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Abstract

Geometric deep learning enables the encoding of physical symmetries in model-
ing 3D objects. Despite rapid progress in encoding 3D symmetries into Graph
Neural Networks (GNNs), a comprehensive evaluation of the expressiveness of
these network architectures through a local-to-global analysis lacks today. In this
paper, we propose a local hierarchy of 3D isomorphism to evaluate the expressive
power of equivariant GNNs and investigate the process of representing global
geometric information from local patches. Our work leads to two crucial modules
for designing expressive and efficient geometric GNNs; namely local substruc-
ture encoding (LSE) and frame transition encoding (FTE). To demonstrate the
applicability of our theory, we propose LEFTNet which effectively implements
these modules and achieves state-of-the-art performance on both scalar-valued and
vector-valued molecular property prediction tasks. We further point out future
design space for 3D equivariant graph neural networks. Our codes are available at
https://github.com/yuanqidu/LeftNet.

1 Introduction

The success of many deep neural networks can be attributed to their ability to respect physical sym-
metry, such as Convolutional Neural Networks (CNNs) [1] and Graph Neural Networks (GNNs) [2].
Specifically, CNNs encode translation equivariance, which is essential for tasks such as object de-
tection. Similarly, GNNs encode permutation equivariance, which ensures that the node ordering
does not affect the output node representations, by aggregating neighboring messages. Modeling
3D objects, such as point clouds and molecules, is a fundamental problem with numerous applica-
tions [3], including robotics [4], molecular simulation [5, 6], and drug discovery [7–11]. Different
from 2D pictures and graphs that only possess the translation [1] and permutation [2] symmetry, 3D
objects intrinsically encode the complex SE(3)/E(3) symmetry [12], which makes their modeling a
nontrivial task in the machine learning community.

To tackle this challenge, several approaches have been proposed to effectively encode 3D rotation and
translation equivariance in the deep neural network architectures, such as TFN [13], EGNN [14], and
SphereNet [15]. TFN leverages spherical harmonics to represent and update tensors equivariantly,
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while EGNN processes geometric information through vector update. On the other hand, SphereNet is
invariant by encoding scalars like distances and angles. Despite rapid progress has been made on the
empirical side, it’s still unclear what 3D geometric information can equivariant graph neural networks
capture and how the geometric information is integrated during the message passing process [16–18].
This type of analysis is crucial in designing expressive and efficient 3D GNNs, as it’s usually a
trade-off between encoding enough geometric information and preserving relatively low computation
complexity. Put aside the SE(3)/E(3) symmetry, this problem is also crucial in analysing ordinary
GNNs. For example, 1-hop based message passing graph neural networks [19] are computationally
efficient while suffering from expressiveness bottlenecks (comparing with subgraph GNNs [20, 21]).
On the other hand, finding a better trade-off for 3D GNNs is more challenging, since we must ensure
that the message updating and aggregating process respects the SE(3)/E(3) symmetry.

In this paper, we attempt to discover better trade-offs between computational efficiency and expressive
power for 3D GNNs by studying two specific questions: 1. What is the geometric expressiveness
of 3D GNNs through a local 3D graph isomorphism lens? 2. What is expressiveness of 3D GNNs
in representing global geometric information through local patches? The first question relates
to the design of node-wise geometric messages, and the second question relates to the design of
equivariant (or invariant) aggregation. To tackle these two problems, we take a local-to-global
approach. More precisely, we first define three types of 3D graph isomorphism to characterize local
3D structures: tree, triangular, and subgraph isomorphism, following a local hierarchy. Our local
hierarchy lies between the 1-hop and 2-hop geometric isomorphism defined in Joshi et al. [22],
detailed in Appendix G.2; thus, it can be used to measure the expressive power of 3D GNNs by their
ability of differentiating non-isomorphic 3D structures similar to the geometric WL test proposed
in Joshi et al. [22]. Under this theoretical framework, we summarize one essential ingredient for
building expressive geometric messages on each node: local 3D substructure encoding (LSE), which
allows an invariant realization. To answer the second question, we analyze whether local invariant
features are sufficient for expressing global geometries by message aggregation, and it turns out that
frame transition encoding (FTE) is crucial during the local to global process. Although FTE can be
realized by invariant scalars, we further demonstrate that introducing equivariant messaging passing
is more efficient. After presenting LSE and FTE modules, we are able to present a modular overview
of 3D GNNs designs. In realization of our theoretical findings, we propose LEFTNet that efficiently
implements LSE and FTE without sacrificing expressiveness. Empirical experiments on real-world
scenarios, predicting scalar-valued property (e.g. energy) and vector-valued property (e.g. force) for
molecules, demonstrate the effectiveness of LEFTNet.

2 Preliminary

In this section, we provide an overview of the mathematical foundations of E(3) and SE(3) symmetry,
which is essential in modeling 3D data. We also summarize the message passing graph neural network
framework, which enables the realization of E(3)/SE(3) equivariant models.

Euclidean Symmetry. Our target is to incorporate Euclidean symmetry to ordinary permutation-
invariant graph neural networks. The formal way of describing Euclidean symmetry is the group
E(3) = O(3)⋊ T (3), where O(3) corresponds to reflections (parity transformations) and rotations.
For tasks that are anti-symmetric under reflections (e.g. chirality), we consider the subgroup SE(3) =
SO(3)⋊ T (3), where SO(3) is the group of rotations. We will use SE(3) in the rest of the paper
for brevity except when it’s necessary to emphasize reflections.

Equivariance. A tensor-valued function φ(x) is said to be equivariant with respect to SE(3) if for
any translation or rotation g ∈ SE(3) acting on x ∈ R3, we have

φ(gx) =M(g)φ(x),
whereM(·) is a matrix representation of SE(3) acting on tensors. See Appendix A for a general
definition of tensor fields. In this paper, we will use bold letters to represent an equivariant tensor,
e.g., x as a position vector. It is worth noting that when φ(x) ∈ R1 andM(g) ≡ 1 (the constant
group representation), the equivariant function φ(x) is also called an invariant scalar function.

Message Passing Scheme for Geometric Graphs. A geometric graph G is represented by G =
(V,E). Here, vi ∈ V denotes the set of nodes (vertices, atoms), and eij ∈ E denotes the set of
edges. For brevity, the edge feature attached on eij is also denoted by eij . X = (x1, . . . , xn) ∈ Rn×3

denotes the node positions which determine the geometric structure of G.
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(b)
Figure 1: (a) Si and Sj share the same tree structure (edge lengths are identical), but they are not
triangular isomorphic (different dihedral angles); (b) Si and Sj are triangular isomorphic but not
subgraph isomorphic (the relative distance between the two triangles is different).

A common machine learning tool for modeling graph-structured data is the Message Passing Neural
Network (MPNN) [16]. A typical 1-hop MPNN framework consists of two phases: (1) message
passing; (2) readout. Let hl

i, h
l
j denote the l-th layer’s node features of source i and target j that also

depend on the 3D positions (xi, xj), then the aggregated message is

ml
i =

⊕
j∈N (i)

mij(h
l(xi), hl(xj), elij), (1)

and
⊕

j∈N (i) is any permutation-invariant pooling operation between the 1-hop neighbors of i. We
also include the edge features elij into the message passing phase for completeness. 3D equivariant
GNNs (3D GNNs for short) require the message mi to be equivariant with respect to the geometric
graph. That is, for an arbitrary edge eij :

mij(h
l(gxi), hl(gxj)) =M(g)mij(h

l(xi), hl(xj)), (2)

where g ∈ SE(3) is acting on the whole geometric graph simultaneously: (x1, . . . , xn) →
(gx1, . . . , gxn). For example, the invariant model ComENet [23] satisfies Eq. 2 by settingM(g) ≡ 1,
and MACE [24] realized Eq. 2 for nonconstant irreducible group representationsM(g) through
spherical harmonics and Clebsch-Gordan coefficients.

3 A local hierarchy of 3D graph isomorphism

As presented in Section 2, defining expressive messages is an essential component for building
powerful 3D GNNs. In this section, we develop a fine-grained characterization of local 3D structures
and build its connection with the expressiveness of 3D GNNs.

Since the celebrated work [25], a popular expressiveness test for permutation invariant graph neural
networks is the 1-WL graph isomorphism test [26], and Wijesinghe and Wang [27] has shown that
the 1-WL test is equivalent to the ability to discriminate the local subtree-isomorphism. It motivates
us to develop a novel (local) 3D isomorphism for testing the expressive power of 3D GNNs. However,
this task is nontrivial, since most of the previous settings for graph isomorphism are only applicable
to 2D topological features. For 3D geometric shapes, we should take the SE(3) symmetry into
account. Formally, two 3D geometric graphs X,Y are defined to be globally isomorphic, if there
exists g ∈ SE(3) such that

Y = gX. (3)
In other words, X and Y are essentially the same, if they can be transformed into each other through
a series of rotations and translations. Not that Eq. 3 is up to the permutation of nodes. Inspired
by Wijesinghe and Wang [27], now we introduce a novel hierarchy of SE(3) equivariant local
isomorphism to measure the local similarity of 3D structures.

Let Si represent the 3D subgraph associated with node i. This subgraph contains all the 1-hop
neighbors of i as its node set, along with all edges in E where both end points are one-hop neighbors
of i. For each edge eij ∈ E, the mutual 3D substructure Si−j is defined by the intersection of Si and
Sj : Si−j = Si ∩ Sj .

Given two local subgraphs Si and Sj that correspond to two nodes i and j (not necessarily adjacent),
we say Si is {tree-, triangular-, subgraph-} isometric to Sj , if there exists a bijective function
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f : Si → Sj such that hf(u) = hu for every node u ∈ Si, and the following conditions hold
respectively:

• Tree Isometric: If there exists a collection of group elements giu ∈ SE(3), such that
(xf(u), xf(i)) = (giuxu, giuxi) for each edge eiu ∈ Si;

• Triangular Isometric: If there exists a collection of group elements giu ∈ SE(3), such
that the corresponding mutual 3D substructures satisfy: Sf(u)−f(i) = giuSu−i for each edge
eiu ∈ Si;

• Subgraph Isometric: for any two adjacent nodes u, v ∈ Si, f(u) and f(v) are also adjacent
in Sj , and there exist a single group element gi ∈ SE(3) such that giSi = Sj .

