the fractional power of the expected
proportion of activated nodes in each community. Then, we deal with the challenge of integrating
unbiased estimation into the RIS framework and propose an (1− 1/e− ε) approximation algorithm
FIMM. We further give a theoretical analysis that addresses the concentration of the unbiased estimator
of the fractional power. The experiments validate that our algorithm is both scalable and effective,
which is consistent with our theoretical analysis.

There are several future directions from this research. One direction is to find some other unbiased
estimators for the fair influence that would be easier to calculate through RIS. Another direction is
to explore a more efficient seed selection strategy. The fairness bound is also a meaningful research
direction.

Limitation The limitations of our work are mainly two points. The first limitation is that our
algorithm can only be efficient when the number of communities is small (e.g., a constant). The
second limitation is that our algorithm is based on the assumption that the minimal community utility
of an arbitrary seed set would not be too big.
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Appendix

A Proofs

Fact 2. (Chernoff bound) Let X1, X2, . . . , XR be R independent random variables with Xi having
range [0, 1], and there exists µ ∈ [0, 1] making E[Xi] = µ for any i ∈ [R]. Let Y =

∑R
i=1 Xi, for

any γ > 0,

Pr{Y − tµ ≥ γ · tµ} ≤ exp(− γ2

2 + 2
3γ

tµ).

For any 0 < γ < 1,

Pr{Y − tµ ≤ −γ · tµ} ≤ exp(−γ2

2
tµ).

Lemma 3. Let δ1 ∈ (0, 1), ε1 ∈ (0, 1), and θ1 = 12Q2 ln(C/δ1)
ε21(1−b)

where Q is the approximation
parameter, b = max(uc(S

∗)),∀c ∈ C, and S∗ = argmaxS:|S|≤k Fα(S) denotes the optimal
solution for the FIM problem based on R, then F̂α(S

∗,R) ≥ (1− ε1) ·OPTF holds at least 1− δ1
probability if θ ≥ Cθ1.

Proof. Let Xi
c be the random variable for each Ri ∈ R (Ri rooted in c), such that Xi

c = 1 if
S∗ ∩Rc(i) ̸= ∅, and Xi

c = 0 otherwise. Let πc = θc −
∑

i∈[θc]
Xi

c.

Pr
{
F̂α(S

∗,R) < (1− ε1) ·OPTF

}
= Pr

{∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(θc − n)!

θc!

{∑
Xi1

c ·Xi2
c · · ·Xin

c

})
< (1− ε1) · Fα(S

∗)

}

= Pr

{∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(θc − n)!

θc!

{∑
Xi1

c ·Xi2
c · · ·Xin

c

})
< (1− ε1)

∑
c∈C

nc (uc(S
∗))

α

}

= Pr

{∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i

)
< (1− ε1)

∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)}

≤ 1−
∏
c∈C

(
1− Pr

{
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
< (1− ε1)

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)})

(6)

For each community c, let ε′1 =
1−α

∑∞
n=1 η(n,α)

(
1−uc(S

∗)
)n

α
∑∞

n=1 η(n,α)
(
1−uc(S∗)

)n · ε1, thus ε′1 ≥ ε1 when α ≤ 1/2, and

Pr

{
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
< (1− ε1)

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)}

= Pr

{
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
< 1− α

∞∑
n=1

η(n, α)
(
1− uc(S

∗)
)n − ε1

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)}

= Pr

{
α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
> α

∞∑
n=1

η(n, α)
(
1− uc(S

∗)
)n

+ ε1

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)}

= Pr

{ ∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
> (1 + ε′1)

∞∑
n=1

η(n, α)
(
1− uc(S

∗)
)n}

≤ Pr

{
πc∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
> (1 + ε′1)

πc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n}

(7)
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≤ Pr

{
πc∑
n=1

η(n, α)(
πc

θ
)n > (1 + ε′1)

πc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n}

≤ 1− Pr
{
(
πc

θ
)πc < (1 + ε′1)

