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Abstract

Black-box variational inference is widely used in situations where there is no proof
that its stochastic optimization succeeds. We suggest this is due to a theoretical
gap in existing stochastic optimization proofs—namely the challenge of gradient
estimators with unusual noise bounds, and a composite non-smooth objective. For
dense Gaussian variational families, we observe that existing gradient estimators
based on reparameterization satisfy a quadratic noise bound and give novel con-
vergence guarantees for proximal and projected stochastic gradient descent using
this bound. This provides rigorous guarantees that methods similar to those used in
practice converge on realistic inference problems.

1 Introduction

Variational inference tries to approximate a complex target distribution with a distribution from a
simpler family [1, 2, 3, 4]. If p(z, x) is a target distribution with latent variables z ∈ Rd and observed
data x ∈ Rn, and qw is a variational family with parameters w ∈ W , the goal is to minimize the
negative evidence lower bound (ELBO)

f(w) := − E
z∼qw

log p(z, x)︸ ︷︷ ︸
l(w)

+ E
z∼qw

log qw(z)︸ ︷︷ ︸
h(w)

. (1)

For subsequent discussion, we have decomposed the objective into the free energy l and the negative
entropy h. Minimizing f is equivalent to minimizing the KL-divergence between qw to p(·|x),
because KL(qw∥p(·|x)) = f(w) + log p(x). Recent research has focused on "black box" variational
inference, where the target distribution p is sufficiently complex that one can only access it through
evaluating probabilities (or gradients) at chosen points [5, 6, 7, 8, 9, 10, 11]. Crucially, one can still
get stochastic estimates of the variational objective f and of its gradient, and use these to optimize.

Still, variational inference can sometimes be unreliable [12, 13, 14, 15], and some basic questions
remain unanswered. Most notably: does stochastic optimization of f converge to a minimum of the
objective? There has been various progress towards answering this question. One line of research
seeks to determine if the variational objective f has favorable structural properties, such as smoothness
or (strong) convexity [13, 16, 17] (Sec. 2.1). Another line seeks to control the "noise" (variance or
expected squared norm) of different gradient estimators [18, 19, 20, 21] (Sec. 2.2). However, few
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full convergence guarantees are known. That is, there are few known cases where applying a given
stochastic optimization algorithm to a given target distribution is known to converge at a given rate.

We identify two fundamental barriers preventing from analysing this VI problem as a standard
stochastic optimization problem. First, the gradient noise depends on the parameters w in a non-
standard way (Sec. 2.3). This adds great technical complexity and renders many traditional stochastic
optimization proofs inapplicable. Second, stochastic optimization theory typically requires that the
(exact) objective function f is Lipschitz continuous or Lipschitz smooth. But in our VI setting, under
some fairly benign assumptions, the ELBO is neither Lipschitz continuous nor Lipschitz smooth.

We obtain non-asymptotic convergence guarantees for this problem, under simple assumptions.

Central contributions (Informal). Suppose that the target model log p(·, x) is concave and
Lipschitz-smooth, and that qw is in a Gaussian variational family parameterized by the mean
and a factor of the covariance matrix (Eq. 2). Consider minimizing the negative ELBO f
using either one of the two following algorithms:

• a proximal stochastic gradient method, with the proximal step applied to h and the
gradient step applied to l, estimating∇l(w) with a standard reparameterization gradient
estimator (Eq. 5), and using a triangular covariance factor;

• a projected stochastic gradient method, with the gradient applied to f = l+ h, estimating
∇f(w) using either of two common gradient estimators (Eq. 7 or Eq. 9), with the
projection done over symmetric and non-degenerate (Eq. 3) covariance factors

Then, both algorithms converge with a 1/
√
T complexity rate (Cor. 12), or 1/T if we further

assume that log p(·, x) is strongly concave (Cor. 13).

We also give a new bound on the noise of the "sticking the landing" gradient estimator,
which leads to faster convergence when the target distribution p is closer to Gaussian, up to
exponentially fast convergence when it is exactly Gaussian (Cor. 14).

This is achieved through a series of steps, that we summarize below.

1. We analyze the structural properties of the problem. Existing results show that with a Gaussian
variational family, if − log p(·, x) is (strongly) convex or Lipschitz smooth, then so is the free
energy l. This is for instance known to be the case for some generalized linear models, and we
give a new proof of convexity and smoothness for some hierarchical models including hierarchical
logistic regression (see Appendix 7.3). The remaining component of the ELBO, the neg-entropy
h, is convex when restricted to an appropriate set. It is not smooth, but it was recently proved to
be smooth over a certain non-degeneracy set.

2. We study the noise of three common gradient estimators. They do not satisfy usual noise bounds,
but we show that they all satisfy a new quadratic bound (Definition 5). For the sticking-the-
landing estimator, our bound formalizes the longstanding intuition that it should have lower noise
when the variational approximation is strong (Thm. 4).

3. We identify and solve the key optimization challenges posed by the above issues via new
convergence results for the proximal and projected stochastic gradient methods, when applied to
objectives that are smooth (but not uniformly smooth) and with gradient estimators satisfying our
quadratic bound.

1.1 Related work

Recently, Xu and Campbell [22] analyzed projected-SGD (stochastic gradient descent) for Gaussian
VI using the gradient estimator we will later call gent (7), with a particular rescaling. They show that,
asymptotically in the number of observed data, their method converges locally with a rate of 1/

√
T ,

under mild assumptions. Our results are less general in requiring convexity, but are non-asymptotic,
apply with other gradient estimators, and give a faster 1/T rate with strong convexity.

Lambert et al. [23] introduce a VI-like SGD algorithm, derived from a discretisation of a Wasserstein
gradient flow, and show it converges at a 1/T rate for the 2-Wasserstein distance when the log
posterior is smooth and strongly concave. This line was continued by Diao et al. [24], who propose a
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proximal-SGD method based on the decomposition f = l + h. They obtain a 1/
√
T rate when the

log posterior is smooth and convex, and a 1/T rate when it is smooth and strongly convex. Unlike
typical black-box VI algorithms used in practice, these algorithms require computing the Hessian
of the posterior. We analyze more straighforward applications of SGD to the VI problem using
standard gradient estimators. Under the same assumptions, our algorithms have the same rates for
KL-divergence, which imply the same rates for 2-Wasserstein distance by of Pinsker’s inequality and
that the total-variation norm upper-bounds Wasserstein distance [25, Remark 8.2].

In concurrent work, Kim et al. [26], consider a proximal-SGD method similar to our approach in
Sec. 6. They obtain a 1/T convergence rate, similar to what Cor. 12 gives when the log posterior
is strongly concave. They also consider alternative parametrizations of the scale parameters that
render the ELBO globally smooth, and obtain a nonconvex result: Under a relaxed version of the
Polyak-Lojasiewicz inequality, they can guarantee a 1/T 4 rate.

2 Properties of Variational Inference (VI) problems

Traditionally, the ELBO was optimized using message passing methods, which essentially assume
that p and q are simple enough that block-coordinate updates are possible [2, 3, 4]. However, in the
last decade a series of papers developed algorithms based on a “black-box” model where p is assumed
to be complex enough that one can only evaluate log p (or its gradient) at selected points z. The key
observation is that even if p is quite complex, it is still possible to compute stochastic estimates of the
gradient of the ELBO, which can be deployed in a stochastic optimization algorithm [5, 6, 8, 9, 10].

This paper seeks rigorous convergence guarantees for this problem. We study the setting where the
variational family is the set of (dense) multivariate Gaussian distributions, parameterized in terms of
w = (m,C), where m is the mean and C is a factor of the covariance, i.e.

qw(z) = N
(
z|m,CC⊤) . (2)

We optimize over w ∈ W , whereW = {(m,C) : C ≻ 0} and will further require C to be either
symmetric or triangular. This does not really change the problem, since for a given covariance matrix
Σ there always exists a symmetric (or lower triangular) positive definite factor C such that CC⊤ = Σ.

Now, is it possible to solve this optimization problem? Without further assumptions, it is unlikely any
guarantee is possible, because it is easy to encode NP-hard problems into this VI framework [27, 28].
We discuss below the assumptions we will make to be able to solve the problem.

2.1 Structural properties and assumptions

The properties of the free energy l depend on the properties of the target distribution p. It is necessary
to assume that p is somehow “nice” to ensure the problem can be solved. Titsias and Lázaro-Gredilla
[17, Proposition 1] showed that if − log p(·, x) is convex, then l is convex too. Challis and Barber
[16, Sec 3.2] showed that if the likelihood p(·|z) is convex and the prior p(z) is Gaussian, then l is
strongly-convex. Domke [13, Theorem 9] showed that if − log p(·, x) is µ-strongly convex, then l is
µ-strongly convex as well, and that the constant is sharp. Similarly, Domke [13, Theorem 1] showed
that if log p(·, x) is M -smooth, then l is also M -smooth, and that the constant is sharp.

In this paper we make two assumptions about the target distribution p: the negative log-probability
− log p(·, x) must be convex (or strongly convex), and Lipschitz smooth. Section 7.3 (Appendix)
gives some example models where these assumptions are satisfied. For example, if the model is
Bayesian linear regression, or logistic regression with a Gaussian prior, then − log p(·, x) is smooth
and strongly convex. In addition, if the target is a hierarchical logistic regression model, then
− log p(·, x) is smooth and convex.

Assumptions on p also impact what a minimizer w∗ = (m∗, C∗) of f(w) can look like. Intuitively, if
the target log p(·, x) is µ-strongly concave, then we would expect the target distribution to be “peaky”.
This means that the optimal distribution would be close to a delta function centered at the MAP
solution: m∗ would be close to some maximum of log p(·, x) noted m̄, and the covariance factor C∗

would not be too large. This intuition can be formalized: in this context we have ∥C∗∥2 + ∥m∗ −
m̄∥22 ≤ d/µ [13, Theorem 10]. Similarly, if log p(·, x) is M -Lipschitz smooth, then we expect that
the target is not too concentrated, so we might expect that the optimal covariance cannot not be too
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small. Formally, it can be shown that the singular values of the covariance factor C∗ are greater than
1/
√
M [13, Theorem 7].

The properties of the neg-entropy h are inherited from the choice of the variational family and do
not depend on p. Since we consider a Gaussian variational family, h is known in closed-form. To
avoid some technical issues, we will restrict h so that the covariance factor is positive definite, so
h(w) is equal to − ln detC up to a constant if C is positive definite (see Appendix 7.1), and to +∞
otherwise . So h inherits the properties of the negative log determinant, meaning it is a proper closed
convex function whenever C is symmetric or triangular (see Appendix 7.2). From an optimization
perspective, it is natural to use a gradient-based algorithm. But unfortunately h is not Lipschitz
smooth on its domain, because its gradient can change arbitrarily quickly when the singular values of
C become small. However, it can be shown [13, Lemma 12] that h is M -smooth over the following
set of non-singular parameters (which contains the solution w∗, see the previous paragraph) given by

WM =

{
w = (m,C) : C ≻ 0 and σmin(C) ≥

1√
M

}
. (3)

Instead of computing gradients, an optimizer might want to use the proximal operator of h, which
can also be computed in closed form (see Sec. 4).

2.2 Gradient estimators

This paper considers gradient estimators based on the “path” method or “reparameterization“. These
assume some base distribution s is known, together with some deterministic transformation Tw, such
that the distribution of Tw(u) is equal to qw when u ∼ s. Then, we can write

∇w E
z∼qw

ϕ(z) = E
u∼s
∇wϕ(Tw(u)). (4)

In the case of multivariate Gaussians, the most common choice is to use s = N (0, I) and Tw(u) =
Cu+m, which we will consider in the rest of the paper.

We will consider three different gradient estimators based on the path-type strategy (Eq. 4). We will
provide new noise bounds for each of them (all the proofs are in Appendix 8). Our analysis is mostly
based on the following general result [20, Thm. 3].
Theorem 1. Let Tw(u) = Cu+m for w = (m,C). Let ϕ : Rd → R be M -smooth, suppose that ϕ
is stationary at m̄, and define w̄ = (m̄, 0). Then

E
u∼N (0,I)

∥∇wϕ(Tw(u))∥22 ≤ (d+ 1)M2 ∥m− m̄∥22 + (d+ 3)M2 ∥C∥2F ≤ (d+ 3)M2 ∥w − w̄∥22 .

Furthermore, the first inequality cannot be improved.

