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A Broader Impact635

Incorporating causality into reinforcement learning methods increases the interpretability of artificial636

intelligence, which helps humans understand the underlying mechanism of algorithms and check637

the source of failures. However, the learned causal transition model may contain human-readable638

private information about the environment, which could raise privacy issues. To mitigate this potential639

negative societal impact, the causal transition model needs to be encrypted and only accessible to640

algorithms and trustworthy users.641

B Additional Related Works642

In this section, besides the most related formulation, robust RL introduced in Sec 3.3, we also643

introduce some other related RL problem formulations partially shown in Figure 3. Then, we limit644

our discussion to mainly two lines of work that are related to ours: (1) promoting robustness in RL;645

(2) concerning the spurious correlation issues in RL.646

B.1 Related RL formulations647

Robustness to noisy state: POMDPs and SA-MDPs. State-noisy MDPs refer to the RL problem648

that the agent can only access and choose the action based on a noisy observation rather than the true649

state at each step, including two existing types of problems: Partially observable MDPs (POMDPs)650

and state-adversarial MDPs (SA-MDPs), shown in Figure 3(b). In particular, at each step t, in651

POMDPs, the observation ot is generated by a fixed probability transition O(· | st) (we refer to the652

case that ot only depends on the state st but not action); for state-adversarial MDPs, the observation653

is an adversary ⌫(st) against and thus determined by the conducted policy, leading to the worst654

performance by perturbing the state in a small set around itself. To against the state perturbation, both655

POMDPs, and SA-MDPs are indeed robust to the noisy observation, or called agent-observed state,656

but not the real state that transitions to the environment and next steps. In contrast, our RSC-MDPs657
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propose the robustness to the real state shift that will directly transition to the next state in the658

environment, involving additional challenges induced by the appearance of out-of-distribution states.659

Robustness to unobserved confounder: MDPUC and confounded MDPs. To address the mislead-660

ing spurious correlations hidden in components of RL, people formulate RL problems as MDPs with661

some additional components – unobserved confounders. In particular, the Markov decision process662

with unobserved confounders (MDPUC) [35] serves as a general framework to concern all types of663

possible spurious correlations in RL problems – at each step, the state, action, and reward are all664

possibly influenced by some unobserved confounder, shown in Figure 2(d); confounded MDPs [19]665

mainly concerns the misleading correlation between the current action and the next state, illustrated666

in Figure 3(e). The proposed state-confounded MDPs (SC-MDPs) can be seen as a specified type of667

MDPUC that focus on breaking the spurious correlation between different parts of the state space668

itself (different from confounded MDPs which consider the correlation between action and next669

state), motivated by various real-world applications in self-driving and control tasks. In addition, the670

proposed formulation is more flexible and can work in both online and offline RL settings.671

Contexual MDPs (CDMPs). A contextual MDP (CMDP) [36] is basically a set of standard MDPs672

sharing the same state and action space but specified by different contexts within a context space.673

In particular, the transition kernel, reward, and action of a CMDP are all determined by a (possibly674

unknown) fixed context. The proposed robust state-confounded MDPs (RSC-MDPs) are similar675

to CMDPs if we cast the unobserved confounder as the context in CMDPs, while different in two676

aspects: (1) In a CMDP, the context is fixed throughout an episode, while the unobserved confounder677

in RSC-MDPs can vary as {ct}1tT ; (2) In the online setting, the goal of CMDP is to beat the678

optimal policy depending on the context, while RSC-MDPs seek to learn the optimal policy that does679

not depend on the confounder {ct}1tT .680

B.2 Related literature of robustness in RL681

Robust RL (robust MDPs). Concerning the robust issues in RL, a large portion of works focus on682

robust RL with explicit uncertainty of the transition kernel, which is well-posed and a natural way683

to consider the uncertainty of the environment [13, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. However,684

to define the uncertainty set for the environment, most existing works use task structure-agnostic685

and heuristic ’distance’ such as KL divergence and total variation [14, 47, 48, 15, 49, 50, 51, 52]686

to measure the shift between the training and test transition kernel, leading to a homogeneous687

(almost structure-free) uncertainty set around the state space. In contrast, we consider a more general688

uncertainty set that enables the robustness to a task-dependent heterogeneous uncertainty set shaped689

by unobserved confounder and causal structure, in order to break the spurious correlation hidden in690

different parts of the state space.691

Robustness in RL Despite the remarkable success that standard RL has achieved, current RL692

algorithms are still limited since the agent is vulnerable if the deployed environment is subject to693

uncertainty and even structural changes. To address these challenges, a recent line of RL works694

begins to concern robustness to the uncertainty or changes over different components of MDPs –695

state, action, reward, and transition kernel, where a review [8] can be referred to. Besides robust696

RL framework concerning the shift of the transition kernel and reward, to promote robustness in697

RL, there exist various works [11, 12] that consider the robustness to action uncertainty, i.e., the698

deployed action in the environment is distorted by an adversarial agent smoothly or circumstantially;699

some works [9, 6, 10, 53, 54, 55] investigate the robustness to the state uncertainty including but not700

limited to the introduced POMDPs and SA-MDPs in Appendix B.1, where the agent chooses the701

action based on observation – the perturbed state determined by some restricted noise or adversarial702

attack. The proposed RSC-MDPs can be regarded as addressing the state uncertainty since the703

shift of the unobserved confounder leads to state perturbation. In contrast, RSC-MDPs consider704

the out-of-distribution of the real state that will directly influence the subsequent transition in the705

environment, but not the observation in POMDPs and SA-MDPs that will not directly influence the706

environment.707

B.3 Related literature of spurious correlation in RL708

Confounder in RL. These works mainly focus on the confounder between action (treatment) and709

state (effect), which is a long-standing problem that exists in the causal inference area. However,710
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we find that the confounder may cause problems from another perspective, where the confounder is711

built upon different dimensions of the state variable. Some people focus on the confounder between712

action and state, which is common in offline settings since the dataset is fixed and intervention is not713

allowed. But in the online setting, actions are controlled by an agent and intervention is available714

to eliminate spurious correlation. [56] reduces the spurious correlation between action and state in715

the offline setting. [57] deal with environment-irrelevant white noise; possible shift + causal [58].716