Note that tree isomorphism only considers edges around a central node, which is of a tree shape. On
the other hand, the mutual 3D substructure can be decomposed into a bunch of triangles (since it’s
contained in adjacent node triplets), which explains the name of triangular isomorphism.

In fact, the three isomorphisms form a hierarchy from micro to macro, in the sense that the following
implication relation holds:

Subgraph Isometric⇒ Triangular Isometric⇒ Tree Isometric
This is an obvious fact from the above definitions. To deduce the reverse implication relation, we
provide a visualized example. Fig. 1 shows two examples of local 3D structures: 1. the first one shares
the same tree structure, but is not triangular-isomorphic; 2. the second one is triangular-isomorphic
but not subgraph-isomorphic. In conclusion, the following diagram holds:

Tree Isometric ̸⇒ Triangular Isometric ̸⇒ Subgraph Isometric
One way to formally connect the expressiveness power of a geometric GNN with their ability of
differentiating geometric subgraphs is to define geometric WL tests, the reader can consult [22].
In this paper, we take an intuitive approach based on our nested 3D hierarchy. That is, if two 3D
GNN algorithms A and B can differentiate all non-isomorphic local 3D shapes of tree (triangular)
level, while A can differentiate at least two more 3D geometries which are non-isomorphic at
triangular(subgraph) level than B, then we claim that algorithm A’s expressiveness power is more
powerful than B.

Since tree isomorphism is determined by the one-hop Euclidean distance between neighbors, distin-
guishing local tree structures is relatively simple for ordinary 3D equivariant GNNs. For example,
the standard baseline SchNet [28] is one instance of Eq. 1 by setting etij = RBF(d(xi, xj)), where
RBF(·) is a set of radial basis functions. Although it is powerful enough for testing tree non-
isomorphism (assuming that RBF(·) is injective), we prove in Appendix D that SchNet cannot
distinguish non-isomorphic structures at the triangular level.

On the other hand, Wijesinghe and Wang [27] has shown that by leveraging the topological informa-
tion extracted from local overlapping subgraphs, we can enhance the expressive power of GNNs to
go beyond 2D subtree isomorphism. In our setting, the natural analogue of the overlapping subgraphs
is exactly the mutual 3D substructures. Now we demonstrate how to merge the information from 3D
substructures to the message passing framework (1). Given an SE(3)-invariant encoder ϕ, define the
3D structure weights Aij := ϕ(Si−j) for each edge eij ∈ E. Then, the message passing framework
(1) is generalized to:

ml
i =

⊕
j∈N (i)

mij(h
l(xi), hl(xj), Aijh

l(xj), elij). (4)

Formula 4 is an efficient realization of enhancing 3D GNNs by injecting the mutual 3D substructures.
However, a crucial question remains to be answered: Can the generalized message passing framework
boost the expressive power of 3D GNNs? Under certain conditions, the following theorem provides
an affirmative answer:
Theorem 3.1. Suppose ϕ is a universal SE(3)-invariant approximator of functions with respect to
the mutual 3d structures Si−j . Then, the collection of weights {{Aij := ϕ(Si−j)}eij∈E} enables the
differentiation of local structures beyond tree isomorphism. Furthermore, under additional injectivity
assumptions (as described in Eq. 16), 3D GNNs based on the enhanced message passing framework
(see Section 4) map at least two distinct local 3D subgraphs with isometric local tree structures to
different embeddings.
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Proof. The detailed proof is provided in Appendix D.

This theorem confirms that the enhanced 3D GNN (formula 4) is more expressive than the SchNet
baseline, at least in testing local non-isomorphic geometric graphs. The existence of such local
encoder ϕ is proved in two ways : 1. Equivariant construction by the Atomic Cluster Expansion
(ACE) [29]; 2. Invariant construction under scalarization by edge-wise equivariant frames [30]. Note
that there are other different perspectives on characterizing 3D structures, we will also briefly discuss
them in Appendix D.

4 From local to global: the missing pieces

In the last section, we introduced a local 3D graph isomorphism hierarchy for testing the expressive
power of 3D GNNs. Furthermore, we motivated adding a SE(3)-invariant encoder to improve the
expressive power of one-hop 3D GNNs by scalarizing not only pairwise distances but also their mutual
3D structures in Theorem 3.1. However, to build a powerful 3D GNN, it remains to be analyzed
how a 3D GNN acquires higher order (beyond 1-hop neighbors) information by accumulating local
messages. A natural question arises: Are local invariant messages enough for representing global
geometric information?

b c

cluster B cluster C

a

RCD !"Frame Transition between B and C

hB

hC

fa = hB · hC

xb

xc

ycyb

zb zc

Figure 2: Illustrations of different local frames and
their transition.

To formally formulate this problem, we consider
a two-hop aggregation case. From fig. 2, the
central atom a is connected with atoms b and
c. Except for the common neighbor a, other
atoms that connect to b and c form two 3D clus-
ters, denoted by B, C. Suppose the ground-truth
interaction potential of B and C imposed on
atom a is described by a tensor-valued function
fa(B,C). Since B and C are both beyond the
1-hop neighborhood of a, the information of
fa(B,C) can only be acquired after two steps
of message passing: 1. atoms b and c aggre-
gate message separately from B and C; 2. the
central atom a receives the aggregated message
(which contains information of B and C) from
its neighbors b and c.

Let SB (SC) denote the collection of all invariant scalars created by B (C) . For example, SB contains
all relative distances and angles within the 3D structure B. Then, the following theorem holds:

Theorem 4.1. Not all types of invariant interaction fa(B,C) can be expressed solely as functions of
the union of two sets SB and SC. In other words, there exists E(3) invariant function fa(B,C), such
that it cannot be expressed as functions of SB and SC: fa(B,C) ̸= ρ(SB, SC) for arbitrary invariant
functions ρ.

Proof. The detailed proof is provided in Appendix E.

This theorem essentially demonstrates that simply aggregating "local" scalar information from
different clusters is insufficient for approximating "global" interactions, even in the case of simple
invariant potential learning tasks. In contrast to the previous section, where the local expressiveness
was evaluated based on the ability to classify geometric shapes, in this theorem, we constructed
counterexamples using continuous regression functions that depend strictly on information beyond
the combination of local invariant scalars. Intuitively, the theorem is proved by introducing two
local equivariant frames (three independent equivariant vectors, see Appendix B for the definition)
determined by B (C) separately, through which all scalars in SB (SC) can be expressed. However, the
transition matrix between these frames is not encoded in the aggregation, resulting in information
loss when aggregating geometric features from two sub-clusters. In other words, local frames provide
local observations of geometric quantities, while the transition matrix reveals the global changes
between local geometries. Importantly, the proof also highlights that the missing information that
causes the expressiveness gap is solely the Frame Transition (FT) information, which we will define
immediately.
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Frame Transition (FT). Let (ei1, e
i
2, e

i
3) and (ej1, e

j
2, e

j
3) be two orthonormal frames in R3. These

frames are connected by an orthogonal matrix Rij ∈ SO(3):

(ei1, ei2, ei3) = Rij(ej1, ej2, ej3). (5)

Furthermore, when (ei1, e
i
2, e

i
3) and (ej1, e

j
2, e

j
3) are equivariant frames, all elements of Rij are

invariant scalars. For instance, in the case of a geometric graph where i and j represent indexes of
two connected atoms, the fundamental torsion angle τij in ComeNet [23] corresponds to one element
of Rij (see Appendix E).

To address this expressiveness gap, one approach is to directly incorporate all invariant edge-wise
frame transition matrices (FT) into the model. This can be achieved using a geometric formulation
based on neural sheaf diffusion, as described in Appendix H. However, it is worth noting that this
method becomes computationally expensive when dealing with a large number of local clusters,
as it requires O(k2) pairs of FT for each node. Instead, we propose a more efficient approach by
introducing equivariant tensor features for each node i, denoted as mi. These tensor features allow
us to maintain equivariant frames directly within each mi. We prove in Appendix E that FT can be
easily derived through equivariant message passing and updating when utilizing these equivariant
tensor features.

Equivariant Message Passing. Similarly with the standard one-hop message passing scheme 1,
the aggregated tensor message mi from the l − 1 layer to the l layer can be written as: ml−1

i =∑
j∈N(i) ml−1

j . Since summation does not break the symmetry rule, it is obvious that ml−1
i are still

equivariant tensors. However, the nontrivial part lies in the design of the equivariant update function
ϕ:

ml
i = ϕ(ml−1

i ). (6)

To fully capture the information of FT, it is necessary for ϕ to possess sufficient expressive power
while maintaining SE(3) equivariance. Here, we propose a novel way of updating scalar and tensor
messages by performing node-wise scalarization and tensorization blocks (the FTE module of
Figure 3). From the perspective of Eq. 2, m(xu) is transformed equivariantly as:

m(gxu) =

l∑
i=0

Mi(g)mi(xu), g ∈ SE(3). (7)

Here, m(xu) is decomposed to (m0(xu), . . . ,ml(xu)) according to different tensor types, and
{Mi(g)}li=0 is a collection of different SE(3) tensor representations (see the precise definition in
Appendix A).

To illustrate the benefit of aggregating equivariant messages from local patches, we study a simple
case. Let fa(B,C) = hB · hC be an invariant function of B and C (see Fig. 2), then fa can be
calculated by a direction composition of scalar messages and equivariant vector messages: fa(B,C) =
1
2 [∥ma∥2 − ∥hB∥2 − ∥hC∥2], where ma = hB + hC is an equivariant vector. Note that ma follows
the local equivariant aggregation formula 6, and the other vectors’ norm ∥hB∥ and ∥hC∥ are obtained
through local scalarization on atoms b and c. As a comparison, it’s worth mentioning that fa(B,C)
can also be expressed by local scalarization with the additional transition matrix data RBC defined
by Eq. 5. Let h̃B and h̃C be the scalarized coordinates with respect to two local equivariant frames

FB and FC . Then fa(B,C) = 1
2

[∥∥∥R−1
BC h̃B + h̃C

∥∥∥2 − ∥∥∥h̃B

∥∥∥2 − ∥∥∥h̃C

∥∥∥2] . However, it requires

adding the transition matrix RBC for each (B,C) pair into the aggregation procedure, which is
computationally expensive compared to directly implementing equivariant tensor updates.