Intuitively, this result says that the noise of a gradient estimator is lower when the scale parameter C
is small and the mean parameter m is close to a stationary point.

The first estimator we consider is∇l(w) only. It is given by taking ϕ = − log p into Eq. 4, i.e.

genergy(u) := −∇w log p(Tw(u), x), u ∼ N (0, I). (5)

The next result gives a bound on the noise of this estimator, which is a direct consequence of Theorem
1. The second line uses Young’s inequality to bound the noise in terms of (i) the distance of w from
w∗ and (ii) a constant determined by the distance of w∗ from some fixed parameters w̄.
Theorem 2. Suppose that log p(·, x) is M -smooth and has a maximum (or stationary point) at m̄,
and define w̄ = (m̄, 0). Then, for every w and every solution w∗ of the VI problem,

E ∥genergy(u)∥22 ≤ (d+ 3)M2 ∥w − w̄∥22 (6)

≤ 2(d+ 3)M2∥w − w∗∥22 + 2(d+ 3)M2∥w∗ − w̄∥22.

Second, we consider an estimator of the gradient of the full objective l + h. It is obtained by simply
taking the above estimator and adding the true (known) gradient of the neg-entropy, i.e.

gent(u) := genergy(u) +∇h(w), u ∼ N (0, I). (7)
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The noise of gent can be bounded since it only differs from genergy by the deterministic quantity
∇h(w), and the fact that—provided w ∈ WL—the singular values of w cannot be too small and so
∇h(w) cannot be too large. This is formalized in the following theorem, where again, the second
line relaxes the result into a term based on the distance of w from w∗ plus constants. (Another type
of noise bound [29] for gent was obtained by Kim et al. [21] for diagonal Gaussians and a variety of
parameterizations of the covariance.)
Theorem 3. Suppose that log p(·, x) is M -smooth, that it is maximal at m̄, and define w̄ = (m̄, 0).
Then, for every L > 0, for every w ∈ WL and every solution w∗ of the VI problem,

E ∥gent(u)∥22 ≤ 2(d+ 3)M2 ∥w − w̄∥22 + 2dL (8)

≤ 4(d+ 3)M2∥w − w∗∥2 + 4(d+ 3)M2∥w∗ − w̄∥2 + 2dL.

While gent used the exact gradient of h, it may be beneficial to use a stochastic estimator h instead.
To derive our third estimator, write the gradient of the ELBO as1

∇l(w) +∇h(w) = ∇w E
z∼qw

[− log p(z, x) + log qv(z)]
∣∣∣
v=w

,

where the parameters v serve as a way to “hold w constant under differentiation”. This leads to our
third estimator, called the “sticking the landing” (STL) gradient estimator

gSTL(u) := genergy(u) + [∇w log qv(Tw(u))]v=w , u ∼ N (0, I). (9)

Intuitively, we expect that gSTL will tend to have lower noise than gent when the posterior is well-
approximated by the variational distribution. The reason is that, as observed by Roeder et al. [30], if
qw(z) were a perfect approximation of p(z|x), then the two terms in Eq. 9 would exactly cancel (for
every u) and so the estimator would have zero variance. Below we formalize this intuition in what
we believe is the first noise bound on gSTL.
Theorem 4. Suppose that log p(·, x) is M -smooth. Consider the residual r(z) := log p(z, x) −
log qw∗(z) for any solution w∗ of the VI problem, assume that it has a stationary point m̂, and define
ŵ = (m̂, 0). Then r is K-smooth for some K ∈ [0, 2M ], and for all w ∈ WM ,

E ∥gSTL∥22 ≤ 8(d+ 3)M2∥w − w∗∥22 + 2(d+ 3)K2 ∥w − ŵ∥22 (10)

≤ 4(d+ 3)(K2 + 2M2)∥w − w∗∥22 + 4(d+ 3)K2∥w∗ − ŵ∥22.

Moreover, if p(·|x) is Gaussian then K = 0.

When the target is Gaussian then K = 0 in Eq. 10, meaning that when w = w∗, the STL estimator
has no variance. This is a distinguishing feature of gSTL, as opposed to genergy or gent.

2.3 Challenges for optimization

Three major issues bar applying existing analysis of stochastic optimization methods to our VI setting:
1) non-smooth composite objective 2) lack of uniform smoothness and 3) lack of uniformly bounded
noise of the gradient estimator.

The first issue is due to the non-smoothness of neg-entropy function h. This means that under
the benign assumption that the target log p is smooth, the full objective l + h cannot be smooth,
since a nonsmooth function plus a smooth function is always nonsmooth. This renders stochastic
optimization proofs (e.g. those for the "ABC" conditions [29]) that do not use projections or proximal
operators inapplicable.

One way to tackle this first issue would be to use a non-smooth proof technique, but these rely
on having a uniform gradient noise bound (our third issue). Alternatively, one can overcome the
non-smoothness of the neg-entropy function by either using a proximal operator, or projecting onto a
set where h is smooth, namelyWM . This is the strategy we pursue.

1One could also build an estimator without holding w constant in this way. However, in the case of Gaussian
variational families, this turns out to be mathematically equivalent to using a closed form entropy because
log qw(Tw(u)) = − 1

2
∥u∥22 −

d
2
log(2π)− log |C| , which has the same gradient (independent of u) as h(w).
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Table 1: Table of known black-box VI properties relevant to optimization. In some cases there could
be multiple valid w∗ or w̄ in which case these results hold for all simultaneously.

Description Definition

Estimator for∇l genergy = −∇w log p(Tw(u), x)

Estimator for∇l +∇h gent = −∇w log p(Tw(u), x) +∇h(w)
Estimator for∇l +∇h gSTL = −∇w log p(Tw(u), x) +∇w log qv(Tw(u))|v=w

Constraint set WM = {(m,C) : C ≻ 0, σmin(C) ≥ 1/
√
M}

Optimum w∗ ∈ argminw l(w) + h(w)

Stationary point of l w̄ = (z̄, 0) for any z̄ that is a stationary point of log p(·, x)

Condition on − log p(z, x) Consequence

none h(w) is convex when C is symmetric or triangular

h(w) is M -smooth overWM

convex l(w) is convex

µ-strongly convex l(w) is µ-strongly convex

∥w∗ − w̄∥22 ≤
d
µ

M -smooth l(w) is M -smooth

w∗ ∈ WM

genergy, gent, and gSTL are quadratically bounded

The second issue is that existing analyses for proximal/projected stochastic methods either rely on a
uniform noise bound ([31, Cor. 3.6]) or uniform smoothness [32, 33, 34, 35, 36], both of which are
not known to be true for VI. By uniform smoothness, we refer to the assumption that log p(Tw(u), x)
is M–smooth for every u, with M being independent of u. Instead, we can only guarantee that
log p(Tw(u), x) is smooth in expectation, i.e. that l(w) is smooth. Several works [9, Cond. 1][37,
Thm. 1][38, Sec. 4][39, Assumption A1][40, Thm. 1][41, Assumption 3.2] assumed that the full
objective l+ h is smooth, but we are not aware of cases where this holds in practice for VI and in our
parameterization (Eq. 2) this cannot be true if log p is smooth.

The third issue is the lack of a uniform noise bound. Most non-smooth convergence guarantees within
stochastic optimization [42] assume that the noise of the gradient estimator is uniformly bounded
by a constant. But this does not appear to be true even under favorable assumptions—e.g. it is
untrue if the target distribution is a standard Gaussian. The best that one can hope is that the gradient
noise can be bounded by a quadratic that depends on the current parameters w, and—depending on
the estimator—even this may only be true when the parameters are in the setWM . Thus, our main
optimization contribution is to provide theoretical guarantees for stochastic algorithms under such a
specific noise regime, which we make precise in the next definition.
Definition 5. Let ϕ be a differentiable function. We say that a random vector g is a quadratically
bounded estimator for ∇ϕ at w with parameters (a, b, w∗), if it is unbiased E [g] = ∇ϕ(w) and if
the expected squared norm is bounded by a quadratic function of the distance of parameters w to w∗,
i.e. E ∥g∥22 ≤ a ∥w − w∗∥22 + b.

The noise bounds derived in Section 2.2 for the estimators genergy, gent, and gSTL imply that they
are uniformly quadratically bounded estimators. See Appendix 8.2 for a table with the corresponding
constants a and b.

3 Stochastic Optimization with quadratically bounded estimators

In this section we give new convergence guarantees for the Prox-SGD algorithm and the Proj-SGD
algorithm with quadratically bounded gradident estimators. Because these may be of independent
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interest, they are presented generically, without any reference to the VI setting. We specialize these
results to VI in Section 4. For both algorithms, we present results assuming the problem to be strongly
convex or just convex. All proofs for this section can be found in the Appendix (Sec. 9).

3.1 Stochastic Proximal Gradient Descent

Here we want to minimize a function which is the sum of two terms l + h, were both l and h are
proper closed convex functions, and l is smooth. For this we will use stochastic proximal gradient.

Definition 6 (Prox-SGD). Let w0 be a fixed initial parameters and let γ1, γ2, · · · be a sequence of
step sizes. The stochastic proximal gradient (Prox-SGD) method is given by

wt+1 = proxγth

(
wt − γtgt

)
,

where gt is a gradient estimator for∇l(wt), and the proximal operator is defined as

proxγh(w) := argmin
v

h(v) +
1

2γ
∥w − v∥22 .

Theorem 7. Let l be a µ-strongly convex and M -smooth function, and let w̄ = argmin(l). Let
h be a proper closed convex function, and let w∗ = argmin(l + h). Let (wt)t∈N be generated
by the Prox-SGD algorithm, with a constant stepsize γ ∈

(
0,min{ µ

2a ,
1
µ}
]
. Suppose that gt is a

quadratically bounded estimator (Def. 5) for∇l with parameters (a, b, w∗). Then,

E
∥∥wT+1 − w∗∥∥2

2
≤ (1− γµ)T

∥∥w0 − w∗∥∥2
2
+

2γ

µ

(
b+M2 ∥w∗ − w̄∥22

)
. (11)

Alternatively, if we use the decaying stepsize γt = min

{
µ

2a
,
1

µ

2t+ 1

(t+ 1)2

}
, then

E∥wT − w∗∥2 ≤ 16⌊a/µ2⌋2

T 2
∥w0 − w∗∥2 + 8

µ2T

(
b+M2 ∥w∗ − w̄∥22

)
. (12)

In both cases, T = O(ϵ−1) iterations are sufficient to guarantee that E∥wT − w∗∥2 ≤ ϵ.

The above theorem gives an anytime 1/T rate of convergence when the stepsizes are chosen based
on the strong convexity and gradient noise constants µ and a. Note that we do not need to know
precisely those constants: We show in Appendix 9.3 that using any constant step size proportional to
T/ log T leads to a log T/T rate.

Theorem 8. Let l be a proper convex and M -smooth function. Let h be a proper closed convex
function, and let w∗ ∈ argmin(l + h). Let (wt)t∈N be generated by the Prox-SGD algorithm, with a
constant stepsize γ ∈ (0, 1

M ]. Suppose that gt is a quadratically bounded estimator (Def. 5) for ∇l
with parameters (a, b, w∗). Then,

E
[
f(w̄T )− inf f

]
≤ γ

(
a
∥w0 − w∗∥2

(1− θT )
+ b

)
,

where θ def
=

1

1 + 2aγ2
and w̄T def

=

∑T
t=1 θ

t+1wt∑T
t=1 θ

t+1
. In particular, if γ =

1√
aT

, then

E
[
f(w̄T )

]
− inf f ≤ 1√

aT

(
2a∥w0 − w∗∥2 + b

)
∀T ≥ max

{
M2

a
, 2

}
.

Thus, T = O(ϵ−2) iterations are sufficient to guarantee that E
[
f(w̄T )− inf f

]
≤ ϵ.

3.2 Stochastic Projected Gradient Descent

Here we want to minimize a function f over a set of constraintsW , whereW is a nonempty closed
convex set and f is a proper closed convex function which is differentiable on W . To solve this
problem, we will consider the stochastic projected gradient algorithm.
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Definition 9 (Proj-SGD). Let w0 be some fixed initial parameter, and let γ1, γ2, · · · be a sequence of
step sizes. The projected stochastic gradient (Proj-SGD) method is given by

wt+1 = projW
(
wt − γtgt

)
,

where gt is a gradient estimator for∇f(wt), and the projection operator is defined as

projW(w) = argmin
v∈W

∥v − w∥22 .

