
Supplementary Materials for “Multi-Agent
Meta-Reinforcement Learning”

A Technical Lemmas

Lemma 1. Let x, y ∈ Rd be two probability distributions lying in the d-dimensional simplex for
d ≥ 2. For α ∈ (0, 1/2), let [x]α = (1 − α)x + α

d1 denote a weighted average between x and
a uniform vector 1/d ∈ Rd of a proper dimension. Denote by KL (x∥y) the Kullback–Leibler
divergence between x and y. If yi ≥ α/d,∀i ∈ [d], then we have

KL (x∥y) ≤ KL (x̃∥y) + 4α ln
d

α
.

Proof. From the three-points identity of the Bregman divergence (Lemma 3.1 of [9]),

KL (x∥y)−KL (x̃∥y) = KL (x∥x̃) + ⟨ln x̃− ln y, x− x̃⟩ (12)

The first term in (12) can be bounded by

KL (x∥x̃) =
d∑

i=1

xi ln
xi
x̃i

=

d∑
i=1

xi ln
xi

(1− α)xi + α
d

≤
d∑

i=1

xi ln
1

1− α ≤ ln
1

1− α.

By the Hölder’s inequality, the second term in (12) is bounded as

⟨ln x̃− ln y, x− x̃⟩ ≤ ∥ln x̃− ln y∥∞ ∥x− x̃∥1 . (13)

We handle the two terms in (13) separately. First,

∥ln x̃− ln y∥∞ = sup
i∈[d]

∣∣∣∣ln x̃iyi
∣∣∣∣ ≤ sup

i∈[d]

max

{
ln
x̃i
yi
, ln

yi
x̃i

}
≤ ln

1− α+ α
d

α/d
≤ ln

d

α
,

where the second to last step uses the facts that α/d ≤ x̃i ≤ 1 and α/d ≤ yi ≤ 1,∀i ∈ [d]. The last
step is simply due to the fact that d ≥ 1. To bound the second term in (13), notice that

∥x− x̃∥1 = ∥x− (1− α)x− α1/d∥1 = α ∥x− 1/d∥1 ≤ 2α.

Putting everything together, (12) can be bounded by

KL (x∥x̃) + ⟨ln x̃− ln y, x− x̃⟩ ≤ ln
1

1− α + 2α ln
d

α
≤ α2 + α+ 2α ln

d

α
≤ 4α ln

d

α
,

where the second to last step is derived using the Taylor expansion, and the last step holds due to the
assumptions that α ∈ (0, 1/2) and d ≥ 2. This completes the proof of the lemma.

Lemma 2. (Proposition B.1 of [35]) Let R : Θ→ R be 1-strongly convex with respect to ∥·∥ and
consider any θ1, . . . , θK ∈ Θ. Then, when run on the loss sequence α1DR(θ1,)̇, . . . , αKDR(θK ,)̇
for any positive scalars α1, . . . , αK ∈ R+, the follow-the-leader (FTL) algorithm obtains regret

regK ≤ 2CD

K∑
k=1

α2
kGk

αk + 2
∑k−1

k′=1 αk′
,

for C such that ∥θ∥ ≤ C ∥θ∥2 ,∀θ ∈ Θ, D = maxθ,θ′∈Θ ∥θ − θ′∥2 the L2 diameter of Θ, and Gk

the Lipschitz constant of DR(θk, ·) over Θ with respect to ∥·∥.
Lemma 3. (Lemma 2 of [18]) For any i ∈ {1, . . . , n}, let fi : Rd → Wi be a continuous function
with Wi ∈ {R,Rd,R1×d,Rd×d} such that g(θ) = fn(θ) . . . f1(θ) is well-defined. Suppose fi is Bi-
bounded and Li-Lipschitz, i.e., ∥fi(θ)∥ ≤ Bi and ∥fi(θ)− fi(θ′)∥ ≤ Li ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd

for some non-negative constants Bi and Li. Then, g(θ) is Lipschitz with constant Lg =∑n
i=1(Li

∏
j ̸=iBj), i.e., ∥g(θ)− g(θ′)∥ ≤ Lg ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd.

16

Lemma 4. (Lemma 3 of [18]) For any i ∈ {1, . . . , n}, let fi : Rd → Rm be a continuously
differentiable function that is Bf -bounded and Lf -Lipschitz continuous. Let p(·; θ) be a distribution
on {fi}ni=1 where the probability of drawing fi is p(i; θ). Suppose there exists a non-negative constant
Bp such that ∥∇θ log p(i; θ)∥ ≤ Bp for any i and θ. Then, the function g(θ) = Ep(i;θ)[f(i; θ)] is
Lipschitz continuous with constant BfBp + Lf .

Lemma 5. Consider a block diagonal matrix C that is a square matrix such that the main-diagonal
consists of N block matrices A1 ∈ Rd1×d1 , . . . , AN ∈ RdN×dN and all off-diagonal blocks are zero
matrices. Then, it holds that ∥C∥ ≤ max1≤i≤N ∥Ai∥.

Proof. We prove the lemma via induction on N . For the induction basis N = 2, we need to show

∥C∥ =
∥∥∥∥[A1 0

0 A2

]∥∥∥∥ ≤ max{∥A1∥ , ∥A2∥}.

To see this, let x ∈ Rd1 and y ∈ Rd2 be such that
∥∥∥∥[xy

]∥∥∥∥2 = ∥x∥2 + ∥y∥2 = 1. Then, by the

definition of the matrix norm,

∥∥∥∥C [xy
]∥∥∥∥2 = ∥A1x∥2 + ∥A2y∥2 ≤ ∥A1∥2 ∥x∥2 + ∥A2∥2 ∥y∥2 ≤ max{∥A1∥2 , ∥A2∥2},

where the last step uses the fact that ∥x∥2+∥y∥2 = 1. This completes the proof of the induction basis
N = 2. Now, suppose that the lemma holds forN = k−1. We next show that it also holds forN = k.

Let C =

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ak

 . Note that we can rewrite the matrix as C =

[
Ck−1 0
0 Ak

]
, where

Ck−1 =

A1 . . . 0
...

. . .
...

0 . . . Ak−1

 is a block diagonal matrix consisting of k − 1 matrices. Invoking the

induction hypothesis for N = k − 1, we know that ∥Ck−1∥ ≤ max1≤i≤k−1 ∥Ai∥. Finally, using the
induction hypothesis forN = 2, we conclude that ∥C∥ ≤ max{∥Ck−1∥ , ∥Ak∥} ≤ max1≤i≤k ∥Ai∥.
This completes the induction proof.

Lemma 6. Consider a block matrix A(θ) with N ×N blocks parameterized by θ ∈ Rd:

A(θ) =

A1,1(θ) . . . A1,N (θ)
...

. . .
...

AN,1(θ) . . . AN,N (θ)

 ,
where Ai,j(θ) ∈ Rdi×dj ,∀1 ≤ i, j ≤ N and d =

∑N
i=1 di. Suppose that the norm of each matrix

block is Lipschitz continuous with respect to θ, i.e., ∥Ai,j(θ)−Ai,j(θ
′)∥ ≤ Li,j ∥θ − θ′∥ ,∀θ, θ′ ∈

Rd, 1 ≤ i, j ≤ N . Let L = max{Li,j : 1 ≤ i, j ≤ N}. Then, the norm of A(θ) is also Lipschitz,
i.e.,

∥A(θ)−A(θ′)∥ ≤ NL ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd.

17

Proof. Let x ∈ Rd be a vector such that x =
[
x⊤1 x⊤2 . . . x⊤N

]⊤
and ∥x∥2 =

∑N
i=1 ∥xi∥

2
= 1,

where xi ∈ Rdi ,∀1 ≤ i ≤ N . We have

∥(A(θ)−A(θ′))x∥2 =

∥∥∥∥∥∥∥∥

∑N

j=1 (A1,j(θ)−A1,j(θ
′))xj

...∑N
j=1 (AN,j(θ)−AN,j(θ

′))xj

∥∥∥∥∥∥∥∥
2

=

N∑
i=1

∥∥∥ N∑
j=1

(Ai,j(θ)−Ai,j(θ
′))xj

∥∥∥2
≤N

N∑
i=1

N∑
j=1

∥(Ai,j(θ)−Ai,j(θ
′))xj∥2

≤N
N∑
i=1

N∑
j=1

∥Ai,j(θ)−Ai,j(θ
′)∥2 ∥xj∥2 ,

where the first inequality follows from the Cauchy-Schwarz inequality, and the last step is due
to the definition of the matrix norm. Applying the Lipschitz continuity of each matrix block
∥Ai,j(θ)−Ai,j(θ

′)∥ ≤ Li,j ∥θ − θ′∥ yields

∥(A(θ)−A(θ′))x∥2 ≤N
N∑
i=1

N∑
j=1

∥Ai,j(θ)−Ai,j(θ
′)∥2 ∥xj∥2

≤N
N∑
i=1

N∑
j=1

L2
i,j ∥θ − θ′∥

2 ∥xj∥2

≤N2L2 ∥θ − θ′∥2 ,
where the last step uses the facts that Li,j ≤ L,∀1 ≤ i, j ≤ N and

∑N
j=1 ∥xj∥

2
= 1. Since the

above condition holds for any vector x with ∥x∥ = 1, we know from the definition of the matrix
norm that

∥A(θ)−A(θ′)∥ ≤ NL ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd.

This concludes the proof for the Lipschitz continuity of A(θ).

B Proofs for Section 3

B.1 Proof of Theorem 1

We introduce one more notation before presenting the proof. For each iteration t ∈ [T] and step
h ∈ [H], define the Q-function estimation error as

δth := ∥Qτ(t)
h −Q⋆

h∥∞.
Note that since Algorithm 1 performs stage-based value updates, the value estimation error δth does
not change within a stage τ(t); that is, δth takes the same value for all t ∈ [tstart

τ , tend
τ]. For this reason,

we will sometimes abuse the notation and simply use δτh to denote the estimation error for a stage
τ . In the rest of this paper, we will write δτh and δth interchangeably since one of them will be more
convenient than the other in certain contexts.

Further, recall that for any (τ, h, s) ∈ [τ̄] × [H] × S, the per-state regrets for the two players are
defined as

regτh,1(s) := max
µτ,†
h ∈∆(A)

1

Lτ

tend
τ∑

j=tstart
τ

〈
µτ,†
h − µ

j
h, Q

τ
hν

j
h

〉
(s),

regτh,2(s) := max
ντ,†
h ∈∆(B)

1

Lτ

tend
τ∑

j=tstart
τ

〈
νjh − ν

τ,†
h , (Qτ

h)
⊤µj

h

〉
(s). (14)

18

Note that the best response policies µτ,†
h (·|s) and ντ,†h (·|s) should be state-dependent, but we will

oftentimes omit the dependence on s for notational convenience. This leads us to the initialization-
dependent convergence rate of Algorithm 1, which we re-state and prove as follows.

Theorem 1. If we run Algorithm 1 on a two-player zero-sum Markov game for T iterations with a
learning rate η ≤ 1/(8H2), the output policy pair (µ̄, ν̄) satisfies:

NE-gap(µ̄, ν̄) ≤ 192H3

T

H∑
h=1

τ̄∑
τ=1

max
s

(
DR(µ

τ,†
h (·|s), µ̃τ

h(·|s)) +DR(ν
τ,†
h (·|s), ν̃τh(·|s))

)
.

In addition, if we initialize the players’ policies to be uniform policies, i.e., µ̃τ
h(·|s) = 1/A and

ν̃τh(·|s) = 1/B, ∀s ∈ S, τ ∈ [τ̄], h ∈ [H], we further have

NE-gap(µ̄, ν̄) ≤ 768H5 log T log(AB)

T
.

Proof. The proof of the theorem follows from a series of lemmas, which we state and prove in the
next few subsections. In particular, we first show in Lemma 7 that upper bounding the NE-gap breaks
down to controlling the per-state regrets regτh,1(s) + regτh,2(s) and the value estimation errors δτh, in
a similar fashion as in the analysis of [72]. For this purpose, Lemma 8 provides an upper bound on
the per-state regrets, while Lemma 9 and Lemma 10 together bound the value estimation error via a
recursive argument. The rest of the proof follows by putting all the aforementioned results together.

Specifically, for η ≤ 1/(8H2), by plugging in the results of Lemma 8 and Lemma 9 to Lemma 7, we
obtain that

NE-gap(µ̄, ν̄) ≤ 2

T

H∑
h=1

τ̄∑
τ=1

Lτ max
s∈S

(
regτh,1(s) + regτh,2(s)

)
+

2

T

H∑
h=1

τ̄∑
τ=1

Lτδ
τ
h

≤16H2

T

H∑
h=1

τ̄∑
τ=1

max
s∈S

(
DR(µ

τ,†
h , µ̃τ

h(·|s)) +DR(ν
τ,†
h , ν̃τh(·|s))

)
+

192H2

T

H∑
h=1

τ̄∑
τ=1

H∑
h′=h+1

max
s∈S

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h′+h

h′ (·|s)) +DR(ν
τ−h′+h,†
h′ , ν̃τ−h′+h

h′ (·|s))
)

≤192H2

T

H∑
h=1

τ̄∑
τ=1

H∑
h′=h

max
s∈S

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h′+h

h′ (·|s)) +DR(ν
τ−h′+h,†
h′ , ν̃τ−h′+h

h′ (·|s))
)

≤192H3

T

H∑
h=1

τ̄∑
τ=1

max
s

(
DR(µ

τ,†
h , µ̃τ

h(·|s)) +DR(ν
τ,†
h , ν̃τh(·|s))

)
, (15)

where the last step is by switching the order of counting. This proves the first claim in the Theorem.

We now proceed to establish the second statement. Recall that we chose the negative entropy as
the regularizer R. In this case, the Bregman divergence DR(·, ·) reduces to the Kullback–Leibler
divergence. Since µτ,†

h lies in the simplex, when we initialize µ̃τ
h(·|s) = 1/A to be a uniform

distribution, we naturally have DR(µ
τ,†
h , µ̃τ

h(·|s)) ≤ logA,∀s ∈ S, h ∈ [H]. A similar result holds
for DR(ν

τ,†
h , ν̃τh(·|s)). We can hence obtain that

max
s

(
DR(µ

τ,†
h , µ̃τ

h(·|s)) +DR(ν
τ,†
h , ν̃τh(·|s))

)
≤ log(AB). (16)

To prove the statement, it remains to upper bound the total number of stages τ̄ . Recall that we have
defined the lengths of the stages to increase exponentially with Lτ+1 = ⌊(1 + 1/H)Lτ⌋. Since the
τ̄ stages sum up to T iterations in total, by taking the sum of a geometric series, it suffices to find
a value of τ̄ such that (1 + 1/H)τ̄ ≥ T/H . Using the Taylor series expansion, one can show that
(1 + 1

H)H ≥ e− e
2H . Hence, it reduces to finding a minimum τ̄ such that(

e− e

2H

)τ̄/H
≥ T

H
. (17)

19

One can easily see that any τ̄ ≥ H log T
log(e/2) satisfies the condition. Together with (15) and (16), we

obtain that

NE-gap(µ̄, ν̄) ≤ 768H5 log T

T
log(AB).