5 Building an efficient and expressive equivariant 3D GNN

We propose to leverage the full power of LSE and FTE modules (along with a necessary tensor
update module) to push the limit of efficient and expressive 3D equivariant GNNs design. Specifi-
cally, we improve a recently proposed method based on constructing local frames but without the
implementation of LSE and FTE [30]. We also analyze related works following this framework
detailed in Appendix G.
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Figure 3: Illustrations of our modular framework for building equivariant GNNs and the realization
of LEFTNet. Each interaction block contains LSE to encode local 3D structures, equivariant message
passing to update both invariant (unbold letters, e.g. hi) and equivariant (bold letter, e.g. hi) features,
and FTE to encode frame transition. Si−j is the local 3D structure of each edge eij . Fij and Fi are
the equivariant frames for each edge eij and node i. ⊙ indicates element-wise multiplication, and
∥ indicates concatenation. Note that we do not include eij in the figure since, practically, they are
generated based on hi and hj .

LSE Instantiation. We propose to apply edge-wise equivariant frames (following [30]) to encode
the local 3D structures Si−j . By definition, Si−j contains edge eij , nodes i and j, and their common
neighbors. We use the equivariant frame Fij built on eij (see the precise formula in Appendix F) to
scalarize Si−j . After scalarization (8), the equivariant coordinates of all nodes in Si−j are transformed
into invariant coordinates: {xk → x̃k for xk ∈ Si−j}. To encode these scalars sufficiently, we first
weight each x̃k by the RBF distance embedding: x̃k → RBF(∥xk∥)⊙MLP(x̃k) for each xk ∈ Si−j .
Note that to preserve the permutation symmetry, the MLP is shared among the nodes. Finally, the 3D
structure weight Aij is obtained by the average pooling of all node features.

FTE Instantiation. We propose to introduce equivariant tensor message passing and update function
for encoding local FT information. At initialization, let NFl(xi, xj) denote the embedded tensor-
valued edge feature between i and j. We split it into two parts: 1. the scalar part SFl(xi, xj)
for aggregating invariant messages; 2. the higher order tensor part TFl(xi, xj) for aggregating
tensor messages. To transform TFl(xi, xj), we turn to the equivariant frame Fij once again. After

scalarization by Fij , TFl(xi, xj) becomes a tuple of scalars T̃F
l
(xi, xj), which is then transformed

by MLP. Finally, we output arbitrary tensor messages through equivariant tensorization 22:

T̃F
l
(xi, xj)

Tensorize−−−−−→
Fij

NFl+1(xi, xj).

Further details are provided in Appendix F. As we have discussed earlier, the node-wise update
function ϕ in Eq. 6 is also one of the guarantees for a powerful FTE. As a comparison, ϕ is usually
a standard MLP for updating node features in 2D GNNs, which is a universal approximator of
invariant functions. Previous works [14, 31] updated equivariant features by taking linear combina-
tions and calculating the invariant norm of tensors, which may suffer from information loss. Then a
natural question arises: Can we design an equivariant universal approximator for tensor update? We
answer this question by introducing a novel node-wise frame. Consider node i with its position xi,
let x̄i :=

1
N

∑
xj∈N(xi) xj be the center of mass around xi’s neighborhood. Then the orthonormal

equivariant frame Fi := (ei1, ei2, ei3) with respect to xi is defined similar to the edge-wise frame
between xi and x̄i in [30], detailed in appendix B. Finally, we realize a powerful ϕ by the following
theorem:
Theorem 5.1. Equipped with an equivariant frame Fi for each node i, the equivariant function
ϕ defined by the following composition is a universal approximator of tensor transformations:
ϕ : Scalarization→ MLP→ Tensorization.

Proof. The detailed proof is provided in Appendix F.

LEFTNet. An overview of our {LSE,FTE} enhanced efficient graph neural network (LEFTNet)
is depicted in Fig. 3. The detailed algorithm for LEFTNet is shown in Algorithm 1 of Appendix C.
LEFTNet receives as input a collection of node embeddings {v01 , . . . , v0N}, which contain the atom
types and 3D positions for each node: v0i = (zi, xi), where i ∈ {1, . . . , N}. For each edge eij ∈ E,
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we denote the associated equivariant features consisting of tensors by eij . During each messaging
passing layer, the LSE module outputs the scalar weight coefficients Aij as enhanced invariant
edge feature and feed into the interaction module. Moreover, scalarization and tensorization as two
essential blocks are used in the equivariant update module that fulfills the function of FTE. The
permutation equivariance of a geometric graph is automatically guaranteed for any message passing
architecture, we provide a complete proof of SE(3)-equivariance for LEFTNet in Appendix F.

SE(3) vs E(3) Equivariance. Besides explicitly fitting the SE(3) invariant molecular geometry
probability distribution, modeling the energy surface of a molecule system is also a crucial task for
molecule property prediction. However, the Hamiltonian energy function E of a molecule is invariant
under refection transformation: Energy(X) = Energy(RX), for arbitrary reflection transformation
R ∈ E(3). In summary, there exist two different inductive biases for modeling 3D data: (1) SE(3)
equivariance, e.g. chirality could turn a therapeutic drug to a killing toxin; (2) E(3) equivariance, e.g.
energy remains the same under reflections.

Since we implement SE(3) equivariant frames in LEFTNet, our algorithm is naturally SE(3)
equivariant. However, our method is flexible to implement E(3) equivariant tasks as well. For E(3)
equivariance, we can either replace our frames to E(3) equivariant frames, or modify the scalarization
block by taking the absolute value: x → x̃ := (x · e1, x · e2, x · e3)︸ ︷︷ ︸

SE(3)

→ (x · e1, |x · e2|, x · e3)︸ ︷︷ ︸
E(3)

.

Intuitively, since the second vector e2 is a pseudo-vector, projections of any equivariant vectors along
the e2 direction are not E(3) invariant until taking the absolute value.

Efficiency. To analyze the efficiency of LEFTNet, suppose 3D graph G has n vertices, and its
average node degree is k. Our algorithm consists of three phases: 1. Building equivariant frames
and performing local scalarization; 2. Equivariant message passing; 3. Updating node-wise tensor
features through scalarization and tensorization. Let l be the number of layers, then the computational
complexity for each of our three phases are: 1. O(nk) for computing the frame and local (1-hop)
3D features; 2. O(nkl) for 1-hop neighborhood message aggregation; 3. O(nl) for node-wise
tensorization and feature update.

6 Experiments

We evaluate our LEFTNet on both scalar value (e.g. energy) and vector value (e.g. forces) prediction
tasks. The scalar value prediction experiment is conducted on the QM9 dataset [32] which includes
134k small molecules with quantum property annotations; the vector value prediction experiment is
conducted on the MD17 dataset [33] and the Revised MD17(rMD17) dataset [34] which includes the
energies and forces of molecules. We compare LEFTNet with a list of state-of-the-art equivariant
(invariant) GNNs including SphereNet [15], PaiNN [35], Equiformer [36], GemNet [37], etc [28, 38,
13, 39, 40, 14, 16, 41–48].The training details, results on rMD17, etc. are listed in Appendix I.

Table 1: Mean Absolute Error for the molecular property prediction benchmark on QM9 dataset.
(The best results are bolded and the second best are underlined.)

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE
Units bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

NMP .092 69 43 38 .030 .040 19 17 .180 20 20 1.50
Cormorant .085 61 34 38 .038 .026 20 21 .961 21 22 2.03
LieConv .084 49 30 25 .032 .038 22 24 .800 19 19 2.28
TFN .223 58 40 38 .064 .101 - - - - - -
SE(3)-Tr. .142 53 35 33 .051 .054 - - - - - -
EGNN .071 48 29 25 .029 .031 12 12 .106 12 11 1.55
SEGNN .060 42 24 21 .023 .031 15 16 .660 13 15 1.62
ClofNet .063 53 33 25 .040 .027 9 9 .610 9 8 1.23
EQGAT .063 44 26 22 .014 .027 12 13 .257 13 13 1.50
Equiformer .056 33 17 16 .014 .025 10 10 .227 11 10 1.32
LEFTNet (ours) .048 40 24 18 .012 .023 7 6 .109 7 6 1.33

Schnet .235 63 41 34 .033 .033 14 14 .073 19 14 1.70
DimeNet++ .044 33 25 20 .030 .023 8 7 .331 6 6 1.21
SphereNet .046 32 23 18 .026 .021 8 6 .292 7 6 1.12
ClofNet .053 49 33 25 .038 .026 9 8 .425 8 8 1.59
PaiNN .045 46 28 20 .012 .024 7 6 .066 6 6 1.28
LEFTNet (ours) .039 39 23 18 .011 .022 6 5 .094 5 5 1.19
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Table 2: Mean Absolute Error for per-atom forces prediction (kcal/mol Å) on MD17 dataset. The
best results are bolded.

WoFE=100 WoFE=1000 Others

Molecule sGDML SchNet DimeNet SphereNet SpookyNet LEFTNet SphereNet GemNet LEFTNet PaiNN NewtonNet

Aspirin 0.68 1.35 0.499 0.430 0.258 0.300 0.209 0.217 0.196 0.371 0.348
Benzene 0.20 0.31 0.187 0.178 – 0.145 0.147 0.145 0.142 – –
Ethanol 0.33 0.39 0.230 0.208 0.094 0.138 0.091 0.086 0.099 0.230 0.264
Malonaldehyde 0.41 0.66 0.383 0.340 0.167 0.209 0.172 0.155 0.142 0.319 0.323
Naphthalene 0.11 0.58 0.215 0.178 0.089 0.073 0.048 0.051 0.044 0.083 0.084
Salicylic acid 0.28 0.85 0.374 0.360 0.180 0.167 0.113 0.125 0.117 0.209 0.197
Toluene 0.14 0.57 0.210 0.155 0.087 0.084 0.054 0.060 0.049 0.102 0.088
Uracil 0.24 0.56 0.301 0.267 0.119 0.116 0.106 0.097 0.085 0.140 0.149

6.1 QM9 - scalar-valued property prediction

4

6
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12

14

100 150 200 250 300 350

SchNet
ClofNet
ComENet
DimeNet++
SphereNet
LEFTNet

M
AE

Training time per epoch (s)

Figure 4: Comparisons of ex-
isting methods in terms of the
training time and the MAE of
the property U0 of QM9.