Note that we do not require f to be smooth, meaning that this setting is not a particular case of the
one considered in Section 3.1. In fact, the arguments we use in the proofs for Proj-SGD are more
closely related to stochastic subgradient methods than stochastic gradient methods.
Theorem 10. Let W be a nonempty closed convex set. Let f be a µ-strongly convex function,
differentiable onW . Let w∗ = argminW(f). Let (wt)t∈N be generated by the Proj-SGD algorithm,
with a constant stepsize γ ∈

(
0,min{ µ

2a ,
2
µ}
]
. Suppose that gt is a quadratically bounded estimator

(Def. 5) for∇f with parameters (a, b, w∗). Then,

E
∥∥wT − w∗∥∥2 ≤ (1− µγ

2

)T ∥∥w0 − w∗∥∥2 + 2γb

µ
. (13)

Alternatively, if we use the decaying stepsize γt = min

{
µ

2a
,
2

µ

2t+ 1

(t+ 1)2

}
, then

E
[
∥wT − w∗∥2

]
≤ 32a

µ2T 2
∥w0 − w∗∥2 + 16b

µ2T
. (14)

In both cases, T = O(ϵ−1) iterations are sufficient to guarantee that E∥wT − w∗∥2 ≤ ϵ.

Note that Eq. 13 is a sum of two terms: one that decays exponentially in T and one that decreases
only when the stepsize γ is sufficiently small. This has an important consequence: if one uses the
gradient estimator gSTL and the target distribution is exactly a Gaussian, then b = 0 (Appendix 8.2),
meaning that the algorithm will converge at an exponential rate. This is similar to many results in the
stochastic optimization literature showing faster rates hold when interpolation holds [35].
Theorem 11. LetW be a nonempty closed convex set. Let f be a convex function, differentiable on
W . Let w∗ ∈ argminW(f). Let (wt)t∈N be generated by the Proj-SGD algorithm, with a constant
stepsize γ ∈ (0,+∞) . Suppose that gt is a quadratically bounded estimator (Def. 5) for ∇f at wt

with constant parameters (a, b, w∗). Then,

E
[
f(w̄T )− inf

W
f
]
≤ γ

2

(
a

∥∥w0 − w∗
∥∥2

1− θT
+ b

)
.

where θ def
=

1

1 + aγ2
and w̄T def

=

∑T−1
t=0 θt+1wt∑T−1
t=0 θt+1

. Finally if γ =
√
2√
aT

and T ≥ 2 then

E
[
f(w̄T )

]
− inf f ≤

√
2a√
T
∥w0 − w∗∥2 + b√

2aT
. (15)

Thus, T = O(ϵ−2) iterations are sufficient to guarantee that E
[
f(w̄T )− inf f

]
≤ ϵ.

4 Solving VI with provable guarantees

We now specialize the optimization results of the previous section to our VI setting. We aim to
minimize the negative ELBO, f : Rd × V −→ R ∪ {+∞}, which decomposes as f = l + h where

l(w) = − E
z∼qw

log p(z, x) and h(w) = E
z∼qw

log qw(z) if C ≻ 0,+∞ otherwise, (16)

and where V is the vector space of matrices in which the covariance factors C belong. Under the
assumption that the log-target log p(·, x) is M -smooth and concave, we propose two strategies to
minimize this objective. All the proofs for this section can be found in Appendix 10.
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1. Apply the Prox-SGD algorithm to the sum l + h, using a proximal step with respect to h, and a
stochastic gradient step with respect to l. The gradient of l will be estimated with genergy (5),
which is globally quadratically bounded. The prox of h admits a closed form formula if we
choose that V is the space of lower triangular matrices.

2. Apply the Proj-SGD algorithm to minimize f overWM . The gradient of f will be estimated
using either gent (7) or gSTL (9), both of which are quadratically bounded onWM . The projection
ontoWM admits a closed form formula if choose that V is the space of symmetric matrices.

Corollary 12 (Prox-SGD for VI). Consider the VI problem where qw is a multivariate Gaussian
distribution (Eq. 2) with parameters w = (m,C) ∈ Rd × T d, and assume that this problem
admits a solution w∗. Suppose that log p(·, x) is M -smooth and concave (resp. µ-strongly concave).
Generate a sequence wt by using the Prox-SGD algorithm (Def. 6) applied to l and h (Eq. 16), using
genergy (5) as an estimator of∇l. Let the stepsizes γt be constant and equal to 1/(

√
aenergyT ) (resp.

be decaying as in Theorem 7 with aenergy = 2(d + 3)M2). Then, for a certain average w̄T of the
iterates, we have for T ≥ 2 that

E
[
f(w̄T )− inf f

]
= O(1/

√
T ) (resp. E

[
∥wT − w∗∥22

]
= O(1/T )).

Corollary 13 (Proj-SGD for VI). Consider the VI problem where qw is a multivariate Gaussian
distribution (Eq. 2) with parameters w = (m,C) ∈ Rd ×Sd, and assume that this problem admits a
solution w∗. Suppose that log p(·, x) is M -smooth and concave (resp. µ-strongly concave). Generate
a sequencewt by using the Proj-SGD algorithm (Def. 9) applied to the function f = l+h (Eq. 16) and
the constraintWM (Eq. 3), using gent (7) or gSTL (9) as an estimator of∇f . Let the stepsizes γt be
constant and equal to

√
2/(aT ) (resp. be decaying as in Theorem 10) with a = aent = 4(d+ 3)M2

or a = aSTL = 24(d+3)M2. Then, for a certain average w̄T of the iterates, we have for T ≥ 2 that

E
[
f(w̄T )− inf f

]
= O(1/

√
T ) (resp. E

[
∥wT − w∗∥22

]
= O(1/T )).

Corollary 14 (Proj-SGD for VI - Gaussian target). Consider the setting of Corollary 13, in the
scenario that log p(·, x) is µ–strongly concave, that we use the gSTL estimator, and that we take a
constant stepsize γt ≡ γ ∈

(
0,min{ µ

2aSTL
, 2
µ}
]
. Assume further that p(·|x) is Gaussian. Then,

E
[
∥wT − w∗∥22

]
≤
(
1− µγ

2

)T
∥w0 − w∗∥22.

Let us now discuss the practical implementation of these two algorithms (more details and an explicit
implementation of the methods are given in Appendix 10.2). These require computing either the
proximal operator of the neg-entropy h, or the projection onto the set of non-degenerate covariance
factorsWM . These can be computed [13] for every w = (m,C) as:

• proxγh(w) = (m,C +∆C), where ∆C is diagonal with ∆Cii =
1
2 (
√
C2

ii + 4γ − Cii),

• projW(w) = (m,UD̃U⊤), where C has the SVD C = UDU⊤ and D̃ii = max{Dii, 1/
√
M}.

Our theory for the Prox-SGD algorithm formally assumes that the covariance factor C lives in
the vector space of lower-triangular matrices. This can be implemented by letting C ∈ Rd×d and
"clamping" the upper-triangular entries to zero throughout computation. Then the gradient genergy (5)
can be computed using automatic differentiation, and the proximal operator can be computed as in the
above equation. Or, one may choosew = (m, c) where c ∈ Rd×(d+1)/2 is the lower-triangular entries
of the matrix so C = tril(c). Gradients with respect to w = (m, c) can again be estimated using
automatic differentiation (including the tril operator), and the proximal operator can be computed by
forming C, using the above formula, and then extracting the lower-triangular entries.

Similarly, our theory for the Proj-SGD algorithm formally assumes the covariance factor C lives
in the vector space of symmetric matrices. This can be implemented by letting C ∈ Rd×d, com-
puting the gradient estimator gent (7) or gSTL (9) over the reals using automatic differentiation,
and "symmetrizing" C throughout computation. That is, set C ← 1

2C + 1
2C

⊤ after applying each
gradient update, right before projection. Or, one may choose w = (m, c) where c ∈ Rd×(d+1)/2 is
the lower-triangular entries of the matrix, so C = symm(c), where symm is a function similar to tril
except creating symmetric matrices. The gradient estimator gent (7) or gSTL (9) can be computed
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using automatic differentiation (including the symm operator). In this case, to project one would first
form C, then use the above formula, and then extract the lower-triangular matrices.

In terms of cost, computing log qw(z) or Tw(u) needs Θ(d2) operations. Computing the prox of h
requires d operations, but in contrast projecting ontoWM requires diagonalizing a symmetric matrix,
which takes Θ(d3) operations. We note that this is not necessarily an issue, because 1) eigenvalue
decomposition has excellent computational constants in moderate dimensions; 2) computing the target
log p(z, x) may itself require Θ(d3) or more operations; 3) it is common to average a “minibatch” of
gradient estimates, meaning each eigenvalue decomposition computation is amortized over many
ELBO evaluations. Still, in high dimensions, when log p(z, x) is inexpensive, and small minibatches
are used, computing such decomposition in each iteration could become a computational bottleneck.
In this scenario, the Proj-SGD algorithm is clearly cheaper, with its Θ(d) cost for the proximal step.

5 Discussion

While this paper has focused on convergence with dense Gaussian variational distributions, the results
in Sec. 3 apply more generally. It is conceivable that the necessary smoothness, convexity, and noise
bounds could be established for other variational families, in which case these optimization results
would provide "plug in" guarantees. We suspect this might be fairly easy to do with, e.g., elliptical
distributions or location-scale families, using similar techniques as done with Gaussians. But it may
be difficult to do so for broader variational families.

If − log p is strongly convex and smooth, another proof strategy is possible: Smoothness guarantees
that w∗ ∈ WM and strong convexity guarantees that w∗ ∈ {w : ∥w − w̄∥22 ≤ d/µ}. So one could
do projected SGD, projecting onto the intersection of these two sets. The negative ELBO would be
strongly convex and smooth over that set, and since ∥w − w̄∥2 is bounded, gradient noise is upper-
bounded by a constant, meaning classical projected SGD convergence rates that assume smoothness,
strong convexity, and uniform gradient noise apply. However, projecting onto the intersection of
those sets poses a difficulty and this uniform noise bound may be loose in practice.

Several variants of the gradient estimators we consider have been proposed to reduce noise, often
based on control variates or sampling from a different base distribution [30, 37, 43, 44, 45, 46, 47,
48, 49, 50]. It would be interesting to establish gradient noise bounds for these estimators.

Various VI variants have been proposed that use natural gradient descent. It would also be interesting
to seek convergence guarantees for these algorithms.

VI can be done with “score” or “reinforce” gradient estimators [6, 8], which use the identity

∇w E
z∼qw

ϕ(z) = E
z∼qw

ϕ(z)∇w log qw(z)

in place of how we used Eq. 4 for the “path” estimators we considered. While path estimators
often seem to have lower variance, this is not always true: Take an unnormalized log-posterior ϕ(z)
where z is scalar. Now, define ϕ′(z) = ϕ(z) +

√
ϵ sin(z/ϵ), where ϵ is very small. Then, ϕ and ϕ′

represent almost the same posterior, and score estimators for them will have almost the same variance.
Yet, the derivative of the added term is cos(z/ϵ)/

√
ϵ, so a path estimator for ϕ′ will have much

higher variance than one for ϕ. This underlines why smoothness is essential for our guarantees—it
excludes posteriors like ϕ′. Future work further unravel when score estimators perform better than
path estimators.

One attractive feature of VI is that data subsampling can often be used when computing gradients,
decreasing the cost of each iteration. While we have not explicitly addressed this, our proofs can be
easily generalized, at least for target distributions of the form p(z, x) = p(z)

∏
n=1 p(xn|z). The

only issue is to bound the noise of the subsampled estimator. While our gradient variance guarantees
use Theorem 1 from [20], a more general result [20, Theorem 6] considers data subsampling. Very
roughly speaking, with uniform data subsampling of 1 datum of a time, the gradient noise bounds in
Thms. 2 and 3 would increase by a factor between 1 (no increase) and the number of data, depending
on how correlated the data are—less correlation leads to a larger increase. (More precisely, the second
term in Thm. 3 would not increase.) These increases would manifest as larger constants a and b in
the quadratic bounds, after which exactly the same results hold. However, it is not obvious if the
bound for gSTL in Thm. 4 can be generalized in this way.
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6 Notations

We noteMd the space of d×dmatrices, Sd the subspace of symmetric matrices, and T d the subspace
of lower triangular matrices. We useWM := {(m,C) ∈ W : σmin(C) ≥ 1√

M
} to denote the set

of parameters with positive definite covariance matrix whose singular values are greater or equal to
1√
M

.

object description

x observed variables

z ∈ Rd latent variables

p(z, x) target distribution

w = (m,C) variational parameters (m ∈ Rd and C ∈Md,Sd or T d)

qw(z) = N (z|m,CC⊤) Gaussian variational distribution

l(w) = −Ez∼qw log p(z, x) free energy

h(w) = Ez∼qw log q(z) negative entropy

f(w) = l(w) + h(w) negative ELBO

w∗ = argminw l(w) + h(w) optimal parameters

w̄ = (z̄, 0) MAP parameters (z̄ ∈ argmaxz p(z, x))

V[g] = trC[g]. variance of vector-valued random variables

7 VI problems and their structural properties

This section contains the proofs of all the claims made in Section 2.

