
Cheaply Estimating Inference Efficiency Metrics for
Autoregressive Transformer Models

Deepak Narayanan∗

NVIDIA
dnarayanan@nvidia.com

Keshav Santhanam
Stanford University

keshav2@cs.stanford.edu

Peter Henderson
Stanford University

phend@cs.stanford.edu

Rishi Bommasani
Stanford University

nlprishi@stanford.edu

Tony Lee
Stanford University

tonyhlee@stanford.edu

Percy Liang
Stanford University

pliang@cs.stanford.edu

Abstract

Large language models (LLMs) are highly capable but also computationally ex-
pensive. Characterizing the fundamental tradeoff between inference efficiency
and model capabilities is thus important, but requires an efficiency metric that is
comparable across models from different providers. Unfortunately, raw runtimes
measured through black-box APIs do not satisfy this property: model providers
can implement software and hardware optimizations orthogonal to the model, and
shared infrastructure introduces performance contention. We propose a new met-
ric for inference efficiency called idealized runtime, that puts models on equal
footing as though they were served on uniform hardware and software without
performance contention, and a cost model to efficiently estimate this metric for
autoregressive Transformer models. We also propose variants of the idealized
runtime that incorporate the number and type of accelerators needed to serve
the model. Using these metrics, we compare ten LLMs developed in 2022 to
provide the first analysis of inference efficiency-capability tradeoffs; we make
several observations from this analysis, including the fact that the superior infer-
ence runtime performance of certain APIs is often a byproduct of optimizations
within the API rather than the underlying model. Our code is open sourced at
https://github.com/stanford-crfm/helm-efficiency.

1 Introduction

Large language models (LLMs; Devlin et al., 2019; Brown et al., 2020; Rae et al., 2021; Lieber et al.,
2021; Smith et al., 2022; Black et al., 2022; Chowdhery et al., 2022; OpenAI, 2023) have grown
in size by almost four orders of magnitude in recent years, achieving state-of-the-art accuracy on
traditional tasks like question answering and summarization (Zellers et al., 2019; Hendrycks et al.,
2020; Zhang et al., 2023). LLMs display many exciting new capabilities as well, like reasoning
about the physical world (Bisk et al., 2020), solving math problems (Cobbe et al., 2021; Li et al.,
2023), and generating code (Chen et al., 2021), to name a few. To capitalize on these capabilities,
several organizations offer access to LLMs through black-box APIs (OpenAI; AI21; Cohere) and
many companies are deploying LLM-powered products at scale like ChatGPT, Bing, jasper.ai and
Github Copilot (Reuters; Microsoft; Scale VP).

When building models, both users and developers must balance the benefits of new capabilities against
the costs of scale. Recent efforts have begun to systematically evaluate and compare the downstream
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Figure 1: Comparison of raw runtime to the two runtime metrics proposed in this work.

task accuracies of LLMs (Brown et al., 2020; Rae et al., 2021; Liang et al., 2023; Srivastava et al.,
2023), while others have examined the massive energy, financial, and computational costs of model
training (Cao et al., 2020; Henderson et al., 2020; Strubell et al., 2019; Bender et al., 2021; Patterson
et al., 2021; Bommasani et al., 2021, §5.3). However, few have considered the trade-offs of inference
efficiency vs. capability improvements (Bommasani et al., 2023). This is important since model
inference costs might far outweigh training costs for certain applications (e.g., ChatGPT had about
180 million unique visitors in August 2023 (Reuters, 2023)).

Our main contribution in this paper is a cost model for the end-to-end runtime of autoregressive gener-
ation using Transformer models with multi-head attention (Vaswani et al., 2017). Since autoregressive
inference is composed of two stages that have vastly different computational properties (Cursor,
2023), the end-to-end runtime cannot be estimated directly from the total number of floating-point
operations. We instead consider each of these two stages independently, and observe that inference
runtime can be expressed as the sum of a parameterized piecewise linear function of the number
of prompt tokens and a linear function of the number of output tokens under certain assumptions2.
These parameters are specific to the target model and the software / hardware stack used. Our cost
model can be efficiently fit to runtime profiles collected on either dedicated hardware or through
black-box APIs, and allows us to estimate the runtime of a workload without running it in its entirety.

Raw runtimes of inference queries to black-box APIs are not inherently comparable across model
providers since the API can include optimizations orthogonal to the model (e.g., caching, customized
hardware, etc.) and be susceptible to performance variance (e.g., in our experiments, we found that
heavy load can worsen raw runtime by up to 2× for certain model providers). This makes it hard to
gauge the inference efficiency of models on a level playing field, which can be important for model
creators and researchers to understand the full long-term costs of various training decisions (e.g.,
model architecture / number of parameters). Raw runtime is still a good metric for end users who are
directly impacted by slow (or fast) predictions.

We propose inference efficiency metrics that facilitate apples-to-apples comparisons across models.
The main metric we propose is the idealized runtime, which is the runtime of an inference query if
run on a specified common software and hardware stack. The idealized runtime can also be used
to compute idealized energy and dollar costs to take into account the cost of the hardware used to
serve the model. All of these idealized metrics can be estimated efficiently with our cost model.

Using these metrics, we conduct a novel analysis of inference efficiency-capability tradeoffs for
various Transformer models available through black-box APIs (§5.3). Our analysis reveals several
insights about the relative performance of these models. For example, the vanilla OpenAI/davinci
model is often on the Pareto frontier of the efficiency-capability trade-off landscape when using raw
runtime as the efficiency metric on 4 NLP scenarios covering sentiment analysis, question answering
and classification. However, this efficiency appears to come from optimizations within the API rather
than the model; OpenAI/davinci is consistently not on the idealized runtime Pareto frontier. Overall,
we found the idealized metrics to be a useful tool for model creators and researchers to understand
the true inference runtime, energy, and dollar costs that result from a particular model architecture
and training process.