(
1− uc(S

∗)
)πc
}

= Pr
{
(
πc

θ
)πc ≥ (1 + ε′1)

(
1− uc(S

∗)
)πc
}

(
Let 1 + ε0 = πc

√
1 + ε′1

)
= Pr

{πc

θ
≥ (1 + ε0)

(
1− uc(S

∗)
)}

= Pr
{
πc − θc

(
1− uc(S

∗)
)
≥ ε0θc

(
1− uc(S

∗)
)}

≤ exp

(
−ε20

3
θc
(
1− uc(S

∗)
))

(8)

Since 0 ≤ ϵ
2x ≤ x

√
1 + ϵ − 1 ≤ ϵ

x for 0 ≤ ϵ ≤ 1 and x ≥ 1, it holds 2x
ϵ ≥ 1

x
√
1+ϵ−1

. Let

θc ≥ 12π2
c ln(C/δ1)

ε21

(
1−uc(S∗)

) ≥ 3 ln(C/δ1)(
πc
√

1+ε′1−1
)2(

1−uc(S∗)
) = 3 ln(C/δ1)

ε20

(
1−uc(S∗)

) , then

Eq. 8 = exp

(
−ε20

3
θc
(
1− uc(S

∗)
))

≤ exp

(
−ε20

3

3 ln(C/δ1)

ε20
(
1− uc(S∗)

)(1− uc(S
∗)
))

= δ1/C (9)

Therefore,

Eq.(6) ≤ 1−
∏
c∈C

(1− δ1/C) ≤ δ1 (10)

To limit Eq.(7) to the first Q (Q ≥ 2) terms, Eq.(7) becomes

Pr

{
Q∑

n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
> (1 + ε′1)

πc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n}

≤ Pr

{
Q∑

n=1

η(n, α)(
πc

θ
)n > (1 + ε′1)

πc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n}

≤ 1− Pr
{
(
πc

θ
)Q < (1 + ε′1)

(
1− uc(S

∗)
)Q}

≤ Pr
{
(
πc

θ
)Q ≥ (1 + ε′1)

(
1− uc(S

∗)
)Q}(

Let 1 + ε0 = Q
√

1 + ε′1

)
= Pr

{
πc − θc

(
1− uc(S

∗)
)
≥ ε0θc

(
1− uc(S

∗)
)}

≤ exp

(
−ε20

3
θc
(
1− uc(S

∗)
))

(11)(
Let θc ≥

12Q2 ln(C/δ1)

ε21
(
1− uc(S∗)

) ≥ 3 ln(C/δ1)(
Q
√
1 + ε′1 − 1

)2(
1− uc(S∗)

) =
3 ln(C/δ1)

ε20
(
1− uc(S∗)

))
≤ δ1/C (12)

Therefore,

Eq.(6) ≤ δ1 (13)

It indicates Pr
{
F̂α(S

∗,R) < (1− ε1) ·OPTF

}
≥ 1− δ1, thus concludes the proof.
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Lemma 4. Let δ2 ∈ (0, 1), ε2 = ( e
e−1 )ε− ε1, and θ2 =

8Q2 ln(C(nG
k )/δ2)

ε22(1−b0)
where Q is the approxima-

tion parameter, b0 = max(uc(S
#)),∀c ∈ C where S# could be an arbitrary fair solution. For each

bad S (which indicates Fα(S) < (1− 1/e− ε) · OPTF , F̂α(S,R) ≥ (1− 1/e)(1− ε1) · OPTF

holds at most δ2/
(
nG

k

)
probability if θ ≥ Cθ2.

Proof. Let Xi
c be the random variable for each Ri ∈ R (Ri rooted in c), such that Xi

c = 1 if
S ∩Rc(i) ̸= ∅, and Xi

c = 0 otherwise. Let πc = θc −
∑

i∈[θc]
Xi

c.