This completes the proof of the theorem.

B.2 Supporting Lemmas for Section 3

Before presenting the supporting lemmas of the section, we remark that we will reload the notations
µt
h and νth with some slight abuse of notations. Specifically, when t is the last iteration of a stage, µt

h
can be used to denote not only the policy at iteration t, but also the initial policy of the next stage (see
Line 10 of Algorithm 1). In the following proofs, it should be clear from the context which specific
policy µt

h refers to. A similar rule applies to νth.
Lemma 7. Let (µ̄, ν̄) be the output policies of Algorithm 1. Then,

NE-gap(µ̄, ν̄) ≤ 2

T

H∑
h=1

τ̄∑
τ=1

Lτ max
s∈S

(
regτh,1(s) + regτh,2(s)

)
+

2

T

H∑
h=1

τ̄∑
τ=1

Lτδ
τ
h.

Proof. From Lemma C.1 in [77], we know that
NE-gap(µ̄, ν̄)

=V †,ν̄
1 (s1)− V ⋆

1 (s1) + V ⋆
1 (s1)− V µ̄,†

1 (s1)

≤2
H∑

h=1

max
s

{
max
µ†
h,ν

†
h

[
⟨µ†

h, Q
⋆
hν̄h⟩ − ⟨ν†h, (Q⋆

h)
⊤µ̄h⟩

]
(s)

}

=2

H∑
h=1

max
s

{
max
µ†
h,ν

†
h

1

T

T∑
t=1

[
⟨µ†

h, Q
⋆
hν

t
h⟩ − ⟨ν†h, (Q⋆

h)
⊤µt

h⟩
]
(s)

}

≤2
H∑

h=1

max
s

{
max
µ†
h,ν

†
h

1

T

T∑
t=1

[
⟨µ†

h, Q
τ(t)
h νth⟩ − ⟨ν†h, (Q

τ(t)
h)⊤µt

h⟩
]
(s)

}
+

2

T

H∑
h=1

T∑
t=1

δth, (18)

where the last step is by adding and subtracting the estimated valuesQτ(t)
h , and invoking the definition

that δth =
∥∥∥Qτ(t)

h −Q⋆
h

∥∥∥
∞

. To further bound the first term in (18), notice that

max
s

{
max
µ†
h,ν

†
h

1

T

T∑
t=1

[
⟨µ†

h, Q
τ(t)
h νth⟩ − ⟨ν†h, (Q

τ(t)
h)⊤µt

h⟩
]
(s)

}

≤ 1

T

τ̄∑
τ=1

max
s

 max
µτ,†
h ,ντ,†

h

tend
τ∑

j=tstart
τ

[
⟨µτ,†

h , Qτ
hν

j
h⟩ − ⟨ν

τ,†
h , (Qτ

h)
⊤µj

h⟩
]
(s)

≤ 1

T

τ̄∑
τ=1

Lτ max
s

(
regτh,1(s) + regτh,2(s)

)
. (19)

The first step holds because the LHS uses a fixed pair of best responses (µ†
h, ν

†
h) for the entire T

iterations, while the RHS uses a separate best response pair (µτ,†
h , ντ,†h) for each individual stage τ

and then puts them together. The RHS clearly upper bounds the LHS as the RHS maximizes over
each stage separately. The last step in (19) holds due to the definitions of regτh,1(s) and regτh,2(s) that

regτh,1(s) + regτh,2(s) = max
µτ,†
h ,ντ,†

h

1

Lτ

tend
τ∑

j=tstart
τ

[
⟨µτ,†

h , Qτ
hν

j
h⟩ − ⟨ν

τ,†
h , (Qτ

h)
⊤µj

h⟩
]
(s).

To control the second term in (18), we use the fact that with stage-based value updates, the value
estimation error δth does not change within a stage. Therefore,

2

T

H∑
h=1

T∑
t=1

δth =
2

T

H∑
h=1

τ̄∑
τ=1

tend
τ∑

j=tstart
τ

δjh =
2

T

H∑
h=1

τ̄∑
τ=1

Lτδ
τ
h. (20)

20

Finally, substituting (19) and (20) back to (18) completes the proof.

Lemma 8. For every stage τ ∈ N+, every step h ∈ [H] and every state s ∈ S , the per-state average
regret is bounded by:

regτh,1(s) ≤
1

ηLτ
DR(µ

τ,†
h , µ̃τ

h(·|s)) +
2ηH2

Lτ

tend
τ∑

j=tstart
τ

∥∥∥νjh(· | s)− νj−1
h (· | s)

∥∥∥2
1

− 1

8ηLτ

tend
τ∑

j=tstart
τ

∥∥∥µj
h(· | s)− µ

j−1
h (· | s)

∥∥∥2
1
, (21)

regτh,2(s) ≤
1

ηLτ
DR(ν

τ,†
h , ν̃τh(·|s)) +

2ηH2

Lτ

tend
τ∑

j=tstart
τ

∥∥∥µj
h(· | s)− µ

j−1
h (· | s)

∥∥∥2
1

− 1

8ηLτ

tend
τ∑

j=tstart
τ

∥∥∥νjh(· | s)− νj−1
h (· | s)

∥∥∥2
1
. (22)

In particular, for η ≤ 1/(8H2), we further have

regτh,1(s) + regτh,2(s) ≤
1

ηLτ

(
DR(µ

τ,†
h , µ̃τ

h(·|s)) +DR(ν
τ,†
h , ν̃τh(·|s))

)
−

tend
τ∑

j=tstart
τ

4ηH3

Lτ

(
∥νjh(·|s)− ν

j−1
h (·|s)∥21 + ∥µj

h(·|s)− µ
j−1
h (·|s)∥21

)
.

(23)

Proof. We prove the regret bound for the max-player, i.e., regτh,1(s). The bound for the min-player
holds analogously. Notice that the policy update steps in Algorithm 1 are exactly the same as the
optimistic online mirror descent algorithm [55, 62], with the loss vector gt = [Qτ

hν
t
h](s, ·) and the

recency bias M t = [Qτ
hν

t−1
h](s, ·). Since our stage-based value updates assign equal weights to each

iteration, we end up with a classic no-(average-)regret learning problem instead of a no-(weighed-)
regret learning problem as in [72, 77]. This allows us to directly apply the standard optimistic OMD
results (e.g., Lemma 1 in [55] and Proposition 5 in [62]) to obtain

regτh,1(s) = max
µτ,†
h ∈∆(A)

1

Lτ

tend
τ∑

j=tstart
τ

〈
µτ,†
h − µ

j
h, Q

τ
hν

j
h

〉
(s)

≤ 1

ηLτ
DR(µ

τ,†
h , µ̃τ

h(·|s)) +
η

Lτ

tend
τ∑

j=tstart
τ

∥∥∥[Qτ
hν

j
h −Qτ

hν
j−1
h](s, ·)

∥∥∥2
∞

(24)

− 1

8ηLτ

tend
τ∑

j=tstart
τ

∥∥∥µj
h(· | s)− µ

j−1
h (· | s)

∥∥∥2
1
. (25)

To further upper bound the term in (24), notice that∥∥∥[Qτ
hν

j
h −Qτ

hν
j−1
h

]
(s, ·)

∥∥∥2
∞
≤ 2H2

∥∥∥νjh(· | s)− νj−1
h (· | s)

∥∥∥2
1
,

where we used the Hölder’s inequality and the fact that ∥Qτ
h(s, ·)∥∞ ≤ H . Substituting the above

result back to (25) yields

regτh,1(s) ≤
1

ηLτ
DR(µ

τ,†
h , µ̃τ

h(·|s)) +
η

Lτ

tend
τ∑

j=tstart
τ

2H2
∥∥∥νjh(· | s)− νj−1

h (· | s)
∥∥∥2
1

− 1

8ηLτ

tend
τ∑

j=tstart
τ

∥∥∥µj
h(· | s)− µ

j−1
h (· | s)

∥∥∥2
1
.

21

This completes the proof of (21). The regret bound in (22) can be shown via symmetry.

Combining (21) and (22) leads to

regτh,1(s) + regτh,2(s)

≤ 1

ηLτ

(
DR(µ

τ,†
h , µ̃τ

h(·|s)) +DR(ν
τ,†
h , ν̃τh(·|s))

)
+

tend
τ∑

j=tstart
τ

(
2H2η

Lτ
− 1

8ηLτ

)(
∥νjh(·|s)− ν

j−1
h (·|s)∥21 + ∥µj

h(·|s)− µ
j−1
h (·|s)∥21

)
.

When η ≤ 1/(8H2), we further have

regτh,1(s) + regτh,2(s) ≤
1

ηLτ

(
DR(µ

τ,†
h , µ̃τ

h(·|s)) +DR(ν
τ,†
h , ν̃τh(·|s))

)
−

tend
τ∑

j=tstart
τ

4ηH3

Lτ

(
∥νjh(·|s)− ν

j−1
h (·|s)∥21 + ∥µj

h(·|s)− µ
j−1
h (·|s)∥21

)
.

This completes the proof of the lemma.

Lemma 9. With η ≤ 1/(8H2), for any iteration t ∈ [T] and any step h ∈ [H], we have that

δth ≤
12

ηLτ(t)

H∑
h′=h+1

max
s

(
DR(µ

τ(t)−h′+h,†
h′ , µ̃

τ(t)−h′+h
h′ (·|s)) +DR(ν

τ(t)−h′+h,†
h′ , ν̃

τ(t)−h′+h
h′ (·|s))

)
.

Proof. In the following, when we consider a fixed iteration t ∈ [T], we drop the notational dependence
on t and simply use τ (instead of τ(t)) to denote the stage that iteration t belongs to. For any
h ∈ [H − 1], we can use Lemma 10 (similar to Lemma C.2 of [77]) to establish the following
recursion for the value estimation error:

δth ≤ δτ−1
h+1 + regτ−1

h+1, (26)

where recall that regτh = maxs∈S{regτh,1(s), regτh,2(s)}. Using Lemma 8, we can upper bound the
individual regrets regτh,1(s) and regτh,2(s) by

regτh,1(s) ≤
1

ηLτ
DR(µ

τ,†
h , µ̃τ

h(·|s)) +
2ηH2

Lτ

tend
τ∑

j=tstart
τ

∥∥∥νjh(· | s)− νj−1
h (· | s)

∥∥∥2
1
, (27)

regτh,2(s) ≤
1

ηLτ
DR(ν

τ,†
h , ν̃τh(·|s)) +

2ηH2

Lτ

tend
τ∑

j=tstart
τ

∥∥∥µj
h(· | s)− µ

j−1
h (· | s)

∥∥∥2
1
. (28)

where we have dropped the negative terms in (21) and (22). Following a similar approximate non-
negativity argument as in Lemma 5 of [72] (reproduced in Lemma 11 for our stage-based approach),
we obtain that

regτh,1(s) + regτh,2(s) ≥ −2δτh.
Together with (23) in Lemma 8, we obtain that

2ηH2

Lτ

tend
τ∑

j=tstart
τ

(
∥νjh(·|s)− ν

j−1
h (·|s)∥21 + ∥µj

h(·|s)− µ
j−1
h (·|s)∥21

)
≤δ

τ
h

H
+

1

2HηLτ

(
DR(µ

τ,†
h , µ̃τ

h(·|s)) +DR(ν
τ,†
h , ν̃τh(·|s))

)
Since the above inequality holds for any state s ∈ S, substituting it back to (27) and (28) yields

regτh ≤ max
s

3

2ηLτ

(
DR(µ

τ,†
h , µ̃τ

h(·|s)) +DR(ν
τ,†
h , ν̃τh(·|s))

)
+
δτh
H
. (29)

22

We can further substitute the regret bound above back to the recursion 26 to get that

δτh ≤
3

2ηLτ−1
max

s

(
DR(µ

τ−1,†
h+1 , µ̃τ−1

h+1(·|s)) +DR(ν
τ−1,†
h+1 , ν̃τ−1

h+1(·|s))
)
+ (1 +

1

H
)δτ−1

h+1, (30)

where we used the fact that the value estimation error δth does not change within a stage τ since
we perform stage-based value updates. Using a backward inductive argument (starting from the
induction basis that δτH = 0,∀τ), the above recursion in (30) leads us to the following result:

δτh ≤
H∑

h′=h+1

3

2ηLτ−h′+h

(
1 +

1

H

)h′−h−1

max
s

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h′+h

h′ (·|s)) +DR(ν
τ−h′+h,†
h′ , ν̃τ−h′+h

h′ (·|s))
)

≤ 3

2ηLτ

H∑
h′=h+1

(
1 +

1

H

)2(h′−h)−1

max
s

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h′+h

h′ (·|s)) +DR(ν
τ−h′+h,†
h′ , ν̃τ−h′+h

h′ (·|s))
)

≤ 3

2ηLτ

H∑
h′=h+1

(
1 +

1

H

)2H

max
s

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h′+h

h′ (·|s)) +DR(ν
τ−h′+h,†
h′ , ν̃τ−h′+h

h′ (·|s))
)

≤ 12

ηLτ

H∑
h′=h+1

max
s

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h′+h

h′ (·|s)) +DR(ν
τ−h′+h,†
h′ , ν̃τ−h′+h

h′ (·|s))
)
, (31)

where the second step uses our choice of the stage lengths that Lτ+1 = ⌊(1 + 1/H)Lτ⌋, which
further implies that

1

Lτ−h′+h
≤ 1

Lτ

(
1 +

1

H

)h′−h

.

The last step in (31) is due to the fact that (1 + 1/H)H ≤ e ≈ 2.71828. This completes the proof of
the lemma.

Lemma 10. (Value estimation error recursion) For any iteration t ∈ [T] and any step h ∈ [H], we
have the following recursion for the value estimation error δth:

δth ≤ δτ(t)−1
h+1 + reg

τ(t)−1
h+1 .