2Our cost model focuses on dense Transformer models for now. We believe this is a reasonable compromise
since modern text generation APIs are powered almost exclusively by such models. The cost model needs to be
slightly modified to cover popular variants like mixture-of-expert (MoE) models. We also mainly concentrate on
small to medium context windows in this paper; see §3.1.2 for a full discussion.
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2 Autoregressive Inference of Language Models

The input to a language model is a sequence of tokens (e.g., words). Autoregressive language models
like GPT-3 (Brown et al., 2020) estimate the conditional probability Pr(xi|x1:i−1) of a token xi

given prefix tokens x1, x2, . . . , xi−1. During training, where we know all tokens in the training
input a priori, the conditional probabilities Pr(x1|∅),Pr(x2|x1:1),Pr(x3|x1:2), . . . ,Pr(xs|x1:s−1)
can be estimated in parallel, and thus only a single forward pass needs to be executed in every
iteration before the backward pass. However, at inference time, outputs of the model need to be
fed back in as inputs to generate subsequent outputs. In particular, a token xi is sampled from the
conditional probability distribution obtained by running a forward pass through the model. Different
sampling approaches can be used to obtain the token xi from the conditional probability distribution
Pr(xi|x1:i−1); common approaches include greedy sampling, random sampling with temperature
annealing, nucleus sampling, and beam search. The process then needs to be repeated for the next
token xi+1 and so on. Consequently, inference through an autoregressive language model needs to
perform multiple forward passes. This entire procedure differs from traditional inference for other
models which require just a single forward pass.

Inference queries to language models are seeded with a prompt, which is a set of initial tokens
x1, x2, . . . , xp (we assume that the prompt has p tokens). The conditional distribution Pr(xp+1|x1:p)
can then be computed through a forward pass. We call this the “prompt encoding” phase. Each
subsequent generated token (sampled from Pr(xi+1|x1:i) where i > p) needs its own forward pass
through the model, which we term the “token generation” phase.

3 Cost Model for Autoregressive Inference Runtime

We now seek to derive a cost model T (o, p; θ) for the runtime of autoregressive inference of Trans-
former models (Vaswani et al., 2017). p is the number of tokens in the input prompt, o is the number
of generated output tokens, and θ is a set of (learnt) parameters specific to a particular model, software,
and hardware deployment.

In this section, we first specify the functional form of T based on the number of floating-point
operations in the prompt encoding and token generation phases. We do not use the total number
of floating-point operations to directly estimate runtime since every floating-point operation does
not have the same “cost”: in particular, the prompt-encoding phase is compute-bound while the
token-generating phase is memory-bandwidth-bound for small batch sizes3 (Cursor, 2023; Yu et al.,
2022). We then validate the derived expression of T with experiments. Finally, we describe a
procedure to estimate the θ parameters from profiled runtimes; the profiled runtimes can be from a
dedicated server deployment, or from black-box APIs.

3.1 Derivation of Cost Model

To generate o tokens, o− 1 additional forward passes are needed (the first token is generated in the
prompt encoding phase). The runtime of generating o tokens given a prompt with p tokens is the sum
prompt_encoding_time(p) and output_generation_time(o).

3.1.1 Number of Floating-Point Operations

To derive an expression for the end-to-end runtime of autoregressive inference, we first derive
expressions for the number of floating-point operations required for each of the two steps.

In this paper, we are interested in the smallest possible inference runtime for a given query and
assume inputs to the model are grouped into batches of size 1, but the batch size can be made larger
in general to improve accelerator utilization and throughput at the cost of latency. Our cost model T
can be adapted to accommodate other batch sizes b.

3Depending on the number of output tokens generated and the prompt size, end-to-end autoregressive
inference becomes largely memory-bandwidth-bound as well; the larger the number of generated output
tokens, the lower the effective throughput since computation is in the memory-bandwidth-bound portion of the
computation for longer.
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Prompt encoding. Transformer models consist of many Transformer layers, which themselves are
composed of an attention layer (which measures the “importance” of input tokens to each other) and
a two-layer FFN in traditional formulations. As outlined in §A, the total number of operations that
need to be run in the prompt encoding phase for a single prompt of size p is 24ph2l

(
1 + p

6h

)
, where

l is the number of Transformer layers in the model and h is the hidden size. p is usually ≪ 6h, so
the number of compute operations needed to encode prompts is 24ph2l. We assume that the costs
of projecting into vocabulary space in the output layer of the model and sampling the next token
given the distribution Pr(xi+1|x1:i) are cheap compared to the other operators in the Transformer
layer (Narayanan et al., 2021).

Output token generation. When using language models autoregressively to generate new text, all
operators in the transformer model must be performed incrementally. Concretely, the key, query,
and value transformations in the self-attention layer need to be performed for just the new token,
and self-attention scores need to be computed between the new token and all previous tokens. We
can compute the number of floating-point operations needed per Transformer layer to perform these
computations. Let i be the number of tokens generated so far (i.e., we are trying to generate the
(i+ 1)th token, including the prompt). The total number of compute operations needed to generate
the (i+ 1)th token for a single prompt is 24h2l + 4ihl = 24h2l

(
1 + i

6h

)
(see §A.2 for details). If

i ≪ 6h, which is largely true in practice (e.g., for OpenAI/davinci, the maximum context length is
2048 and h = 12288), the number of floating-point operations to generate a new token is roughly
independent of the number of tokens generated so far. When context windows become large (e.g., in
excess of tens of thousands of tokens as seen in some newer models (Anthropic, 2023; MosaicML,
2023)), the cost of generating each new token is no longer independent of the number of tokens seen
so far. In this paper, we focus on smaller context windows (<10k tokens) where i ≪ 6h.