7.1 Modeling the VI problem

We recall and detail here the setup of our problem. Given a target distribution p and observed data x,
we want to solve the following Variational Inference problem

min
w∈W

KL(qw∥p(·|x)) , (VI)

where qw is a multivariate Gaussian variational family, whose density may be written as

qw(z) =
1√

(2π)d det(CC⊤)
exp

(
−1

2
∥C−1(z −m)∥2

)
, w = (m,C). (17)

We make the assumption (VI) has a non-degenerated solution, i.e. a solution for which the covariance
matrix is invertible.

We will impose that our parameters have the form w = (m,C) ∈ Rd × V , where V is some vector
subspace ofMd, the space of d× d matrices. On top of that, we will also want the covariance factor
to be positive definite. In other words, we will impose that our parameters are taken from the set

W := {(m,C) ∈ Rd × V : C ≻ 0}.
For the sake of simplicity, the reader can assume for most of the paper that V =Md. But when
coming to analyze our algorithms, we will see that we should take either V = T d (the subspace of
d× d lower triangular matrices) or V = Sd (the subspace of d× d symmetric matrices). This choice
is dictated by two reasons: it guarantees that our problem remains convex (see Lemma 19), and it
lowers the computational cost of our algorithms (see Section 10.2). Fortunately, requiring C to be
symmetric (or triangular) and positive definite does not change our problem, as stated in the next
Lemma.
Lemma 15 (Equivalent problems for triangular/symmetric covariance factors). Suppose that w̄ ∈
Rd×Md is such that qw̄ minimizes KL(qw∥p(·|x)) over Rd×Md. Then there exists w∗ = (m∗, C∗)
such that qw̄ and qw∗ have the same distribution, with C∗ being positive definite and symmetric (or
lower triangular).
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Proof. Write w̄ = (m̄, C̄), and take m∗ = m̄. Let Σ̄ = C̄C̄⊤. Since we assumed that (VI) has a
non-degenerated solution, we can assume without loss of generality that Σ̄ is invertible. Therefore
we can apply the Cholesky decomposition and write Σ̄ = C∗(C∗)⊤, where C∗ is lower triangular
and positive definite. We can also define C∗ = (Σ̄)1/2 to obtain a symmetric and positive definite
factor.

Once restricted toW , our problem (VI) becomes equivalent to

min
w=(m,C)∈Rd×V

l(w) + h(w), (18)

where

• l(w) = −Ez∼qw log p(z, x) is the free energy ;

• h(w) =
{
− log detC if w ∈ W
+∞ otherwise

This equivalence is mostly standard, but we state it formally for the sake of completeness.

Lemma 16 (VI reformulated). Problems (VI) and (18) are equivalent.

Proof. Let w = (m,C) ∈ W , and let us show that KL(qw∥p(·|x)) = l(w) + h(w). By definition of
the Kullback-Liebler divergence, and using p(z|x) = p(z, x)/p(x), we can write

KL(qw∥p(·|x)) = E
z∼qw

log
qw(z)

p(z|x)
= E

z∼qw
log

qw(z)p(x)

p(z, x)

= E
z∼qw

log qw(z)− E
z∼qw

log p(z, x) + E
z∼qw

log p(x)

= E
z∼qw

log qw(z) + l(w) + log p(x).

If we note H(X) the entropy of a random variable, we can see that Ez∼qw log qw(z) = −H(z) where
z ∼ qw. We can rewrite z via an affine transform as z = Cu+m with u ∼ N (0, I), so we can use
[51, Section 8.6] to write (see also the arguments in [13])

H(z) = H(u) + log |detC|.

Here H(u), the entropy of u, is a constant equal to (d/2)(1 + log(2π). Moreover since w ∈ W , we
know that C ≻ 0, which implies that log |detC| = log detC. Because log p(x) and H(u) are both
constants, we deduce that minimizing KL(qw∥p(·|x)) over w ∈ W is equivalent to minimizing l + h,
where h(w) = − log detC if w ∈ W and +∞ otherwise.

We emphasize that working with a triangular or symmetric representation for C is not restrictive, and
that doing computations in this setting is pretty straightforward, as we illustrate next.

Lemma 17 (Computations with triangular/symmetric covariance factors). Let V be a vector subspace
ofMd. Let ϕ : Rd ×Md → R and let ϕV : Rd × V → R be the restriction of ϕ to Rd × V . Then:

1. If ϕ is convex then ϕV is convex.

2. If ϕ is differentiable then ϕV is differentiable, with∇ϕV (w) = projRd×V (∇ϕ(w)). In particular,
∥∇ϕV (w)∥ ≤ ∥∇ϕ(w)∥.

3. If ϕ is M -smooth over Ω ⊂ Rd ×Md, then ϕV is M -smooth over Ω ∩ (Rd × V ).

4. projSd(C) = (C +C⊤)/2, and projT d(C) = tril(C), where tril(C) sets to zero all the entries
of C above the diagonal.

Proof.

1. This is immediate due to the fact that V is convex, since it is a vector subspace ofMd.
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2. Let ι : Rd × V → Rd ×Md, ι(m,C) = (m,C) be the canonical injection. Then we clearly
have ϕV = ϕ ◦ ι. Moreover, ι is a linear application whose adjoint is ι∗ is exactly the orthogonal
projection projRd×V . So the computation of the gradient follows after applying the chain rule :
∇ϕV (w) = ι∗(∇ϕ(ι(w)) = projRd×V (∇ϕ(w)). As for the norm, it suffices to observe that the
orthogonal projection is a linear operator with norm less or equal than 1.

3. Using that the orthogonal projection is a contractive map gives

∥∇ϕV (w)−∇ϕV (w′)∥ = ∥ projRd×V (∇ϕ(w))− projRd×V (∇ϕ(w′))∥
≤ ∥∇ϕ(w)−∇ϕ(w′)∥ ≤M∥w − w′∥.

4. This is a standard linear algebra result.

7.2 Smoothness and convexity for VI problems

Now we state the main smoothness and convex properties for VI problems. We will see in our
analysis that the smoothness properties often revolve around the following subset ofW

WM := {(m,C) ∈ W : σmin(C) ≥
1√
M
},

where σmin(C) refers to the smallest singular value of C.
Lemma 18 (Smoothness for VI). Assume that log p(·, x) is M -smooth. Then

1. l is M -smooth.

2. h is differentiable overW , with∇h(w) = (0,−projV (C
−⊤)) for all w ∈ W .

3. h is M -smooth overWM = {(m,C) ∈ W : σmin(C) ≥ 1√
M
}.

Proof.

1. Combine [13, Theorem 1] with Lemma 17.3.

2. Combine the fact that the gradient of − log det at a matrix X is −X−⊤ with Lemma 17.2.

3. Combine [13, Lemma 12] with Lemma 17.3.

Lemma 19 (Convexity for VI). Assume that − log p(·, x) is convex (resp. µ-strongly convex). Then

1. l is convex (resp. µ-strongly convex).

2. If V = Sd then h is closed convex,W is convex, andWM is convex and closed. Moreover,

W =
{
(m,C) ∈ Rd × Sd : λmin(C) > 0

}
and WM =

{
(m,C) ∈ Rd × Sd : λmin(C) ≥

1√
M

}
.

3. If V = T d then h is closed convex andW is convex. Moreover

W = {(m,C) ∈ Rd × T d : C has positive diagonal }.

4. If V =Md then h can be not convex.

Proof.

1. Combine Titsias and Lázaro-Gredilla [17, Proposition 1] (resp. Domke [13, Theorem 9]) with
Lemma 17.1.
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2. Convexity of h follows from [52, Example 7.13 and Theorem 7.17]. Convexity ofW comes from
the fact that it is essentially the set of symmetric positive definite matrices (which is equivalent to
λmin(C) > 0). Let us now prove thatWM is convex and closed. First we notice that, because of
symmetry, we can rewriteWM as

WM = {(m,C) ∈ Rd × Sd : λmin(C) ≥
1√
M
}.

This set is closed because λmin is a continuous function. To see thatWM is convex we are going
to use the fact that λmin is a concave function. Take C1, C2 ∈ WM , α ∈ [0, 1] and write

λmin((1− α)C1 + αC2) = min
∥z∥=1

⟨((1− α)C1 + αC2)z, z⟩

= min
∥z∥=1

(1− α)⟨C1z, z⟩+ α⟨C2z, z⟩

≥ min
∥z∥=1

(1− α)⟨C1z, z⟩+ min
∥z∥=1

α⟨C2z, z⟩

= (1− α)λmin(C1) + αλmin(C2) ≥
1√
M
.

3. HereW = {(m,C) ∈ Rd × T d : C ≻ 0}. Using Sylvester’s criterion, it is easy to see that a
lower triangular matrix is positive definite if and only if its diagonal has positive coefficients.
In other words,W = {(m,C) ∈ Rd × T d : Cii > 0}, which is clearly convex. It remains to
verify that h is closed convex even ifW is not closed. For all w = (m,C) ∈ Rd × T d, we can
use the triangular structure of C to write

h(w) = − log detC + δW(w) =

d∑
i=1

− logCii + δ(0,+∞)(Cii),

where we used the notation δA for the indicator function of a set A, which is equal to zero on
A and +∞ outside. Since − log(t) + δ(0,+∞)(t) is a closed convex function, we see that h is a
separable sum of closed convex functions, and thus is itself closed and convex.

4. Let d = 2, let I be the identity matrix, let R =
(

0 1
−1 0

)
be a rotation matrix, and define

ψ : R→ R with ψ(t) = h(I + tR). Observe that ψ is well defined because I + tR ≻ 0 for all
t ∈ R. On the one hand, if h was convex, then ψ would be convex too, as it is a composition
of a convex function with the affine function t 7→ I + tR. On the other hand, we can compute
explicitly that ψ(t) = − log(1 + t2), which is not convex.

Lemma 20 (Solutions of VI). Assume that log p(·, x) is M -smooth, and that V =Md, Sd or T d.
Then argmin(f) ⊂ WM := {(m,C) ∈ W : σmin(C) ≥ 1√

M
}.

Proof. If w∗ = (m∗, C∗) ∈ argmin(f), then w∗ is in the domain of h, which isW by definition of h.
So it remains to prove that σmin(C

∗) ≥ 1/
√
M . When V =Md, this is proved in [13, Theorem 7].

Suppose now that V = Sd, meaning that w∗ is a minimizer of f overW ⊂ Rd ×Sd. We see that w∗

must also be a minimizer of f over Rd×Md, because if there was a better solution ŵ = (m̂, Ĉ) with
Ĉ ∈Md, we could consider (ĈĈ⊤)1/2 ∈ Sd which would itself be a better solution than C∗, which
is a contradiction. So we can apply [13, Theorem 7] to w∗ to conclude that σmin(C

∗) ≥ 1/
√
M . If

V = T d, we can use the same argument, using this time the Cholesky decomposition of ĈĈ⊤.

Lemma 21. Let w = (m,C) with C invertible. Then log qw is σmin(C)
−2-smooth.

Proof. According to the definition of qw (see (17)), the Hessian of log qw is ∇2
z(log qw)(z) =

−(CC⊤)−1, and so ∥∇2
z(log qw)(z)∥ = σmax((CC

⊤)−1) = σmin(C)
−2.
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7.3 A case study : linear models

Table 2: Table of models

Model Smoothness constant Strong convexity constant Convex

Bayesian linear
regression (Σ = I)

1 + 1
σ2σmax(A)

2 1 + 1
σ2σmin(A)

2 yes

Logistic regression
(Σ = I)

1 + 1
4σmax(A)

2 1 yes

Heirarchical
logistic regression

exists n/a yes

Definition 22. A twice differentiable function f is M -smooth if −MI ⪯ ∇2f ⪯MI .
Definition 23. A twice differentiable function f is µ-strongly convex ∇2f ⪰ µI .