The confounder problem is usually easy to solve since agents can interact with the environment to do717

interventions. However, different from most existing settings, we find that even with the capability718

of intervention, the confounding between dimensions in states cannot be fully eliminated. Then the719

learned policy is heavily influenced if these confounder change during testing.720

Invariant Feature learning. The problem of spurious correlation has attracted attention in the721

supervised learning area for a long time and many solutions are proposed to learn invariant features to722

eliminate spurious correlations. A general framework to remedy the ignorance of spurious correlation723

in empirical risk minimization (ERM) is invariant risk minimization (IRM) [59]. Other works tackle724

this problem with group distributional robustness [60], adversarial robustness [61], and contrastive725

learning [62]. These methods are also adapted to sequential settings. The idea of increasing the726

robustness of RL agents by training agents on multiple environments has been shown in previous727

works [63, 30, 30]. However, a shared assumption among these methods is that multiple environments728

with different values of confounder are accessible, which is not always true in the real world.729

Counterfactual Data Augmentation in RL. One way to simulate multiple environments is data730

augmentation. However, most data augmentation works [24, 64, 25, 65, 66, 67, 68] apply image731

transformation to raw inputs, which requires strong domain knowledge for image manipulation and732

cannot be applied to other types of inputs. In RL, the dynamic model and reward model follow certain733

causal structures, which allow counterfactual generation of new transitions based on the collected734

samples. This line of work, named counterfactual data augmentation, is very close to this work.735

Deep generative models [69] and adversarial examples [70] are considered for the generation to736

improve sample efficiency in model-based RL. CoDA [71] and MocoDA [32] leverage the concept of737

locally factored dynamics to randomly stitch components from different trajectories. However, the738

assumption of local causality may be limited.739

Domain Randomization. If we are allowed to control the data generation process, e.g., the underlying740

mechanism of the simulator, we can apply the golden rule in causality – Randomized Controlled741

Trial (RCT). The well-known technic, domain randomization [72], exactly follows the idea of RCT,742

which randomly perturb the internal state of the experiment in simulators. Later literature follows this743

direction and develops variants including randomization guided by downstream tasks in the target744

domain [73, 74], randomization to match real-world distributions [75, 76], and randomization to745

minimize data divergence [77]. However, it is usually impossible to randomly manipulate internal746

states in most situations in the real world. In addition, determining which variables to randomize is747

even harder given so many factors in complex systems.748

Discovering Spurious Correlations Detecting spurious correlations helps models remove features749

that are harmful to generalization. Usually, domain knowledge is required to find such correlations [78,750

79, 80]. However, when prior knowledge is accessible, technics such as clustering can also be used to751

reveal spurious attributes [35, 81, 82]. When human inspection is available, recent works [83, 84, 85]752

also use explainability techniques to find spurious correlations. Another area for discovery is concept-753

level and interactive debugging [86, 87], which leverage concepts or human feedback to perform754

debugging.755

C Theoretical Analyses756

C.1 Proof of Theorem 1757

The proof follows the pipeline of proving the existence of the optimal policy for standard MDPs but758

tailored for RSC-MDPs since the additional components confounder Cs and the infimum operator.759

To begin with, recall that the goal is to find a policy e⇡ = {e⇡t}1tT such that:760

eV e⇡,�
t (s) = eV ?,�

t (s) := sup
⇡2⇧

eV ⇡,�
t (s) and eQe⇡,�

t (s, a) = eQ?,�
t (s, a) := sup

⇡2⇧

eQ⇡,�
t (s, a). (8)
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Towards this, we start from the first claim in equation 8. Before proceeding, we let {St, At, Rt, Ct}761

denote the random variables at time step t for all 1  t  T . Then due to the Markov properties, we762

know that conditioned on current state st, the future state, action, and reward are all independent from763

the previous s1, a1, r1, c1, · · · , st�1, at�1, rt�1, ct�1. For convenience, we introduce the following764

notation:765

81  t  T : P+t := {Pk}tkT and U
�(P c

+t) := {U
�(P c

k )}tkT (9)

to represent the collection of variables from time step t to the end of the episode, and choose e⇡ to766

obey767

81  t  T : ⇡t(s) := argmaxa2AE
"
rt(s, a) + inf

Pt2U�(P c
t,s,a)

Ect⇠Pt

h
eV ?,�
t+1(st+1)

i#
(10)

With the above preparation in mind, for any (t, s) 2 {1, 2, · · · , T}⇥ S , one has768

eV ?,�
t (s)

(i)
= sup

⇡2⇧
inf

P+t2U�(P c
+t)

eV ⇡,P
t (s)

(ii)
= sup

⇡2⇧
inf

P+t2U�(P c
+t)

E⇡,P+t

"
TX

k=t

rk(sk, ak)

#

(iii)
= sup

⇡2⇧
inf

P+t2U�(P c
+t)

E⇡t

"
rt(s, at)

+ Ect⇠PtE
"

TX

k=t+1

rk(sk, ak) |⇡, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

##

= sup
⇡2⇧

E⇡t

"
inf

P+t2U�(P c
+t)

rt(s, at) + inf
P+t2U�(P c

+t)
Ect⇠Pt

E
"