The QM9 dataset is a widely used dataset for predicting molecular
properties. However, existing models are trained on different data
splits. Specifically, Cormorant [40], EGNN [14], etc., use 100k,
18k, and 13k molecules for training, validation, and testing, while
DimeNet [38], SphereNet [15], etc., split the data into 110k, 10k, and
11k. For a fair comparison with all methods, we conduct experiments
using both data splits. Results are listed in Table 1. For the first data
split, LEFTNet is the best on 7 out of the 12 properties and improves
previous SOTA results by 20% on average. Consistently, LEFTNet is
the best or second best on 10 out of the 12 properties for the second
split. These results validate the effectiveness of LEFTNet. Detailed
ablation in Appendix I shows that both LSE and FTE contribute to
the final performance. In addition, we compare the forward time of existing methods to show the
efficiency of LEFTNet. Specifically, we use the same batch size for all methods and report the one
epoch training time. Fig. 4 shows that LEFTNet can achieve the best performance using similar
forward time as SchNet, ClofNet, and ComENet and is much faster than DimeNet and SphereNet.
This is consistent with our efficiency analysis in Sec. 5 and Table 4.

6.2 MD17 - vector-valued property prediction

Table 3: Ablation study
on Aspirin of the MD17
dataset. Detailed abla-
tions on other molecules
are listed in Appendix I

Method MAE

w/o LSE and FTE 1.083
LSE only 0.451
LSE + FTE 0.300

We evaluate LEFTNet to predict forces on the MD17 dataset. Following
existing studies [28, 38, 15], we train a separate model for each of the 8
molecules. Both training and validation sets contain 1000 samples, and
the rest are used for testing. Note that all baseline methods are trained
on a joint loss of energies and forces, but different methods use different
weights of force over energy (WoFE). For example, SchNet [28] sets
WoEF as 100, while GemNet [37] uses a weight of 1000. For a fair
comparison with existing studies, we conduct experiments on two widely
used weights of 100 and 1000 following Liu et al. [15]. The results are
summarized in Table 2. Results show that when WoFE is 100, LEFTNet
outperforms all baseline methods on 5 of the 8 molecules. In addition, LEFTNet can outperform
all baseline methods on 6 of the 8 molecules when WoFE is 1000. These experimental results on
MD17 demonstrate the performance of LEFTNet on vector-valued property prediction tasks. The
ablation results in Table 3 demonstrate that both LSE and FTE are important to the final results.
Specifically, the algorithm for LSE only is in Algorithm 1 of Appendix C. Note that the original
MD17 dataset we used has numerical noise [34], and a recomputed version of MD17, called Revised
MD17 (rMD17) [34] is proposed to reduce the numerical noise. In addition to the original MD17, we
also conduct experiments on the rMD17, and the results are listed in Appendix I.

7 Limitation and future work

In this paper, we seek a general recipe for building 3D geometric graph deep learning algorithms.
Considering common prior of 2D graphs, such as permutation symmetry, has been incorporated in
off-the-shelf graph neural networks, we mainly focus on the E(3) and SE(3) symmetry specific to
3D geometric graphs. Despite our framework being general for modeling geometric objects, we only
conducted experiments on commonly used molecular datasets. It’s worth exploring datasets in other
domains in the future.
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To elucidate the future design space of equivariant GNNs, we propose two directions that are worth
exploring. Firstly, our current algorithms consider fixed equivariant frames for performing aggregation
and node updates. Inspired by the high body-order ACE approach [49] (for modeling atom-centered
potentials), it is worth investigating in the future if equivariant frames that relate to many body (e.g.,
the PCA frame in [50, 51]) can boost the performance of our algorithm. For example, to build
the A-basis proposed in [49], we can replace our message aggregation Eq. 6 from summation to
tensor product, which is also a valid pooling operation. Another direction is to explore geometric
mesh graphs on manifolds M , where the local frame is defined on the tangent space of each point:
F(x) ∈ TxM . Since our scalarization technique (crucial for realizing LSE in LEFTNet) originates
from differential geometry on frame bundles [52], it is reasonable to expect that our framework also
works for manifold data [53, 54].
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A Supplementary background

In this section, we first detail the concept of scalarization and tensorization and then review the
concept of (contravariant) tensor fields and their associated equivariant group representations.

Scalarization. Scalarization is a general technique that originated from differential geometry for
realizing covariant operations on tensors [52]. Our method will apply a simple version of scalarization
in R3 to transform equivariant quantities. At the heart of its realization is the notion of equivariant
orthonormal frames, which consist of three orthonormal equivariant vectors:

F := (e1, e2, e3).

Based on F , we can build orthonormal equivariant frames for higher order tensors by taking tensor
products ⊗, see Eq. 21 in Appendix. By taking the inner product between F and a given equivariant
vector (tensor) x, we get a tuple of invariant scalars (see [30] for a proof):

x→ x̃ := (x · e1, x · e2, x · e3), (8)

and x̃ can be seen as the ‘scalarized’ coordinates of x.

Tensorization. Tensorization, on the other hand, is the ‘reverse’ process of scalarization. Given a
tuple of scalars: (x1, x2, x3), tensorization creates an equivariant vector (tensor) out of F :

(x1, x2, x3)
Pairing−−−→ x := x1e1 + x2e2 + x3e3. (9)

The same procedure is extended to higher order cases, see Eq. 22 in Appendix.

A s order (contravariant) tensor T on a vector space V is a multilinear map:

T : V∗ × · · · ×V∗︸ ︷︷ ︸
s

→ R1,
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where V∗ denotes the dual space of V. In fact, there is a canonical ‘multiplication’ operation between
two tensors. Define the tensor product S⊗ T of two tensors S and T to be a tensor of order r + s :

S⊗ T(v1, . . . , vr+s) = S(v1, . . . , vr)T(vr+1, . . . , vr+s). (10)

where vi ∈ V∗.

From now on, we assume V = V ∗ = R3. Note that when s = 1, T is exactly an equivariant vector.
In practice, the tensor data in R3 is usually given by its coefficients under a Cartesian coordinate
system. Take a second-order tensor as an example, assume we are given an orthonormal frame (basis)
(e1, e2, e3) and its dual frame (e1, e2, e3), then the nine coefficients of T are given by

Tij = T(ei, ej), 1 ≤ i, j ≤ 3.

In other words, we say the collection {Tij}1≤i,j≤3 is a faithful representation of T in a fixed
coordinate system:

T =
∑
i,j

Tijei ⊗ ej . (11)

Once defined a tensor on R3, it’s easy to extend it to a continuous manifold or a discrete graph. A
tensor field of order s on a 3D graph G = (V,E) is a tensor-valued function f which assigns to each
3D node xi an order s tensor, denoted by f(xi).

SE(3) Tensor Representations. Let V be a vector space, then the group SE(3) is said to act on V if
there is a mapping ϕ : SE(3)× V → V satisfying the following two conditions:

1. if e ∈ SE(3) is the identity element, then

ϕ(e, x) = x for ∀x ∈ V.

2. if g1, g2 ∈ SE(3), then

ϕ(g1, ϕ(g2, x)) = ϕ(g1g2, x) for ∀x ∈ V.

If we further require ϕ(g, ·) is a linear map for all g ∈ SE(3), then ϕ becomes a group representation
of SE(3). From now on, we only consider the rotation subgroup SO(3) and its group representations.
When V = R3, there is a natural representation of SO(3) by rotating vectors in R3. In this way, an
element g ∈ SO(3) is identified with a Rotation matrix, denoted by {gji }1≤i,j≤3.

From the tensor definition (10), this natural representation on R3 induces a tensor representation on
T . Still take T = {Tij}1≤i,j≤3 as an example, we have

Tkl =
∑
i

∑
j

gikg
j
l Tij , 1 ≤ k, l ≤ 3, (12)

for ∀g ∈ SO(3). It’s easy to check that (12) is indeed a SO(3) representation on the vector space
spanned by second-order tensors.

Relation with Spherical Harmonics. For the SO(3) group, all representations (including the
tensor representations) can be decomposed as a direct sum of irreducible representations. For each
type of irreducible representations, there is a subset of spherical harmonics formulating a basis for
this specific representation. However, in terms of representing equivariant geometric quantities,
the theorem in [55] claims that tensor representations and irreducible representations are equally
powerful: They all form a complete basis in the space of continuous E(3) equivariant functions.

B Equivariant frame construction

Equivariant Frame Definition. An equivariant frame on a 3D graph G consists of three orthonormal
vectors that transform equivariantly under SE(3). In the following, we present specific constructions
of equivariant frames. However, it is important to note that the proof of Theorem 4.1 does not depend
on our particular choice of local equivariant frames.

It is worth noting that the number of vectors required in the equivariant frame is equal to the dimension
of the space. For example, in the case of the four-dimensional Lorentz space, where the symmetry
group is replaced by the Lorentz group, the equivariant frame consists of four independent vectors.

16



Edge-wise frame. From this point onward, we assume that the 3D graph’s mass has been translated
to zero. This translation ensures that the center of mass of the graph is located at the origin, ensuring
the translation invariance of the system. Consider node i and one of its neighbors j with positions xi
and xj , respectively. The orthonormal equivariant frame Fij := (eij1 , eij2 , eij3 ) is defined with respect
to xi and xj as follows:

(
xi − xj
∥xi − xj∥

,
xi × xj
∥xi × xj∥

,
xi − x̄j

∥xi − x̄j∥
× xi × xj

∥xi × xj∥
). (13)

Node-wise frame. Consider node i with 3D position xi, and let x̄i := 1
N

∑
xj∈N (xi) xj be the center

of mass around the 1-hop neighborhood of xi. The orthonormal equivariant frame Fi := (ei1, ei2, ei3)
is defined with respect to xi as follows:

(
xi − x̄i
∥xi − x̄i∥

,
x̄i × xi
∥x̄i × xi∥

,
xi − x̄i

∥xi − x̄i∥
× x̄i × xi

∥x̄i × xi∥
). (14)

Note that node frames can also be obtained by averaging the edge-wise frames and applying the Gram-
Schmidt orthogonalization process. This approach provides an alternative method for constructing
equivariant frames at the node level.

C Algorithm for the proposed LEFTNet

The detailed LEFTNet is shown in Algorithm 1. Note that for simplicity, the message m in this
algorithm could include both invariant and equivariant terms in Fig. 3.