Theorem 24. Take a generic i.i.d. linear model defined as p(z, x) = p(z)
∏N

n=1 p(xn|z, an), where
p(z) = N (z|0,Σ) and

p(xn|z, an) = exp
(
−ϕ
(
z⊤an, xn

))
for some function ϕ. Suppose that the second derivative of ϕ with respect to its first (scalar) argument
is bounded by θmin ≤ ϕ′′ ≤ θmax. Let

µ
def
= λmin

(
Σ−1 + θminAA

⊤)
β

def
= λmax

(
Σ−1 + θminAA

⊤) ,
where A is a matrix with an in the n-th column. Then

1. − log p(z, x) is M -smooth over z for M = max (|µ| , |β|).

2. If µ ≥ 0 then − log p(z, x) is convex over z

3. If µ > 0 then − log p(z, x) is µ-strongly convex over z.

Proof. It is easy to show that
∇2

zϕ(z
⊤an, xn) = −ϕ′′(z⊤an, xn)ana⊤n

from which it follows that
−∇2

z log p(z, x) = Σ−1 +
∑
n

ϕ′′(z⊤an, xn)ana
⊤
n .

Now, take some arbitrary vector v. We have that

v⊤
(
−∇2

z log p(z, x)
)
v = v⊤Σ−1v +

∑
n

bn
∥∥v⊤an∥∥2

≥ v⊤Σ−1v + θmin

∑
n

∥∥v⊤an∥∥2
= v⊤

(
Σ−1 + θmin

∑
n

ana
⊤
n

)
v,

= v⊤
(
Σ−1 + θminAA

⊤) v,
Similarly, we have that

v⊤
(
−∇2

z log p(z, x)
)
v = v⊤Σ−1v +

∑
n

bn
∥∥v⊤an∥∥2

≤ v⊤Σ−1v + θmax

∑
n

∥∥v⊤an∥∥2
= v⊤

(
Σ−1 + θmax

∑
n

ana
⊤
n

)
v,

= v⊤
(
Σ−1 + θmaxAA

⊤) v.
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Putting both the above results together, we have that

Σ−1 + θminAA
⊤ ⪯ −∇2

z log p(z, x) ⪯ Σ−1 + θmaxAA
⊤.

This implies that all eigenvalues of −∇2
z log p are in the interval [µ, β]. All the claimed properties

follow from this:

• For any eigenvalue λ of ∇2
z log p(z, x), we know that

∣∣λi(∇2
z log p(z, x))

∣∣ ≤ M =
max (|µ| , |β|) . Thus, log p(z, x) is M -smooth over z.

• If µ ≥ 0, this means all eigenvalues of −∇2
z log p(z, x) are positive, which implies that

− log p(z, x) is convex.

• If µ > 0, then all eigenvalues of −∇2
z log(z, x) are bounded below by α, which impiles that

− log p(z, x) is µ-strongly convex.

Corollary 25. Take a linear regression model with inputs an ∈ Rd and outputs xn ∈ R. Let
p(z) = N (z|0,Σ) and p(xn|z) = N

(
x|z⊤an, σ2

)
for some fixed σ. Then − log p(z, x) is µ-

strongly convex for µ = λmin

(
Σ−1 + 1

4AA
⊤) and M -smooth for M = λmax(Σ

−1 + 1
4AA

⊤).

Proof. In this case we have that

ϕ(z⊤an, xn) = − log p(xn|z)

=
1

2σ2

(
xn − z⊤an

)2 − 1

2
log(2πσ2).

Or, more abstractly,

ϕ(α, β) =
1

2σ2
(α− β)2 − 1

2
log(2πσ2).

ϕ′(α, β) =
1

σ2
(α− β)

ϕ′′(α, β) =
1

σ2

Thus we have that θmin = θmax = 1
σ2 . It follows from Theorem 24 that − log p(z, x) is µ-strongly

convex for µ = λmin

(
Σ−1 + 1

σ2AA
⊤) and M -smooth for M = λmax

(
Σ−1 + 1

σ2AA
⊤) .

In the particular case where Σ = I , we get that µ = λmin

(
I + 1

σ2AA
⊤) = 1 + 1

σ2σmin(A)
2 and

M = λmax(1 +
1
σ2AA

⊤) = 1 + 1
σ2σmax(A)

2.

Corollary 26. Take a logistic regression model with inputs an ∈ Rd and outputs xn ∈ {−1,+1}.
Let p(z) = N (z|0,Σ) and p(xn = 1|z) = Sigmoid(xnz

⊤an) = 1/(1 + exp(−xnz⊤an)). Then
− log p(z, x) is µ-strongly convex for µ = λmin

(
Σ−1

)
and M -smooth for M = λmax(Σ

−1 +
1
4AA

⊤).

Proof. In this case we have that

ϕ(z⊤an, xn) = − log p(xn|z)
= log

(
1 + exp(−xnz⊤an)

)
.

Or, more abstractly,

ϕ(α, β) = log (1 + exp(−αβ))

ϕ′(α, β) = − β

1 + exp(αβ)

ϕ′′(α, β) =
β2 exp(αβ)

(1 + exp(αβ))2
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The second derivative is non-negative and goes to zero if α→ −∞ or α→ +∞. It is maximized
at α = 0 in which case ϕ′′ = 1

4β
2. But of course, in this model, the second input is β = xn ∈

{−1,+1} , meaning β2 = always. Thus we have that θmin = 0 and θmax = 1. It follows from
Theorem 24 that − log p(z, x) is µ-strongly convex for µ = λmin

(
Σ−1

)
and M -smooth for M =

λmax

(
Σ−1 + 1

4AA
⊤) .

In the particular case where Σ = I , we get that µ = 1 and M = λmax(1 + 1
4AA

⊤) = 1 +
1
4σmax(A)

2.

Theorem 27. Take a heirarchical model of the form p(θ, z, x) = p(θ)
∏

i p(zi|θ)p(xi|θ, zi), where
all log-densities are twice-differentiable. Then, log p(θ, z, x) is smooth joinly over (θ, z) if and only
if the spectral norm of the second derivative matrices ∇θθ⊤ log p(θ, z, x), ∇θz⊤

i
log p(θ, zi, xi), and

∇ziz⊤
i
log p(θ, zi, xi) are all bounded uniformly over (θ, z).

Proof. The following conditions are all equivalent:

1. log p(θ, z, x) is smooth as a function of (θ, z)

2.
∥∥∇2 log p(θ, z, x)

∥∥
2

is bounded above (uniformly over (θ, z), where ∇2 denotes the Hessian
with respect to (θ, z) and ∥·∥2 denotes the spectral norm.)

3.
∥∥∇2 log p(θ, z, x)

∥∥ is bounded above (uniformly over (θ, z), where∇2 denotes the Hessian with
respect to (θ, z) and ∥·∥ denotes a block infinity norm on top of spectral norm inside each block.

4.
∥∥∇2

θθ⊤ log p(θ, z, x)
∥∥
2

,
∥∥∥∇2

θz⊤
i
log p(θ, z, x)

∥∥∥
2
, and

∥∥∥∇2
ziz⊤

j
log p(θ, z, x)

∥∥∥
2

are all bounded

above (uniformly over (θ, z))

5.
∥∥∇2

θθ⊤ log p(θ, z, x)
∥∥
2

,
∥∥∥∇2

θz⊤
i
log p(θ, zi, xi)

∥∥∥
2
, and

∥∥∥∇2
ziz⊤

j
log p(θ, z, x)

∥∥∥
2

are all bounded

above (uniformly over (θ, z))

6.
∥∥∇2

θθ⊤ log p(θ, z, x)
∥∥
2

,
∥∥∥∇2

θz⊤
i
log p(θ, zi, xi)

∥∥∥
2
, and

∥∥∥∇2
ziz⊤

i
log p(θ, z, x)

∥∥∥
2

are all bounded

above (uniformly over (θ, z))

7.
∥∥∇2

θθ⊤ log p(θ, z, x)
∥∥
2

,
∥∥∥∇2

θz⊤
i
log p(θ, zi, xi)

∥∥∥
2
, and

∥∥∥∇2
ziz⊤

i
log p(θ, zi, xi)

∥∥∥
2

are all bounded

above (uniformly over (θ, z))

Corollary 28. Take a hierarchical logistic regression model defined by p(θ, z, x) =
p(θ)

∏
i p(zi|θ)

∏
j p(xij |zi) where {θ, zi} ∈ Rd, xij ∈ {−1,+1}, and

θ ∼ N (0,Σ)

zi ∼ N (θ,∆)

xij ∼ p(xij |zi)
p(xij = 1|zi) = Sigmoid(xijz

⊤
i aij),

where Sigmoid(b) = 1
1+exp(−b) . Then, − log p(θ, z, x) is convex and smooth with respect to (θ, z).

Proof. It’s immediate that − log p is convex with respect to (θ, z). We can show that this function is
smooth, by verifying the three conditions of Theorem 27.

• ∇2
θθ⊤ log p(θ, z, x) = −Σ−1 −∆−1 is constant.

• ∇2
θz⊤

i
log p(θ, zi, xi) = ∆−1 is also constant.
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• p(zi|θ) is a Gaussian with constant covariance, so is smooth with a constant independent of θ.
And we can write that log p(xij |zi) = log

(
1 + exp

(
−xijz⊤i aij

))
. This function is also smooth

over zi with a constant that doesn’t depend on θ. Thus log p(zi|θ) +
∑

j log p(xij |zi) is smooth
over zi with a smoothness constant that is independent of θ.

8 Estimators and variance bounds

We remember that unless specified otherwise, we consider that w = (m,C) ∈ Rd × V , where V is a
vector subspace ofMd.

8.1 Variance bounds for the estimators

Theorem 1. Let Tw(u) = Cu+m for w = (m,C). Let ϕ : Rd → R be M -smooth, suppose that ϕ
is stationary at m̄, and define w̄ = (m̄, 0). Then

E
u∼N (0,I)

∥∇wϕ(Tw(u))∥22 ≤ (d+ 1)M2 ∥m− m̄∥22 + (d+ 3)M2 ∥C∥2F ≤ (d+ 3)M2 ∥w − w̄∥22 .

Furthermore, the first inequality cannot be improved.

Proof. This bound is proven by [20, Thm. 3] in the case that V =Md. We conclude that this bound
holds for every subspace V ofMd by using the inequality in Lemma 17.2.

Theorem 2. Suppose that log p(·, x) is M -smooth and has a maximum (or stationary point) at m̄,
and define w̄ = (m̄, 0). Then, for every w and every solution w∗ of the VI problem,

E ∥genergy(u)∥22 ≤ (d+ 3)M2 ∥w − w̄∥22 (6)

≤ 2(d+ 3)M2∥w − w∗∥22 + 2(d+ 3)M2∥w∗ − w̄∥22.

Proof. It is a direct consequence of Theorem 1 and Young’s inequality

E ∥genergy∥22 ≤ (d+ 3)M2 ∥w − w̄∥22
= (d+ 3)M2 ∥w − w∗ + w∗ − w̄∥22
≤ 2(d+ 3)M2 ∥w − w∗∥22 + 2(d+ 3)M2 ∥w∗ − w̄∥22 .

Theorem 3. Suppose that log p(·, x) is M -smooth, that it is maximal at m̄, and define w̄ = (m̄, 0).
Then, for every L > 0, for every w ∈ WL and every solution w∗ of the VI problem,

E ∥gent(u)∥22 ≤ 2(d+ 3)M2 ∥w − w̄∥22 + 2dL (8)

≤ 4(d+ 3)M2∥w − w∗∥2 + 4(d+ 3)M2∥w∗ − w̄∥2 + 2dL.

Proof. The difference between gent and genergy is the addition of the constant vector∇h(w). Thus,
we have that

E ∥gent∥22 = E ∥genergy +∇h(w)∥22
≤ 2E ∥genergy∥22 + 2E ∥∇h(w)∥22
(6)
≤ 2(d+ 3)M2 ∥w − w̄∥22 + 2 ∥∇h(w)∥22 .