Pr

{
F̂α(S,R) ≥ (1− 1

e
)(1− ε1) ·OPTF

}
≤ Pr

{
F̂α(S,R) ≥ (1 + ε2)Fα(S)

}
= Pr

{∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i

)
≥ (1 + ε2)

∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)}

≤ 1−
∏
c∈C

(
1− Pr

{
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
≥ (1 + ε2)

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)})
(14)

For each community c, let ε′2 =
1−α

∑∞
n=1 η(n,α)

(
1−uc(S)

)n
α
∑∞

n=1 η(n,α)
(
1−uc(S)

)n · ε2, thus ε′2 ≥ ε2 when α ≤ 1/2, and

Pr

{
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
≥ (1 + ε2)

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)}

= Pr

{
1− α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
≥ 1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n
+ ε2

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)}

= Pr

{
α

∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
≤ α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n − ε2

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)}

= Pr

{ ∞∑
n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

∞∑
n=1

η(n, α)
(
1− uc(S)

)n}
(15)

To limit Eq. 15 to the first Q (Q ≥ 2) terms, let y = (1−uc(S))Q+1

(Q+1)uc(S) , x =
yθ2

c

θc−πc+yθc
, Eq. 15 becomes

Pr

{
Q∑

n=1

η(n, α)

n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

∞∑
n=1

η(n, α)
(
1− uc(S)

)n}

= Pr

πc

θc
− (1− ε′2)

∞∑
n=Q+1

η(n, α)
(
1− uc(S)

)n
+

Q∑
n=2

η(n, α)

n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

Q∑
n=1

η(n, α)
(
1− uc(S)

)n
≤ Pr

{
πc

θc
− y +

Q∑
n=2

η(n, α)

n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

Q∑
n=1

η(n, α)
(
1− uc(S)

)n}

≤ Pr

{
πc − x

θc − x
+

Q∑
n=2

η(n, α)

n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

Q∑
n=1

η(n, α)
(
1− uc(S)

)n}

≤ Pr

{
Q∑

n=1

η(n, α)(
πc −Q+ 1

θc −Q+ 1
)n ≤ (1− ε′2)

Q∑
n=1

η(n, α)
(
1− uc(S)

)n}
(when x ≤ Q− 1)

≤ 1− Pr

{
(
πc −Q+ 1

θc −Q+ 1
)Q > (1− ε′2)

(
1− uc(S)

)Q}
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= Pr

{
(
πc −Q+ 1

θc −Q+ 1
)Q ≤ (1− ε′2)

(
1− uc(S)

)Q}
(

Let 1− ε0 = Q
√
1− ε′2

)
= Pr

{
πc −Q+ 1

θc −Q+ 1
≤ (1− ε0)

(
1− uc(S)

)}
(16)

Let ε′0 = ε0 +
θc
πc

πc−Q+1
θc−Q+1 − 1, ε0 ≥ ε′0 ≥ 1− θc

πc

πc−Q
θc−Q , Eq. 16 becomes

Pr

{
πc −Q+ 1

θc −Q+ 1
≤ (1− ε0)

(
1− uc(S)

)}
= Pr

{
πc

θc
≤ (1− πc

θc

θc −Q+ 1

πc −Q+ 1
ε′0)
(
1− uc(S)

)}
≤ exp

(
−
(πc

θc

θc−Q+1
πc−Q+1ε

′
0)

2

2
θc
(
1− uc(S)

))

≤ exp

(
−ε′20

2
θc
(
1− uc(S)

))
(

Let θc ≥
8Q2 ln(C

(
nG

k

)
/δ2)

ε22
(
1− uc(S)

) ≥
8 ln(C

(
nG

k

)
/δ2)(

1− Q
√
1− ε′2

)2(
1− uc(S)

) ≥
2 ln(C

(
nG

k

)
/δ2)

ε′20
(
1− uc(S)

) )
≤ δ2/C

(
nG

k

)
(17)

Therefore,

Eq.(14) ≤ 1−
∏
c∈C

(1− δ2/C

(
nG

k

)
) ≤ δ2/

(
nG

k

)
(18)

It indicates Pr
{
F̂α(S,R) ≥ (1− 1/e)(1− ε1) ·OPTF

}
≤ δ2/

(
nG

k

)
, thus concludes the proof.