TX

k=t+1

rk(sk, ak) |⇡, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

##

where (i) and (ii) holds by the definitions in equation 5 and equation 3 respectively, and (iii) follows769

from expressing the term of interest by moving one step ahead and E⇡t is taken with respect to770

at ⇠ ⇡t(· |S1 = s1, A1 = a1, · · · , St = s), and the last equality arises from we can exchange the771

operators E⇡t and infP2U�(P c) since they are independent.772

To continue, we observe that the above equation can be rewritten and controlled as follows:773

eV ?,�
t (s)

= sup
⇡2⇧

E⇡t

"
inf

P+t2U�(P c
+t)

rt(s, at) + inf
Pt2U�(P c

t )
Ect⇠Pt inf

P+(t+1)2U�(P c
+(t+1)

)

E
"

TX

k=t+1

rk(sk, ak) |⇡
0, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

##

 sup
⇡2⇧

E⇡t

"
inf

P+t2U�(P c
+t)

rt(s, at) + inf
Pt2U�(P c

t )
Ect⇠Pt sup

⇡02⇧
inf

P+(t+1)2U�(P c
+(t+1)

)

E
"

TX

k=t+1

rk(sk, ak) |⇡
0, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

##

(i)
= sup

⇡2⇧
E⇡t

"
rt(s, at) + inf

Pt2U�(P c
t )
Ect⇠Pt

"
sup
⇡02⇧

inf
P+(t+1)2U�(P c

+(t+1)
)
E⇡0,P+(t+1)

"
TX

k=t+1

rk(sk, ak)

###

= sup
⇡2⇧

E⇡t

"
rt(s, at) + inf

Pt2U�(P c
t )
Ect⇠Pt

h
eV ?,�
t+1(st+1)

i #

18



= sup
at2A

Eat


rt(s, at) + inf

Pt2U�(P c
t )
Ect⇠Pt

h
eV ?,�
t+1(st+1)

i�

= inf
Pt2U�(P c

t )
E
h
rt(s, at) + Ect⇠Pt

h
eV ?,�
t+1(st+1)

i
| at = e⇡t(s)

i
, (11)

where (i) holds by the Markov decision such that the rewards {rk(sk, ak)}t+1kT conditioned774

on determined (St, At, Rt, Ct, St+1) or St+1 are the same, and the last equality follows from the775

definition of e⇡ in equation 10 and the exchangeability of infPt2U�(P c
t )

and Eat [·].776

Applying equation 11 recursively for t+ 1, · · ·T , we arrive at777

eV ?,�
t (s)  inf

Pt2U�(P c
t )
E
h
rt(s, at) + Ect⇠Pt

h
eV ?,�
t+1(st+1)

i
| at = e⇡t(s)

i

 inf
Pt2U�(P c

t )
inf

Pt+12U�(P c
t+1)

E
"
rt(s, at)+

Ect⇠Pt

h
rt+1(st+1, at+1) + Ect+1⇠Pt+1

h
eV ?,�
t+2(st+1)

ii
| (at, at+1) = (e⇡t(s), e⇡t+1(st+1))

#

 · · ·  inf
P+t2U�(P c

+t)}
E⇡,P

"
TX

k=t

rk(sk, ak)

#
= eV e⇡,�

t (s). (12)

where (i) holds by the Markov properties of the rewards.778

Observing from equation 12 that779

8s 2 S : eV ?,�
t (s)  eV e⇡,�

t (s)  sup
⇡2⇧

eV ⇡,�
t (s) = eV ?,�

t (s), (13)

which directly verifies the first assertion in equation 8 eV e⇡,�
t (s) = eV ?,�

t (s) for all s 2 S . The second780

assertion in equation 8 can be achieved analogously. Until now, we verify that there exists at least a781

policy e⇡ that obeys equation 8, which we refer it as an optimal policy since its value is equal to or782

larger than any other non-stationary and stochastic policies over all states s 2 S .783

C.2 Proof of Theorem 2784

Constructing a hard instance of the standard MDP. In this section, we consider the following785

standard MDP instance M =
�
S,A, P 0, T, r

 
, where S = {[0, 0], [0, 1], [1, 0], [1, 1]} is the state786

space consisting of four elements in dimension n = 2, and A = {0, 1} is the action space with only787

two options. The transition kernel P 0 = {P 0
t }1tT at different time steps 1  t  T is defined as788

P 0
1 (s

0
| s, a) =

⇢
1(s0 = [0, 0])1(a = 0) + 1(s0 = [0, 1])1(a = 1) if(s, a) = ([0, 0], a)
1(s0 = s) otherwise , (14)

and789

P 0
t (s

0
| s, a) = 1(s0 = s), 8(t, s, a) 2 {2, 3, · · · , T}⇥ S ⇥A. (15)

Note that this transition kernel P 0 ensures the next state transitioned from the state [0, 0] is either790

[0, 0] or [0, 1]. The reward function is specified as follows: for all time steps 1  t  T ,791

rt(s, a) =

⇢
1 if s = [0, 0] or s = [1, 1]
0 otherwise . (16)

The equivalence to one SC-MDP. Then, we shall show that the constructed standard MDP M792

can be equivalently represented by one SC-MDP Msc =
�
S,A, T, r, C, {Pi

t}, P
c
} with C := [0, 1],793

which yields the sequential observations {st, at, rt}1tT induced by any policy and any initial794

state distribution in two processes are identical. To specify, S,A, T, r are kept the same as M.795

Here, {Pi
t} shall be specified in a while, which determines the transition to each dimension of the796

next state conditioned on the current state, action, and confounder for all time steps, i.e., sit+1 ⇠797

Ect⇠P c
t

⇥
P

i
t(· | st, at, ct)

⇤
for any i-th dimension of the state (i 2 {1, 2} and all timestep 1  t  T .798
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For convenience, we denote Pt := [P1
t ,P