3.1.2 Final Parametric Form

Runtime can be expressed as the ratio of the number of floating-point operations and throughput:

prompt_encoding_time(p;α) =
(24h2l)p

prompt_encoding_throughput(p)
= αpp (1)

output_generation_time(o;β) =
o∑

i=2

24h2l

output_generation_throughput(i)
= β(o− 1) (2)

Here, αp is the average runtime per prompt token (different for different prompt sizes p) and β is the
runtime to generate each additional output token. prompt_encoding_throughput initially increases as p
and arithmetic intensity (Williams et al., 2009) increase; we approximate prompt_encoding_time(p) as
piecewise linear. output_generation_throughput is constant independent of the token being generated;
this means output_generation_time is a linear function of o. prompt_encoding_throughput and
output_generation_throughput can differ by an order of magnitude or more.

We break up the space of all possible prompt sizes into disjoint intervals
(p0, p1], (p1, p2], . . . , (pn−1, pn]. p0 is assumed to be the smallest possible prompt size of 0,
and pn is assumed to be the largest possible prompt size (i.e., the maximum context window size
supported by the model). For each interval (pj , pj+1], we have a corresponding parameter αj that
needs to be estimated; αj is the average runtime per prompt token when the prompt size is in the
interval (pj , pj+1].

Summing Equation 1 and Equation 2 gives us an expression for the end-to-end runtime4:

T (p, o; θ = (α, β)) = prompt_encoding_time(p, α) + (o− 1)β

=

n−1∑
j=0

1(pj < p ≤ pj+1)αjp+ (o− 1)β. (3)

To support very large context windows, the above equation needs to be modified from the sum of a
piecewise linear function of p and linear function of o to the sum of a piecewise quadratic function of
p and a quadratic function of o.

4For simplicity, we will use prompt_encoding_time in all subsequent equations since piecewise linear functions
are clunky to write.
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Figure 2: End-to-end runtimes for different prompt sizes (shown in legend in terms of number of
tokens) and models as the number of generated output tokens is varied using Megatron. We also show
a dotted best-fit line.
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(b) AI21/J1-Jumbo v1.
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(c) OpenAI/davinci.
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Figure 3: Prompt encoding runtimes versus prompt sizes. We also show a dotted best-fit line.

Model (owner/name) Provider h l n # Params (B) # GPUs×GPU type
OpenAI/davinci OpenAI 12288 96 96 175 8×80GB-A100
AI21/J1-Large v1 AI21 Labs 4096 32 32 6.7 1×80GB-A100
AI21/J1-Grande v1 AI21 Labs 5120 50 40 17 1×80GB-A100
AI21/J1-Jumbo v1 AI21 Labs 13824 76 96 178 8×80GB-A100
Cohere/XL v20220609 Cohere 8192 64 64 52 4×80GB-A100

Anthropic/v4-s3 Anthropic 8192 64 64 52 4×80GB-A100
MS+NV/TNLG v2 Microsoft 20480 105 128 530 24×80GB-A100

EleutherAI/GPT-J Together 4096 28 16 6 1×80GB-A100
Yandex/YaLM Together 10240 80 128 100 4×80GB-A100
BigScience/BLOOM Together 14336 70 112 176 8×80GB-A100

Table 1: Models studied in this paper. We also specify the number of GPUs / GPU type used to
estimate the default idealized runtimes. Different configurations are used with 32GB-V100 GPUs.

3.2 Empirical Validation

We can validate the above equations empirically on instantiations of state-of-the-art LLMs.

Setup. We use Megatron (NVIDIA), a high-performance GPU implementation of Transformer models
with support for autoregressive inference5. For a given model, we used the minimum number of GPUs
necessary to minimize cost. For example, OpenAI/davinci cannot fit on a single 80-GB A100 GPU;
we use tensor model parallelism (Shoeybi et al., 2019) to ensure that the model parameters fit in GPU
memory in such cases. Tensor model parallelism works well within a multi-GPU server (Narayanan
et al., 2021) since expensive all-to-all communication collectives like all-reduce are limited to fast
high-bandwidth NVLink. For even larger models like MS+NV/TNLG v2, we need other forms of
parallelism like pipeline model parallelism in order to fit the model in GPU memory without poor
scaling. We used NVIDIA HGX servers with 8 NVIDIA A100 SXM4 80GB GPUs; A100 GPUs
were the fastest widely available GPU as of October 2022, when we did this work.

5CUDA version 11.5.0, Megatron commit hash e156d2f and fp16 precision.
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We evaluate 10 models, ranging in size from 6 to 530 billion parameters. Evaluated models
are available in different ways: some were public via a commercial API (e.g., OpenAI/davinci,
AI21/J1-Jumbo v1), some were private but the model owner provided research access for this effort
(Anthropic/v4-s3, MS+NV/TNLG v2), and some were public and free (e.g., BigScience/BLOOM)
and were run using the Together API6. We do not evaluate models with withheld model architec-
ture details (e.g., ChatGPT). Table 1 shows the full set of evaluated models, along with the key
hyperparameters released by the respective model owner that determine their size.

Results. Figure 2 shows the end-to-end runtime measured using the above setup, versus number
of generated output tokens for different prompt sizes and models. We instantiate models based on
reported architectures, but with random (untrained) parameters, as we only care about estimating
runtime, and runtime is independent of the model’s parameters given a prompt size and number of
output tokens. We randomly sampled 4 prompt sizes ({1, 512, 1024, 1536}) from the space of all
possible prompt sizes and 7 different number of output tokens ({1, 2, 4, 8, 16, 32, 64}). Runtime was
averaged over 100 prompts of the same size. For each p, we compute a best-fit line using linear
regression. We observe that the coefficients of determination (R2) for the resulting time estimates are
very close to 1.0 (> 0.999) for all models and conclude runtime shows a linear relationship with the
number of output tokens for each prompt size (i.e., output_generation_time is a linear function of o).