It remains to bound the final term. We can do this using the closed-form expression for the entropy
gradient (see Lemma 18.2), plus the assumption that w ∈ WL ⊂ W , to see that
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∥∇h(w)∥22 = ∥ projV (C−⊤)∥2F
≤

∥∥C−⊤∥∥2
F

=
∑
i

σi(C
−⊤)2

=
∑
i

σi(C)
−2

≤
∑
i

(
1√
L

)−2

= dL.

We conclude with Young’s inequality

E ∥gent∥22 ≤ 2(d+ 3)M2 ∥w − w̄∥22 + dL

= 2(d+ 3)M2 ∥w − w∗ + w∗ − w̄∥22 + dL

≤ 4(d+ 3)M2 ∥w − w∗∥22 + 4(d+ 3)M2 ∥w∗ − w̄∥22 + dL.

For the next Theorem, we will need the follwing technical Lemma :
Lemma 29. Let u ∼ N (0, I), A ∈Md and b ∈ Rd. Then

E∥Au+ b∥2(1 + ∥u∥2) = (d+ 1)∥b∥2 + (d+ 3)∥A∥2F .

Proof. Develop the squares to write

E∥Au+b∥2(1+∥u∥2) = Eu∥Au∥2+2⟨A⊤b, u⟩+∥b∥2+∥Au∥2∥u∥2+2⟨A⊤b, u∥u∥2⟩+∥b∥2∥u∥2.

Since Eu = 0, we immediately see that E⟨A⊤b, u⟩ = 0. Because of symmetry, the third-order
moment Eu∥u∥2 is also zero, so we obtain E⟨A⊤b, u∥u∥2⟩ = 0. We also have the second-order
moment E∥u∥2 = d, which means that E∥b∥2∥u∥2 = d∥b∥2. For the other terms, we use the
identities

Euu⊤ = I, Euu⊤uu⊤ = (d+ 2)I,

from [20, Lemma 9] It allows us to write

E∥Au∥2 = E tr(A⊤Auu⊤) = tr(A⊤A) = ∥A∥2F ,
E∥Au∥2∥u∥2 = tr(A⊤Auu⊤uu⊤) = (d+ 2)∥A∥2F .

The conclusion follows after gathering all those identities.

Theorem 4. Suppose that log p(·, x) is M -smooth. Consider the residual r(z) := log p(z, x) −
log qw∗(z) for any solution w∗ of the VI problem, assume that it has a stationary point m̂, and define
ŵ = (m̂, 0). Then r is K-smooth for some K ∈ [0, 2M ], and for all w ∈ WM ,

E ∥gSTL∥22 ≤ 8(d+ 3)M2∥w − w∗∥22 + 2(d+ 3)K2 ∥w − ŵ∥22 (10)

≤ 4(d+ 3)(K2 + 2M2)∥w − w∗∥22 + 4(d+ 3)K2∥w∗ − ŵ∥22.

Moreover, if p(·|x) is Gaussian then K = 0.

Proof. Let w ∈ WM be fixed. For the duration of the proof, we take v to be a second copy of w
(held constant under differentiation with respect to w). Now, we can rearrange the estimator in Eq. 9
by making appear qw∗(Tw(u)), namely

gSTL(u) = ∇w log
qv(Tw(u))

p(Tw(u), x)
= ∇w log

qv(Tw(u))

qw∗(Tw(u))
+∇w log

qw∗(Tw(u))

p(Tw(u), x)
.

23



Introducing ϕ(z) := log qv(z)− log qw∗(z), and recalling r(z) = log p(z, x)− log qw∗(z), we have

gSTL = ∇wϕ(Tw(u))−∇wr(Tw(u)).

We assume that log p(·, x) is M -smooth, and that V =Md, T d or Sd, which implies that w∗ ∈ WM

(see Lemma 20). This in turn guarantees that log qw∗ is also M -smooth (see Lemma 21). Thus, r is
the sum of two M -smooth functions, so it is K-smooth with K ∈ [0, 2M ]. Using Young’s inequality,
together with Theorem 1 applied to r, we obtain

Eu∥gSTL(u)∥2 ≤ 2Eu∥∇wr(Tw(u))∥2 + 2Eu∥∇wϕ(Tw(u))∥2

≤ 2(d+ 3)K2∥w − ŵ∥2 + 2Eu∥∇wϕ(Tw(u))∥2, (19)

where ŵ = (m̂, 0), with m̂ being a stationary point of r. Now it remains to control the last term of
inequality (19). Apply the chain rule onto ϕ(Tw(u)) to write (with the help of Lemma 37)

∇wϕ(Tw(u)) =
(
∇zϕ(Tw(u)),projV (∇zϕ(Tw(u))u

⊤)
)
.

This gives us directly that

∥∇wϕ(Tw(u))∥2 = ∥∇zϕ(Tw(u))∥2 + ∥ projV (∇zϕ(Tw(u))u
⊤)∥2F

≤ ∥∇zϕ(Tw(u))∥2 + ∥∇zϕ(Tw(u))u
⊤∥2F

= ∥∇zϕ(Tw(u))∥2
(
1 + ∥u∥2

)
, (20)

where we used that ∥vu⊤∥2F = ∥v∥2∥u∥2 for any vectors v and u. Computing ∇zϕ amounts to
computing the gradient of the Gaussian density qw. From its definition (see Eq. 17) we have:

∇z log qw(z) = −(CC⊤)−1(z −m) = −Σ−1(z −m).

Recalling the definition of ϕ = log qv−log qw∗ , and writing v = (m,C),w∗ = (m∗, C∗), Σ = CC⊤,
Σ∗ = C∗C

⊤
∗ , we obtain

∇zϕ(z) =
(
Σ−1

∗ − Σ−1
)
z +Σ−1m− Σ−1

∗ m∗.

In other words, we have

∇zϕ(Tw(u)) =
(
Σ−1

∗ − Σ−1
)
(Cu+m) + Σ−1m− Σ−1

∗ m∗ = Au+ b, (21)

where A := (Σ−1
∗ −Σ−1)C and b := Σ−1

∗ m−Σ−1
∗ m∗. We can now combine (20) and (21) and use

Lemma 29 to write

Eu∥∇wϕ(Tw(u))∥2 ≤ Eu∥Au+ b∥2(1 + ∥u∥2)
= (d+ 1)∥b∥2 + (d+ 3)∥A∥2F
≤ (d+ 3)

(
∥b∥2 + ∥A∥2F

)
. (22)

Let us now introduce the function κ : Rd×Md → R∪{+∞}, defined by κ(w) := Ez∼qw log qw(z)−
log qw∗(z) if C is invertible, +∞ otherwise. This function is nothing but the Kullback-Liebler
divergence between the two Gaussian distributions qw and qw∗ , and can be computed in closed-form
on its domain:

κ(w) =
1

2

(
log det(Σ∗)− log det(Σ)− d+ tr(Σ−1

∗ Σ) + ⟨Σ−1
∗ (m∗ −m), (m∗ −m)⟩

)
,

where we note as before w = (m,C), w∗ = (m∗, C∗), Σ = CC⊤, Σ∗ = C∗C
⊤
∗ . This allows us to

compute its gradient at w ∈ WM :

∇mκ(w) = Σ−1
∗ (m∗ −m)

∇Cκ(w) =
−1
2
∇C log det(CC⊤) +

1

2
∇C tr(Σ−1

∗ CC⊤)

= (Σ−1
∗ − Σ−1)C.

We see that∇mκ(w) = b, and∇Cκ(w) = A, which means that ∥b∥2+∥A∥2F = ∥∇wκ(w)∥2. From
(22) and the fact that∇wκ(w

∗) = 0 (because w∗ is a minimizer of κ), we deduce that

Eu∥∇wϕ(Tw(u))∥2 ≤ (d+ 3)∥∇wκ(w)−∇wκ(w
∗)∥2.
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Now we remind that w∗ ∈ WM which implies that log qw∗ is M -smooth. This means that
Ez∼qw log qw∗ is M -smooth as well, according to Domke [13, Theorem 1]. On the other hand,
we know (see the proof of Lemma 16) that Ez∼qw log qw∗ = h(w) which is M -smooth onWM (see
Lemma 18.3). All this implies that κ is 2M -smooth onWM , from which we conclude

Eu∥∇wϕ(Tw(u))∥2 ≤ (d+ 3)∥∇wκ(w)−∇wκ(w
∗)∥2 ≤ (d+ 3)4M2∥w − w∗∥2.

The Theorem’s main inequality (10) follows after plugging the above inequality into (19). The second
inequality follows after using Young’s inequality

E ∥gSTL∥22 ≤ 2(d+ 3)K2 ∥w − ŵ∥22 + 8(d+ 3)M2 ∥w − w∗∥22
= 2(d+ 3)K2 ∥w − w∗ + w∗ − ŵ∥22 + 8(d+ 3)M2 ∥w − w∗∥22
≤ 4(d+ 3)K2 ∥w − w∗∥22 + 4(d+ 3)K2 ∥w∗ − ŵ∥22 + 8(d+ 3)M2 ∥w − w∗∥22
= 4(d+ 3)

(
K2 + 2M2

)
∥w − w∗∥22 + 4(d+ 3)K2 ∥w∗ − ŵ∥22 .

To conclude the proof, it remains to check that K = 0 whenever p(·|x) is Gaussian. In that case,
because our main objective function f(w) is the divergence between qw and p(·|x), it is clear that
f is minimized whenever qw = p(·|x). Therefore, without loss of generality, we can assume that
p(·|x) = qw∗ . This implies that the residual r is constant (r(z) = log p(x)), and so is 0-smooth.

8.2 Quadratically bounded estimators

Theorem 30. The estimators obey E ∥g∥22 ≤ a ∥w − w∗∥2 + b with the the following constants:

Estimator a b valid w

genergy 2(d+ 3)M2 2(d+ 3)M2 ∥w∗ − w̄∥22 any

gent 4(d+ 3)M2 4(d+ 3)M2 ∥w∗ − w̄∥22 + dL w ∈ WL

gSTL 4(d+ 3)
(
K2 + 2M2

)
4(d+ 3)K2 ∥w∗ − ŵ∥22 w ∈ WM

Proof. Combine the results of Theorems 2, 3 and 4.

9 Optimization proofs

This section contains all the proofs for the Theorems stated in Section 3.

9.1 Anytime Convergence Theorem for Strongly Convex

Theorem 31 ( Theorem 3.2 in [53] ). Suppose we are given a sequence of wt iterates such that for a
step size γt ≤ 1

2L and given constants µ > 0 and σ2 > 0 we have that

E
[
∥wt+1 − w∗∥2

]
≤ (1− γtµ)E

[
∥wt − w∗∥2

]
+ 2σ2γ2t . (23)

By switching to a decaying stepsize according to

γt =


1

2L
for t < t∗

1

µ

2t+ 1

(t+ 1)2
for t ≥ t∗

where t∗ = 4⌊L/µ⌋, we have that

E
[
∥wT+1 − w∗∥2

]
≤ 16⌊L/µ⌋2

(T + 1)2
∥w0 − w∗∥2 + σ2

µ2

8

T + 1
. (24)
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Proof. We divide the proof for steps t that are great or smaller than t∗. For t ≤ t∗, we have by
unrolling (23) starting from t∗, . . . , 1, with γt ≡ γ gives

E
[
∥wt∗ − w∗∥2

]
≤ (1− γµ)t

∗
∥w0 − w∗∥2 + 2σ2γ

µ
. (25)

Now consider t ≥ t∗ for which we have that γt = 1
µ

2t+1
(t+1)2 which when inserted into (23) gives

E
[
∥wt+1 − w∗∥2

]
≤ t2

(t+ 1)2
E
[
∥wt − w∗∥2

]
+ σ2 2

µ2

(2t+ 1)2

(t+ 1)4
.

Multiplying through by (t+ 1)2 and re-arranging gives

(t+ 1)2E
[
∥wt+1 − w∗∥2

]
≤ t2E

[
∥wt − w∗∥2

]
+ σ2 2

µ2

(2t+ 1)2

(t+ 1)2

≤ t2E
[
∥wt − w∗∥2

]
+

8σ2

µ2
,

where we used that 2t+1
t+1 ≤ 2. Summing up over t = t∗, . . . , T and using telescopic cancellation

gives

(T + 1)2E
[
∥wT+1 − w∗∥2

]
≤ (t∗)2E

[
∥wt∗ − w∗∥2

]
+ (T − t∗)8σ

2

µ2
.