2
t ] 2 �(S) as the transition kernel towards the next state,799

namely, st+1 ⇠ Ect⇠P c
t
[Pt(· | st, at, ct)].800

To ensure the marginalized transition probability from any state-action pair (st, at) to the next state801

st+1 in Msc aligns with the one in the MDP M, we set802

P c
t (c) = 1(c = 0), 81  t  T. (17)

In addition, before introducing the transition kernel {Pi
t} of the SC-MDP Msc, we introduce an803

auxiliary transition kernel P sc = {P sc
t } as follows:804

P sc
1 (s0 | s, a) =

⇢
1(s0 = [1, 0])1(a = 0) + 1(s0 = [1, 1])1(a = 1) if(s, a) = ([0, 0], 0)
1(s0 = s) otherwise ,

(18)

and805

P sc
t (s0 | s, a) = 1(s0 = s), 8(t, s, a) 2 {2, 3, · · · , T}⇥ S ⇥A. (19)

It can be observed that P sc is similar to P 0 except for the transition in the state [0, 0].806

Armed with this transition kernel P sc, the {P
i
t} of the SC-MDP Msc is set to obey807

P1(s
0
| s, a, c) =

⇢
(1� c)P 0

1 (s
0
| s, a) + cP sc

1 (s0 | s, a) if(s, a) = ([0, 0], a)
1(s0 = s) otherwise , (20)

and808

Pt(s
0
| s, a, c) = 1(s0 = s), 8(t, s, a, c) 2 {2, 3, · · · , T}⇥ S ⇥A⇥ C. (21)

With the above preparation, we are ready to verify that the marginalized transition from the current809

state and action to the next state in the SC-MDP Msc is identical to the one in MDP M: for all810

(t, st, at, st+1) 2 {1, 2, · · · , T}⇥ S ⇥A⇥ S:811

P(st+1 | st, at) = Ect⇠P c
t
[Pt(st+1 | st, at, ct)] = Pt(st+1 | st, at, 0) = P 0(st+1 | st, at) (22)

where the second equality holds by the definition of P c in equation 17, and the last equality holds by812

the definitions of P 0 (see equation 14 and equation 15) and P (see equation 20 and equation 21).813

In summary, we verified that the standard MDP M =
�
S,A, P 0, T, r

 
is equal to the above specified814

SC-MDP Msc.815

Defining the corresponding RMDP and RSC-MDP. Equipped with the equivalent MDP M816

and SC-MDP Msc, people could consider the robust variants of them respectively — a RMDP817

Mrob =
�
S,A,U�1(P 0), T, r

 
with the uncertainty level �1, and the proposed RSC-MDP818

Msc-rob =
�
S,A, T, r, C, {Pi

t},U
�2(P c)

 
with the uncertainty level �2.819

In this section, without loss of generality, we consider total deviation as the ‘distance’ function ⇢ for820

the uncertainty sets of both RMDP Mrob and RSC-MDP Msc-rob, i.e., for any probability vectors821

P 0, P 2 �(C) (or P 0, P 2 �(S)), ⇢ (P 0, P ) := 1
2 kP

0
� Pk1. Consequently, for any uncertainty set822

� 2 [0, 1], the uncertainty set U�1(P 0) of the RMDP (see equation 1) and U
�2(P c) of the RSC-MDP823

Msc-rob (see equation 4) are defined as follows:824

U
�(P 0) := ⌦ U

�(P 0
t,s,a), U

�(P 0
t,s,a) :=

⇢
Pt,s,a 2 �(S) :

1

2

��Pt,s,a � P 0
t,s,a

��
1
 �

�
,

U
�(P c) := ⌦ U

�(P c
t ), U

�(P c
t ) :=

⇢
P 2 �(C) :

1

2
kP � P c

t k1  �

�
. (23)

To continue, the proof is established by specifying the robust optimal policy ⇡?,�1

RMDP associated with825

Mrob and ⇡?,�2

RSC associated with Msc-rob and then compare their performance on RSC-MDP with826

some initial state distribution.827

The performance comparisons between ⇡?,�1

RMDP of RMDP Mrob and ⇡?,�2

RSC of RSC-MDP Msc-rob.828

To begin, we introduce the following lemma which specifies the robust optimal policy ⇡?,�1

RMDP829

associated with the RMDP Mrob.830
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Lemma 1. For any �1 2 (0, 1], the robust optimal policy and its corresponding robust SC-value831

functions satisfy832

⇡?,�1

RMDP(0 | s) = 1, for s 2 S. (24a)

In addition, we characterize the robust SC-value functions of the RSC-MDP Msc-rob associated with833

any policy, combined with the robust optimal policy ⇡?,�2

RSC of Msc-rob — the optimal robust SC-value834

functions, shown in the following lemma.835

Lemma 2. Consider any �2 2 ( 34 , 1] and the RSC-MDP Msc-rob =
�
S,A, T, r, C, {Pi

t},U
�2(P c)

 
.836

For any policy ⇡, the corresponding robust SC-value functions satisfy837

eV ⇡,�2
1 ([0, 0]) = 1 + (T � 1) inf

P2U�(P c
1 )
Ec1⇠P

"
⇡1(0 | [0, 0])(1� c1) + ⇡1(1 | [0, 0])c1

#
. (25a)

In addition, the optimal robust SC-value function and the robust optimal policy ⇡?,�2

RSC of the RMDP838

Msc-rob obeys:839

eV ⇡
?,�2
RSC ,�2

1 ([0, 0]) = eV ?,�2
1 ([0, 0]) = 1 +

T � 1

2
. (26)