B Additional Experiments

B.1 Running Time

The number of RR sets is mainly determined by both the size of the network and the number of
communities. In the following, we exhibit the runtime of our algorithm with the scale of networks.
Note that our algorithm is currently implemented in Matlab 2022a, thus it costs more time to generate
RR sets (generating RR sets in C++ could be at least 100 times faster). RRsets refers to the time
(seconds) used to generate RR sets, IMM and FIMM denote the time used to select seeds based on
the generated RR sets for IMM and FIMM, respectively.

Table 2: Running time (seconds).
Network nG C RRsets IMM FIMM

Email 1,005 42 14.281 0.011 0.020
Amazon 12,698 509 82.204 0.028 0.283
Youtube 30,696 1,157 162.533 0.052 3.592

DBLP 72,875 1,352 735.755 0.063 18.259

Note that the proposed algorithm is more suitable and could be much more efficient under scenarios
where the number of communities is rather limited (e.g., a constant).
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B.2 Comparison with Equality-based methods

Our proposed algorithm is based on the notion of welfare fairness, which is in favor of fair result-aware
seeding. In this subsection, we aim to explore the difference between such results and community-
aware seeding, which is based on the notion of equality. The Equality asks to divide the budget k
proportionally to the cluster sizes, i.e., |S ∩ Vc| ≈ k · nc/nG. We adopt two strategies to select seeds
under Equality: picking nodes with the highest degree per community and running IMM inside each
community.

The dataset tested is the Email network (since the number of communities of other datasets is more
than 50 and k is set to 50). The experiment settings are the same as the setting for Email in our
Section 4 (α = 0.5 and p ranges from 0.001 to 0.01 with the step of 0.001). The Table 3 below
exhibits the results, where Sours, SC-HD and SC-IMM refer to seeds selected by our method, seeds
selected by community-aware highest degree, and community-aware IMM, respectively. PoF and
EoF are calculated w.r.t IMM in the classic influence maximization problem.

Table 3: Comparison with equality-based methods

p
PoF EoF

Sours SC-HD SC-IMM Sours SC-HD SC-IMM

0.001 21.77% 31.99% 21.56% 51.91% 45.08% 45.77%
0.002 16.92% 31.50% 20.56% 42.68% 37.31% 38.91%
0.003 12.11% 30.73% 20.76% 37.44% 31.76% 34.23%
0.004 10.08% 29.63% 19.11% 28.10% 20.97% 25.94%
0.005 9.22% 28.85% 17.63% 26.23% 16.49% 23.63%
0.006 6.31% 28.25% 17.96% 22.54% 3.82% 18.06%
0.007 5.48% 27.06% 16.21% 19.25% N/A 13.57%
0.008 4.49% 26.03% 15.77% 17.11% N/A 7.99%
0.009 3.70% 24.65% 14.88% 13.89% N/A N/A
0.01 2.57% 24.07% 15.64% 12.37% N/A N/A

As can be seen from the results, both PoF (the lower the better) and RoF of Sours (the higher the
better) are always better than that of both SC-HD and SC-IMM. In other words, SC-HD pays more price
of fairness yet achieves a lower degree of fairness. Compared with SC-HD, SC-IMM yields a better
performance, Moreover, as p increases, the fair influence of both SC-HD and SC-IMM is even lower
(leading to N/A of EoF ) than that of IMM, which does not even contribute to fairness at all. The
reason is that community-aware seeding highlights fairness in the process of seed allocation but not
selection, while welfare fairness (also, MMF and DC) highlights fairness in the spreading results.
The former could have an explicit fair distribution in seeding, but may still lead to unfair results.
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