Now using that for t ≤ t∗ we have that γ = 1
L and (25) holds, thus

(T + 1)2E
[
∥wT+1 − w∗∥2

]
≤ (t∗)2

(
(1− γµ)t

∗
∥w0 − w∗∥2 + 2σ2 γ

µ

)
+ (T − t∗)8σ

2

µ2

≤ (t∗)2
(
∥w0 − w∗∥2 + 2σ2 γ

µ

)
+ (T − t∗)8σ

2

µ2
,

where we used that (1− γµ) ≤ 1. Substituting γ = 1
2L , t∗ = 4⌊L/µ⌋ and multiplying by (T + 1)2

gives

E
[
∥wT+1 − w∗∥2

]
≤ 16⌊L/µ⌋2

(T + 1)2
∥w0 − w∗∥2 + σ2

µ2(T + 1)2

(
8(T − t∗) + (t∗)2

µ

L

)
≤ 16⌊L/µ⌋2

(T + 1)2
∥w0 − w∗∥2 + σ2

µ2

8(T − 2t∗)

(T + 1)2

≤ 16⌊L/µ⌋2

(T + 1)2
∥w0 − w∗∥2 + σ2

µ2

8

T + 1

which concludes the proof of (24).

9.2 Complexity Lemma for Convex

Lemma 32. Suppose we are given a sequence w̄T and constants a, b, B > 0 such that

E
[
f(w̄T )

]
− inf f ≤ γ

(
a
∥∥w0 − w∗

∥∥2
1− θT

+ b

)
holds for

θ :=
1

1 +Bγ2
.

If γ = A√
T

for A ≥
√

2
B and T ≥ 2, then

E
[
f(w̄T )

]
− inf f ≤ A√

T

(
2a∥w0 − w∗∥2 + b

)
.

Thus, T = O(ϵ−2) iterations are sufficient to guarantee that E
[
f(w̄T )

]
− inf f ≤ ϵ.
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Proof. First we show that 1
1−θT ≤ 2 is equivalent to

T ≥ log 2

log(1 +BA2/T )
. (26)

Indeed this follows since
1

1− θT
≤ 2 ⇔

θT ≤ 1

2
⇔

T ≥ log 2

log 1/θ
⇔

T ≥ log 2

log(1 +Bγ2)
⇔

T ≥ log 2

log(1 +BA2/T )
.

Now note that log(1+x) ≥ x
1+x for x ≥ 0, which implies that 1

log(1+x) ≤ 1+ 1
x for x ≥ 0. Applying

this gives that

1

log(1 +BA2/T )
≤ 1 +

T

BA2
.

So to guarantee 1
1−θT ≤ 2, from (26) it is sufficient to enforce that

T ≥ 1 +
T

BA2

≥ log(2)

(
1 +

T

BA2

)
.

Assuming A ≥
√
2/B, this last condition holds if

T ≥ 1 +
1

BA2 − 1
. (27)

Since we also impose that BA2 ≥ 2 we have that 1
BA2−1 ≤ 1 thus for (27) to hold it suffices that

T ≥ 2. Substituting γ = A√
T

and the relaxation 1
1−θT ≤ 2 into the original bound gives the claimed

result.

9.3 Proximal gradient descent with strong convexity and smoothness

We start by recalling some standard properties of the proximal operator.

Lemma 33. Let γ > 0 and w∗ ∈ argminw l(w) + h(w). Assume h(w) is convex and that l(w) is
continuously differentiable at w∗. Then

1. For all w,w′ and γ > 0,
∥∥proxγh(w)− proxγh(w

′)
∥∥
2
≤ ∥w − w′∥2.

2. w∗ = proxγh(w
∗ − γ∇l(w∗))

3. v = proxγh(w)⇔ w−v
γ ∈ ∂h(v)

Theorem 7. Let l be a µ-strongly convex and M -smooth function, and let w̄ = argmin(l). Let
h be a proper closed convex function, and let w∗ = argmin(l + h). Let (wt)t∈N be generated
by the Prox-SGD algorithm, with a constant stepsize γ ∈

(
0,min{ µ

2a ,
1
µ}
]
. Suppose that gt is a

quadratically bounded estimator (Def. 5) for∇l with parameters (a, b, w∗). Then,

E
∥∥wT+1 − w∗∥∥2

2
≤ (1− γµ)T

∥∥w0 − w∗∥∥2
2
+

2γ

µ

(
b+M2 ∥w∗ − w̄∥22

)
. (11)
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Alternatively, if we use the decaying stepsize γt = min

{
µ

2a
,
1

µ

2t+ 1

(t+ 1)2

}
, then

E∥wT − w∗∥2 ≤ 16⌊a/µ2⌋2

T 2
∥w0 − w∗∥2 + 8

µ2T

(
b+M2 ∥w∗ − w̄∥22

)
. (12)

In both cases, T = O(ϵ−1) iterations are sufficient to guarantee that E∥wT − w∗∥2 ≤ ϵ.

Proof. We start by using the non-expansiveness and fixed-point properties of the proximal operator
to write∥∥wt+1 − w∗∥∥2

2
=

∥∥proxγh (wt − γgt
)
− proxγh (w

∗ − γ∇l(w∗))
∥∥2
2

≤
∥∥wt − w∗ + γ

(
∇l(w∗)− gt

)∥∥2
2

=
∥∥wt − w∗∥∥2

2
+ γ2

∥∥∇l(w∗)− gt
∥∥2
2
+ 2γ

〈
wt − w∗, ∇l(w∗)− gt

〉
.

Above the first line uses the fixed point property of the proximal operator that w∗ = proxγh(w
∗ −

γ∇l(w)), while the second line uses the fact that the proximal operator is non-expansive.

Now, we apply our assumption on the gradient estimator to write

E
[∥∥∇l(w∗)− gt

∥∥2
2
| wt

]
≤ 2E

[
∥∇l(w∗)∥22 | w

t
]
+ 2E

[∥∥gt∥∥2
2
| wt

]
≤ 2 ∥∇l(w∗)∥22 + 2

(
a
∥∥wt − w∗∥∥2

2
+ b
)

≤ 2M2 ∥w∗ − w̄∥22 + 2
(
a
∥∥wt − w∗∥∥2

2
+ b
)
.

For the last term, we have by strong convexity and the fact that gt is an unbiased estimator that

E
[〈
wt − w∗, ∇l(w∗)− gt

〉
| wt

]
= −

〈
w∗ − wt, ∇l(w∗)−∇l(wt)

〉
≤ −µ

∥∥wt − w∗∥∥2
2
,

where the second line follows from the fact that l is µ strongly convex.

Putting the pieces together, we get that

E
[∥∥wt+1 − w∗∥∥2

2

]
≤ E

∥∥wt − w∗∥∥2
2
+ 2γ2M2 ∥w∗ − w̄∥22 + 2γ2 E

(
a
∥∥wt − w∗∥∥2

2
+ b
)
− 2γµE

∥∥wt − w∗∥∥
=

(
1− 2γµ+ 2γ2a

)
E
∥∥wt − w∗∥∥2

2
+ 2γ2

(
b+M2 ∥w∗ − w̄∥22

)
Now the following conditions are equivalent:

1− 2γµ+ 2γ2a ≤ 1− γµ
2γµ− 2γ2a ≥ γµ

2µ− 2γa ≥ µ

2µ− µ ≥ 2γa

µ ≥ 2γa

γ ≤ µ

2a

This means that

E
[∥∥wt+1 − w∗∥∥2

2

]
≤ (1− γµ)E

∥∥wt − w∗∥∥2
2
+ 2γ2

(
b+M2 ∥w∗ − w̄∥22

)
.

Now since γ ≤ 1
µ ⇔ 1− γµ ≥ 0 we can apply the above recursively, which gives that

E
[∥∥wt+1 − w∗∥∥2

2

]
≤ (1− γµ)t

∥∥w0 − w∗∥∥2
2
+ 2γ2

(
b+M2 ∥w∗ − w̄∥22

) t−1∑
k=1

(1− γµ)k .

But we can bound this geometric sum by
t−1∑
k=1

(1− γµ)k =
1− (1− γµ)t

γµ
≤ 1

γµ
,
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leading to the result that

E
[∥∥wt+1 − w∗∥∥2

2

]
≤ (1− γµ)t

∥∥w0 − w∗∥∥2
2
+

2γ

µ

(
b+M2 ∥w∗ − w̄∥22

)
.

To prove the anytime result, we can now apply Theorem 31. To do so, we need to map the notation
we use here to the notation used in Theorem 31. The mapping we need is L = a

µ , and σ2 =(
b+M2 ∥w∗ − w̄∥22

)
which when inserting into Theorem 31 gives the result.

Corollary 34. Under the conditions of Theorem 7, if γ = A log T
T for 1

µ ≤ A, and T is large enough
that T

log T ≥
2aA
µ ,

E
∥∥wT+1 − w∗∥∥2

2
≤ 1

T

∥∥w0 − w∗∥∥2
2
+

2A log T

µT

(
b+M2 ∥w∗ − w̄∥22

)
= Ω

(
log T

T

)
.

Proof. The previous theorem can only be applied when γ ≤ µ
2a , i.e. when A log T

T ≤ µ
2a or

2aA
µ ≤ T

log T . Supposing that is true, observe that (1− x)T ≤ exp(−xT ), from which it follows that
(1− γµ)T ≤ exp (−µA log T ) = 1

TµA ≤ 1
T .

9.4 Proximal gradient descent with convexity and smoothness

Theorem 8. Let l be a proper convex and M -smooth function. Let h be a proper closed convex
function, and let w∗ ∈ argmin(l + h). Let (wt)t∈N be generated by the Prox-SGD algorithm, with a
constant stepsize γ ∈ (0, 1

M ]. Suppose that gt is a quadratically bounded estimator (Def. 5) for ∇l
with parameters (a, b, w∗). Then,

E
[
f(w̄T )− inf f

]
≤ γ

(
a
∥w0 − w∗∥2

(1− θT )
+ b

)
,

where θ def
=

1

1 + 2aγ2
and w̄T def

=

∑T
t=1 θ

t+1wt∑T
t=1 θ

t+1
. In particular, if γ =

1√
aT

, then

E
[
f(w̄T )

]
− inf f ≤ 1√

aT

(
2a∥w0 − w∗∥2 + b

)
∀T ≥ max

{
M2

a
, 2

}
.

Thus, T = O(ϵ−2) iterations are sufficient to guarantee that E
[
f(w̄T )− inf f

]
≤ ϵ.

Proof. Let us start by looking at ∥wt+1 −w∗∥2 −∥wt −w∗∥2. Expanding the squares, we have that

1

2γt
∥wt+1 − w∗∥2 − 1

2γt
∥wt − w∗∥2 =

−1
2γt
∥wt+1 − wt∥2 − ⟨w

t − wt+1

γt
, wt+1 − w∗⟩.

Since wt+1 = proxγth(w
t − γtgt), we know from Lemma 33 that

(wt − γtgt)− wt+1

γt
∈ ∂h(wt+1)

and therefore that
wt − wt+1

γt
∈ gt + ∂h(wt+1),

where ∂h(w) is the subdifferential of h. Consequently there exists a subgradient bt+1 ∈ ∂h(wt+1)
such that

1

2γt
∥wt+1 − w∗∥2 − 1

2γt
∥wt − w∗∥2 (28)

=
−1
2γt
∥wt+1 − wt∥2 − ⟨gt + bt+1, wt+1 − w∗⟩

=
−1
2γt
∥wt+1 − wt∥2 − ⟨gt −∇ℓ(wt), wt+1 − w∗⟩ − ⟨∇ℓ(wt) + bt+1, wt+1 − w∗⟩.
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We decompose the last term of (28) as

−⟨∇ℓ(wt)+bt+1, wt+1−w∗⟩ = −⟨bt+1, wt+1−w∗⟩−⟨∇ℓ(wt), wt+1−wt⟩+⟨∇ℓ(wt), w∗−wt⟩.
(29)

For the first term in the above we can use that bt+1 ∈ ∂h(wt+1) is a subgradient together with the
defining property of subgradient to write

−⟨bt+1, wt+1 − w∗⟩ = ⟨bt+1, w∗ − wt+1⟩ ≤ h(w∗)− h(wt+1). (30)

On the second term we can use the fact that l is M -smooth to write

−⟨∇ℓ(wt), wt+1 − wt⟩ ≤ M

2
∥wt+1 − wt∥2 + ℓ(wt)− ℓ(wt+1). (31)

On the last term we can use the convexity of f to write

⟨∇ℓ(wt), w∗ − wt⟩ ≤ ℓ(w∗)− ℓ(wt). (32)

By inserting (30), (31), (32) into (29) gives

−⟨∇ℓ(wt) + gt+1, wt+1 − w∗⟩ ≤ h(w∗) + ℓ(w∗)− h(wt+1)− ℓ(wt+1) +
M

2
∥wt+1 − wt∥2

= f(w∗)− f(wt+1) +
M

2
∥wt+1 − wt∥2.