Applying Lemma 2 with policy ⇡ = ⇡?,�1

RMDP in Lemma 1, one has840

eV ⇡
?,�1
RMDP,�2

1 ([0, 0]) = 1 + (T � 1) inf
P2U�

2 (P c
1 )
Ec1⇠P

"
1� c1

#
 1 +

T � 1

4
, (27)

where the last inequality holds by the probability distribution P obeying P1(0) =
1
4 and P1(1) =

3
4841

is inside the uncertainty set U�
2 (P

c
1 ).842

Finally, putting equation 27 and equation 26 together, we complete the proof by showing that with843

the initial state distribution � define as ⇢(s1 = [0, 0]) = 1, we arrive at844

eV ⇡
?,�2
RSC ,�2

1 (�)� eV ⇡
?,�1
RMDP,�2

1 (�) = eV ?,�2
1 (�)� eV ⇡

?,�1
RMDP,�2

1 (�) �
T � 1

4
⇡

T

4
. (28)

C.2.1 Proof of Lemma 1845

Specifying the minimum of the robust value functions in different states. For any uncertainty set846

�1 2 (0, 1], we first characterize the robust value function of any policy ⇡ over different states. To847

start, we denote the minimum of the robust value function over states at each time step t as below:848

V ⇡,�1

min,t := min
s2S

V ⇡,�1
t (s) � 0, (29)

where the last inequality holds by that the reward function defined in equation 16 is always non-849

negative. Obviously, there exists at least one state s⇡min,t that satisfies V ⇡,�1
t (s⇡min,t) = V ⇡,�1

min,t.850

With this in mind, we shall verify that for any policy ⇡,851

81  t  T : V ⇡,�1
t ([0, 1]) = V ⇡,�1

t ([1, 0]) = 0. (30)

To achieve this, we will use a recursive argument. First, the base case can be verified since when852

t+ 1 = T + 1, the value functions are all zeros at T + 1 step, i.e., V ⇡,�1
t+1 (s) = V ⇡,�1

T+1 (s) = 0 for all853

s 2 S . Then, the goal is to verify the following fact854

V ⇡,�1
t ([0, 1]) = V ⇡,�1

t ([1, 0]) = 0 (31)

with the assumption that V ⇡,�1
t+1 (s) = 0 for any state s = {[0, 1], [1, 0]}. It is easily observed that for855

any policy ⇡, the robust value function when state s = {[0, 1], [1, 0]} at any time step t obeys856

0  V ⇡,�1
t (s) = Ea⇠⇡t(· | s)

"
rt(s, a) + inf

P2U�1 (P 0
t,s,a)

PV ⇡,�1
t+1

#

(i)
= 0 + (1� �1)V

⇡,�1
t+1 (s) + �1V

⇡,�1

min,t+1

(ii)
= 0 + �1V

⇡,�1

min,t+1
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 0 + �1V
⇡,�1
t+1 (s) = 0 (32)

where (i) holds by rt(s, a) = 0 for all s = {[0, 1], [1, 0]}, the fact P 0
t (s | s, a) = 1 (see equation 14857

and equation 15), and the definition of the uncertainty set U�1(P 0) in equation 23, (ii) follows from858

the recursive assumption V ⇡,�1
t+1 (s) = 0 for any state s = {[0, 1], [1, 0]}, and the last equality holds859

by V ⇡,�1

min,t+1  V ⇡,�1
t+1 (s) (see equation 29). Until now, we complete the proof for equation 31 and860

then verify equation 30.861

Note that equation 30 direcly leads to862

81  t  T : V ⇡,�1

min,t = 0. (33)

Considering the robust value function at state [0, 0]. Armed with above facts, we are now ready to863

derive the robust value function for the state [0, 0].864

When 2  t  T , one has865

V ⇡,�1
t ([0, 0]) = Ea⇠⇡t(· | [0,0])


rt([0, 0], a) + inf

P2U�1 (Pt,[0,0],a)
PV ⇡,�1

t+1

�

(i)
= 1 +

h
(1� �1)V

⇡,�1
t+1 ([0, 0]) + �1V

⇡,�1

min,t+1

i

= 1 + (1� �1)V
⇡,�1
t+1 ([0, 0]) (34)

where (i) holds by rt([0, 0], a) = 1 for all a 2 {0, 1} and the definition of P 0 (see equation 14 and866

equation 15), and the last equality arises from equation 33 .867

Applying equation 34 recursively for t, t+ 1, · · · , T yields that868

V ⇡,�1
t ([0, 0]) =

TX

k=t

(1� �1)
k�t

� 1. (35)

At the first step, the robust value function obeys:869

V ⇡,�1
1 ([0, 0]) = Ea⇠⇡1(· | [0,0])


rt([0, 0], a) + inf

P2U�1 (P1,[0,0],a)
PV ⇡,�1

2

�

(i)
= 1 + ⇡1(0 | [0, 0]) inf

P2U�1 (P1,[0,0],0)
PV ⇡,�1

2 + ⇡1(1 | [0, 0]) inf
P2U�1 (P1,[0,0],1)

PV ⇡,�1
2

(ii)
= 1 + ⇡1(0 | [0, 0])

h
(1� �1)V

⇡,�1
2 ([0, 0]) + �1V

⇡,�1

min,2

i

+ ⇡1(1 | [0, 0])
h
(1� �1)V

⇡,�1
2 ([0, 1]) + �1V

⇡,�1

min,2

i

= 1 + ⇡1(0 | [0, 0])(1� �1)V
⇡,�1
2 ([0, 0]) (36)

where (i) holds by rt([0, 0], a) = 1 for all a 2 {0, 1}, (ii) follows from the definition of P 0 (see870

equation 14 and equation 15), and the last equality arises from equation 30 and equation 33.871