Proof. The proof essentially follows a similar procedure as that of Lemma C.2 in [77]. Let τ = τ(t).
For any (h, s, a, b) ∈ [H]× S ×A× B, we know from the definition of Q⋆

h that

Q⋆
h(s, a, b) =rh(s, a, b) + max

µh+1∈∆(A)
min

νh+1∈∆(B)
Ph

[
µ⊤
h+1Q

⋆
h+1νh+1

]
(s, a, b)

≤rh(s, a, b) + max
µh+1

Ph

µ⊤
h+1Q

⋆
h+1

 1

Lτ−1

tend
τ−1∑

j=tstart
τ−1

νjh+1

 (s, a, b)

≤rh(s, a, b) + max
µh+1∈

1

Lτ−1

tend
τ−1∑

j=tstart
τ−1

Ph

[
µ⊤
h+1Q

⋆
h+1ν

j
h+1

]
(s, a, b)

≤rh(s, a, b) + max
µh+1∈

1

Lτ−1

tend
τ−1∑

j=tstart
τ−1

(
Ph

[
µ⊤
h+1Q

τ−1
h+1ν

j
h+1

]
(s, a, b) +

∥∥Q⋆
h+1 −Qτ−1

h+1

∥∥
∞

)
,

where the second step holds because 1
Lτ−1

∑tend
τ−1

j=tstart
τ−1

νjh+1(·|s) ∈ ∆(B). Using the definitions of

regτ−1
h+1 and δτ−1

h+1 , the above inequality further leads to

Q⋆
h(s, a, b) ≤rh(s, a, b) +

1

Lτ−1

tend
τ−1∑

j=tstart
τ−1

Ph

[
(µj

h+1)
⊤Qτ−1

h+1ν
j
h+1

]
(s, a, b) + δτ−1

h+1 + regτ−1
h+1

≤Qτ
h(s, a, b) + δτ−1

h+1 + regτ−1
h+1

23

where the last step is due to the value update rule in Algorithm 1. This implies that

Q⋆
h(s, a, b)−Qτ

h(s, a, b) ≤ δτ−1
h+1 + regτ−1

h+1 .

Using a similar argument, we can show a symmetric result for the min-player:

Qτ
h(s, a, b)−Q⋆

h(s, a, b) ≤ δτ−1
h+1 + regτ−1

h+1 .

Combining both directions yields the desired result.

Lemma 11. (Approximate non-negativity) For any τ ∈ [τ̄] and h ∈ [H], we have that

regτh,1(s) + regτh,2(s) ≥ −2δτh.

Proof. This lemma can be considered as a stage-based variant of Lemma 5 in [72]. From the
definitions of regτh,1(s) and regτh,2(s), we have that

regτh,1(s) + regτh,2(s)

= max
µτ,†
h ,ντ,†

h

1

Lτ

tend
τ∑

j=tstart
τ

(〈
µτ,†
h , Qτ

hν
j
h

〉
−
〈
ντ,†h , (Qτ

h)
⊤µj

h

〉)
(s)

= max
µτ,†
h ,ντ,†

h

1

Lτ

[tend
τ∑

j=tstart
τ

(〈
µτ,†
h , Q⋆

hν
j
h

〉
−
〈
ντ,†h , (Q⋆

h)
⊤µj

h

〉)
(s)

+

tend
τ∑

j=tstart
τ

(〈
µτ,†
h , (Qτ

h −Q⋆
h)ν

j
h

〉
−
〈
ντ,†h , (Qτ

h −Q⋆
h)

⊤µj
h

〉)
(s)

]

≥ max
µτ,†
h ,ντ,†

h

1

Lτ

 tend
τ∑

j=tstart
τ

(〈
µτ,†
h , Q⋆

hν
j
h

〉
−
〈
ντ,†h , (Q⋆

h)
⊤µj

h

〉)
(s)

− 2δτh, (32)

where the second step is by adding and subtracting the same term, and the last step uses the definition
that δτh = ∥Qτ

h −Q⋆
h∥∞. Since both 1

Lτ

∑tend
τ

j=tstart
τ
µj
h(·|s) and 1

Lτ

∑tend
τ

j=tstart
τ
νjh(·|s) are valid probability

distributions over the action spaces, the first term in (32) is always non-negative:

max
µτ,†
h ,ντ,†

h

1

Lτ

 tend
τ∑

j=tstart
τ

(〈
µτ,†
h , Q⋆

hν
j
h

〉
−
〈
ντ,†h , (Q⋆

h)
⊤µj

h

〉)
(s)

= max

µτ,†
h ,ντ,†

h

〈µτ,†
h , Q⋆

h

(
1

Lτ

tend
τ∑

j=tstart
τ

νjh

)〉
(s)−

〈
ντ,†h , (Q⋆

h)
⊤
(

1

Lτ

tend
τ∑

j=tstart
τ

µj
h

)〉
(s)

≥
〈(

1

Lτ

tend
τ∑

j=tstart
τ

µj
h

)
, Q⋆

h

(
1

Lτ

tend
τ∑

j=tstart
τ

νjh

)〉
(s)−

〈(
1

Lτ

tend
τ∑

j=tstart
τ

νjh

)
, (Q⋆

h)
⊤
(

1

Lτ

tend
τ∑

j=tstart
τ

µj
h

)〉
(s)

=0.

Plugging the above inequality back into (32) completes the proof.

B.3 Proof of Theorem 2

Proof. First, recall the definitions of (µ̃k, ν̃k), (µ̄k, ν̄k) and (µk,†, νk,†). Since we use a negative
entropy regularizer R, the Bregman divergence DR(·, ·) reduces to the Kullback–Leibler divergence.
Using these notations, our convergence results of learning in an individual zero-sum game Gk

(Theorem 1) can be written more succinctly as

NE-gap(µ̄k, ν̄k) ≤ 192H3

T

(
KL
(
µk,†∥µ̃k

)
+KL

(
νk,†∥ν̃k

))
,

24

where for ease of notations, we write

KL
(
µk,†∥µ̃k

)
:=

H∑
h=1

τ̄∑
τ=1

max
s

KL
(
µk,τ,†
h (·|s)∥µ̃k

h(·|s)
)
.

Here, µk,τ,†
h (·|s) represents the value of µτ,†

h (·|s) in game Gk. The notation DR(ν
k,†, ν̃k) can be

decomposed in a similar manner. By running Algorithm 1 on a sequence of K games, we have that

1

K

K∑
k=1

NE-gap(µ̄k, ν̄k) ≤ 192H3

KT

K∑
k=1

(
KL
(
µk,†∥µ̃k

)
+KL

(
νk,†∥ν̃k

))
. (33)

In the following, we will focus on the term for the maximizing player in (33). The results for the
minimizing player’s term can be obtained via symmetry.

Recall the notation that [x]α = (1− α)x+ α
d1 for x ∈ Rd. By applying this notation entry-wise to

each probability distribution in µk,† and invoking Lemma 1, we obtain that

1

K

K∑
k=1

KL
(
µk,†∥µ̃k

)
≤ 1

K

K∑
k=1

KL
(
[µk,†]α∥µ̃k

)
+ 4Hτ̄α ln

A

α
. (34)

Notice that the conditions of Lemma 1 are satisfied here because we select our initial policies to be
µ̃k = 1

k−1

∑k−1
k′=1[µ

k′,†]α, which assigns a probability of at least α1/A to each action. Adding and
subtracting the same term leads to
K∑

k=1

KL
(
[µk,†]α∥µ̃k

)
=min

µ

K∑
k=1

KL
(
[µk,†]α∥µ

)
+min

µ

K∑
k=1

(
KL
(
[µk,†]α∥µ̃k

)
−KL

(
[µk,†]α∥µ

))
≤min

µ

K∑
k=1

KL
(
[µk,†]α∥µ

)
+

8A(1 + lnK)

α
, (35)

where the minimum µ is taken over all policies of the form of µ : [τ̄]× [H]× S → ∆(A). We now
turn to establish the second step in (35), which reduces to bounding the following regret where the
loss functions are given by the Bregman divergences:

reg = min
µ

K∑
k=1

(
KL
(
[µk,†]α∥µ̃k

)
−KL

(
[µk,†]α∥µ

))
.

It is known that the unique minimum of
∑k

k′=1 KL([µk′,†]α∥·) is attained at 1
k

∑k
k′=1[µ

k′,†]α (see
Proposition 1 of [5] for a proof of this claim). Therefore, by letting µ̃k = 1

k−1

∑k−1
k′=1[µ

k′,†]α, we
are essentially running the follow-the-leader (FTL) algorithm (separately for each entry (τ, h, s) ∈
[τ̄]× [H]× S) on the sequence of losses defined by

∑K
k=1 KL([µk,†]α∥·). We can then invoke the

logarithmic regret guarantee of FTL with respect to Bregman divergences, which was established
in [35] and was reproduced as Lemma 2 in Appendix A for completeness. To show that Lemma 2
is applicable, we remark that the Kullback–Leibler divergence is not Lipschitz continuous near the
boundary of the probability simplex, which breaks condition required by Lemma 2. However, by
restricting to policies of the form [µ]α = (1− α)µ+ α

A1, which is at least α
A -distance away from

the simplex boundary, the Kullback–Leibler divergence is indeed Lipschitz continuous within this
α
A -restricted domain. One can show that the Lipschitz constant of each entry of KL([µk,†]α∥·) is 2A

α
within the α

A -restricted domain. This allows us to apply Lemma 2 to obtain the result in (35).

Moving forward from (35), we again apply the property that the unique minimum of∑K
k=1 KL([µk,†]α∥·) is attained at µ = 1

K

∑K
k=1[µ

k,†]α, which leads to
K∑

k=1

KL
(
[µk,†]α∥µ̃k

)
≤min

µ

K∑
k=1

KL
(
[µk,†]α∥µ

)
+

8A(1 + lnK)

α

=

K∑
k=1

KL
(
[µk,†]α∥[µ⋆]α

)
+

8A(1 + lnK)

α

≤ (1− α)
K∑

k=1

KL
(
µk,†∥µ⋆

)
+

8A(1 + lnK)

α
, (36)

25

where the second step uses the definition that µ⋆ = 1
K

∑K
k=1 µ

k,†, and the last step is by the (joint)
convexity of the Kullback–Leibler divergence. Substituting (36) to (34) yields

1

K

K∑
k=1

KL
(
µk,†∥µ̃k

)
≤ 1

K

K∑
k=1

KL
(
µk,†∥µ⋆

)
+

8A(1 + lnK)

Kα
+ 4Hτ̄α ln

A

α
.

By a similar argument, we can show an analogous result for the minimizing player:

1

K

K∑
k=1

KL
(
νk,†∥ν̃k

)
≤ 1

K

K∑
k=1

KL
(
νk,†∥ν⋆

)
+

8B(1 + lnK)

Kα
+ 4Hτ̄α ln

B

α

Substituting the above results back into (33) and using the definition

∆µ,ν =

K∑
k=1

(
KL
(
µk,†∥µ⋆

)
+KL

(
νk,†∥ν⋆

))
,

we obtain that

1

K

K∑
k=1

NE-gap(µ̄k, ν̄k) ≤ 192H3

KT

(
∆µ,ν +

10(A+B) lnK

α
+ 4KHτ̄α ln

AB

α2

)
Further using the conditions that α = 1/

√
K and τ̄ ≤ 4H log T (see (17) for a proof) yields

1

K

K∑
k=1

NE-gap(µ̄k, ν̄k) ≤192H3

T

(
∆µ,ν

K
+

10(A+B) logK√
K

+
16H2 log T log(ABK)√

K

)
.

This completes the proof of the theorem.

C Infinite-Horizon Discounted Markov Potential Game

To be consistent with existing results in the literature, we consider an infinite-horizon γ-discounted
reward setting for MPGs [43, 39, 76, 15]. An N -player, infinite-horizon, discounted stochas-
tic (or Markov) game G is defined by a tuple (N ,S, {Ai}Ni=1, P, {ri}Ni=1, γ, ρ), where (1) N =
{1, 2, . . . , N} is the set of players (or agents); (2) S is the finite state space; (3) Ai is the finite action
space for agent i ∈ N ; (4) P : S × A → ∆(S) is the transition kernel, where A = ×N

i=1Ai is the
joint action space, and P (·|s, a) ∈ ∆(S) denotes the distribution over the next state for a ∈ A; (5)
ri : S×A → [−1, 1] is the reward function for agent i; (6) γ ∈ [0, 1) denotes the discount factor; and
(7) ρ ∈ ∆(S) is the initial state distribution. Both the reward function and the state transition function
depend on the joint actions of all the agents. We use ai ∈ Ai to denote the individual action of agent
i ∈ N . The subscript −i to denotes the set of agents excluding agent i, i.e., N\{i}. We can rewrite
a = (ai, a−i) using this convention. Let S = |S|, Ai = |Ai|,∀i ∈ N , and Amax = maxi∈N Ai.

A (Markov) policy πi : S → ∆(Ai) for agent i ∈ N is a mapping from the state space to a
distribution over the action space. We let agent i’s policy be parameterized by θi = {θi(ai|s) ∈
R}s∈S,ai∈Ai

, and denote the policy by πθi to emphasize such parameterization. Important ex-
amples include direct policy parameterization πθi(ai|s) = θi(ai|s) and softmax parameteriza-
tion πθi(ai|s) = exp(θi(ai|s))/

∑
a′
i∈Ai

exp(θi(a
′
i|s)),∀s ∈ S, ai ∈ Ai. Let Θi denote the

parameterization-dependent1 space where θi takes values from, and let Θ = ×N
i=1Θi. A joint

(product) policy πθ = (πθ1 , . . . , πθN) induces a probability measure over the sequence of states and
joint actions. When the policy parameterization scheme is fixed, we sometimes denote a policy πθ
(resp. πθi) simply by its parameter θ (resp. θi). For a joint policy θ = (θ1, . . . , θN), and for any
s ∈ S and a ∈ A, we define the value function and the state-action value function (or Q-function) for
agent i as follows:

V s
i (θ;G) := Eθ,G

[∞∑
t=0

γtri(s
t, at) | s0 = s

]
, (37)

Qs,a
i (θ;G) := Eθ,G

[∞∑
t=0

γtri(s
t, at) | s0 = s, a0 = a

]
.

1For example, direct parameterization requires that θs,ai ≥ 0 and
∑

ai∈Ai
θs,ai = 1, ∀s ∈ S, ai ∈ Ai,

while softmax parameterization allows for Θi = R|S||Ai|.

26

For each agent i, by averaging over the other agents’ policies, we define the averaged Q-function
Q̄s,ai

i of a joint policy θ = (θi, θ−i) for any s ∈ S, ai ∈ Ai as:

Q̄s,ai

i (θ;G) :=
∑

a−i∈A−i

θ−i(a−i|s)Qs,(ai,a−i)
i (θ;G).

With a slight abuse of notation, we write V ρ
i (θ;G) := Es∼ρ[V

s
i (θ;G)] for a state distribution

ρ ∈ ∆(S). We sometimes also suppress the notation of G when it is clear from context.