The design of LEFTNet (LSE only) used in the ablation study is shown in Algorithm 2.

Algorithm 1 LEFTNet

1: Input: 3D graph with equivariant positions X = (x1, . . . , xn) ∈ Rn×3, invariant node features
hi ∈ Rd, invariant relative distances dij ∈ R1, equivariant edge features eij ∈ Rc.

2: Centralize the positions: X← X− CoM(X).
3: for (i = 1; i <= n; i++) do
4: Compute node-wise equivariant frames Fi via Eq. 14 .
5: for j ∈ N (i) do
6: Compute edge-wise equivariant frames Fij via Eq. 13
7: Get the mutual 3D structure Si−j , perform local scalarization through Fij :

tij = {Scalarize(Si−j ,Fij)}
8: Calculate the SE(3)-invariant structural coefficients: Aij = g(tij , dij)
9: Perform equivariant message passing as in Eq. 4:

mij = ϕ1
m(hi, Aij ⊙ hj , dij) + ϕ2

m(hi, Aij ⊙ hj , dij) · eij + ϕ3
m(hi, Aij ⊙ hj , dij) · Fij

10: end for
11: Equivariant message aggregation: mi =

∑
j∈N (i) mij ;

12: Transform equivariant node features through Fi:

ti = Scalarize(mi,Fi)

13: Update invariant node features:
hi = ϕh(hi, ti)

14: Equivariant Output: Perform tensorization through Fi:

hi = Tensorize(hi,Fi).

15: end for
16: Output: for invariant properties (e.g. energy): AvgPooling(h1, . . . , hn),

for equivariant properties (e.g. force): (h1, . . . ,hn).
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Algorithm 2 LEFTNet (LSE only)

1: Input: 3D graph with equivariant positions X = (x1, . . . , xn) ∈ Rn×3, invariant node features
hi ∈ Rd, invariant relative distances dij ∈ R1.

2: Centralize the positions: X← X− CoM(X).
3: for (i = 1; i <= n; i++) do
4: for j ∈ N (i) do
5: Compute edge-wise equivariant frames Fij via Eq. 13:

Fij = EquiFrame(xi, xj).

6: Get the mutual 3D structure Si−j , perform local scalarization:

tij = {Scalarize(Si−j ,Fij)}.
7: Calculate the SE(3)-invariant structural coefficients: Aij = g(tij , dij)
8: Perform invariant message passing:

mij = ϕm(hi, Aij ⊙ hj , dij)

9: end for
10: Update invariant node features:

hi = ϕh(hi,
∑

j∈N (i)

mij)

11: end for
12: Output: AvgPooling (h1, . . . , hn).

D Related proofs and discussions of Section 3

In section 3, we proposed a novel hierarchy of local geometric isomorphisms that further motivates the
design of incorporating the mutual 3D substructure’s information into equivariant GNNs. Different
from our fine-grained local characterization, a cocurrent work GWL [22]) proposes to measure
geometric isomorphism from local to global by the k-hop partition.

From another point of view, we essentially demonstrated that encoding mutual 3D substructures
expands the capacity of the transformation function class with respect to an equivariant GNN. [23]
put forward the Completeness concept for characterizing these transformation functions. However, it
mainly concentrates on testing whether a function can discriminate global geometric isomorphism (in
the sense of Eq. 3).

Discussion on the Completeness Concept. Following our terminology in the preliminary section,
completeness of a transformation f can be translated into claiming that f is invariant among 3D
graphs if and only if they are globally isomorphic (see definition (3)). Therefore, it’s easy to refine
the notion of completeness that adapts to our local version by replacing the global isomorphism to
local isomorphism:

f(X) = f(Y),

if and only if X and Y are local {tree-, triangular-, subgraph-} isomorphic. Then, in terms of function
class capacities, the following relation holds:

Global complete ⊂ Subgraph complete ⊂ Triangular complete ⊂ Tree complete.
Note that our equivalent description of complete transformation reveals the fact that the completeness
concept in [23] is defined from the global 3D isomorphism point of view. Therefore, we shall claim
that the above series of completeness notions belong to the structure completeness. Indeed, the
theory developed in section 3 indicates that a GNN which can express structure complete functions
may not be sufficient in expressing general tensor potential functions on a 3D graph.

On the other hand, a non-negligible proportion of 3D graph tasks may not be sensitive to the global
3D non-isomorphism. For example, some chemical properties (formulated as a function defined on
molecular graphs) are characterized by local substructures [56]. In these scenarios, we are looking
for a geometric transformation f that is global non-complete, but (tree-, triangular-, subgraph-) local
complete.
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Proof of Theorem 3.1.

Remark.

1. When compared to the construction of topological structural coefficients that take the
discrete adjacency matrix of the graph as input, as proposed in [27], the input 3D structural
coefficients we seek are of a continuous nature. For instance, as illustrated in Fig. 1, the
key features that differentiate these 3D local shapes are the dihedral angle and relative
distance, both of which are continuous functions of the 3D positions. Therefore, we
require the existence of universal approximators for continuous functions to ensure that the
parametrization of Aij has sufficient expressiveness.

2. The reason we desire the LSE module to be invariant is because it ensures the local injectivity
of message passing, following the standard argument proposed in Xu et al. [25]. This local
injectivity is crucial for proving the second part of Theorem 3.1.

3. From a mathematical perspective, the common approach to proving the universal approx-
imator property is by demonstrating that a neural network can express a complete basis
in the function space, typically leveraging the Stone-Weierstrass theorem. Two successful
examples are: a. Piecewise linear function bases achieved by wide Multi-layer perceptrons
(MLP); b. Polynomial bases. In the 3D GNN setting, equivariant polynomials that are
also permutation-invariant can be rigorously constructed using ACE [29]. Additionally,
through local scalarization and the Kolmogorov representation theorem [57], the universal
approximator property of 3D GNNs reduces to the universal approximator property of MLP,
which has been proven for a broad range of non-linear activation functions.

Proof. The first part of the theorem is proved by providing an explicit example. Consider the first
pair of 3D shapes in Figure 1, where the mutual 3D substructures Si−q and Sj−q′ both contain two
triangles: (xi, xp, xq), (xi, xm, xq) and (xj , xp′ , xq′), (xj , xm′ , xq′) respectively.

The difference between these two triangular non-isomorphic shapes can be captured by the distance
function:

d(xp, xm) = ∥xp − xm∥2 ,
and similarly, d(xp′, xm′) for the second shape. Note that this function cannot be expressed solely by
tree-level features since there is no edge connecting xp (xp′ ) and xm (xm′ ). The fact that this function
produces different output values for the two tree isometric but triangular non-isometric 3D shapes
implies that ϕ is capable of distinguishing 3D shapes beyond tree isomorphism.

Therefore, if the structural coefficients Aip (Ajp′ ) take the value of d(xp, xm) (d(xp′ , xm′)), then we
know that it can differentiate these two triangular non-isomorphic shapes. Thus, it suffices to prove
that the encoder ϕ is a universal approximator of continuous functions (which obviously contain the
distance functions) that takes the mutual 3D substructures Si−q (Sj−q′) as input.

According to the Stone-Weierstrass theorem, it is sufficient to demonstrate that ϕ can express a
complete basis within the continuous function space. In the 3D GNN setting, this basis should satisfy
two additional requirements: 1) permutation equivariance, and 2) SE(3) equivariance. An example
of such a basis is the set of E(3) equivariant polynomials that are also permutation equivariant, as
demonstrated in Drautz [29]. To obtain invariant coefficients from the combination of equivariant
basis functions, we can employ a projection layer, similar to the one used in Dym and Maron [55].

Alternatively, a simpler approach to achieve the universal approximator property is by leveraging
local scalarization. Specifically, we use an equivariant frame on the edge eiq (as described in the
previous section) to scalarize the mutual 3D structure Si−q (Sj−q′ ), which includes xp (xp′ ) and xm
(xm′). Let S̃i−q denote the scalarized 3D positions of Si−q. By quoting the information lossless
theorem and the Kolmogorov representation theorem for permutation-invariant functions from Zaheer
et al. [57], Du et al. [30], we know that any φ that is a SE(3) and permutation invariant function of
Si−q can be expressed as:

φ(Si−q) = f(
∑

x∈S̃i−q

g(x)). (15)
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where f and g are certain continuous functions that can be approximated by wide MLP, following
the universal approximator property of MLP [25].

The second part of the proof demonstrates that there exists an enhanced message passing framework
(under injectivity assumptions, which can be realized similarly to [25, 27]) that incorporates the
structural coefficients {{Aij := ϕ(Si−j)}eij∈E} to map two distinct local 3D subgraphs with
isometric local tree structures in Figure 1 to different embeddings. Since we specifically construct ϕ as
an invariant encoder, the collection {{Aij := ϕ(Si−j)}eij∈E} consists of invariant numbers, and the
construction of the message passing framework follows a similar approach to [27]. For completeness,
we provide a brief review of the injectivity condition and the message passing construction.

To establish the injectivity condition and prove the second part, we introduce the multi-set notation
{{·}}, following Xu et al. [25]. A basic equivariant GNN within our enhanced framework consists of
at least two steps: 1. Message passing, defined by (4); 2. Node-wise update:

ht+1
i = MLP(mt

i, h
t
i).

For simplicity, we denote the composition of these two steps as Ψ. Then, the additional injectivity
condition requires that Ψ satisfies the following:

Ψ({{ht
i, Ajih

t
i, , h

t
j |j ∈ Ni}}, {{Aijh

t
j |j ∈ Ni}}) (16)

is injective for each layer t and each node i. It is worth noting that this condition can be trivially
achieved by incorporating weighted residue terms, similar to formula (5) in Wijesinghe and Wang
[27]. Consequently, based on the injectivity condition, it is evident that two non-identical collections
of {{Aij}eij∈E} would yield two different embedded feature vectors.

Furthermore, in the first part, we have proven the existence of at least two distinct local 3D subgraphs
with isometric local tree structures such that the corresponding geometric weights {{Aij}eij∈E}
generated by the encoder ϕ are different. Combining both parts, we have successfully demonstrated
the theorem.

E Related proofs and discussions of Section 4

xixi

yiyi

zizi

xjxj

yjyj

zjzj 

nn
Figure 5: τij indicates the rel-
ative rotation of two frames
along the z-axis.