Runtime also increases with prompt size. Figure 3 shows the prompt encoding time (i.e., runtime
when the number of generated output tokens is set to 1) versus prompt size (p) for 4 models. We
show prompt encoding runtimes for all p ∈ {1, 32, 64, 128, 192, . . . , 1856, 1920}. Runtime and the
prompt size have a roughly linear relationship, especially at large prompt sizes (shown by the dotted
best-fit line). At small prompt sizes, αp changes quickly; consequently, points deviate from the
best-fit line on the left side of each figure.

3.3 Estimation Procedure

Equation 3 provides an expression for the end-to-end runtime of autoregressive Transformer LLMs
for arbitrary prompt size p and number of generated tokens o that depends on (m, s, h)-specific
parameters (m is model, s is software, h is hardware). This suggests an efficient way of estimating
θ = (α, β) and consequently the runtime of a query with given prompt size and number of output
tokens on a target system from a small number of profiled runtimes.

For each model and target system, we follow a two-step process. First, for each prompt size
p ∈ {p0, p1, . . . , pn}, we profile the autoregressive Transformer LLM with numbers of output
tokens equal to 1 to get the corresponding αj = runtimej/pj . Equipped with these αj values, we
leverage the fact that total_runtime(p, o)− prompt_encoding_time(p) is a linear function in o to fit a
single linear regression model with y = runtime difference and x = o − 1 to estimate slope β. In
practice, we profile the full cross product of a set of prompt sizes and number of output tokens (i.e.,
(p, o) ∈ {p0, p1, . . . , pn} × {o1, o2, . . . , om}) and use the resulting runtimes to estimate α and β for
the target model and system.

4 Idealized and Denoised Metrics

We now propose two runtime metrics that can be efficiently estimated using the cost function T .

Idealized runtime. The idealized runtime is the runtime of an inference query assuming a particular
model architecture, software and hardware implementation (e.g., NVIDIA A100 GPUs and Megatron
respectively). It allows for the inference efficiency of models to be directly compared with each other.

T idealized
(m,s,h)(p, o; (α

idealized
(m,s,h), β

idealized
(m,s,h))) = prompt_encoding_time(p, αidealized

(m,s,h))) + (o− 1)βidealized
(m,s,h)). (4)

Denoised runtime. We also propose a runtime metric that factors out the noise from performance
variation when using black-box APIs. We call this the denoised runtime; it is the best-case runtime of
a particular query when given access to the same software and hardware used by the API provider.

T denoised
m on API a(p, o; (α

denoised
m on a , βdenoised

m on a )) = prompt_encoding_time(p, αdenoised
m on a ) + (o− 1)βdenoised

m on a . (5)

6https://together.ai.
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Figure 4: Denoised vs. raw runtime and idealized vs. denoised runtime for various models across a
range of queries along with a dotted y = x line in log scale on the left and linear scale on the right
(for both Figures 4a and 4b). OpenAI model points are shown in green, AI21 Labs points are shown
in red, and points corresponding to other models are shown in black.

The runtime for generation using a black-box API is similar to Equation 3, but with an additional
overhead term added to the prompt encoding and token generation runtimes. overhead captures the
fixed costs of using an API to serve model predictions instead of using accelerators locally (e.g.,
round-trip latency of communicating with a remote API server) and performance variability (e.g.,
queuing delay or performance contention across requests). We quantify these overheads in §B.1.

Estimating runtimes of models run in a black-box system introduces additional complexity: run-
times using black-box APIs display higher variance relative to dedicated hardware (§B.1) due to
performance contention, which can make it hard to estimate α and β. Since the variable performance
overhead is a random variable η ≥ 0, we run multiple trials for each (p, o) pair in the profiling step
and then perform linear regression using the minimum runtime (i.e., the runtime with minimum vari-
able overhead across trials) for each p and o. We see in §B.2 that this procedure is able to effectively
factor out the performance variation observed in raw runtime measurements from black-box APIs.

Idealized dollar cost. Thus far, we have only focused on runtime. However, another important
consideration is cost: larger models often require more accelerators just to fit the model in accelerator
memory and so comparing runtimes alone might not be fair. We propose two metrics that explicitly
take into account the number of accelerators for serving. Both metrics are derived from the idealized
runtime. Unfortunately, we cannot similarly modify the denoised runtime since we do not know the
number of chips used by the model provider. We compute the idealized dollar cost as tidealized

(m,s,h) (secs)×
naccelerator h × caccelerator h ($/sec).

naccelerator h is the number of accelerators used at a time to serve a single request (1 if not using model
parallelism, > 1 otherwise), and caccelerator h is the per-unit-time cost of the hardware h (e.g., if h is
NVIDIA A100 GPUs, then caccelerator could then be the per-hour cost of renting an NVIDIA A100
GPU on AWS and the idealized dollar cost is the cost of serving the model on AWS A100 GPUs).

Idealized energy cost. Similar to work that has examined the energy cost of training (Henderson
et al., 2020; Strubell et al., 2019; Patterson et al., 2021), we can estimate the idealized energy cost
as tidealized

(m,s,h) (secs) × naccelerator h × paccelerator h (W). paccelerator h is the power draw of hardware h. We
can compare the idealized energy cost of running an inference query to the energy cost of training a
model to better understand the number of inference queries needed to amortize training costs.