Each agent seeks to find a policy that maximizes its own cumulative reward. The notion of Nash
equilibrium in such an infinite-horizon discounted reward setting is defined as follows.
Definition 1. (Nash Equilibrium). For any ε ≥ 0, a joint (product) policy θ⋆ = (θ⋆i , θ

⋆
−i) is an

ε-approximate (Markov perfect) Nash equilibrium of a game G if

V s
i (θ

⋆
i , θ

⋆
−i;G) ≥ V s

i (θi, θ
⋆
−i;G)− ε,∀i ∈ N , θi ∈ Θi, s ∈ S.

In the infinite-horizon setting, a Markov game G is a Markov potential game (MPG) if there exists
a global potential function Φ : Θ × S → R, such that for any state s ∈ S, any i ∈ N , and any
θi, θ

′
i ∈ Θi, θ−i ∈ Θ−i:

Φs(θi, θ−i;G)− Φs(θ
′
i, θ−i;G) = V s

i (θi, θ−i;G)− V s
i (θ

′
i, θ−i;G). (38)

Intuitively, MPGs capture the variations of the agents’ individual values by a single global potential
function. MPGs cover Markov teams [36] as a special case, a cooperative setting where all agents
share the same reward function r = ri,∀i ∈ N . We also write Φ(θ;G) := Es∼ρ[Φs(θ;G)] for the
initial state distribution ρ ∈ ∆(S). By linearity of expectation, Φ(θi, θ−i;G) − Φ(θ′i, θ−i;G) =
V ρ
i (θi, θ−i;G)− V ρ

i (θ
′
i, θ−i;G). One can easily show that there exists a constant Φmax ∈ [0, 2N

1−γ],
such that |Φ(θ;G)−Φ(θ′;G)| ≤ Φmax,∀θ, θ′ ∈ Θ. Finally, we define the discounted state visitation
distribution of policy θ on game G as

dθρ(s;G) = (1− γ)Es0∼ρ

∞∑
t=0

γtPθ,G(s
t = s|s0).

Subsequently, the distribution mismatch coefficient of game G is defined as κ(G) =
supθ∈Θ ∥dρθ(· ;G)/ρ∥∞. For a set G of games, we let κ = supG∈G κ(G).

D Supplementary Material for Section 4

D.1 Proof of Theorem 3

Proof. Proposition 1 implies that if the agents run projected Q-descent on the Markov potential game
Gk for T iterations, we have
T−1∑
t=0

max
i∈N

(
max
θ′
i∈Θi

V ρ
i (θ

′
i, θ

k,t
−i ;G

k)− V ρ
i (θ

k,t
i , θk,t−i ;G

k)

)
≤
√
κ(Gk)T (Φ(θk,T ;Gk)− Φ(θk,0,Gk))

α(1− γ)2 .

(39)
From the Cauchy-Schwarz inequality, we have that

1

K

K∑
k=1

√
Φ(θk,T ;Gk)− Φ(θk,0;Gk) ≤

√√√√ 1

K

K∑
k=1

(Φ(θk,T ;Gk)− Φ(θk,0;Gk))

≤

√√√√ 1

K

(
2Φmax +

K−1∑
k=1

(Φ(θk,T ;Gk)− Φ(θk+1,0;Gk+1))

)

≤

√√√√ 1

K

(
2Φmax +

K−1∑
k=1

(Φ(θk,T ;Gk)− Φ(θk,T ;Gk+1))

)

≤
√

1

K
(2Φmax +∆Φ)

27

where the third inequality uses the outer stage update rule that θk+1,0 = θk,T , and the last inequality
follows from the definition of the similarity metric ∆Φ. Plugging the above result into (39), we have
that

1

K

1

T

K∑
k=1

T−1∑
t=0

max
i∈N

(
max
θ′
i∈Θi

V ρ
i (θ

′
i, θ

k,t
−i ;G

k)− V ρ
i (θ

k,t
i , θk,t−i ;G

k)

)

≤
√
κ(2Φmax +∆Φ)

α(1− γ)2KT ≤
√

8κ4NAmax(2Φmax +∆Φ)

(1− γ)6KT ,

where in the second inequality we set the learning rate as α = (1−γ)4

8κ3NAmax
. Therefore, for an average

game, T = O
(

NAmaxκ
4(Φmax+∆Φ)

K(1−γ)6ε2

)
steps in the inner stage suffice to find an ε-approximate Nash

equilibrium.

D.2 Model-Agnostic Meta-Learning in Markov Potential Games

In what follows, we study meta-learning in MPG under the same formulation as MAML [20, 17, 30].
Let G = {Gj} be a set of different infinite-horizon discounted reward Markov potential games.
The games are drawn from a fixed distribution p that we can sample from. Each game is defined
by a tuple Gj = (N ,S, {Ai}Ni=1, P

j , {rji }Ni=1, γ, ρ
j), where we assume without loss of generality

that the games share the same agent set, state & action spaces and discount factor, but can have
different transition and reward functions and initial state distributions. MAML tries to learn a good
initialization from which running one or a few steps of gradient descents/ascents with respect to a
new task lead to well-performing model parameters. In the case of multi-agent meta-reinforcement
learning with one gradient ascent step, the problem can be formulated as

max
θ∈Θ

F1(θ) := EG∼p(G) [Φ (θ + α∇Φ(θ;G);G)] , (40)

where α > 0 is the step size of the policy gradient update. Such a formulation can also be extended to
multiple steps of policy gradients. Let ζ(· ;G) denote the operator of performing one step of policy
gradient update on game G, i.e., ζ(θ;G) := θ + α∇Φ(θ;G). The T -step extension of the objective
(40) can be written as

max
θ∈Θ

FT (θ) := EG∼p(G) [Φ (ζ(. . . (ζ(θ;G)) . . .);G)] , (41)

where the operator ζ(· ;G) is applied T times.

Optimizing the multi-step MAML objective typically involves two nested stages: The inner stage
(or base algorithm) runs multiple steps of gradient ascents for each individual task, while the outer
stage (or meta-algorithm) is an iterative process that updates the meta-parameter θ over different
tasks. Specifically, suppose the outer stage runs for K iterations. Let θk denote the value of θ at the
beginning of the k-th iteration of the outer stage. In each iteration, we sample games from the set G
according to the distribution p. For each individual game G ∈ G encountered during iteration k, the
inner stage runs T steps of gradient ascent (or its variants) on it:

θk,t+1(G)← ψ(θk,t(G);G), for 0 ≤ t ≤ T − 1, (42)

where θk,0(G) = θk,∀G ∈ G. We often suppress the notation of G in θk,t(G) when there is no
ambiguity. Finally, the outer stage updates the meta-parameter by

θk+1 ← Ψ(θk,G), (43)

using a certain update rule Ψ. The meta-parameter θk+1 is then used as the initialization θk+1,0 for
iteration k + 1. For simplicity of presentation, we present our results in the same setting as in [66]
where G consists of a finite set of M games and p is a uniform distribution. Our results can be easily
extended to the settings where there is an infinite number of games and p is a generic probability
distribution, as has been done in existing works [17, 18, 30].

In the following, we develop a meta-learning procedure (ψ,Ψ) that finds a stationary point of
the meta-objective (41) while at the same time converging to an approximate Nash equilibrium
for each individual game encountered, assuming a sufficient number of policy gradient steps are
taken in each game. We focus on softmax parameterization where each agent’s policy is given by

28

πθi(ai|s) = exp(θi(ai|s))/
∑

a′
i∈Ai

exp(θi(a
′
i|s)),∀s ∈ S, ai ∈ Ai. In the inner stage, each agent

independently runs gradient ascents with respect to its own value functions to update its parameters.
Specifically, on each game G ∈ G encountered during the k-th outer iteration, agent i updates its
policy parameter θi by

θk,t+1
i (G)← θk,ti (G) + α∇θiV

ρ
i (θ

k,t(G);G),∀0 ≤ t ≤ T − 1. (44)

We sometimes omit the dependence of θk,ti (G) on G when the game is clear from the context. Using
(the multi-agent extension of) the policy gradient theorem [60, 76], the gradient∇θiV

ρ
i (θ;G) can be

calculated as
∂V ρ

i (θ;G)

∂θi(ai|s)
=

1

1− γ d
θ
ρ(s;G)πθi(ai|s)Ās,ai

i (θ;G), (45)

where dθρ(s;G) = (1 − γ)Es0∼ρ

∑∞
t=0 γ

tPθ,G(s
t = s|s0) is the discounted state visitation dis-

tribution, and Ās,ai

i (θ;G) is the averaged advantage function. Unbiased estimators of the policy
gradient can be constructed by using the sampler from [1]. For simplicity, we assume that the
exact policy gradients are given. It follows from the definition of the potential function (38) that
∇θiV

ρ
i (θ;G) = ∇θiΦ(θ;G), which indicates that independent policy gradient updates with indi-

vidual value functions (44) is equivalent to running centralized gradient ascents with respect to the
potential function (42). Hence, the base algorithm for each individual game can be executed in a
decentralized way. Finally, we invoke Theorem 5 of [78] to show that under mild assumptions, our
policy gradient updates with softmax parameterization (44) find an approximate Nash equilibrium of
each individual game. Specifically, for any ε > 0, if we run the inner stage for sufficient number of
steps T = O(1/ε2), our method will find an ε-approximate NE for each individual game.

Our outer stage follows the MAML algorithm by running gradient ascent with respect to the meta-
objective FT from (40). The gradient of FT can be written as

∇FT (θ) = EG∼p(G)

[(T−1∏
t=0

(
I + α∇2Φ(θ(t)(G);G)

))
∇Φ(θ(T)(G);G)

]
, (46)

where θ(0)(G) = θ and θ(t+1)(G) = Ψ(θ(t)(G);G). Accordingly, we instantiate the outer stage
update (43) as

θk+1 ← θk +
η

|G|
∑
G∈G

(T−1∏
t=0

(
I + α∇2Φ(θk,t(G);G)

))
∇Φ(θk,T (G);G), (47)

where η > 0 is the learning rate of the outer stage. We assume for simplicity that the exact values of
the policy gradient ∇Φ(θk,T (G);G) and the policy Hessian∇2Φ(θk,t(G);G) are given. In practice,
one can construct unbiased estimators of the policy gradient from samples, as the policy gradient and
policy Hessian can be written explicitly in a closed form that is compatible with samplers (Lemma 15).
We remark that the policy Hessian depends on the cross terms of the agents’ policy parameters, which
can only be calculated in a centralized way. Our inner stage, though, can still be executed in a
decentralized manner. Our algorithm hence falls into in the regime of centralized (meta-)training
with decentralized (meta-)execution [42], a popular strategy used for training MARL algorithms.

In order to establish the convergence of (47) to the stationary point of the meta-objective (40), we
first show the smoothness of the meta-objective through the following sequence of lemmas.
Lemma 12. Under softmax parameterization, for any policy parameter θ ∈ Θ, any state s ∈ S and
any joint action a ∈ A, we have (i) ∥∇θ log πθ(a|s)∥ ≤

√
2N , and (ii)

∥∥∇2
θ log π(a|s)

∥∥ ≤ 2. Fur-
thermore, for any policy parameters θ, θ′ ∈ Θ, we have (iii)

∥∥∇2
θ log πθ(a|s)−∇2

θ log πθ′(a|s)
∥∥ ≤

12 ∥θ − θ′∥.
Lemma 13. Under softmax parameterization, for any Markov potential game G ∈ G, any policy
parameters θ, θ′ ∈ Θ, any state s ∈ S and any joint action a ∈ A, the potential function Φ satisfies
the following properties:

(i) Bounded policy gradient: ∥∇Φ(θ;G)∥ ≤ BG :=
√
2N

(1−γ)2 ;

(ii) Bounded policy Hessian:
∥∥∇2Φ(θ;G)

∥∥ ≤ LG := 6N
(1−γ)3 ;

(iii) Lipschitz policy Hessian:
∥∥∇2Φ(θ;G)−∇2Φ(θ′;G)

∥∥ ≤ LH ∥θ − θ′∥, where LH := 56N3/2

(1−γ)4 .

29

Lemma 14. (Meta-objective smoothness). Consider running (44) with softmax parameterization and
α = (1−γ)3

2NγAmax
as the inner stage and running (47) as the outer stage. Then, the meta-objective (41)

is LF -smooth for LF = (αTBGLH + LG)2
2T .

The smoothness constant LF has an exponential dependence on the number of inner stage update
steps T , which seems unavoidable even in supervised meta-learning. Based on the smoothness
property, we can show that our method finds a stationary point of the meta-objective (Theorem 4).

D.3 Proof of Lemma 12

Proof. For agent i ∈ N , for any state s ∈ S and action ai ∈ Ai, the softmax policy with parameter
θi can be written as

πθi(ai|s) =
exp(1⊤

s,ai
θi)∑

a′
i∈Ai

exp(1⊤
s,a′

i
θi)

,

where θi ∈ R|S||Ai|, and 1s,ai
is an |S||Ai|-dimensional one-hot vector that has a 1 at index (s, ai)

and 0s at all the other indices. It is known that (see, e.g., [1])

∂ log πθi(ai|s)
∂θi(a′i|s′)

= 1[s = s′](1[a = a′]− πθi(a′|s)),

where 1[·] is the indicator function. Hence, we have

∥∇θi log πθi(ai|s)∥ ≤
√
2. (48)

Since we consider product policies, for any joint action a = (a1, . . . , aN), we have πθ(a|s) =∏N
i=1 πθi(ai|s). Therefore, it holds that

∥∇θ log πθ(a|s)∥2 ≤
N∑
i=1

∥∇θi log πθi(ai|s)∥2 ≤ 2N.

We can hence conclude that ∥∇θ log πθ(a|s)∥ ≤
√
2N . This completes the proof of result (i). Next,

to show result (ii), we first write the Hessian∇2
θi
log πθi(ai|s) as (see, e.g., [18] for a proof)

∇2
θi log πθi(ai|s) = −Ea′

i∼πθi
(a′

i|s)

[(
1s,a′

i
− Ea′′

i ∼πθi
(a′′

i |s)[1s,a′′
i
]
)(
1s,a′

i
− Ea′′

i ∼πθi
(a′′

i |s)[1s,a′′
i
]
)⊤]

.