Torsion Angle is Secretly Hidden in FT

Recall the edge-wise (signed) torsion angle τij [58] involves the
1-hop atom pairs i and j and two 2-hop atoms k and l, then τij is
defined to be the dihedral angle between plane k − i− j and plane
l − j − i. Although exhausting all torsion angles requires O(k2)
complexity, Wang et al. [23] reduces the computation to O(k) order
by selecting a canonical 2-hop atom k and l, which is enough for
detecting the relative orientations between atoms (insufficient for
general tasks like many body interactions).

Now we show how τij naturally appears as one of the derivatives
from frame transition functions. For node i, define the equivariant
frame Fi by

(ei1, ei2, ei3) = (xi − xj , xi − xk, ei1 × ei2).
Fi is normalized through the Gram-Schmidt algorithm. For node j, Fj is defined similarly by

(ej1, ej2, ej3) = (xj − xi, xj − xl, ej1 × ej2).
Then following the transition formula (5),

Rij = (ei1, ei2, ei3) · (ej1, ej2, ej3)
T .

Note that for an orthonormal matrix, its inverse is equal to its transpose. Therefore, based on the
standard definition of a dihedral angle, we have:

τij = ei3 · ej3 ≡ Rij(3, 3).

In conclusion, τij represents only one component of the transition matrix Rij . To fully determine
Rij , we still require two additional angles, as a transition matrix is uniquely determined by three
Euler angles.

Proof of Theorem 4.1.
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Remark.

1. The crucial property we leverage to prove this theorem is that all local scalars can be
expressed through local scalarization using one local frame and a nonlinear transformation.
However, it is important to note that the transition between local frames reveals the relative
change of local geometries, which is inherently non-local.

2. Interestingly, stemming from the fact that invariant scalars can be expressed using scalariza-
tion and a universal approximator, we can deduce that by incorporating the frame transition
matrix into the union set of SB and SC, all (continuous) invariant interactions fa(B,C) can
be expressed.

Proof. This theorem is proved in two steps:

1. The first step characterizes all scalars SB (SC) determined by isolated local clusters B and C
through equivariant frames and local scalarization;

2. The second step constructs a specific invariant function fa(B,C) that cannot be expressed
by taking the union of SB and SC: {SB ∥ SC}.

Let G denote a 3D point cloud. As proven in Du et al. [30], when equipped with an equivariant
frame FG, all equivariant features of G can be transformed into scalar features through scalarization
without information loss. More precisely, follow the convention in the main text, let G̃ be the output
of performing scalarization (using any equivariant frames purely determined by G, see Section B for
examples) on the 3D point cloud G. For any invariant function f(G), there exists a corresponding
function f̃ such that:

f(G) = f̃(G̃). (17)

Since SG represents the collection of all invariant scalars produced by G, which is equivalent to the
collection of all invariant functions that depend on the 3D point cloud G, Eq. 17 implies that SG

can be generated by a finite set of invariant scalars G̃. To apply this insight to our current theorem,
we have two different 3D clouds B and C. Therefore, we need to build two local equivariant frames
FB = (eB

1 , e
B
2 , e

B
3 ) and FC = (eC

1 , e
C
2 , e

C
3 ). Importantly, the frame FB itself doesn’t depend on C, and

scalarization through FB is only performed on the local 3D point cloud B. Therefore, performing
operations like scalarizing equivariant information of C through FB would violate the assumptions of
the theorem.

We are now ready to construct an explicit counterexample fa(B,C) using FB and FC:

fa(B,C) := eB
1 · eC

1 .

Since fa is the inner product of two equivariant vectors, it automatically becomes an invariant
function. Next, we check whether fa(B,C) can be expressed as a function of fa({SB ∥ SC}). The
equivariant component of fa related to B is precisely eB

1 . Applying the above local scalarization
principle, we scalarize eB

1 through FB and obtain:

eB
1 → ẽB1 = (1, 0, 0).

Similarly, eC
1 is also transformed into a constant scalar tuple ẽC

1 = (1, 0, 0) through FC. As constant
inputs generate constant outputs, we conclude that the derived local scalars can only approximate
constant functions. However, since the local frames change as we vary the 3D structure of B and
C, it is evident that eB

1 · eC
1 is not a constant function of (B,C). Thus, we complete the proof by

contradiction.

Similarly, eC
1 is also transformed to a constant scalar tuple ẽC

1 = (1, 0, 0) through FC. As constant
inputs generate constant outputs, we conclude that the deduced local scalars can only approximate
constant functions. However, since the local frames are changing as we vary the 3D structure of B
and C, it’s obvious that eB

1 · eC
1 is not a constant function of (B,C). Therefore, we finish the proof by

contradiction.
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Further Comments.

1. It is important to note that the counterexample we constructed is not the only valid counterex-
ample. For instance, the norm of any tensors that depend on both B and C (e.g.,

∥∥eB
1 + eC

1

∥∥,∥∥eB
1 ⊗ eB

2 ⊗ eC
2 ⊗ eC

3

∥∥) can also serve as valid counterexamples.

2. Let RBC denote the frame transition function between FB and FC, defined in the same way
as in Equation 5. The proof of Theorem 4.1 implies that all types of invariant interactions
fa(B,C) can be expressed solely as functions of the union of three sets SB, SC, and RBC
: {SB ∥ SC ∥RBC}. This is because, through RBC, the 3D point cloud C can be scalarized
by the local frame FB. Specifically, let S̃B

C , S̃C
C denote the scalarized 3D point cloud of SC

with respect to FB and FC, respectively. We have the following diagram:

SC
FC−−→ S̃C

C
RBC−−→ S̃B

C .

Utilizing formula 15 on the union of the two 3D point clouds, (B,C), leads us to this
conclusion.

Realizing FT by Equivariant Messages: From the FT definition 5, each element of the 3 × 3
matrix Rij is calculated by

Rij(k, l) = eik · ejl . (18)

Now we show how to reproduce Rij(k, l) through equivariant messages. Let the equivariant message
mi be the following:

mi := (ei1, ei2, ei3) ·

 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


It’s easy to check that mi ∈ R3×9 consists of 9 equivariant vectors (multi-channels). For atom j, mj

is defined symmetrically. For each node, we also store the scalar messages, e.g.,
∥∥eik

∥∥ for 1 ≤ k ≤ 3.
Flattening the whole matrix Rij into a R1×9 array, then Rij is obtained by simple summation and
taking the vector norm:

∥mi + mj∥ =
{∥∥∥eik + ejl

∥∥∥}
1≤k,l≤3

,

where the norm is taken for each column of mi + mj , such that ∥mi + mj∥ ∈ R1×9. Then,

Rij =
1

2

[∥∥∥eik + ejl
∥∥∥2 − ∥∥eik

∥∥2 − ∥∥∥ejl
∥∥∥2] .

Our illustration also demonstrates the importance of keeping multi-channel tensor messages.

Relation with Previous Equivariant Update Methods. Following the efficiency principle es-
tablished in section 4, we don’t encode the data of the transition matrices explicitly. Instead, we
implement tensor messages to fill in the expressiveness gap. Among the tremendously different
designs of equivariant graph neural networks, Schütt et al. [35] is closely related to our equivariant
updating method. By the above argument, the inner product operation for node i (see (9) of Schütt
et al. [35])

< Uvi,Vvi >

can also be reinterpreted as a realization of the (aggregated) frame transition matrix (5).

Moreover, since the equivariant vectors Uvi and Vvi are both aggregated vector features that belong
to the same node i and the inner product operation between them is performed in the node-wise
updating phase, Schütt et al. [35] actually avoids the 2-hop O(k2) complexity of computing Rxy

for all neighborhood node pairs (x, y) (while able to express the torsion angle implicitly). For our
algorithm, we utilize the scalarization and tensorization in the node-wise updating phase. By the
universal approximation theorem 5.1, our method can approximate any inner product operations.
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F Related proofs and discussions of Section 5

Equivariant Frames and Higher Order Scalarization and Tensorization. Given an edge eij with
two atom positions (xi,xj), we define our edge-wise SE(3) equivariant frames Fij as follows:

(e1, e2, e3) = (
xi − xj

∥xi − xj∥
,

xi × xj

∥xi × xj∥
,

xi − xj

∥xi − xj∥
× xi × xj

∥xi × xj∥
). (19)

To ensure frame translation invariance, we adopt the approach followed by previous works [59, 60]
by restricting the entire 3D conformer space to a linear subspace where the center of mass (CoM)
of the system (either the entire system or the sub-cluster to which i and j belong) is set to zero.
Alternatively, constructing an E(3) frame is also possible but requires an additional atom position xk,
which can be selected using the K-Nearest Neighbor algorithm. If (xi,xj ,xk) spans the 3D space,
we obtain an E(3) equivariant frame by performing Gram-Schmidt orthogonalization. For different
constructions of E(3) frames, readers can refer to Wang and Zhang [61]. However, in this work, we
focus on SE(3) frames since molecular 3D conformers exhibit SE(3) symmetry but do not possess
reflection symmetry.

Once we have an equivariant frame, every vector is a linear combination of the three orthogonal
vectors in the frame. Moreover, the unique combination coefficients are exactly the ’scalarized’
coordinates in (8). A similar procedure also applies to higher order tensors. Indeed, the vector frame
F1 extends to a tensor frame Fr of arbitrary order r > 1:

Fr := {e11 ⊗ · · · ⊗ e1r}1≤i1,...,ir≤3. (20)

Since the orthonormal frame Fr is complete in the sense that it spans the whole tensor space of order
r, every r-th order tensor admits a unique decomposition:

T =
∑

1≤i1,...,ir≤3

T i1,...,irei1 ⊗ · · · ⊗ eir . (21)

It’s easy to prove that the collection {T i1,...,ir}1≤i1,...,ir≤3 consists of invariant scalars. We call the
process from T to {T i1,...,ir}1≤i1,...,ir≤3 scalaraization.