The optimal policy ⇡?,�1

RMDP. Observing that the positive value of V ⇡,�1
2 ([0, 0]) verified in equa-872

tion 35, as V ⇡,�1
1 ([0, 0]) is increasing monotically as ⇡1(0 | [0, 0]) is larger, we directly have that873

⇡?,�1

RMDP(0 | [0, 0]) = 1.874

Considering that the action does not influence the state transition for all other states s 6= [0, 0],875

without loss of generality, we choose the robust optimal policy to obey876

8s 2 S : ⇡?,�1

RMDP(0 | s) = 1. (37)

C.2.2 Proof of Lemma 2877

To begin with, for any uncertainty level �2 2 ( 12 , 1] and any policy ⇡ = {⇡t}, we consider the robust878

SC-value function eV ⇡,�2
1 of the RSC-MDP Msc-rob.879

Deriving eV ⇡,�2
t for 2  t  T . Towards this, for any 2  t  T and s 2 S , one has880

eV ⇡,�2
t (s)

(i)
= inf

P2U�(P c)

eV ⇡,P
t (s) = inf

P2U�(P c
t )
Ea⇠⇡t(s)

h
eQ⇡,P
t (s, a)

i
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(ii)
= inf

P2U�(P c
t )
Ea⇠⇡t(s)

h
rt(s, a) + Ect⇠P

h
Pt,s,a,ct

eV ⇡,�
t+1

ii

(iii)
= rt(s, a) + inf

P2U�(P c
t )
Ect⇠P

h
Pt,s,a,ct

eV ⇡,�
t+1

i

= rt(s, a) + eV ⇡,�
t+1 (s), (38)

where (i) holds by the definition in equation 5, (ii) follows from the state-confounded Bellman881

consistency equation in equation 47, (iii) follows from that the reward function r and Pt are all882

independent from the action (see equation 16, equation 17 and equation 21), and the last inequality883

holds by Pt(s0 | s, a, c) = 1(s0 = s) is independent from ct (see equation 21).884

Applying the above fact recursively for t, t+ 1, · · · , T leads to that for any s 2 S ,885

eV ⇡,�2
t (s) = rt(s, at) + eV ⇡,�

t+1 (s) = rt(s, a) + rt+1(s, at+1) + eV ⇡,�
t+2 (s)

= · · · = rt(s, at) +
TX

k=t+1

rk(sk, ak), (39)

which directly yields886

eV ⇡,�2
2 ([0, 0]) = eV ⇡,�2

2 ([1, 1]) = T � 1 and eV ⇡,�2
2 ([0, 1]) = eV ⇡,�2

2 ([1, 0]) = 0. (40)

Characterizing eV ⇡,�2
1 ([0, 0]) for any policy ⇡. In this section, we are especially interested in the887

value of eV ⇡,�2
1 on the state [0, 0]. To proceed, one has888

eV ⇡,�2
1 ([0, 0])

(i)
= inf

P2U�(P c)

eV ⇡,P
1 ([0, 0]) = inf

P2U�(P c
1 )
Ea⇠⇡1([0,0])

h
eQ⇡,P
1 ([0, 0], a)

i

(ii)
= inf

P2U�(P c
1 )
Ea⇠⇡t([0,0])

h
r1([0, 0], a) + Ect⇠P

h
P1,[0,0],a,ct

eV ⇡,�
2

ii

(iii)
= 1 + inf

P2U�(P c
1 )
Ec1⇠P

h�
⇡1(0 | [0, 0])P1,[0,0],0,c1 + ⇡t(1 | [0, 0])P1,[0,0],1,c1

� eV ⇡,�
2

i

(iv)
= 1 + inf

P2U�(P c
1 )
Ec1⇠P

"
⇡1(0 | [0, 0])

⇣
(1� c1)P

0
1,[0,0],0 + c1P

sc
1,[0,0],0

⌘
eV ⇡,�
2

+ ⇡1(1 | [0, 0])
⇣
(1� c1)P

0
1,[0,0],1 + c1P

sc
1,[0,0],1

⌘
eV ⇡,�
2

#

(v)
= 1 + inf

P2U�(P c
1 )
Ec1⇠P

"
⇡1(0 | [0, 0])

⇣
(1� c1)eV ⇡,�

2 ([0, 0]) + c1 eV ⇡,�
2 ([1, 0])

⌘

+ ⇡1(1 | [0, 0])
⇣
(1� c1)eV ⇡,�

2 ([0, 1]) + c1 eV ⇡,�
2 ([1, 1])

⌘#

= 1 + (T � 1) inf
P2U�(P c

1 )
Ec1⇠P

"
⇡1(0 | [0, 0])(1� c1) + ⇡1(1 | [0, 0])c1

#

= 1 + (T � 1)⇡1(0 | [0, 0]) + (T � 1) inf
P2U�(P c

1 )
Ec1⇠P

"
c1
�
1� 2⇡1(0 | [0, 0])

�
#
, (41)

where (i) holds by the definition in equation 5, (ii) follows from the state-confounded Bellman889

consistency equation in equation 47, (iii) follows from r1([0, 0], a) = 1 for all a 2 {0, 1} which890

is independent from ct. (iv) arises from the definition of P in equation 20, (v) can be verified by891

plugging in the definitions from equation 14 and equation 18, and the penultimate equality holds by892

equation 40.893

Characterizing the optimal robust SC-value functions.894

To further consider equation 41, we recall the fact that U�(P c
1 ) =

�
P 2 �(C) : 1

2 kP � P c
1k1  �2

 
.895
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Observing from equation 41 that for any fixed ⇡1(0 | [0, 0]), c1
�
1� 2⇡1(0 | [0, 0])

�
is monotonously896

increasing with c1 when 1 � 2⇡1(0 | [0, 0]) >= 0 and decreasing with c1 otherwise, it is easily897

verified that the solution of898

f(⇡1(0 | [0, 0])) := (T � 1) inf
P2U�(P c

1 )
Ec1⇠P

⇥
c1
�
1� 2⇡1(0 | [0, 0])