To find the upper bound and Lipschitz constant of∇2
θi
log πθi(ai|s), we will rely on two technical

lemmas from [18], reproduced as Lemmas 3 and 4 in Appendix A. Since ∥∇θi log πθi(ai|s)∥ ≤ 2,
from Lemma 4, we know that Ea′′

i ∼πθi
(a′′

i |s)[1s,a′′
i
] is Lipschitz continuous with constant 2. By the

definition of 1s,ai
, we have

∥∥∥Ea′′
i ∼πθi

(a′′
i |s)[1s,a′′

i
]
∥∥∥ ≤ 1. Since for any matrixA, a sub-multiplicative

matrix norm ∥·∥ satisfies ∥A∥22 ≤ ∥A∥1 ∥A∥∞, we can conclude that∥∥∥(1s,a′
i
− Ea′′

i ∼πθi
(a′′

i |s)[1s,a′′
i
]
)(
1s,a′

i
− Ea′′

i ∼πθi
(a′′

i |s)[1s,a′′
i
]
)⊤∥∥∥ ≤ 2. (49)

Further, by Lemma 3, the term in (49) is Lipschitz continuous with constant 8. By applying Lemma 4
one more time, we know that∥∥∇2

θi log πθi(ai|s)
∥∥ ≤ 2, and

∥∥∥∇2
θi log πθi(ai|s)−∇2

θ′
i
log πθ′

i
(ai|s)

∥∥∥ ≤ 12 ∥θi − θ′i∥ . (50)

Since ∇2
θ log πθ(a|s) is a block diagonal matrix, we apply the result on the block diagonal matrix

norm in Lemma 5 to show that∥∥∇2
θ log πθ(a|s)

∥∥ ≤ max
i∈N

∥∥∇2
θi log πθi(ai|s)

∥∥ ≤ 2.

This completes the proof of result (ii). To show result (iii), we again apply Lemma 5 to conclude that∥∥∇2
θ log πθ(a|s)−∇2

θ log πθ′(a|s)
∥∥ ≤ max

i∈N

∥∥∥∇2
θi log πθi(ai|s)−∇2

θ′
i
log πθ′

i
(ai|s)

∥∥∥ ≤ 12 ∥θ − θ′∥ ,

where the last step is by (50). This completes the proof of the lemma.

30

D.4 Proof of Lemma 13

In the following, since there is no possibility of ambiguity, we drop the dependence on G and simply
write ∇Φ(θ;G) and V ρ

i (θ;G) as ∇Φ(θ) and V ρ
i (θ), respectively.

To establish Lemma 13, we first derive an explicit formula for the policy Hessian ∇2Φ(θ). Notice
that∇2Φ(θ) can be written as a block matrix with N ×N blocks:

∇2Φ(θ) =

∇
2
1,1Φ(θ) . . . ∇2

1,NΦ(θ)
...

. . .
...

∇2
N,1Φ(θ) . . . ∇2

N,NΦ(θ)

 , (51)

where in each block ∇2
i,jΦ(θ) ∈ R|Ai|×|Aj | we first take the gradient of Φ with respect to agent

i’s policy parameters θi and then take the gradient with respect to agent j’s parameters θj , i.e.,
∇2

i,jΦ(θ) =
∂2Φ

∂θi∂θj
,∀i, j ∈ N . The following lemma states that each∇2

i,jΦ(θ) block can be written
in an explicit form. This lemma can be considered as a multi-agent extension of Theorem 3 in [24].
For clarity of presentation, we defer its proof to Appendix D.5.
Lemma 15. Each matrix block∇2

i,jΦ(θ) in the policy Hessian matrix (51) takes the form

∇2
i,jΦ(θ) = Hi,j

1 (θ) +Hi,j
2 (θ) +Hi,j

12 (θ) + (Hi,j
12)

⊤(θ).

The matricesHi,j
1 (θ),Hi,j

2 (θ), andHi,j
12 (θ) can be written as

Hi,j
1 (θ) =

1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)Q
s,a
i (θ)∇θi log πθ(a|s)∇⊤

θj log πθ(a|s),

Hi,j
2 (θ) =

1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)Q
s,a
i (θ)∇2

θiθj log πθ(a|s),

Hi,j
12 (θ) =

1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)∇θi log πθ(a|s)∇⊤
θjQ

s,a
i (θ),

where we define dθρ(s, a) := dθρ(s) · πθ(a|s) for dθρ(s) = (1− γ)Es0∼ρ

∑∞
t=0 γ

tPθ(s
t = s|s0).

The next lemma states that each matrix block ∇2
i,jΦ(θ) is Lipschitz continuous with respect to θ.

The proof is deferred to Appendix D.6.
Lemma 16. Each matrix block∇2

i,jΦ(θ) in the policy Hessian matrix (51) is Lipschitz continuous:∥∥∇2
i,jΦ(θ)−∇2

i,jΦ(θ
′)
∥∥ ≤ Lij ∥θ − θ′∥ ,∀i, j ∈ N ,

where the Lipschitz constant satisfies Lij ≤ 56
√
N

(1−γ)4 .

Equipped with the results from Lemma 15 and Lemma 16, we are now ready to prove Lemma 13.

Proof (of Lemma 13).

Proof of (i): From the definition of the potential function (38), we know that∇θiΦ(θ) = ∇θiV
ρ
i (θ),

and hence ∇Φ(θ) = (∇θ1V
ρ
1 (θ), . . . ,∇θNV

ρ
N (θ)). For each agent i, the policy gradient theorem

states that
∇θiV

ρ
i (θ) =

1

1− γEs∼dθ
ρ,ai∼πθi

(·|s)
[
∇θi log πθi(ai|s)Q̄s,ai

i (θ)
]
.

Since (48) from Lemma 13 suggests that ∥∇θi log πθi(ai|s)∥ ≤
√
2, we obtain ∥∇θiV

ρ
i (θ)∥ ≤√

2
(1−γ)2 . Hence, ∥∇Φ(θ)∥ ≤

√
2N

(1−γ)2 .

Proof of (ii): See Lemma 29 of [78].

Proof of (iii): From the above reasoning, we know that ∇2Φ(θ) can be written as a block matrix
∇2Φ(θ) = [∇2

i,jΦ(θ)]1≤i,j≤N , and Lemma 16 implies that each such block is Lipschitz continuous∥∥∇2
i,jΦ(θ)−∇2

i,jΦ(θ
′)
∥∥ ≤ Lij ∥θ − θ′∥ ,∀i, j ∈ N ,

31

with Lij ≤ 56
√
N

(1−γ)4 . We can then use Lemma 6 to conclude that∇2Φ(θ) is also Lipschitz

∥∥∇2Φ(θ)−∇2Φ(θ′)
∥∥ ≤ 56N3/2

(1− γ)4 ∥θ − θ
′∥ .

This completes the proof of Lemma 13.

D.5 Proof of Lemma 15

Proof. The proof follows steps similar to those used in the proof of Theorem 3 in [24]. We first
introduce a few notations. Let s0:t denote the sequence of states (s0, . . . , st), and let a0:t :=
(a0, . . . , at), where at = (at1, . . . , a

t
N) is the joint action at time step t. Further, let

pθ(s
0:t, a0:t | ρ) := Pθ(s

0:t, a0:t|s0 ∼ ρ) = ρ(s0)

t−1∏
τ=0

(
πθ(a

τ |sτ)P (sτ+1|sτ , aτ)
)
πθ(a

t|st).

(52)
From the definition in (37), we have

V ρ
i (θ) = Eθ

[∞∑
t=0

γtri(s
t, at) | s0 ∼ ρ

]
=

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t|ρ)ri(st, at).

Using the definition of the potential function (38), we know that

∇θiΦ(θ) = ∇θiV
ρ
i (θ) =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | ρ)∇θi log pθ(s

0:t, a0:t | ρ)ri(st, at),

where we used the fact that ∇pθ = pθ∇ log pθ. The second-order partial derivative can hence be
written as

∇2
i,jΦ(θ) =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | ρ)∇2

θiθj log pθ(s
0:t, a0:t)ri(s

t, at)︸ ︷︷ ︸
1

+

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | ρ)∇θi log pθ(s

0:t, a0:t | ρ)∇⊤
θj log pθ(s

0:t, a0:t | ρ)ri(st, at)︸ ︷︷ ︸
2

From (52), we can see that∇2
θiθj

log pθ(s
0:t, a0:t | ρ) =∑t

τ=0∇2
θiθj

log πθ(a
τ |sτ). Hence, the first

term in the above equation can be written as

1 =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | ρ)

t∑
τ=0

∇2
θiθj log πθ(a

τ |sτ)ri(st, at)

=

∞∑
τ=0

γτ
∑
sτ

∑
aτ

pθ(s
τ , aτ | ρ)∇2

θiθj log πθ(a
τ |sτ)

∞∑
t=τ

γt−τ
∑
st

∑
at

Pθ(s
t, at|sτ , aτ)ri(st, at)

=

∞∑
τ=0

γτ
∑
sτ

∑
aτ

pθ(s
τ , aτ | ρ)∇2

θiθj log πθ(a
τ |sτ)Qsτ ,aτ

i (θ)

=
1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)Q
s,a
i (θ)∇2

θiθj log πθ(a|s)

=Hi,j
2 (θ).

32

The second term can be written as

2 =

∞∑
t=0

t∑
τ=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t|ρ)∇θi log πθ(a

τ |sτ)∇⊤
θj log πθ(a

τ |sτ)ri(st, at)

+

∞∑
t=0

t∑
τ2=0

τ2−1∑
τ1=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t|ρ)∇θi log πθ(a

τ1 |sτ1)∇⊤
θj log πθ(a

τ2 |sτ2)ri(st, at)

+

∞∑
t=0

t∑
τ1=0

τ1−1∑
τ2=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t|ρ)∇θi log πθ(a

τ1 |sτ1)∇⊤
θj log πθ(a

τ2 |sτ2)ri(st, at).

(53)
By switching the order of summations and following a similar procedure as in the derivation of 1 ,
we can show that the first term on the RHS of (53) is equal toHi,j

1 (θ). The second and third terms on
the RHS of (53) can be shown to be Hi,j

12 (θ) and (Hi,j
12)

⊤(θ), respectively. We skip the rest of the
proof as it follows the same procedure as in the proof of Theorem 3 in [24].

D.6 Proof of Lemma 16

Proof. Recall from Lemma 15 that

∇2
i,jΦ(θ) = Hi,j

1 (θ) +Hi,j
2 (θ) +Hi,j

12 (θ) + (Hi,j
12)

⊤(θ).

For any (s, a), we write

hi,j1 (θ) =Qs,a
i (θ)∇θi log πθ(a|s)∇⊤

θj log πθ(a|s),
hi,j2 (θ) =Qs,a

i (θ)∇2
θiθj log πθ(a|s),

hi,j12 (θ) =∇θi log πθ(a|s)∇⊤
θjQ

s,a
i (θ),

and hence∇2
i,jΦ(θ) can be rewritten as

∇2
i,jΦ(θ) =

1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)
(
hi,j1 (θ) + hi,j2 (θ) + hi,j12 (θ) + (hi,j12)

⊤(θ)
)
.

In the following, we proceed by showing that each of the three terms hi,j1 (θ), hi,j2 (θ), and hi,j12 (θ) is
bounded and Lipschitz.

(i) Analysis of hi,j1 (θ): First, notice that |Qs,a
i (θ)| ≤ 1

1−γ . From the Bellman equation Qs,a
i (θ) =

ri(s, a) + γEs′∼P (·|s,a)[V
s′

i (θ)], we have∇Qs,a
i (θ) = γEs′∼P (·|s,a)[∇V s′

i (θ)]. The policy gradient
theorem states that

∇θiV
ρ
i (θ) =

1

1− γEs∼dθ
ρ,ai∼πθi

(·|s)
[
∇θi log πθi(ai|s)Q̄s,ai

i (θ)
]
.

Since (48) from Lemma 12 suggests ∥∇θi log πθi(ai|s)∥ ≤
√
2, we obtain ∥∇θiV

ρ
i (θ)∥ ≤

√
2

(1−γ)2 .

Hence, ∥∇Qs,a
i (θ)∥ ≤

√
2γ

(1−γ)2 , andQs,a
i (θ) is Lipschitz continuous with constant

√
2γ

(1−γ)2 . In addition,

the proof of Lemma 12 implies that ∇θi log πθ(a|s) is bounded by
√
2 and is 2-Lipschitz continuous.

Further using Lemma 3, we can conclude that∥∥∥hi,j1 (θ)
∥∥∥ ≤ 2

1− γ and
∥∥∥hi,j1 (θ)− hi,j1 (θ′)

∥∥∥ ≤ 2
√
2(2− γ)

(1− γ)2 ∥θ − θ′∥ . (54)

(ii) Analysis of hi,j2 (θ): From step (i) of the proof, we know that Qs,a
i (θ) is bounded by

1
1−γ and is

√
2γ

(1−γ)2 -Lipschitz continuous. Since πθ is a product policy, for i ̸= j, we sim-
ply have ∇2

θiθj
log πθ(a|s) = 0. For i = j, we know from (50) that ∥∇2

θiθj
log πθ(a|s)∥ ≤

2, and ∥∇2
θiθj

log πθ(a|s) − ∇2
θiθj

log πθ′(a|s)∥ ≤ 12 ∥θi − θ′i∥ . Therefore, we obtain from
Lemma 3 that

hi,j2 (θ) = 0, if i ̸= j; and
∥∥∥hi,j2 (θ)

∥∥∥ ≤ 2

1− γ ,
∥∥∥hi,j2 (θ)− hi,j2 (θ′)

∥∥∥ ≤ 8(2− γ)
(1− γ)2 ∥θ − θ

′∥ , if i = j.

(55)

33

(iii) Analysis of hi,j12 (θ): In the following, we first establish the Lipschitz continuity of ∇θjQ
s,a
i (θ),

which can be shown in a similar manner as in Lemma A.2 of [74] and is reproduced below for
completeness. Let

pθ(s
0:t, a0:t | s, a) := Pθ(s

0:t, a0:t|s0 = s, a0 = a) =

t−1∏
τ=0

πθ(a
τ+1|sτ+1)P (sτ+1|sτ , aτ).

By the definition of the Q-function (37),

Qs,a
i (θ) =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | s, a)ri(st, at)

The gradient of Qs,a
i (θ) can hence be written as

∇θjQ
s,a
i (θ) =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | s, a)∇θj log pθ(s

0:t, a0:t | s, a)ri(st, at)

=

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | s, a)

t∑
τ=1

∇θj log πθ(a
τ |sτ)ri(st, at).