Tensorization is the inverse of scalarization, in the sense that it sends scalars {T i1,...,ir}1≤i1,...,ir≤3

to tensor T. Under the same frames we use during scalarization, the following diagram demonstrates
the pipeline of producing L second-order tensors out of {T i1i2

j }1≤i1,i2≤3:

{T1, . . . ,TL} =


T 11

1 , T 12
1 , T 13

1

T 21
1 , T 22

1 , T 23
1

T 31
1 , T 32

1 , T 33
1

 , . . . ,

T 11
L , T 12

L , T 13
L

T 21
L , T 22

L , T 23
L

T 31
L , T 32

L , T 33
L

︸ ︷︷ ︸
L channels

⊙

e1 ⊗ e1, e1 ⊗ e2, e1 ⊗ e3
e2 ⊗ e1, e2 ⊗ e2, e2 ⊗ e3
e3 ⊗ e1, e3 ⊗ e2, e3 ⊗ e3

 ,

(22)
where ⊙ denotes the element-wise product.

Proof of Theorem 5.1

Proof. The proof relies on the invertibility of Scalarization and Tensorization operations, as demon-
strated in Appendix A.5 of Du et al. [30]. This invertibility allows us to establish a commutative

diagram as follows:
Tl−1 Tl

T̃ l−1 T̃ l−1.

ρ

Scalarize

MLP

Tensorize

This diagram illustrates that for each mapping ρ, there exists a corresponding "scalarized" mapping ρ̃
given by:

ρ̃ := Tensorize ◦ ρ ◦ Scalarize.
By applying Tensorize, followed by ρ, and then Scalarize, we obtain an invariant representation ρ̃.
Since MLP serves as a universal approximator of invariant functions, we can always find an MLP
that expresses ρ̃. By reversing the arrows, we conclude the proof.
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Proof of Equivariance for LEFTNet LEFTNet consists of multiple layers of LSE and FTE.
LSE is realized by scalarization, and FTE is realized by scalarization and tensorization. Since the
invariance of scalarization and the equivariance of tensorization have been proved, we finish the
proof.

G Extended Related Work

Table 4: Categorization of representative geometric GNN algorithms. ∗ denotes partially satisfying
the requirement.

Method Symmetry LSE FTE Complexity
SchNet [28] E(3)-invariant ✗ ✗ O(nk)
EGNN [14] E(3)-equivariant ✗ ✓∗ O(nk)
GVP-GNN [31] E(3)-equivariant ✗ ✓ O(nk)
ClofNet [30] SE(3)-equivariant ✗ ✗ O(nk)
PaiNN [35] E(3)-equivariant ✗ ✓ O(nk)
ComENet [23] SE(3)-invariant ✓ ✓∗ O(nk)
TFN [13] SE(3)/E(3)-equivariant ✗ ✓ O(nk)
Equiformer [36] SE(3)/E(3)-equivariant ✗ ✓ O(nk)
SphereNet [15] SE(3)-invariant ✓∗ ✓∗ O(nk2)
GemNet [37] SE(3)-invariant ✓∗ ✓∗ O(nk3)

LEFTNet (Ours) SE(3)/E(3)-equivariant ✓ ✓ O(nk)

Based on the discussions in Section 3 and 4, we identify two essential components for constructing
expressive equivariant 3D Graph Neural Networks (GNNs): (1) Local 3D Substructure Encodings
(LSE), which enable the local message passing to capture diverse local 3D structures; and (2) Frame
Transition Encodings (FTE), which incorporate equivariant coordinate transformations between
different local patches into the 3D GNN.

G.1 Modular overview of 3D GNN

Based on the general notion of Local 3D Substructure Encodings (LSE) and Frame Transition
Encodings (FTE), we have provided concrete constructions to realize them. However, it is important
to note that there are also implicit methods to encode the information of LSE and FTE. In order to
provide a comprehensive overview, we review previous 3D Graph Neural Networks (GNNs) that
follow this framework and summarize the findings in Table 4. To ensure a fair comparison, we include
the computational complexity as it is often a trade-off with expressiveness. A detailed analysis of this
trade-off is provided at the end of Section G.2.

Regarding Local 3D Substructure Encodings (LSE), SphereNet [15] and GemNet [37] (implicitly)
encode local 3D substructures through a computation-intensive edge-based update. We indicate these
two architectures with a ∗ in Table 4 due to the following reasons: In the case of GemNet [37], the
message passing framework considers the 1-hop neighborhood with respect to both end points of an
edge eij , which inherently contains all the nodes of the mutual 3D subgraph Si−j . However, when
compared to SphereNet [15], which encodes all node positions under an angular coordinate system,
GemNet [37] only captures partial geometric information. On the other hand, SphereNet [15] utilizes
an edge-based update that aggregates 1-hop neighbors with respect to the source node. While this
approach considers the immediate neighbors, it may not include all the nodes inside the subgraph
Si−j (e.g., the neibors of the target node).

Regarding Frame Transition Encodings (FTE), we have demonstrated (see the proof of Theorem
4.1) that the essential information of FTE does not rely on the specific choices of local equivariant
frames. Therefore, most 3D GNNs with equivariant vector updates that can incorporate at least three
(multi-channel) independent equivariant vectors as edge features are capable of expressing local
frame transitions (FT). However, EGNN [14] is an exception as it only updates the position vector
(i.e., one channel), which is insufficient for capturing the entire FT. In other words, the power of
the update function ϕ in Equation (6) also influences the encoding of FT. Additionally, models that
encode torsion angle information partially express FTE, as illustrated in Appendix E. While there are
multiple ways to realize LSE and FTE, there is a trade-off between efficiency and expressiveness in
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terms of the number of hops considered for message passing, as indicated in the last column of Table
4.

In contrast to our invariant realization of LSE, Batatia et al. [24] constructs their framework by
building a complete (E(3) + permutation) equivariant polynomial basis using spherical harmonics
and tensor product, where the monomial variables are a combination of 3D features from different
nodes (bodies). On the other hand, we achieve the function of LSE and FTE through edgewise
scalarization Aij and equivariant message passing (see Fig. 3). While Batatia et al. [24] utilize the
atomic cluster expansion (ACE) mechanism, we provide an illustration of how to equivariantly realize
LSE based on local ACE in the proof of Theorem 3.1. Another work Wang and Zhang [61] uses an
ensemble of frames to model the local environment defined through a distance cutoff, which is suitable
for pure 3D geometry. However, our local 3D hierarchy incorporates well with the 2D topology.
Therefore, whether [61] encodes LSE depends on the radius of the local environment and whether
the ensemble of ’frames’ purely built as a combination of radical directions (see Equation (6) in [61])
spans R3. In comparison to geometric GNNs like SphereNet [15] and GemNet [37], which encode
reflection-antisymmetric torsion angles, and LeftNet, which implements SE(3) equivariant, reflection-
antisymmetric frames, the ensemble of frames in [61] is reflection symmetric and therefore cannot
differentiate local chemical isomers. Additionally, Wang and Zhang [61] defines the ’(ensembled)
frame to frame’ projection, which is somehow equivalent to our FTE, and utilizes it to detect
the global isomorphism from local observations. In contrast, our FTE is employed to bridge the
expressiveness gap of global continuous functions, such as regression tasks on graphs (see the
comments in Section E), rather than focusing on detecting global isomorphisms, as in classification
tasks on graphs. Moreover, we have demonstrated that using one SE(3) equivariant frame for each
local patch is sufficient for achieving local expressiveness, considering efficiency as well. Finally,
we provide another invariant realization of FTE, inspired by [62], which is presented at the end of
Section H.

G.2 Relationship to Geometric WL test

Recently, Joshi et al. [22] propose a geometric k-WL test (GWL) to assess the expressiveness
of geometric GNN algorithms. In essence, our tree isomorphism aligns with the 1-hop geometric
isomorphism introduced in GWL, while the fine-grained triangular isomorphism falls between the
1-hop and 2-hop geometric isomorphism described in GWL. From a model design perspective, we
achieve the realization of LSE through local scalarization, which guarantees expressiveness through
the Kolmogorov representation theorem ( Zaheer et al. [57]) and the universal approximator property
of MLP. Different from our geometry perspective, the fundamental concepts of body order and tensor
order, which stem from classical inter-atomic potential theories and exhibit equivariance, play a
crucial role in measuring expressive power in Joshi et al. [22]. In addition to the local geometric
isomorphism hierarchy, we discover the significance of FTE as the connecting bridge between local
invariant scalars and global geometric expressiveness. This realization, along with LSE on mutual 3D
substructures, sheds light on the insufficiency of the 1-hop local scalarization implemented in ClofNet
( Du et al. [30]). We further explore the connection between FTE and the neural sheaf Laplacian in
Section H.

Computational efficiency of LEFTNet In the analysis of a graph with n nodes and an average
of k edges per node, the computational efficiency of a message passing-based graph neural network
(MPNN) is typically described by the following form:

O(fn+ gn · kc), (23)

where f represents the computational cost of the node-level updating function (usually an MLP), and
g represents the computational cost of calculating the message for each edge. The power c is a crucial
factor that determines the computational cost of performing each message passing operation. For
instance, SphereNet (Liu et al., 2021) aggregates all 1-hop nodes with respect to the source node of
an edge to construct a message, resulting in a complexity of O(nk2) for message passing.

To analyze the computational complexity of LEFTNet, we can divide it into the following computa-
tional steps:

1. Building the Si−j and scalarizing with respect to edge frame Fij . The 3D subgraph
Si−j is constructed by intersecting the 1-hop neighbors Ni and Nj , which requires O(nk)
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computations. Additionally, collecting the 1-hop neighbors for each node has a complexity
of O(nk). Finally, scalarizing each Si−j with the edge-wise frame Fij (which involves
taking inner products) and extending the result to m channels has a complexity of O(mnk).
Therefore, the total complexity for this step remains at O(mnk).

2. Equivariant message passing. From the first step, we get the scalarized S̃i−j from the
3D subgraph Si−j . Then, the edge-wise message is obtained by transforming the scalarized
S̃i−j with a MLP, and the output invariant scalars is multiplied with both the invariant
and equivariant node features (let d denotes the dimension of the node feature, then the
multiplication’s complexity is O(dnk). Let l denotes the complexity of MLP (depends on
the depth and hidden dimension of MLP), then the message passing takes O((d + l)nk)
computation.

3. Node level updating. This step involves nodewise scalarization, applying an MLP, and
performing tensorization. Suppose the input and output channel numbers for equivariant
tensor features are both d, then the scalarization using the node frame (similar to step 2)
has a complexity of O(dn) computations. Similarly, tensorization, which is the inverse
operation of scalarization, also has a complexity of O(dn). Therefore, the total complexity
for this step is O((l + d)n).