5 Results

In this section, we seek to answer the following: (a) Is the proposed methodology to estimate inference
runtime of autoregressive Transformer models accurate and efficient compared to exhaustive profiling?
(b) Can this method reveal interesting insights about models’ efficiency-capability tradeoffs?

5.1 Accuracy of Runtime Estimation Procedure

We computed the coefficients of determination for runtimes of queries passed through black-box
APIs for the models in Table 1. Despite performance variance, we see that the estimated runtimes
using the methodology based on linear regression are fairly accurate (R2 > 0.9), giving us further
confidence that our cost model for runtime is accurate (full results in Table 2 in §B.2).
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Figure 4a compares denoised runtimes to raw runtimes for a range of prompt sizes and number of
generated output tokens. Experiments were conducted in September and October 2022. We observe
that raw runtimes for the most part (96.6% of points) are greater than the estimated denoised runtimes
(below the y = x dotted line). Figure 4b is similar, but shows idealized runtime with A100 GPUs and
NVIDIA’s Megatron (Shoeybi et al., 2019) versus denoised runtime (same hardware and software
setup as described in §3.2). In a number of cases, the idealized runtime is much lower than the
denoised runtime, since the relevant API uses slower hardware and/or software implementations
and other features like batching that sacrifice higher throughput for lower latency. For AI21 Labs
models, idealized runtimes are greater than denoised runtimes 15.7% of the time. For OpenAI models,
idealized runtimes are greater than denoised runtimes 64.2% of the time suggesting that they are using
better hardware and / or a more optimized software stack. For all other model providers, idealized
runtimes are always lower than the denoised runtimes, indicating that our hardware and software
stack assumptions are fairly accurate.

5.2 Efficiently Evaluating Other Hardware or Software Optimizations

We can use the cost model proposed in this paper to efficiently evaluate the effectiveness of other
hardware accelerators such as TPUs (Jouppi et al., 2017) or other generations of GPUs. As an
example, Figure 11 in §B.4 shows how runtime and cost for various models is affected by using
older NVIDIA V100 GPUs instead of NVIDIA A100 GPUs (the default hardware accelerator used
in this paper). While we expect these GPUs to be slower, we can also reasonably expect them to
be cheaper (due to lower per-hour costs (Amazon)). In practice, we find that this is not the case,
suggesting V100 GPUs are slower and more expensive. This is partially because we often have
to use double the GPUs to fit the model parameters in GPU memory, since V100 GPUs only have
32GB of device memory compared to 80GB on the A100 GPUs. This analysis requires profiling on
the order of hours (< 2 hours for most models, depending on the number of (p, o) values profiled)
once, compared to hours per benchmark (depending on number of queries in the benchmark) for
exhaustive profiling. As we show in §B.3, running a few calibration queries and then fitting the cost
model to obtain (m, s, h)-specific parameters is much more efficient than exhaustive profiling. Our
cost model also allows us to evaluate different software implementations and optimizations such as
FasterTransformer (NVIDIA) or Flash-Decoding (Dao et al., 2023).

5.3 Efficiency-Capability Tradeoffs

We can now use the metrics proposed in this paper to evaluate the efficiency-capability tradeoffs of
various language models accessible through black-box APIs. We focus on the few-shot evaluation
setting adopted by BIG-Bench (Srivastava et al., 2023) and HELM (Liang et al., 2023). We consider
four tasks in HELM: a sentiment analysis task (IMDB), two question answering tasks (MMLU
[college chemistry] (Hendrycks et al., 2020) and BoolQ (Clark et al., 2019)), and a classification task
(RAFT [terms of service] (Alex et al., 2021)). Figure 5 presents the results, with each row of graphs
comparing average accuracy to a different efficiency metric. We highlight a few takeaways.

Effect of model scale. We observe that only a subset of the evaluated models fall on a Pareto frontier,
with different models on the Pareto frontier for different tasks. This suggests that model scale alone
does not predict model capabilities.

Heterogeneous software / hardware. The OpenAI/davinci model appears in the Pareto frontier
for each benchmark when using raw runtimes but not the idealized metrics. This suggests that
the OpenAI API implementation is more optimized than others: this could be due to a number of
systems optimizations, such as query caching, or even model compression techniques like distillation,
quantization or sparsification (Polino et al., 2018). Comparing these models on a level footing (same
software and hardware) requires metrics that can factor out the effect of performance optimizations
orthogonal to the model, such as idealized runtime.

Model architecture design. The relative positions of BigScience/BLOOM and Yandex/YaLM on
the idealized cost and floating-point operations (+ model size) graphs are sometimes reversed:
while BigScience/BLOOM achieves cheaper idealized cost (which takes into account the lower
number of GPUs that Yandex/YaLM requires), Yandex/YaLM uses fewer floating-point operations.
BigScience/BLOOM’s improved performance can be at least partially attributed to a more thorough
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(c) RAFT, terms of service.
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Figure 5: Capability vs. efficiency tradeoff graphs. Capability is shown as accuracy on the target
task. Six efficiency metrics are shown: model size (billions of parameters), per-query number of
floating-point operations (FLOPs), raw runtime, denoised runtime, idealized runtime (all in seconds),
and idealized cost (in cents). Idealized metrics were estimated on the hardware and software setup
described in §3.2. Metrics are averaged over all scenario instances. Models on the Pareto efficiency
frontier are shown as squares with a black dotted line connecting the points.

search through model architectures for minimum runtime with a given number of floating-point
operations in the forward pass (Scao et al., 2022).

Run-to-run variance. AI21/J1-Grande v1 often achieves worse raw runtime than AI21/J1-Jumbo
v1 despite having 10× fewer parameters, since the Grande model experiences higher performance
variance (Figure 7). The idealized metrics make it easier to see the true efficiency-capability tradeoffs.
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The denoised runtime metric can also help an end user reason through whether the observed inference
performance is an artifact of performance contention.