To show the Lipschitz continuity of Qs,a
i (θ), we first write∣∣∇θjQ

s,a
i (θ)−∇θjQ

s,a
i (θ′)

∣∣
≤

∞∑
t=0

∑
a0:t

∑
s0:t

γt
∣∣pθ(s0:t, a0:t|s, a) t∑

τ=1

∇θj log πθ(a
τ |sτ)− pθ′(s0:t, a0:t|s, a)

t∑
τ=1

∇θj log πθ′(aτ |sτ)
∣∣

≤
∞∑
t=0

∑
a0:t

∑
s0:t

γt
∣∣pθ(s0:t, a0:t|s, a)− pθ′(s0:t, a0:t|s, a)

∣∣ ∥∥∥∥∥
t∑

τ=1

∇θj log πθ(a
τ |sτ)

∥∥∥∥∥ (56)

+

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ′(s0:t, a0:t|s, a)
∥∥∥∥∥

t∑
τ=1

(
∇θj log πθ(a

τ |sτ)−∇θj log πθ′(aτ |sτ)
)∥∥∥∥∥ . (57)

In the following, we upper bound each of the two terms above separately. To analyze (56), we first
apply the mean-value theorem to the function

∏t
τ=1 πθ(a

τ |sτ) of θ and obtain∣∣∣∣∣
t∏

τ=1

πθ(a
τ |sτ)−

t∏
τ=1

πθ′(aτ |sτ)
∣∣∣∣∣ =
∣∣∣∣∣∣(θ − θ′)⊤

 t∑
m=1

∇πθ̃(am|sm)

t∏
τ ̸=m,τ=1

πθ̃(a
τ |sτ)

∣∣∣∣∣∣
≤∥θ − θ′∥ ·

t∑
m=1

∥∥∇ log πθ̃(a
m|sm)

∥∥ · t∏
τ=1

πθ̃(a
τ |sτ)

≤
√
2Nt ∥θ − θ′∥ ·

t∏
τ=1

πθ̃(a
τ |sτ),

where θ̃ = λθ + (1− λ)θ′ for some λ ∈ [0, 1], the first inequality uses the fact that∇πθ̃(am|sm) =
πθ̃(a

m|sm)∇ log πθ̃(a
m|sm), and the second inequality is due to Lemma 12 (i). Using the above

property, we obtain∣∣pθ(s0:t, a0:t|s, a)− pθ′(s0:t, a0:t|s, a)
∣∣

=

∣∣∣∣∣
t−1∏
τ=0

πθ(a
τ+1|sτ+1)P (sτ+1|sτ , aτ)−

t−1∏
τ=0

πθ′(aτ+1|sτ+1)P (sτ+1|sτ , aτ)
∣∣∣∣∣

≤
t−1∏
τ=0

P (sτ+1|sτ , aτ) ·
√
2Nt ∥θ − θ′∥ ·

t∏
τ=1

πθ̃(a
τ |sτ)

=pθ̃(s
0:t, a0:t|s, a) ·

√
2Nt ∥θ − θ′∥ .

34

Substituting the above equation back into (56) yields

(56) ≤
∞∑
t=0

∑
a0:t

∑
s0:t

√
2Ntγtpθ̃(s

0:t, a0:t|s, a) ·
∥∥∥∥∥

t∑
τ=1

∇θj log πθ(a
τ |sτ)

∥∥∥∥∥ · ∥θ − θ′∥
≤

∞∑
t=0

∑
a0:t

∑
s0:t

2
√
Nt2γtpθ̃(s

0:t, a0:t|s, a) ∥θ − θ′∥ ,

where the second step uses (48) from Lemma 12 and the fact that πθ is a product policy.

To upper bound (57), we apply Lemma 12 (ii) and obtain

(57) ≤
∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ′(s0:t, a0:t|s, a)
t∑

τ=1

∥∥∇θj log πθ(a
τ |sτ)−∇θj log πθ′(aτ |sτ)

∥∥
≤

∞∑
t=0

∑
a0:t

∑
s0:t

2tγtpθ′(s0:t, a0:t|s, a) ∥θ − θ′∥ .

Substituting the above upper bounds back into (56) and (57), we have∣∣∇θjQ
s,a
i (θ)−∇θjQ

s,a
i (θ′)

∣∣
≤

∞∑
t=0

∑
a0:t

∑
s0:t

γt
(
2
√
Nt2pθ̃(s

0:t, a0:t|s, a) + 2tpθ′(s0:t, a0:t|s, a)
)
∥θ − θ′∥

=

∞∑
t=0

γt
(
2
√
Nt2 + 2t

)
∥θ − θ′∥

≤4
√
Nγ(1 + γ)

(1− γ)3 ∥θ − θ′∥ ,

where the second step holds because
∑

a0:t

∑
s0:t pθ̃(s

0:t, a0:t|s, a) = 1. The last step uses the facts
that 2t ≤ 2

√
Nt2, and that

∞∑
t=1

γt · t2 =
1

1− γ
∞∑
t=0

(1− γ)γt · t2 =
1

1− γ · E[T
2] =

1

1− γ ·
γ(1 + γ)

(1− γ)2 ,

where T is a random variable following a geometric distribution. We have hence derived that
∇θjQ

s,a
i (θ) is Lipschitz continuous with constant 4

√
Nγ(1+γ)
(1−γ)3 .

Following the same reasoning as in step (i), we obtain that ∇θi log πθ(a|s) is bounded by
√
2 and

is 2-Lipschitz continuous. Similar to step (i), we can also use the Bellman equation and the policy
gradient theorem to show that ∥∇⊤

θj
Qs,a

i (θ)∥ ≤
√
2γ

(1−γ)2 . Again, by applying Lemma 3, we can
conclude that ∥∥∥hi,j12 (θ)∥∥∥ ≤ 2γ

(1− γ)2 and
∥∥∥hi,j12 (θ)− hi,j12 (θ′)∥∥∥ ≤ 6

√
2Nγ(1 + γ)

(1− γ)3 . (58)

(iv) Putting everything together: Let h(θ) := hi,j1 (θ) + hi,j2 (θ) + hi,j12 (θ) + (hi,j12)
⊤(θ). Using the

simple observation that the sum of two Lipschitz continuous functions is also Lipschitz continuous,
we obtain from (54), (55), and (58) that

∥h(θ)∥ ≤ 4

(1− γ)2 , and ∥h(θ)− h(θ′)∥ ≤ 50
√
N

(1− γ)3 ∥θ − θ
′∥ . (59)

Recall from Lemma 15 that

∇2
i,jΦ(θ) =

1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)h(θ).

35

By adding and subtracting the same value,∥∥∇2
i,jΦ(θ)−∇2

i,jΦ(θ
′)
∥∥

≤ 1

1− γ
∑
s∈S

∑
a∈A

∥∥∥dθρ(s, a)h(θ)− dθ′

ρ (s, a)h(θ′)
∥∥∥

≤ 1

1− γ
∑
s∈S

∑
a∈A

(∣∣∣dθρ(s, a)− dθ′

ρ (s, a)
∣∣∣ ∥h(θ)∥+ dθ

′

ρ (s, a) ∥h(θ)− h(θ′)∥
)

≤ 4

(1− γ)3
∑
s∈S

∑
a∈A

∣∣∣dθρ(s, a)− dθ′

ρ (s, a)
∣∣∣+ 50

√
N

(1− γ)4 ∥θ − θ
′∥
∑
s∈S

∑
a∈A

dθ
′

ρ (s, a)

≤ 56
√
N

(1− γ)4 ∥θ − θ
′∥ .

The third step uses the upper bounds from (59). The fourth step can be derived by using the following
result from Equation (A.67) of [74]:∑

s∈S

∑
a∈A

∣∣∣dθρ(s, a)− dθ′

ρ (s, a)
∣∣∣ ≤ √2N

1− γ ∥θ − θ
′∥ .

This completes the proof of the Lipschitz continuity that
∥∥∇2

i,jΦ(θ)−∇2
i,jΦ(θ

′)
∥∥ ≤

Lij ∥θ − θ′∥ ,∀i, j ∈ N for Lij =
56

√
N

(1−γ)4 .

D.7 Proof of Lemma 14

Proof. Recall from (46) that the gradient of the meta-objective can be written as

∇FT (θ) = EG∼Unif(G)

[(T−1∏
t=0

(
I + α∇2Φ(θ(t)(G);G)

))
∇Φ(θ(T)(G);G)

]
,

where θ(0)(G) = θ and θ(t+1)(G) = Ψ(θ(t)(G);G). It suffices to show that for each individual
game G ∈ G, the term (T−1∏

t=0

(
I + α∇2Φ(θ(t)(G);G)

))
∇Φ(θ(T)(G);G) (60)

is Lipschitz continuous. In the following, we drop the dependence on G and simply write θ(t)(G)
and ∇Φ(θ(t)(G);G) as θ(t) and∇Φ(θ(t)), respectively.

We proceed by finding the upper bound and Lipschitz constant of each individual term in (60). First,
from Lemma 13(ii), we know that

∥∥I + α∇2Φ(θ(t))
∥∥ ≤ 1 + αLG,∀0 ≤ t ≤ T − 1. By using the

chain rule, we also know that

∇θθ
(t) =

t−1∏
t′=0

(I + α∇2Φ(θ(t
′))).

Hence, since
∥∥I + α∇2Φ(θ(t))

∥∥ ≤ 1 + αLG,∀0 ≤ t ≤ T − 1, we know that θ(t) is Lipschitz
continuous with constant (1 + αLG)

t. Further, combining Lemma 13 (iii) with the fact that the
Lipschitz constant of a composite function is equal to the product of the Lipschitz constants of the
base functions, we conclude that I + α∇2Φ(θ(t)) is Lipschitz (with respect to θ) with constant
αLH(1 + αLG)

t. For the case of T ≥ 2, Lemma 3 thus implies that the
∏T−1

t=0 (I + α∇2Φ(θ(t)))
factor from (60) is Lipschitz with constant αTLH(1 + αLG)

2T−1, while for T = 1, the Lipschitz
constant is simply αLH .

For the ∇Φ(θ(T)) factor in (60), we know from Lemma 13(i) that it is bounded by BG. Using
Lemma 13(iii) and the Lipschitzness of a composite function, we also know that∇Φ(θ(T)) is LG(1+

αLG)
T -Lipschitz continuous. Finally, along with the results that the

∏T−1
t=0 (I+α∇2Φ(θ(t))) factor is

bounded by (1+αLG)
T and Lipschitz with constant αTLH(1+αLG)

2T−1, we again apply Lemma 3
to obtain that (60) is Lipschitz continuous with constant αTBGLH(1+αLG)

2T−1+LG(1+αLG)
2T .

Using the fact that α ∈ (0, 1/LG], we can conclude that the meta-objective FT (θ) is LF -smooth
with LF = (αTBGLH + LG)2

2T .

36

D.8 Proof of Theorem 4

Proof. Based on the aforementioned series of lemmas, we are now ready to establish Theorem 4. The
proof follows from standard analysis in non-convex optimization. Since the meta-objective function
is LF -smooth (Lemma 14), the smoothness property implies that

FT (θ
k+1) ≥ FT (θ

k) +∇FT (θ
k)⊤(θk+1 − θk)− LF

2

∥∥θk+1 − θk
∥∥2 .

Using the outer stage update rule (47) that

θk+1 = θk + η∇FT (θ
k),

we obtain

FT (θ
k+1) ≥ FT (θ

k) + η
∥∥∇FT (θ

k)
∥∥2 − LF η

2

2

∥∥∇FT (θ
k)
∥∥2 ≥ FT (θ

k) +
1

2LF

∥∥∇FT (θ
k)
∥∥2 ,

where the last step uses η = 1/LF . Summing the above inequality over k and rearranging the terms
lead to

K−1∑
k=0

∥∥∇FT (θ
k)
∥∥2 ≤ 2LF

K−1∑
k=0

(FT (θ
k+1)− FT (θ

k)) = 2LF (FT (θ
K)− FT (θ

0)) ≤ 4NLF

1− γ ,

where the last step holds because |Φ(θ;G)− Φ(θ′;G)| ≤ Φmax ≤ 2N
1−γ ,∀θ, θ′ ∈ Θ,G ∈ G.

Therefore, for K ≥ 4NLF

(1−γ)ε2 , we have

min
0≤k≤K−1

∥∥∇FT (θ
k)
∥∥2 ≤ 1

K

K−1∑
k=0

∥∥∇FT (θ
k)
∥∥2 ≤ 4NLF

K(1− γ) ≤ ε
2.

This completes the proof of the theorem.

E Supplementary Material for Section 5

E.1 Base Algorithm

In this appendix, we first describe our base algorithm for learning CCE in a general-sum Markov game,
which was omitted in the main text due to space limitations. The optimistic online mirror descent
algorithm for learning CCE in a general-sum Markov game is presented in Algorithm 2. Similar to
Algorithm 1 for zero-sum Markov games, Algorithm 2 performs optimistic online mirror descent
[55, 62] for policy updates in order to establish initialization-dependent convergence. Algorithm 2
also utilizes stage-based value updates to avoid the need for a complicated no-weighted-regret analysis.
Different from Algorithm 1, the output policy π̄ of Algorithm 2 is no longer a state-wise average
policy but rather a correlated policy. The construction of π̄, similar to the construction of the “certified
policies” in the literature, is described in Algorithm 3.

We further introduce a few notations similar to the zero-sum game setting. For any (τ, h, s), we
define the per-state regret for player i ∈ N as

regτh,i(s) := max
πτ,†
h,i(·|s)∈∆(Ai)

1

Lτ

tend
τ∑

j=tstart
τ

〈
πτ,†
h,i − π

j
h,i, Q

τ
h,iπ

j
h,−i

〉
(s). (61)

We define the maximal regret (over the states and all the players) as

regτh := max
s∈S

max
i∈N
{regτh,i(s)}.

Lemma 17 provides an upper bound of the per-state regret (61), which further leads us to the
following initialization-dependent convergence guarantee of Algorithm 2. We finally define δth,i :=

maxs∈S(V
†,π̄t

h,−i

h+1,i − V π̄t
h

h,i)(s), and let δth := maxi∈N δth,i.