�⇤
(42)

satisfies899

f(⇡1(0 | [0, 0])) =

⇢
0 if ⇡1(0 | [0, 0]) �

1
2

(T � 1)�2

�
1� 2⇡1(0 | [0, 0])

�
otherwise

. (43)

And note that the value of eV ⇡,�2
1 ([0, 0]) only depends on ⇡1(· | [0, 0]) which can be represent by900

⇡1(0 | [0, 0]). Plugging in equation 43 into equation 41, we have that when ⇡1(0 | [0, 0]) �
1
2 ,901

max
⇡

eV ⇡,�2
1 ([0, 0]) = max

⇡1(0 | [0,0])� 1
2

1 + (T � 1)⇡1(0 | [0, 0]) + (T � 1)�2

�
1� 2⇡1(0 | [0, 0])

�

= 1 + (T � 1)�2 + (T � 1) max
⇡1(0 | [0,0])� 1

2

(1� 2�2)⇡1(0 | [0, 0])

= 1 +
T � 1

2
, (44)

where the last equality holds by �2 > 1
2 and letting ⇡1(0 | [0, 0]) =

1
2 . Similarly, when ⇡1(0 | [0, 0]) <902

1
2 ,903

max
⇡

eV ⇡,�2
1 ([0, 0]) = max

⇡1(0 | [0,0])< 1
2

1 + (T � 1)⇡1(0 | [0, 0]) < 1 +
T � 1

2
. (45)

Consequently, we complete the proof by concluding that904

eV ⇡
?,�2
RSC ,�2

1 ([0, 0]) = eV ?,�2
1 ([0, 0]) = max

⇡
eV ⇡,�2
1 ([0, 0]) = 1 +

T � 1

2
. (46)

C.3 Auxiliary results of SC-MDPs and RSC-MDPs905

Facts about SC-MDPs. For any state-confounded MDPs (SC-MDPs) MSC =
�
S,A, T, r,906

C, {Pi
t}, P

c
 

, denoting the optimal policy as ⇡? and the corresponding optimal SC-value func-907

tion as eV , any policy ⇡ satisfies the corresponding state-confounded Bellman consistency equation as908

below:909

eQ⇡,P c

t (s, a) = rt(s, a) + Ect⇠P c
t

h
Pt,s,a,ct

eV ⇡,�
t+1

i
, (47)

where Pt,s,a,ct 2 R1⇥S such that Pt,s,a,ct(s
0) := Pt(s0 | s, a, ct) for s0 2 S .910

Facts about RSC-MDPs. It is easily verified that for any RSC-MDP Msc-rob =
�
S,A, T, r,911

C, {Pi
t},U

�2(P c)
 

, any policy ⇡ and the optimal policy ⇡? satisfy the corresponding robust state-912

confounded Bellman consistency equation and Bellman optimality equation shown below, respec-913

tively:914

eQ⇡,�
t (s, a) = rt(s, a) + inf

P2U�(P c
t )
Ect⇠P

h
Pt,s,a,ct

eV ⇡,�
t+1

i
,

eQ?,�
t (s, a) = rt(s, a) + inf

P2U�(P c
t )
Ect⇠P

h
Pt,s,a,ct

eV ?,�
t+1

i
, (48)

where Pt,s,a,ct 2 R1⇥S such that Pt,s,a,ct(s
0) := Pt(s0 | s, a, ct) for s0 2 S, and eV ?,�

t+1(s) =915

maxa eQ?,�
t+1(s, a).916

D Experiment Details917

D.1 Architecture of the structural causal model918

We plot the architecture of the structural causal model we used in our method in Figure 6. In normal919

neural networks, the input is treated as a whole to pass through linear layers or convolution layers.920
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Figure 6: Model architecture of the structural causal model. Encoder, Decoder, position embedding,
and Causal Graph are learnable during the training stage.

However, this structure blends all information in the input, making the causal graph useless to separate921

cause and effect. Thus, in our model, we design an encoder that is shared across all dimensions of the922

input. Since different dimensions could have exactly the same values, we add a learnable position923

embedding to the input of the encoder. In summary, the input dimension of the encoder is 1 + dpos,924

where dpos is the dimension of the position embedding.925

After the encoder, we obtain a set of independent features for each dimension of the input. We926

now multiply the features with a learnable binary causal graph G. The element (i, j) of the graph927

is sampled from a Gumbel-Softmax distribution with parameter �i,j to ensure the loss function is928

differentiable w.r.t �.929

The multiplication of the causal graph and the input feature creates a linear combination of the input930

feature with respect to the causal graph. The obtained features are then passed through a decoder931

to predict the next state and reward. Again, the decoder is shared across all dimensions to avoid932

information leaking between dimensions. Position embedding is included in the input to the decoder933

and the output dimension of the decoder is 1.934

D.2 Environments935

We design four self-driving tasks in the Carla simulator [22] and four manipulation tasks in the936

Robosuite platform [23]. All of these realistic tasks contain strong spurious correlations that are937

explicit to humans. We provide detailed descriptions of all these environments in the following.938