Cost comparison. We can also compare these estimated inference costs to the costs charged by the
black-box API provider. We observe that they are up to an order of magnitude lower than the charged
actual costs. However, we note that these reported costs do not incorporate the significant cost of
training models, which presumably gets amortized into the cost users pay with black-box APIs.

6 Related Work

A large body of work has looked at studying the impact of model scale on model capabilities.

Scaling laws and other benchmarking efforts. By fitting a curve to dozens of training runs, scaling
laws (Kaplan et al., 2020) show how the size of a model in a model family affects the training and
validation loss of these models. While these scaling laws are instructive, we also care about the
capabilities of models along other axes beyond validation loss (e.g., are models robust; do they exhibit
stereotypes?). Moreover, large language models have been shown to exhibit emergent behavior
that cannot easily be expressed as a continuous function of scale (Wei et al., 2022). Similarly, even
though model size is used as a proxy for training and inference runtime performance, it is not useful
when trying to answer questions like “Can model X meet a latency SLO of 100 milliseconds?”.
Consequently, empirical analysis is still needed to understand the capabilities of these models.

Floating-point operations and other proxy metrics for efficiency. The number of floating-point
operations (FLOPs) required for the forward pass of a model has also often been used to estimate
inference efficiency. While this is a fine approximation, it is not ideal for a couple different reasons.
First, runtime does not correlate exactly with the number of FLOPs required (Scao et al., 2022).
In particular, two operators with the same number of FLOPs could be executed with different
efficiencies if one of the operators involves more memory accesses, preventing execution at peak
device throughput. Second, as with model size, the number of FLOPs is hard to interpret. LLMs
are often part of larger applications, and the performance requirements of these applications impose
runtime constraints on LLM inference. It is hard to translate FLOPs to something actionable.

Inference runtime estimation for other types of models. Typically, inference for ML models is
straightforward: an input of a particular size is passed through the model, in the process generating
intermediate outputs and eventually a final prediction from a single forward pass. The sizes of
intermediate outputs do not change from input to input, resulting in negligible runtime variance.
This consequently makes inference runtime estimation easy. However, LLMs are different: while
the hidden size does not change from input to input, the prompt size (in number of tokens) can be
different for various inputs; runtime also depends on the number of output tokens generated.

Carbon costs of ML computation. Many papers (Canziani et al., 2016; Cao et al., 2020; Henderson
et al., 2020; Strubell et al., 2019; Bender et al., 2021; Patterson et al., 2021) have discussed the
importance of quantifying the cost of training models, both from an energy and emitted CO2
perspective. This is often possible because model providers are open about details on training
necessary to compute these metrics (Black et al., 2022; Patterson et al., 2021). While recent work has
emphasized the need for considering inference-time efficiency (Henderson et al., 2020; Bommasani
et al., 2021, §5.3), information on inference-time costs of LLMs is more scant for a multitude of
reasons (e.g., optimizations powering an API might be part of a company’s competitive advantage).

7 Conclusion

This work presents a systematic study of inference efficiency for autoregressive Transformer models
accessible through black-box APIs. We showed both analytically and empirically that the inference
runtime for these models is the sum of a piecewise linear function of the prompt size and a linear
function of the number of output tokens, and designed an idealized runtime metric that can be
estimated efficiently with minimal extra profiling. We are hopeful that our work helps model creators
make better informed decisions about long-term model investments spanning training and serving.
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Figure 6: High-level schematic of a Transformer model with l Transformer layers generating text at
inference time given a prompt “The brown fox jumps”.

A Derivation for Number of Floating-Point Operations

This paper focuses on language applications for Transformer models, where the model input is text.
The input text is first preprocessed into a sequence of tokens (e.g., words) through a process called
tokenization. Feature representations for each token (obtained by passing one-hot representations of
the tokens through an embedding layer) are passed through multiple Transformer layers. Inputs to
each Transformer layer are typically 3-dimensional tensors of shape (b, s, h) where b is the microbatch
size (number of sequences), s is the sequence length (number of tokens in each sequence), and h is
the hidden size (dimensionality of the model). For simplicity, we denote inputs as X .

Transformer layers in language models use self-attention to allow tokens to “interact” with each other.
We assume multi-head attention; other forms of attention like multi-query attention (Shazeer, 2019)
slightly change the analysis.

Self-attention is composed of the following operations:

• Attention key (K), value (V ), query (Q) transformations. Given input X , we perform
matrix multiplications K = X ×WK , V = X ×WV , and Q = X ×WQ. WK , WV , and
WQ are learned parameters.

• Attention score computation. Matrix multiplication Q × KT , followed by application
of the softmax function to obtain score tensor Z. Each element Zij is an importance
score between query token i and key token j. This is the primary mechanism that allows
interaction across tokens in a sequence.

• Attention over value computation. Matrix multiplication of scores Z by values V .

The subsequent two-layer feed forward network (FFN) consists of two linear layers (implemented as
matrix multiplications). For most models, this involves multiplying the output of the self-attention
layer by a matrix with dimension h × 4h and then multiplying the resulting output (after other
operators like layer norm) by a matrix with dimension 4h× h. Figure 6 shows how these operators
are connected in a typical “decoder-only” Transformer model.

We can now derive an expression for the number of floating-point operations in a typical forward
pass through the model, using a similar form of analysis as prior work (Narayanan et al., 2021).