37

Algorithm 2: Optimistic Online Mirror Descent for CCE in General-Sum Markov Game
1 Input: Initial policies π̃ : [τ̄]× [H]× S → ∆(Aall);
2 Set stage index τ ← 1, tstart

τ ← 1, and Lτ ← H;
3 Initialize: π0

h = π̂0
h ← π̃1

h, and Qτ
h ← 0,∀h ∈ [H];

4 for iteration t← 1 to T do
5 Auxiliary policy update: for each player i ∈ N , step h ∈ [H] and state s ∈ S:

π̂t
h,i(·|s)← argmax

µ∈∆(Ai)

η
〈
µ, [Qτ

h,iπ
t−1
h,−i](s, ·)

〉
−DR(µ, π̂

t−1
h,i (·|s));

6 Policy update: for each player i ∈ N , step h ∈ [H] and state s ∈ S:

πt
h,i(·|s)← argmax

µ∈∆(Ai)

η
〈
µ, [Qτ

h,iπ
t−1
h,−i](s, ·)

〉
−DR(µ, π̂

t
h,i(·|s));

7 if t− tstart
τ + 1 ≥ Lτ then

8 tend
τ ← t, tstart

τ+1 ← t+ 1, Lτ+1 ← ⌊(1 + 1/H)Lτ⌋;
9 Value update: for each h ∈ [H], s ∈ S,a ∈ Aall, i ∈ N :

Qτ+1
h,i (s,a)← 1

Lτ

tend
τ∑

t′=tstart
τ

(
rh,i + Ph[Q

τ
h+1,iπ

t′

h+1]
)
(s,a);

10 τ ← τ + 1; πt
h = π̂t

h ← π̃τ
h,∀h ∈ [H];

11 Output policy: Sample t ∼ Unif([T]). Output π̄ := π̄t
1 as defined in Algorithm 3.

Algorithm 3: Construction of π̄t
h

1 Input: Policy trajectory {πt
h}h∈[H],t∈[T] of Algorithm 2;

2 for step h′ ← h to H do
3 Uniformly sample j from {tstart

τ(t)−1, t
start
τ(t)−1 + 1, . . . , tend

τ(t)−1};
4 Execute policy πj

h for step h;
5 Set t← j;

E.2 Proof of Theorem 5

Proof. From the construction of π̄ (Algorithm 3) and the definition of CCE-gap, we have

CCE-gap(π̄) =max
i∈N

V
†,π̄−i

1,i (s1)− V π̄
1,i(s1)

≤ 1

T

T∑
t=1

max
i∈N

max
s∈S

(
V

†,π̄t
1,−i

1,i (s)− V π̄t
1

1,i (s)

)

≤ 1

T

T∑
t=1

δt1.

38

Using Lemma 19, the above term can be further bounded by

CCE-gap(π̄) ≤ 1

T

T∑
t=1

δt1

≤
T∑

t=1

3

ηTLτ(t)

H∑
h=1

max
i∈N

max
s∈S

DR(π
τ(t)−h,†
h,i , π̃

τ(t)−h
h′,i (·|s)) + 36(N − 1)2η2H4

=
3

ηT

τ̄∑
τ=1

H∑
h=1

max
i∈N

max
s∈S

DR(π
τ−h,†
h,i , π̃τ−h

h,i (·|s)) + 36(N − 1)2η2H4

≤ 3

ηT

τ̄∑
τ=1

H∑
h=1

max
i∈N ,s∈S

DR(π
τ,†
h,i , π̃

τ
h,i(·|s)) + 36(N − 1)2η2H4,

where the last step is simply by changing the counting method. This completes the proof for the first
claim in the Theorem.

We now proceed to establish the second statement, which follows a similar argument as in the proof
of Theorem 1 for the two-player zero-sum game setting. We repeat the proof below for completeness.
Recall that we chose the negative entropy as the regularizer R. The Bregman divergence DR(·, ·)
reduces to the Kullback–Leibler divergence. Since πτ,†

h,i lies in the simplex, when we initialize
π̃τ
h,i(·|s) = 1/Ai to be a uniform distribution, we naturally have DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) ≤ logAi,∀i ∈

N , s ∈ S, and h ∈ [H].

It remains to upper bound the total number of stages τ̄ . Recall that we have defined the lengths of
the stages to increase exponentially with Lτ+1 = ⌊(1 + 1/H)Lτ⌋. Since the τ̄ stages sum up to T
iterations in total, by taking the sum of a geometric series, it suffices to find a value of τ̄ such that
(1 + 1/H)τ̄ ≥ T/H . Using the Taylor series expansion, one can show that (1 + 1

H)H ≥ e− e
2H .

Hence, it reduces to finding a minimum τ̄ such that(
e− e

2H

)τ̄/H
≥ T

H
. (62)

One can easily see that any τ̄ ≥ H log T
log(e/2) satisfies the condition. Summarizing the above results, we

can conclude that

CCE-gap(π̄) ≤ 12H2 log T

ηT
logAmax + 36(N − 1)2η2H4.

Choosing η = H−2/3T−1/3(N − 1)−2/3 yields the second claim in the Theorem.

E.3 Supporting Lemmas for Section 5

Lemma 17. For every stage τ ∈ N+, every step h ∈ [H] and every state s ∈ S , the per-state average
regret of player i ∈ N is bounded by:

regτh,i(s) ≤
1

ηLτ
DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) + 36(N − 1)2η2H3. (63)

Proof. Notice that the policy update steps in Algorithm 2 are exactly the same as the optimistic online
mirror descent algorithm [55, 62], with the loss vector gt = [Qτ

h,iπ
t
h,−i](s, ·) and the recency bias

M t = [Qτ
h,iπ

t−1
h,−i](s, ·). Since our stage-based value updates assign equal weights to each iteration,

we end up with a classic no-(average-)regret learning problem instead of a no-(weighed-)regret
learning problem as in [72, 77]. This allows us to directly apply the standard optimistic OMD results

39

(e.g., Lemma 1 in [55] and Proposition 5 in [62]) to obtain

regτh,i(s) = max
πτ,†
h,i∈∆(Ai)

1

Lτ

tend
τ∑

j=tstart
τ

〈
πτ,†
h,i − π

j
h,i, Q

τ
h,iπ

j
h,−i

〉
(s)

≤ 1

ηLτ
DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) +

η

Lτ

tend
τ∑

j=tstart
τ

∥∥∥[Qτ
h,iπ

j
h,−i −Qτ

h,iπ
j−1
h,−i](s, ·)

∥∥∥2
∞

− 1

8ηLτ

tend
τ∑

j=tstart
τ

∥∥∥πj
h,i(· | s)− π

j−1
h,i (· | s)

∥∥∥2
1

≤ 1

ηLτ
DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) +

η

Lτ

tend
τ∑

j=tstart
τ

2H2
∥∥∥πj

h,−i(· | s)− π
j−1
h,−i(· | s)

∥∥∥2
1
, (64)

where in the last step we used the Hölder’s inequality and the fact that ∥Qτ
h(s, ·)∥∞ ≤ H . To further

upper bound (64), we apply Lemma 18 to obtain that for any t ∈ [tstart
τ , tend

τ],∥∥∥πt
h,−i(· | s)− πt−1

h,−i(· | s)
∥∥∥2
1
≤ 18(N − 1)2ηH. (65)

We remark that the policy stability condition above has a slightly worse dependence on η
than those of the optimistic FTRL algorithms. In particular, Lemma G.4 of [77] has shown a∥∥∥πt

h,−i(· | s)− πt−1
h,−i(· | s)

∥∥∥2
1
≤ 16(N − 1)2η2H2 condition for optimistic FTRL. This is because

unlike optimistic FTRL, optimistic OMD lacks a smoothness condition that directly connects the
stability of policies to the stability of utility functions (e.g., Lemma A.5 of [77]). Plugging (65) back
into (64) leads to the desired result.

Lemma 18. For a fixed τ and any t ∈ [tstart
τ , tend

τ], i ∈ N , h ∈ [H], s ∈ S, the optimistic online
mirror descent policy updates in Algorithm 2 satisfy:∥∥∥πt

h,i(· | s)− πt−1
h,i (· | s)

∥∥∥2
1
≤ 18ηH.

Consequently, ∥∥∥πt
h,−i(· | s)− πt−1

h,−i(· | s)
∥∥∥2
1
≤ 18(N − 1)2ηH.

Proof. In this proof, since we focus on a fixed (s, h)→ S × [H], we will drop the dependence on
(s, h) for notational convenience. To prove the first claim in the lemma, we first use the triangle
inequality to obtain that∥∥πt

i − πt−1
i

∥∥
1
≤
∥∥πt

i − π̂t
i

∥∥
1
+
∥∥π̂t

i − π̂t−1
i

∥∥
1
+
∥∥π̂t−1

i − πt−1
i

∥∥
1
. (66)

In the following, we derive an upper bound for the first term on the RHS of the above inequality. The
other two terms on the RHS can be bounded in a similar way.

We know from the Pinsker’s inequality that∥∥πt
i − π̂t

i

∥∥
1
≤
√
2KL (πt

i∥π̂t
i). (67)

In the following, it suffices to find an upper bound of KL (π̂t
i∥πt

i). Recall that Algorithm 2 updates
the policies as

πt
i = argmax

µ∈∆(Ai)

η
〈
µ, [Qτ

i π
t−1
−i]

〉
−DR(µ, π̂

t
i).

Since we chose the negative entropy as the regularizer R, the policy update rule above is known (see
Section 5.4.2 of [28]) to be equivalent to the following multiplicative weights update:

πt
i(a) =

π̂t
i(a) exp(η[Q

τ
i π

t−1
−i](a))∑

a′ π̂t
i(a

′) exp(η[Qτ
i π

t−1
−i](a′))

,∀a ∈ Ai.

40

Hence, we have that

KL
(
πt
i∥π̂t

i

)
=
∑
a∈Ai

πt
i(a) ln

πt
i(a)

π̂t
i(a)

=
∑
a∈Ai

πt
i(a) ln

exp(η[Qτ
i π

t−1
−i](a))∑

a′ π̂t
i(a

′) exp(η[Qτ
i π

t−1
−i](a′))

≤
∑
a∈Ai

πt
i(a) ln

exp(ηH)∑
a′ π̂t

i(a
′)

=ηH,

where the inequality uses the facts that Qτ
i ≥ 0 and ∥Qτ

i ∥1 ≤ H . Substituting the above result back
to (67) leads to ∥∥πt

i − π̂t
i

∥∥
1
≤
√

2KL (πt
i∥π̂t

i) ≤
√

2ηH.

Similar results also hold for the other two terms on the RHS of (66). Therefore, we can conclude that∥∥πt
i − πt−1

i

∥∥
1
≤ 3
√
2ηH and ∥∥πt

i − πt−1
i

∥∥2
1
≤ 18ηH.

This proves the first claim in the lemma. To establish the second claim, we use the following simple
fact for product distributions: ∥∥πt

−i − πt−1
−i

∥∥
1
≤
∑
j ̸=i

∥∥πt
j − πt−1

j

∥∥
1
.

Applying Jensen’s inequality yields

∥∥πt
−i − πt−1

−i

∥∥2
1
≤

∑
j ̸=i

∥∥πt
j − πt−1

j

∥∥
1

2

≤ (N − 1)
∑
j ̸=i

∥∥πt
j − πt−1

j

∥∥2
1
≤ 18(N − 1)2ηH.

This proves the second claim in the lemma.

Lemma 19. For any iteration t ∈ [T] and any step h ∈ [H], we have that

δth ≤
3

ηLτ(t)

H∑
h′=h

max
i∈N

max
s∈S

DR(π
τ(t)−h′+h−1,†
h′,i , π̃

τ(t)−h′+h−1
h′,i (·|s)) + 36(N − 1)2η2H4.

Proof. In the following, when we consider a fixed iteration t ∈ [T], we drop the notational dependence
on t and simply use τ (instead of τ(t)) to denote the stage that iteration t belongs to. For any
h ∈ [H − 1], using a similar argument as in Lemma 10 for the zero-sum game setting, one can
establish the following recursion for the value estimation error:

δth ≤
1

Lτ−1

tend
τ−1∑

j=tstart
τ−1

δjh+1 + regτ−1
h , (68)

where we recall that regτh := maxs∈S maxi∈N {regτh,i(s)}. Using Lemma 17, we can upper bound
the regret by

regτh ≤ max
i∈N

max
s∈S

1

ηLτ
DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) + 36(N − 1)2η2H3.

We substitute the regret bound above back into the recursion 68 to get that

δth ≤ max
i∈N

max
s∈S

1

ηLτ−1
DR(π

τ−1,†
h,i , π̃τ−1

h,i (·|s)) + 36(N − 1)2η2H3 +
1

Lτ−1

tend
τ−1∑

j=tstart
τ−1

δjh+1. (69)

Notice that according to the definition in Algorithm 3, the behavior of the policy π̄t
h does not change

with t within the same stage τ as it always uniformly sample a time index from the previous stage

41

and execute the corresponding history policy. Consequently, the δjh+1 term is also unchanged within
a stage. Hence, we have

1

Lτ−1

tend
τ−1∑

j=tstart
τ−1

δjh+1 = δτ−1
h+1.

The recursion in (69) can hence be rewritten more succinctly as

δth ≤ max
i∈N

max
s∈S

1

ηLτ−1
DR(π

τ−1,†
h,i , π̃τ−1

h,i (·|s)) + 36(N − 1)2η2H3 + δτ−1
h+1.

Applying the above inequality recursively over h leads to

δth ≤
H∑

h′=h

max
i∈N

max
s∈S

1

ηLτ−h′+h−1
DR(π

τ−h′+h−1,†
h′,i , π̃τ−h′+h−1

h′,i (·|s)) + 36(N − 1)2η2H3(H − h+ 1)

≤
H∑

h′=h

max
i∈N

max
s∈S

1

ηLτ

(
1 +

1

H

)h′−h+1

DR(π
τ−h′+h−1,†
h′,i , π̃τ−h′+h−1

h′,i (·|s)) + 36(N − 1)2η2H4

≤ 3

ηLτ

H∑
h′=h

max
i∈N

max
s∈S

DR(π
τ−h′+h−1,†
h′,i , π̃τ−h′+h−1

h′,i (·|s)) + 36(N − 1)2η2H4, (70)

where the second step uses our choice of the stage lengths that Lτ+1 = ⌊(1 + 1/H)Lτ⌋, which
further implies that

1

Lτ−h′+h−1
≤ 1

Lτ

(
1 +

1

H

)h′−h+1

.

The last step in (70) is due to the fact that (1 + 1/H)H ≤ e ≈ 2.71828.

E.4 Proof of Theorem 6

Proof. First, recall the definitions of π̃k, π̄k and πk,†
i . Since we use a negative entropy regularizer R,

the Bregman divergence DR(·, ·) reduces to the Kullback–Leibler divergence. Using these notations,
our convergence results of learning CCE in an individual game Gk (Theorem 5) can be written more
succinctly as

CCE-gap(π̄k) ≤ 3

ηT
KL
(
πk,†∥π̃k

)
+ 36N2η2H4.

where for ease of notations, we write

KL
(
πk,†∥π̃k

)
:=

H∑
h=1

τ̄∑
τ=1

N∑
i=1

max
s∈S

KL
(
πk,τ,†
h,i (·|s)∥π̃k

h,i(·|s)
)
.

Here, πk,τ,†
h,i (·|s) represents the value of πτ,†

h,i(·|s) in game Gk. By running Algorithm 2 on a sequence
of K games, we have that

1

K

K∑
k=1

CCE-gap(π̄k) ≤ 3

ηKT

K∑
k=1

KL
(
πk,†∥π̃k

)
+ 36N2η2H4. (71)

Recall the notation that [x]α = (1− α)x+ α
d1 for x ∈ Rd. By applying this notation entry-wise to

each probability distribution in πk,† and invoking Lemma 1, we obtain that

1

K

K∑
k=1

KL
(
πk,†∥π̃k

)
≤ 1

K

K∑
k=1

KL
(
[πk,†]α∥π̃k

)
+ 4Hτ̄α ln

Amax

α
. (72)

Notice that the conditions of Lemma 1 are satisfied here because we select our initial policies to
be π̃k

i = 1
k−1

∑k−1
k′=1[π

k′,†
i]α,∀i ∈ N , which assigns a probability of at least α1/Ai to each action.