Brightness. The nominal environments are shown in the 1th column of Figure 7, where the brightness939

and the traffic density are correlated. When the ego vehicle drives in the daytime, there are many940

surrounding vehicles (first row). When the ego vehicle drives in the evening, there is no surrounding941

vehicle (second row). The shifted environment swaps the brightness and traffic density in the nominal942

environment, i.e., many surrounding vehicles in the evening and no surrounding vehicles in the943

daytime.944

Behavior. The nominal environments are shown in the 2nd column of Figure 7, where the other945

vehicle has aggressive driving behavior. When the ego vehicle is in front of the other vehicle, the946

other vehicle always accelerates and overtakes the ego vehicle in the left lane. When the ego vehicle947

is behind the other vehicle, the other vehicle will always accelerate. In the shifted environment, the948

behavior of the other vehicle is conservative, i.e., the other vehicle always decelerates to block the949

ego vehicle.950

Crossing. The nominal environments are shown in the 3rd column of Figure 7, where the pedes-951

trian follows the traffic rule and only cross the road when the traffic light is green. In the shifted952

environment, the pedestrian disobeys the traffic rule and crosses the road when the traffic light is red.953

CarType. The nominal environments are shown in the 4th column of Figure 7, where the type of954

vehicle and the speed of the vehicle are correlated. When the vehicle is a truck, the speed is low and955

when the vehicle is a motorcycle, the speed is high. In the shifted environment, the truck drives very956

fast and the motorcycle drives very slow.957
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Figure 7: Illustration of tasks in the Carla simulator.

Figure 8: Illustration of tasks in the Robosuite simulator.

Lift. The nominal environments are shown in the 1th column of Figure 8, where the position of the958

cube and the color of the cube are correlated. When the cube is in the left part of the table, the color959

of the cube is green, when the cube is in the right part of the table, the color of the cube is red. The960

shifted environment swaps the color and position of the cube in the nominal environment, i.e., the961

cube is green when it is in the right part and the cube is red when it is in the left part.962

Stack. The nominal environments are shown in the 2nd column of Figure 8, where the position of the963

red cube and green plate are correlated. When the cube is in the left part of the table, the plate is also964

in the left part; when the cube is in the right part of the table, the plate is also in the right part. In the965

shifted environment, the relative position of the cube and the plate changes, i.e., When the cube is in966

the left part of the table, the plate is in the right part; when the cube is in the right part of the table,967

the plate is in the left part.968

Wipe. The nominal environments are shown in the 3rd column of Figure 8, where the shape of the969

dirty region is correlated to the position of the cube. When the dirty region is diagonal, the cube is970

on the right-hand side of the robot arm. When the dirty region is anti-diagonal, the cube is on the971
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left-hand side of the robot arm. In the shifted environment, the correlation changes, i.e., when the972

dirty region is diagonal, the cube is on the left-hand side of the robot arm; when the dirty region is973

anti-diagonal, the cube is on the right-hand side of the robot arm.974

Door. The nominal environments are shown in the 4th column of Figure 8, where the height of the975

handle and the position of the door is correlated. When the door is closed to the robot arm, the handle976

is in a low position. When the door is far from the robot arm, the handle is in a high position. In977

the shifted environment, the correlation changes, i.e., when the door is closed to the robot arm, the978

handle is in a high position; when the door is far from the robot arm, the handle is in a low position.979

D.3 Computation resources980

Our algorithm is implemented on top of the Tianshou [88] package. All of our experiments are981

conducted on a machine with an Intel i9-9900K CPU@3.60GHz (16 core) CPU, an NVIDIA GeForce982

GTX 1080Ti GPU, and 64GB memory.983

D.4 Hyperparameters984

We summarize all hyper-parameters used in the Carla experiments (Table 5) and Robosuite experi-985

ments (Table 6). The source code of experiments will be released after double-blind reviewing.986

Table 5: Hyper-parameters in Carla experiments

Parameters Notation Environment
Brightness Behavior Crossing CarType

Horizon steps T 100 100 100 100
State dimension n 24 12 12 12

Action dimension dA 2 2 2 2

Max training steps 1⇥105 1⇥105 5⇥105 5⇥105

Weight of kGkp � 0.1 - - -
norm of kGkp p 0.1 - - -

Actor learning rate 3⇥ 10�4 - - -
Critic learning rate 1⇥ 10�3 - - -

Batch size 256 - - -
Discount factor � in SAC 0.99 - - -

Soft update weight ⌧ in SAC 0.005 - - -
Weight of entropy ↵ in SAC 0.1 - - -

Hidden layers [256, 256, 256] - - -
Returns estimation step 4 - - -

Buffer size 1⇥ 105 - - -
Steps per update 10 - - -

D.5 Discovered Causal Graph in SCM987

To show the performance of our learned SCM, we plot the estimated causal graphs of all experiments988

in Figure 9, Figure 10, Figure 11, Figure 12, and Figure 13.989
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Table 6: Hyper-parameters in Robosuite experiments

Parameters Notation Environment
Lift Stack Door Wipe

Horizon steps T 300 300 300 500
Control frequency (Hz) 20 20 20 20

State dimension n 50 110 22 30
Action dimension dA 4 4 8 7

Controller type OSC position OSC position Joint velocity Joint velocity

Max training steps 1⇥106 5⇥106 1⇥106 1⇥106

Weight of kGkp � 0.01 - - -
norm of kGkp p 0.1 - - -

Actor learning rate 3⇥ 10�4 - - -
Critic learning rate 1⇥ 10�3 - - -

Batch size 128 - - -
Discount factor � in SAC 0.99 - - -

Soft update weight ⌧ in SAC 0.005 - - -
alpha learning rate lr↵ in SAC 3⇥ 10�4 - - -

Hidden layers [256, 256, 256] - - -
Returns estimation step 4 - - -

Buffer size 1⇥ 106 - - -
Steps per update 10 - - -
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Figure 9: Estimated Causal Graphs of four tasks in Carla.
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Figure 10: Estimated Causal Graphs of the Lift task in Robosuite.
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Figure 11: Estimated Causal Graphs of the Stack task in Robosuite.
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Figure 12: Estimated Causal Graphs of the Door task in Robosuite.
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Figure 13: Estimated Causal Graphs of the Wipe task in Robosuite.
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