A.1 Training

We use the same notation as before: b is the microbatch size (number of sequences) and h is the hidden
size of the model. In practice, the self-attention layer computation described in §A is performed with
different parameter matrices WK

i , WV
i and WQ

i . This is called running the self-attention layer with
multiple attention heads. We assume that the Transformer model has n attention heads.

s is the sequence length in terms of number of tokens. Inputs X to the Transformer layer have shape
(b, s, h). The Transformer layer’s computation during training can then be reduced to the following
matrix multiplication operations.
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• Attention key, value, query transformations: These can be expressed as a single matrix
multiplication of size: (bs, h)× (h, 3h). Output is of size (bs, 3h).

• Attention score computation: bn batched matrix multiplications (BMMs), each of size
(s, h/n)× (h/n, s). Output is of size (bn, s, s).

• Attention over value computation: bn batched matrix multiplications of size (s, s)×(s, h/n).
Output is of size (bn, s, h/n).

• Post-attention linear projection: a single matrix multiplication of size (bs, h) × (h, h) to
coalesce outputs of n attention heads to a single per-sequence vector of size h. Output is of
total size (bs, h).

• Matrix multiplications in the MLP layer of size (bs, h) × (h, 4h) and (bs, 4h) × (4h, h).
Outputs are of size (bs, 4h) and (bs, h).

Using the fact that a (m,n) × (n, k) matrix multiplication needs 2mnk floating-point operations,
the total number of compute operations is to complete the forward pass through a Transformer
layer during training is 24bsh2

(
1 + s

6h

)
. A Transformer model typically has l Transformer layers,

resulting in a total of 24bsh2l
(
1 + s

6h

)
floating-point operations in a single forward pass through the

model. For most LLMs, s ≪ 6h, meaning our expression for the number of floating-point operations
in a single training forward pass can be simplified to 24bsh2l.

A.2 Autoregressive Inference

We can similarly compute the number of floating-point operations needed to generate a single output
token during autoregressive inference. i is the number of tokens generated so far (i.e., the (i+ 1)th

token, including the prompt, needs to be generated next). The operators to be run in each Transformer
layer in this phase are:

• Attention key (K), value (V ), query (Q) transformations: These can be expressed as a single
matrix multiplication of size (b, h)× (h, 3h).

• Attention score computation: bn batched matrix multiplications (BMMs), each of size
(1, h/n)× (h/n, i) (only Q value for the latest token is used; K and V values accumulated
over all tokens so far).

• Attention over value computation: bn batched matrix multiplication of size (1, i)× (i, h/n).
• Post-attention linear projection: a single matrix multiplication of size (b, h)× (h, h).
• Matrix multiplications in the MLP layer of size (b, h)× (h, 4h) and (b, 4h)× (4h, h).

Consequently, the total number of compute operations needed to generate the (i + 1)th token is
24bh2l + 4bihl = 24bh2l

(
1 + i

6h

)
.
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B Additional Results

In this section, we show additional results. In §B.1, we quantify the performance variation of using
black-box APIs; in §B.2, we provide additional evidence that the estimation procedure described
in §3.3 is accurate; in §B.3, we quantitatively show the cost benefits of our procedure compared
to exhaustive profiling; and in §B.4, we show a case study of the type of quick analysis that this
procedure can enable.

B.1 Performance Variation in Black-Box APIs

We first measure the performance variation seen while using black-box text generation APIs.
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(a) AI21/J1-Large v1.
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(b) AI21/J1-Grande v1.
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(c) AI21/J1-Jumbo v1.

Figure 7: Per-instance runtimes using black-box APIs to access LLMs for multiple instances (prompt
size, p = 512).
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(a) AI21/J1-Large v1.
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(b) AI21/J1-Grande v1.
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(c) Cohere/XL v20220609.

1 4 8 16 32 48 64
Number of output tokens (o)

0

2

4

Ru
nt

im
e 

(s
ec

on
ds

)

p=1
p=512

p=1024
p=1536

(d) Anthropic/v4-s3.

Figure 8: Median (dotted line) and min / max (lower and upper boundaries of shaded region) end-to-
end runtimes across 5 trials for different prompt sizes (shown in legend in terms of number of tokens)
as the number of generated output tokens is varied using black-box APIs. End-to-end runtimes show
variation across the 5 trials for a given prompt size and number of output tokens.
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Figure 9: Minimum runtime across 10 trials as number of parallel queries increases for the
Anthropic/v4-s3 model. Prompt size is 512 tokens and the number of output tokens is varied
(shown in legend). Experiment was run in 10/2022.

Variation of runtimes across trials. To better quantify performance variability when using black-box
APIs, we run multiple trials of synthetic queries where we control the size of the prompt and the
number of generated output tokens. Figure 7 and Figure 8 shows per-trial runtimes for different
model offerings; Figure 7 shows runtimes for models from the same model provider (AI21). Unless
otherwise noted, all experiments in this paper were run in September or October 2022 with the latest
API versions available at the time.

We see discernible performance variance across multiple trials for different models, across prompt
sizes and number of generated output tokens. Certain models experience higher performance
variability: Figure 7 shows AI21/J1-Grande v1 has much higher performance variance than
AI21/J1-Large v1 or AI21/J1-Jumbo v1 (larger spread among points for a query of given size).
AI21/J1-Grande v1 has an average coefficient of variation of about 0.55 compared to much smaller
coefficients of variation (∼0.2) for the other AI21 models. Even for models with lower spreads (e.g.,
AI21/J1-Large v1), we see that outlier points can have as much as 3× higher runtime.

Figure 8 also interestingly shows that this performance variance can obfuscate the linear relationship
between model runtime and number of output tokens.