42

Adding and subtracting the same term leads to

K∑
k=1

KL
(
[πk,†]α∥π̃k

)
=min

π

K∑
k=1

KL
(
[πk,†]α∥π

)
+min

π

K∑
k=1

(
KL
(
[πk,†]α∥π̃k

)
−KL

(
[πk,†]α∥π

))
≤min

π

K∑
k=1

KL
(
[πk,†]α∥π

)
+

8Amax(1 + lnK)

α
, (73)

where the minimum π is taken over all policies of the form of π = (π1, . . . , πN) such that πi :
[τ̄]× [H]×S → ∆(Ai). We now turn to establish the second step in (73), which reduces to bounding
the following regret where the loss functions are given by the Bregman divergences:

reg = min
π

K∑
k=1

(
KL
(
[πk,†]α∥π̃k

)
−KL

(
[πk,†]α∥π

))
.

It is known that the unique minimum of
∑k

k′=1 KL([πk′,†]α∥·) is attained at 1
k

∑k
k′=1[π

k′,†]α (see
Proposition 1 of [5] for a proof of this claim). Therefore, by letting π̃k

i = 1
k−1

∑k−1
k′=1[π

k′,†
i]α, we

are essentially running the follow the leader (FTL) algorithm (separately for each entry (τ, h, s) ∈
[τ̄]× [H]× S) on the sequence of losses defined by

∑K
k=1 KL([πk,†]α∥·). We can then invoke the

logarithmic regret guarantee of FTL with respect to Bregman divergences, which was established in
[35] and is reproduced as Lemma 2 in Appendix A for completeness.

To show that Lemma 2 is applicable, we remark that the Kullback–Leibler divergence is not Lipschitz
continuous near the boundary of the probability simplex, which breaks condition required by Lemma 2.
However, by restricting to policies of the form [πi]α = (1 − α)πi + α

Ai
1, which is at least α

Ai
-

distance away from the simplex boundary, the Kullback–Leibler divergence is indeed Lipschitz
continuous within this α

Ai
-restricted domain. One can show that the Lipschitz constant of each entry

of KL([πk,†
i]α∥·) is 2Amax

α within the α
Amax

-restricted domain. This allows us to apply Lemma 2 to
obtain the result in (73).

Moving forward from (73), we again apply the property that the unique minimum of∑k
k′=1 KL([πk′,†]α∥·) is attained at 1

k

∑k
k′=1[π

k′,†]α, which leads to

K∑
k=1

KL
(
[πk,†]α∥π̃k

)
≤min

π

K∑
k=1

KL
(
[πk,†]α∥π

)
+

8Amax(1 + lnK)

α

=

K∑
k=1

KL
(
[πk,†]α∥[π⋆]α

)
+

8Amax(1 + lnK)

α

≤ (1− α)
K∑

k=1

KL
(
πk,†∥π⋆

)
+

8Amax(1 + lnK)

α
, (74)

where the second step uses the definition that π⋆
i = 1

K

∑K
k=1 π

k,†
i , and the last step is by the (joint)

convexity of the Kullback–Leibler divergence. Substituting (74) to (72) yields

1

K

K∑
k=1

KL
(
πk,†∥π̃k

)
≤ 1

K

K∑
k=1

KL
(
πk,†∥π⋆

)
+

8Amax(1 + lnK)

Kα
+ 4Hτ̄α ln

Amax

α
.

Further substituting the above result back into (71) and using the definition

∆π =

K∑
k=1

N∑
i=1

KL
(
πk,†
i ∥π⋆

i

)
,

we obtain that

1

K

K∑
k=1

CCE-gap(π̄k) ≤ 3

ηKT

(
∆π +

8Amax(1 + lnK)

α
+ 4KHτ̄α ln

Amax

α

)
+ 36N2η2H4.

43

Finally, using the conditions that α = 1/
√
K, η = K−1/6H−2/3T−1/3N−2/3, and τ̄ ≤ 4H log T

(see (62) for a proof) yields

1

K

K∑
k=1

CCE-gap(π̄k) ≤
(
HN

T

) 2
3
(

∆π

K5/6
+

10Amax lnK

K1/3
+

52H2 lnT log(AmaxK)

K1/3

)
.

This completes the proof of the theorem.

F Simulations

In this appendix, we provide detailed discussions of our simulation results. We first evaluate our
algorithms on a sequence of handcrafted two-player zero-sum Markov games (Appendix F.1) and
Markov potential games (Appendix F.2). Then, in Appendix F.3, we further demonstrate the scalability
of our methods by considering larger-scale tasks, including a simplified version of the Poker endgame
considered in [27] and a 1D linear-quadratic tracking task [37].

F.1 Zero-Sum Markov Games

We first evaluate our meta-learning procedure presented in Section 3 on a sequence of K = 10
two-player zero-sum Markov games. We generate a sequence of K similar games by first specifying
a “base game” and then adding random perturbations to its reward function to get K slightly different
games. For our base game, we consider a simple zero-sum game with two states S = {s0, s1}, where
each player has two candidate actions A = {a0, a1} and B = {b0, b1}, respectively. The reward
matrices for the max-player at the two states are given in Table 1. We add independent N (0, 0.1)
Gaussian perturbation to each entry of the reward matrix to generate K = 10 slightly different games.

s0 b0 b1

a0 0.5 0
a1 -1 0.5

s1 b0 b1

a0 0.5 0
a1 0.2 1

Table 1: Reward matrices for the max-player in the base game.

To better visualize the similarity level of these games, we plot the NE policies of the two perturbed
matrix games in each of the K = 10 games. In particular, let µ⋆ = (µ⋆

0, µ
⋆
1) ∈ [0, 1]2 and

ν⋆ = (ν⋆0 , ν
⋆
1) ∈ [0, 1]2 denote the NE policies of the two players in a certain game. Since

µ⋆
0 + µ⋆

1 = 1 and ν⋆0 + ν⋆1 = 1, it suffices to simply use the two values µ⋆
0 ∈ [0, 1] and ν⋆0 ∈ [0, 1] to

characterize the NE policies. Figure 2 (c) plots the relative position of the (µ⋆
0, ν

⋆
0) pairs of the K × 2

games in the space of [0, 1]× [0, 1] to illustrate their closeness, where the [0, 1]× [0, 1] space is large
enough to cover all possible zero-sum games of the same form. We note that Figure 2 (c) only plots
the NE pairs with respect to the perturbed matrix games as defined in Table 1. Due to the existence of
the state transitions, the NE policies with respect to the stage Q-functions can be more diversified. In
this sense, we can see that our similarity assumption of the games is not too stringent as it allows the
games to have relatively diverse NE policies.

0 250 500 750 1000
Iterations

0

2

4

N
E

-g
ap

Individual NE-gap

Meta-learning NE-gap

(a) Zero-sum game NE-gap

0 250 500 750 1000
Iterations

0

1

2

V
al

ue

Individual value

Meta-learning value

(b) Zero-sum game value

0.0 0.2 0.4 0.6 0.8 1.0
µ?0

0.00

0.25

0.50

0.75

1.00

ν
? 0

State s0

State s1

(c) NE visualization

Figure 2: Average (a) NE-gaps and (b) values of the policies output by individual learning and
meta-learning in zero-sum Markov games. Shaded areas denote the standard deviations. (c) visualizes
the NE policies of the K games in the normalized space [0, 1]× [0, 1] to illustrate their closeness.

44

The state transition function is defined as follows: In both states s0 and s1, if the two players take
matching actions (namely (a0, b0) or (a1, b1)), the system stays at the current state with probability
0.9, and transitions to the other state with probability 0.1. On the other hand, if the two players take
opposite actions (namely (a0, b1) or (a1, b0)), the environment will stay at the current state with
probability 0.1, and will transition to the other state with probability 0.9.

Each of the K games lasts for H = 10 steps, and we run our algorithm for T = 1000 iterations on
each game. We use a learning rate of η = 0.02 for Algorithm 1. We evaluate the convergences of the
algorithms in terms of NE-gap(µ, ν) := V †,ν

1 (s1)− V µ,†
1 (s1), which measures the distances from

the output policies to each agent’s best response policy. Figure 2 (a) compares the average NE-gap
over the K games between individual learning and meta-learning. Figure 2 (b) further compares the
average values achieved by the two methods. All results are obtained on a laptop with an Intel Core
i5-1240P CPU. We see that compared to learning each task individually, meta-learning can utilize
knowledge from previous tasks to attain better policy initialization in a new task and converges to an
approximate NE policy (and value) using much fewer iterations.

F.2 Markov Potential Games

We now evaluate our meta-learning algorithm from Section 4 on a sequence of Markov potential
games. We illustrate our algorithm in cooperative games, an important class of MPGs where the
agents share the same rewards. We again generate a sequence of K similar games by first specifying
a base game and then adding random perturbations to its reward function to get K slightly different
games. Our base game has two states S = {s0, s1} and each player has two candidate actions
A = {a0, a1} and B = {b0, b1}. The shared reward matrices for both players at the two states are
given in Table 2. We add independent N (0, 0.1) Gaussian perturbation to each entry of the reward
matrix to generate K = 10 slightly different games.

s0 b0 b1

a0 0.1 0.5
a1 0.5 1

s1 b0 b1

a0 0.8 0.2
a1 0.2 0.8

Table 2: Reward matrices for both players in the base game.

The state transition function is defined in the same way as in Appendix F.1: In both states s0 and s1,
if the two players take matching actions (namely (a0, b0) or (a1, b1)), the system stays at the current
state with probability 0.9, and transitions to the other state with probability 0.1. On the other hand, if
the two players take opposite actions (namely (a0, b1) or (a1, b0)), the environment will stay at the
current state with probability 0.1, and will transition to the other state with probability 0.9.

0 250 500 750 1000
Iterations

0.0

0.5

1.0

1.5

N
E

-g
ap

Individual NE-gap

Meta-learning NE-gap

(a) Potential game NE-gap

0 250 500 750 1000
Iterations

6

8

10

V
al

ue

Individual value

Meta-learning value

(b) Potential game value

Figure 3: Average (a) NE-gaps and (b) values of the policies output by individual learning and
meta-learning in Markov potential games. Shaded areas denote the standard deviations.

Each of the K games lasts for H = 10 steps, and we run our algorithm for T = 1000 iterations
on each game. We use a learning rate of α = 0.05 for the independent projected Q-descent
algorithm (7). We evaluate the convergences of the algorithms in terms of NE-gap(µ, ν) :=
1
2 (V

†,ν
1 (s1) + V µ,†

1 (s1)) − V µ,ν
1 (s1), which measures the distances from the algorithm’s output

policies to each agent’s best response policy. Figure 3 (a) compares the average NE-gap over the
K games between individual learning and meta-learning. Figure 3 (b) further compares the average

45

values achieved by the two methods. Again, we see that meta-learning finds better policy initialization
in a new task and converges to an approximate NE policy (and value) using much fewer iterations.

F.3 Scalability

To demonstrate the scalability of our algorithms, we further provide simulation results on some
larger-scale tasks including a Poker endgame and a 1D linear-quadratic tracking task.

The Poker endgame that we consider here is a simplified version of the one used in [27]. We use a
public River endgame (“Endgame A” of [27]) that was released in the Brains vs AI competition [6].
This task is a zero-sum game with 2 players and roughly 1.7 million states. We simplify the game
setup by restricting to 2 actions (namely calling and folding) for each player. Poker is a partially
observable game, but we found that our algorithm still performs well if each agent simply uses its
local observation as the state. We generate a sequence of K = 10 similar games by adding N (0, 0.5)
perturbations to the normalized stack amounts of the players, which essentially perturbs the reward
functions. The convergence of the average NE-gap over the K games in Figure 4(a) shows that
our method can handle such a large state space, and our meta-learning method can converge to an
approximate NE policy faster than individual learning.

0 25000 50000 75000 100000
Iterations

0.2

0.4

0.6

N
E

-g
ap

Individual NE-gap

Meta-learning NE-gap

(a) Poker endgame NE-gap

0 2000 4000
Iterations

0.5

1.0

1.5

N
E

-g
ap

Individual NE-gap

Meta-learning NE-gap

(b) LQ tracking NE-gap

0 2000 4000
Iterations

−6

−4

−2

V
al

ue

Individual value

Meta-learning value

(c) LQ tracking value

Figure 4: Average NE-gaps and values of the policies output by individual learning and meta-learning
in the Poker endgame and linear-quadratic tracking task. Shaded areas denote the standard deviations.

In the 1D linear-quadratic tracking problem, each agent tries to track the positions of the other agents
and stay close to them. We adopt the discrete setting as has been utilized in a few recent works
[52, 37, 46], which is an approximation of the classic continuous linear-quadratic formulations. This
task has primarily been formulated as a mean-field game, but we consider a finite-agent variant of it
in our simulations. Specifically, the task we consider can be modeled as a Markov potential game
with 4 players, 625 states, and a joint action space of size 81. For each agent i, let st,i ∈ Si and
at,i ∈ Ai, respectively, denote its local state (i.e., position) and local action at time step t, and we write
st = (st,1, . . . , st,4) and at = (at,1, . . . , at,4). Each agent has 3 candidate actions Ai = {−1, 0, 1}
and can stay at 5 different positions S = {−2,−1, 0, 1, 2}. The state transition of agent i is given
by st+1,i = st,i + at,i∆t + σεt

√
∆t, where ∆t is the time duration, and εt is the i.i.d. noise taking

values from {−2,−1, 0, 1, 2} following a normal distribution. Let µt denote the empirical mean of
all the agents’ positions at time t, i.e., µt =

1
4

∑4
i=1 st,i. The reward function for agent i is specified

as ri(s, a) = (− 1
2a

2
t,i − κ

2 (µt − st,i)2)∆t. Intuitively, this reward function incentivizes agents to
track and stay close to the population (despite the random drift εt), but discourages agents from taking
large-magnitude actions. We do not consider terminal costs in our simulations. The parameters are
set as ∆t = 1, σ = 1, and κ = 0.5. We generate a sequence of similar games by adding N (0, 0.5)
perturbations to the local state transition drift magnitudes. Figures 4(b) and 4(c) demonstrate that our
meta-learning method achieves faster NE-gap and value convergences than individual learning in the
linear-quadratic tracking task.

46