In conclusion, we have analyzed the three steps required for performing one layer of LEFTNet. It is
worth noting that the efficiency of LEFTNet is comparable to other 1-hop based GNN algorithms
like SchNet [28] (c = 1 in Eq. 23). The final complexity is O(ldn + (d + m + l)nk), which is
summarized in Table 4.

H Neural sheaf interpretation

Since our invariant scalarization, utilized in the LSE module, shares similarities with the scalarization
technique on vector sheaves (see Hsu [52]), it is natural to explore a potential interpretation of
LEFTNET within the framework of neural sheaf diffusion proposed by Bodnar et al. [62]. In this
section, we aim to modify the neural sheaf diffusion architecture to preserve SE(3) equivariance by
incorporating our node and edge frames.

We begin by revisiting the concept of a neural sheaf and its associated sheaf Laplacian operator. A
cellular sheaf over a discrete graph is a mathematical object that assigns a vector space to each node
and edge in the graph and specifies a linear map between these spaces for each incident node-edge
pair:

Definition H.1. A cellular sheaf (G,F) on a graph G = (V,E) consists of:

• A vector space F(v) for each v ∈ V .

• A vector space F(e) for each e ∈ E.

• A linear map Fv⊴e : F(v)→ F(e) for each incident v ⊴ e node-edge pair.

In the case of a 3D graph neural network (GNN), the node-wise features typically consist of tensors
(as defined in 10), which naturally form vector spaces. The key aspect of defining a sheaf lies in
determining the specific assignments of the linear maps Fv⊴e for each node v and each edge e. For
non-geometric GNNs, Fv⊴e captures how the opinions (represented as vectors in F(v)) manifest in
a "discourse space" formed by F(e). In our approach, we equip each node with an equivariant frame
denoted by Fv and assign an equivariant frame to each edge denoted by Fe. By definition, Fv and Fe

capture the local geometry around the node and the edge, respectively. Thus, a natural choice for
Fv⊴e is given by:

Fv⊴e := FT
v Fe ∈ O(3).

To ensure SE(3) equivariance in the sheaf structure, we define F(v) as the set of scalarized vectors
obtained by applying scalarization using Fv. It is important to note that the linear map Fv⊴e

between vectors can be extended to a linear map between higher-order tensors through tensor product
operations (see Section F). This construction guarantees the entire structure to be SE(3)-invariant.
With a well-defined sheaf structure, we can introduce the sheaf Laplacian operator that defines a
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transformation between node features:

LF (x)v :=
∑
v,u⊴e

F⊤
v⊴e(Fv⊴exv −Fu⊴exu).

In our case, the sheaf Laplacian can be expressed as:

LF (x)v =
∑
v,u⊴e

xv − FT
v Fuxu , (24)

using the properties of orthogonal transformations. Thus, this operator quantifies the collective
"disagreement of local geometries" at each node. Neural sheaf diffusion propagates information
through nodes using the following partial differential equation (PDE):

X(0) = X, Ẋ(t) = −LFX(t). (25)

Here, X represents the node feature matrix. In accordance with the nonlinear parametrization
proposed in [62], we have the following model:

X(t+ 1) = σ
((

Ind − LF
)
(In ⊗W1)X(t)W2

)
. (26)

where any applicable nonlinear activation function σ can be utilized since our cellular sheaf and its
Laplacian are invariant. It is important to note that the key component of LF (denoted by FT

v Fu in
Wq. 24) corresponds to the frame transition (FTE) module between node frames. Hence, Equation
(26) provides an invariant realization of the FTE module based on equivariant node frames. For
equivariant outputs, tensorization can be applied after the final layer of Equation (26). To incorporate
the LSE module, we can include the LSE information as a part of invariant node features to Fv prior
to the message aggregation step in Equation (26).

I Additional experiments

Experiment Detail for Table 1 and 2. For QM9, baseline results are taken from Liao and Smidt
[36]. For MD17, baseline results are taken from the original papers (with unit conversions if needed).
All models are trained on energies and forces, and WoFE is the weight of force over energy in loss
functions. All experiments are conducted on a single NVIDIA GeForce RTX 2080 Ti 11GB GPU.
Our implementation is based on the libraries including PyTorch [63], PyG [64], and DIG [65].

Ablation Study. As discussed in Section 5, there are two main modules in LEFTNet, namely LSE
and FTE. We conduct experiments on QM9 and MD17 to show the importance of each component.
Experimental results are summarized in Table 5 and Table 6. The results show that using LSE can
outperform the model without both LSE and FTE on all tasks. Adding FTE can further improve the
performance. The results demonstrate the importance of LSE and FTE modules.

Table 5: Ablation study on QM9 dataset. The evaluation metric is MAE for each property. The best
performances are bolded and the second best are underlined. Detailed LEFTNet (LSE only) is shown
in Algorithm 2. LEFTNet (LSE + vector FTE) is our LEFTNet introduced in the main paper, and the
detailed algorithm is in Algorithm 1. LEFTNet (LSE + tensor FTE) means the message passing and
updating contains higher order tensors, built by Eq. 22.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE
Units bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

LEFTNet (w/o LSE and FTE) .053 49 33 25 .038 .026 9 8 .425 8 8 1.59
LEFTNet (LSE only) .043 49 31 23 .031 .025 8 7 .156 8 7 1.34
LEFTNet (LSE + vector FTE) .039 39 23 18 .011 .022 6 5 .094 5 5 1.19
LEFTNet (LSE + tensor FTE) .038 38 22 17 .011 .022 7 6 .096 5 6 1.20

Results on rMD17. Following Batatia et al. [24], we conduct experiments on rMD17 to compare
with recent studies. Results show that our LEFTNet can achieve comparable performance to state-
of-the-art methods such as MACE and NequIP, while outperforming other baseline methods like
GemNet and PaiNN.

Model and training hyperparameters. Model and training hyperparameters for our method on
different datasets are listed in Table 8.
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Table 6: Abalation Study on MD17 dataset. The evaluation metric is MAE for per-atom forces
prediction (kcal/mol Å). The best performances are bolded and the second best are underlined.
Detailed LEFTNet (LSE only) is shown in Algorithm 2. LEFTNet (LSE + vector FTE) is our
LEFTNet introduced in the main paper, and detailed algorithm is in Algorithm 1. LEFTNet (LSE +
tensor FTE) means the message passing and updating contains higher order tensors, built by Eq. 22.

Molecule LEFTNet (w/o LSE and FTE) LEFTNet (LSE only) LEFTNet (LSE + vector FTE) LEFTNet (LSE + tensor FTE)

Aspirin 1.083 0.451 0.300 0.210
Benzene 0.425 0.185 0.145 0.176
Ethanol 0.341 0.149 0.138 0.118
Malonaldehyde 0.594 0.276 0.209 0.159
Naphthalene 0.658 0.175 0.073 0.063
Salicylic acid 0.828 0.313 0.167 0.141
Toluene 0.625 0.166 0.084 0.070
Uracil 0.581 0.206 0.116 0.117

Table 7: Mean Absolute Error for energy(meV) per-atom forces prediction (meV Å) on rMD17
dataset. Baseline results are taken from Batatia et al. [24]. The best results are bolded.

LEFTNet MACE Allegro BOTNet NequIP GemNet (T/Q) ACE FCHL GAP ANI PaiNN

Aspirin E 2.1 2.2 2.3 2.3 2.3 - 6.1 6.2 17.7 16.6 6.9
F 6.4 6.6 7.3 8.5 8.2 9.5 17.9 20.9 44.9 40.6 16.1

Azobenzene E 0.7 1.2 1.2 0.7 0.7 - 3.6 2.8 8.5 15.9 -
F 3.3 3.0 2.6 3.3 2.9 - 10.9 10.8 24.5 35.4 -

Benzene E 0.05 0.4 0.3 0.03 0.04 - 0.04 0.35 0.75 3.3 -
F 0.3 0.3 0.2 0.3 0.3 0.5 0.5 2.6 6 10 -

Ethanol E 0.4 0.4 0.4 0.4 0.4 - 1.2 0.9 3.5 2.5 2.7
F 3.6 2.1 2.1 3.2 2.8 3.6 7.3 6.2 18.1 13.4 10

Malonaldehyde E 0.8 0.8 0.6 0.8 0.8 - 1.7 1.5 4.8 4.6 3.9
F 5.4 4.1 3.6 5.8 5.1 6.6 11.1 10.3 26.4 24.5 13.8

Naphthalene E 0.8 0.5 0.2 0.2 0.9 - 0.9 1.2 3.8 11.3 5.1
F 1.9 1.6 0.9 1.8 1.3 1.9 5.1 6.5 16.5 29.2 3.6

Paracetamol E 1.3 1.3 1.5 1.3 1.4 - 4 2.9 8.5 11.5 -
F 4.7 4.8 4.9 5.8 5.9 - 12.7 12.3 28.9 30.4 -

Salicylic acid E 0.9 0.9 0.9 0.8 0.7 - 1.8 1.8 5.6 9.2 4.9
F 4.1 3.1 2.9 4.3 4 5.3 9.3 9.5 24.7 29.7 9.1

Toluene E 0.3 0.5 0.4 0.3 0.3 - 1.1 1.7 4 7.7 4.2
F 2.2 1.5 1.8 1.9 1.6 2.2 6.5 8.8 17.8 24.3 4.4

Uracil E 0.4 0.5 0.6 0.4 0.4 - 1.1 0.6 3 5.1 4.5
F 2.8 2.1 1.8 3.2 3.1 3.8 6.6 4.2 17.6 21.4 6.1

Table 8: Model and training hyperparameters for our method on different tasks.

Hyperparameter Values/Search Space

QM9 MD17 rMD17

Number of layers 4, 5, 6 4, 6 4, 6
Hidden channels 128, 192, 256 256 256
Number of radial basis 24, 32, 96 16, 32, 64 16, 32, 64
Cutoff 5, 6, 6.5, 8 6, 8, 10 6, 8, 10
Epochs 800 1000 1000
Batch size 32 1, 4 1, 4
Learning rate 1e-4, 5e-4 5e-4 5e-4
Learning rate scheduler steplr steplr steplr
Learning rate decay factor 0.5 0.5 0.5
Learning rate decay epochs 100 200 200
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