Variation of runtimes with load. To understand the impact of load on performance contention and
end-to-end runtime, we measured query runtime as we increase the number of queries sent in parallel
to the various black-box APIs. Figure 9 shows runtime versus number of parallel queries for different
numbers of output tokens and a fixed prompt size of 512 tokens for the Anthropic/v4-s3 model.
We observe as much as a 2× increase in runtime, indicating that load can lead to increased contention
on API servers and consequently increased observed runtime.
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B.2 Accuracy of Runtime Estimation Procedure

Model (owner/name) R2

OpenAI/davinci 0.976

AI21/J1-Large v1 0.987
AI21/J1-Grande v1 0.916
AI21/J1-Jumbo v1 0.995

Cohere/XL v20220609 0.995

Anthropic/v4-s3 0.997

Table 2: Models and coefficient of determination (R2) of time estimates for end-to-end text generation
for various models using black-box APIs.
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(a) AI21/J1-Large v1.
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(b) AI21/J1-Grande v1.

1 4 8 16 32 48 64
Number of output tokens (o)

0

2

4

Ru
nt

im
e 

(s
ec

on
ds

)

p=1
p=512

p=1024
p=1536

(c) AI21/J1-Jumbo v1.
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(d) Cohere/XL v20220609.

Figure 10: Minimum end-to-end runtimes for different prompt sizes (shown in legend in terms of
number of tokens) as the number of generated output tokens is varied using black-box APIs, along
with a best fit line estimated using the linear regression method described in §3.3 of this paper.

Model (owner/name) Metric prompt_encoding_time Per-output-token
(p = 512/1024/1536) generation time (β)

OpenAI/davinci tidealized
(m, Megatron, A100) 0.178 / 0.323 / 0.476 0.081
tdenoised
m 0.045 / 0.033 / 0.142 0.030

AI21/J1-Grande v1 tidealized
(m, Megatron, A100) 0.097 / 0.190 / 0.298 0.038
tdenoised
m 0.172 / 0.351 / 0.519 0.021

AI21/J1-Jumbo v1 tidealized
(m, Megatron, A100) 0.164 / 0.310 / 0.465 0.064
tdenoised
m 0.268 / 0.463 / 0.655 0.042

Anthropic/v4-s3 tidealized
(m, Megatron, A100) 0.108 / 0.189 / 0.279 0.054
tdenoised
m 0.193 / 0.191 / 0.380 0.057

Table 3: Models and estimated prompt encoding times / per-output-token generation times (in
seconds) for tidealized

(m, Megatron, A100) and tdenoised
m .

We computed the coefficients of determination for runtimes of queries passed through black-box
APIs; Table 2 and Figure 10 show the results. Despite performance variance, we see that the estimated
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runtimes using the methodology based on linear regression are fairly accurate (R2 > 0.9), giving us
further confidence that our cost model is accurate.

Table 3 compares the learnt performance parameters for tidealized
(m, Megatron, A100) and tdenoised

m for a subset of
the considered models. As noted above, the estimated “(Megatron, A100) idealized” parameters for
the AI21 Labs and OpenAI models are higher than the estimated denoised parameters, indicating that
both these providers use optimizations not present in the software stack we considered.

B.3 Comparison to Exhaustive Profiling

We can model the exhaustive profiling costs for computing idealized runtime and denoised runtime
separately. For the idealized runtime, we can compare the cost of exhaustively running all queries in
the local environment with estimating and then using the cost model (the approach proposed in §3.3).
We run each query multiple times to get a reliable runtime measurement. In both cases, we need to
run all queries through the API once in order to get the prompt size and number of generated tokens
for each query.

We use the following notation:

• t: Number of trials.
• Q: Set of user queries.

• Q̂: Set of calibration queries (|Q̂| ≪ |Q|).
• cAPI(q): Cost of invoking API on query q.
• clocal(q): Cost of invoking local model on query q.

This produces the following expression:

Idealized runtime savings =
t ·

∑
q∈Q clocal(q) +

∑
q∈Q cAPI(q)

t ·
∑

q′∈Q̂ clocal(q′) +
∑

q∈Q cAPI(q)
.

We can compute the savings concretely on the 4 HELM tasks evaluated in §5.3. We use the published
per-token costs from OpenAI for OpenAI/davinci and the per-hour cost to rent an 8-A100 server
from AWS (Amazon). With 50 trials per query (in practice, fewer trials are probably sufficient), we
observe cost savings of 57× when using our cost model compared to exhaustive execution.

We can derive a similar expression to estimate the savings from using our approach for the denoised
runtime, with the main difference being calibration queries now need to run through the black-box
API, instead of on dedicated hardware.

Denoised runtime savings =
t ·

∑
q∈Q cAPI(q)

t ·
∑

q′∈Q̂ cAPI(q′) +
∑

q∈Q cAPI(q)
.

Using the same parameters as above, we get a savings of nearly 50× using the cost model compared
to exhaustive execution (close to t since |Q̂| ≪ |Q|).
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B.4 Case Study: Using the Cost Model to Compare Different Hardware
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(b) MMLU, chemistry.
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(c) RAFT, terms of service.
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Figure 11: Comparison of idealized metrics estimated on different hardware.

Figure 11 shows a comparison between Megatron on NVIDIA A100 GPUs (the default configuration
in this paper) to Megatron on NVIDIA V100 GPUs (an older generation of GPU). While we expect
these GPUs to be slower, we can also reasonably expect them to be cheaper (due to lower per-hour
costs (Amazon)). In practice, we find that this is not the case, suggesting V100 GPUs are slower
and more expensive. This is partially because we often have to use double the GPUs to fit the
model parameters in GPU memory, since V100 GPUs only have 32GB of device memory compared
to 80GB on the A100 GPUs. This is an example of an analysis that we can quickly perform by
just running calibration queries on V100 GPUs and fitting linear regression models to the resulting
profiled runtimes.
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