Now using the above in (28), and our assumption that γtM ≤ 1, we obtain

1

2γt
∥wt+1 − w∗∥2 − 1

2γt
∥wt − w∗∥2

≤ −1
2γt
∥wt+1 − wt∥2 + L

2
∥wt+1 − wt∥2 − (f(wt+1)− inf f)− ⟨gt −∇ℓ(wt), wt+1 − w∗⟩

≤ −(f(wt+1)− inf f)− ⟨gt −∇ℓ(wt), wt+1 − w∗⟩. (33)

We now have to control the last term of (33) in expectation. To shorten our notation we temporarily
introduce the operators

T (w)
def
= w − γt∇ℓ(w),

T̂ (w)
def
= w − γtgt. (34)

Notice in particular that wt+1 = proxγth(T̂ (w
t)). So the the last term of (33) can be decomposed as

−⟨gt −∇ℓ(wt), wt+1 − w∗⟩ = −⟨gt −∇ℓ(wt), proxγth(T̂ (w
t))− proxγth(T (w

t))⟩
−⟨gt −∇ℓ(wt), proxγth(T (w

t))− w∗⟩. (35)

We observe that the last term is, in expectation, is equal to zero. This is because proxγth(T (w
t))−w∗

is deterministic when conditioned on wt. Since we will later on take expectations, we drop this term
now and keep on going. As for the first term, using the nonexpansiveness of the proximal operator
(Lemma 33), we have that

−⟨gt −∇ℓ(wt),proxγth(T̂ (w
t))− proxγth(T (w

t))⟩ ≤ ∥gt −∇ℓ(wt)∥∥T̂ (wt)− T (wt)∥
= γt∥gt −∇ℓ(wt)∥2.

Using the above two bounds in (35) we have proved that (after taking expectation)

−E⟨gt −∇ℓ(wt), wt+1 − w∗⟩ ≤ γtE∥gt −∇ℓ(wt)∥2 = γtV
[
gt
]
.

Injecting the above inequality into (33) and multiplying through by γt, we obtain

1

2
E∥wt+1 − w∗∥2 − 1

2
E
[
∥wt − w∗∥2

]
≤ −γtE

[
f(wt+1)− inf f

]
+ γ2tV

[
gt
]
. (36)

From now on we assume that the stepsize sequence is constant γt ≡ γ. Now, applying our assumption
on the gradient estimator, we have

V
[
gt
]
≤ E∥gt∥2 ≤ aE

∥∥wt − w∗∥∥2 + b
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Inject this inequality into (36), and reordering the terms gives

γE
[
f(wt+1)− inf f

]
≤ 1

2
E
[
∥wt − w∗∥2

]
− 1

2
E
[
∥wt+1 − w∗∥2

]
+ γ2

(
aE
[∥∥wt − w∗∥∥2]+ b

)
=

1

2

(
1 + 2γ2a

)
E
[
∥wt − w∗∥2

]
− 1

2
E
[
∥wt+1 − w∗∥2

]
+ γ2b

=
1

2
CE

[
∥wt − w∗∥2

]
− 1

2
E
[
∥wt+1 − w∗∥2

]
+ γ2b (37)

where we introduced the constant C def
= 1 + 2aγ2. We will now do a weighted telescoping by

introducing a sequence αt+1 > 0 of weights. Multiplying the above inequality by some αt+1 > 0,
and summing over 0, . . . , T − 1 gives

γ

T−1∑
t=0

αt+1E
[
f(wt+1)− inf f

]
≤

T−1∑
t=0

αt+1

(
C
1

2
E
[
∥wt − w∗∥2

]
− 1

2
E
[
∥wt+1 − w∗∥2

])
+γ2b

T−1∑
t=0

αt+1.

To be able to use a telescopic sum in the right-hand term, we need that αt+1C = αt (an idea we
borrowed from [54] ). This holds by choosing αt

def
= 1

Ct , which allows us to write

γ

T−1∑
t=0

αt+1E
[
f(wt+1)− inf f

]
≤

T−1∑
t=0

(αt

2
E
[
∥wt − w∗∥2

]
− αt+1

2
E
[
∥wt+1 − w∗∥2

])
+ γ2b

T−1∑
t=0

αt+1

=
α0

2
∥w0 − w∗∥2 − αT

2
E
[
∥wT − w∗∥2

]
+ γ2b

T−1∑
t=0

αt+1

≤ α0

2
∥w0 − w∗∥2 + γ2b

T−1∑
t=0

αt+1.

Let us now introduce w̄T def
=

∑T−1
t=0 αt+1w

t+1∑T−1
t=0 αt+1

, using that α0 = 1, and by using the convexity of f
with Jensen’s inequality, we obtain

E
[
f(w̄T )

]
− inf f = E

[∑T−1
t=0 αt+tf(w

t+1)∑T−1
t=0 αt+1

]
− inf f

≤
∑T−1

t=0 αt+t E
[
f(wt+1)

]∑T−1
t=0 αt+1

− inf f

=

∑T−1
t=0 αt+t E

[
f(wt+1)− inf f

]∑T−1
t=0 αt+1

=

∑T−1
t=0 αt+t E

[
f(wt+1)− inf f

]∑T−1
t=0 αt+1

≤
1
2γ ∥w

0 − w∗∥2 + γb
∑T−1

t=0 αt+1∑T−1
t=0 αt+1

=
1

2γ
∑T−1

t=0 αt+1

∥w0 − w∗∥2 + γb

=
1

2γ
∑T−1

t=0 αt+1

∥w0 − w∗∥2 + γb

=
1

2γ
∑T−1

t=0 αt+1

∥w0 − w∗∥2 + γb.

To finish the proof, it remains to compute the geometric series
∑T−1

t=0 αt+1 which is given by

T−1∑
t=0

αt+1 =
1

C

T−1∑
t=0

1

Ct
=

1

C

1− 1/CT

1− 1/C
=

1− 1/CT

C − 1
.
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Using the above and substituting for C = 1 + 2aγ2 and θ = 1/C gives

E
[
f(w̄T )

]
− inf f ≤ C − 1

2γ (1− 1/CT )
∥w0 − w∗∥2 + γb

=
aγ

(1− θT )
∥w0 − w∗∥2 + γb

Finally by applying Lemma 32 with where B = 2a, A =
√

2
B = 1√

a
and thus γ = A√

T
= 1√

aT
.

Note that with this choice of γ we have that

γ =
1√
aT
≤ 1

M
⇔ T ≥ M2

a
.

Thus for T ≥ 2 the result of Lemma 32 gives

E
[
f(w̄T )

]
− inf f ≤ 1

√
a
√
T

(
2a∥w0 − w∗∥2 + b

)
= Ω

(
1√
T

)
.

9.5 Projected gradient descent with strong convexity

Theorem 10. Let W be a nonempty closed convex set. Let f be a µ-strongly convex function,
differentiable onW . Let w∗ = argminW(f). Let (wt)t∈N be generated by the Proj-SGD algorithm,
with a constant stepsize γ ∈

(
0,min{ µ

2a ,
2
µ}
]
. Suppose that gt is a quadratically bounded estimator

(Def. 5) for∇f with parameters (a, b, w∗). Then,

E
∥∥wT − w∗∥∥2 ≤ (1− µγ

2

)T ∥∥w0 − w∗∥∥2 + 2γb

µ
. (13)

Alternatively, if we use the decaying stepsize γt = min

{
µ

2a
,
2

µ

2t+ 1

(t+ 1)2

}
, then

E
[
∥wT − w∗∥2

]
≤ 32a

µ2T 2
∥w0 − w∗∥2 + 16b

µ2T
. (14)

In both cases, T = O(ϵ−1) iterations are sufficient to guarantee that E∥wT − w∗∥2 ≤ ϵ.

Proof. Plugging in one step of Proj-SGD we have that∥∥wt+1 − w∗∥∥2 =
∥∥projW(wt − γtgt)− projWw∗∥∥2

≤
∥∥wt − w∗ − γtgt

∥∥2 ,
where we used that projections are non-expansive. Taking expectation conditioned on wt, and
expanding squares we have that

E
[∥∥wt+1 − w∗∥∥2 | wt

]
≤
∥∥wt − w∗∥∥2 − 2γt

〈
∇f(wt), wt − w∗〉+ γ2t E

[∥∥gt∥∥2 | wt
]

≤ (1− µγt)
∥∥wt − w∗∥∥2 − 2γt(f(w

t)− f(w∗)) + aγ2t ∥wt − w∗∥2 + bγ2t ,

where we used E [gt] = ∇f(wt) and definition 5, and that f is µ–strongly convex. Taking full
expectation and re-arranging gives

2γt E[f(wt)− f(w∗)] ≤ (1− γt(µ− aγt))E
∥∥wt − w∗∥∥2 − E

∥∥wt+1 − w∗∥∥2 + bγ2t .

Now using that γt ≤ µ
2a we have that

1− γt(µ− aγt) ≤ 1− γtµ

2

and thus

2γt E[f(wt)− f(w∗)] ≤
(
1− µγt

2

)
E
∥∥wt − w∗∥∥2 − E

∥∥wt+1 − w∗∥∥2 + bγ2t . (38)
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Re-arranging we have that

E
∥∥wt+1 − w∗∥∥2 ≤ (1− µγt

2

)
E
∥∥wt − w∗∥∥2 − 2γt E[f(wt)− f(w∗)] + bγ2t

≤
(
1− µγt

2

)
E
∥∥wt − w∗∥∥2 + bγ2t . (39)

Using γt ≡ γ constant, and since γ ≤ 2
µ ⇔ 1− µγ

2 ≥ 0 we have by unrolling the recurrence that

E
∥∥wt+1 − w∗∥∥2 ≤ (1− µγ

2

)t+1 ∥∥w0 − w∗∥∥2 + t∑
k=0

(
1− µγ

2

)k
bγ2.

Since
t−1∑
k=0

(
1− γµ

2

)t
γ2 = 2γ2

1− (1− γµ/2)t

γµ
≤ 2γ2

γµ
=

2γ

µ
,

we have that

E
∥∥wt+1 − w∗∥∥2 ≤ (1− µγ

2

)t+1 ∥∥w0 − w∗∥∥2 + 2γb

µ
,

which concludes the proof of (13).

To prove (14) we will apply Theorem 31, for which we will switch our notation to match that of
Theorem 31. That is, substituting L = a

µ , σ2 = b
2 and µ̂ = µ

2 into (39) gives

E
∥∥wt+1 − w∗∥∥2 ≤ (1− µ̂γt)E

∥∥wt − w∗∥∥2 + 2σ2γ2t , (40)

which now holds for γt ≤ 1
2L and fits exactly the format of (23), excluding the additional hat on µ.

Thus we know from following verbatim the proof that continues after (23) that for a stepsize schedule
of

γt =


1

2L
for t < t∗

1

µ̂

2t+ 1

(t+ 1)2
for t ≥ t∗

for t∗ = 4⌊L/µ̂⌋ we have that

E
[
∥wT+1 − w∗∥2

]
≤ 16⌊L/µ̂⌋2

(T + 1)2
∥w0 − w∗∥2 + σ2

µ̂2

8

T + 1
.

After switching back notation L = a
µ , σ2 = b

2 and µ̂ = µ
2 gives (14).

9.6 Projected gradient descent with convexity

Theorem 11. LetW be a nonempty closed convex set. Let f be a convex function, differentiable on
W . Let w∗ ∈ argminW(f). Let (wt)t∈N be generated by the Proj-SGD algorithm, with a constant
stepsize γ ∈ (0,+∞) . Suppose that gt is a quadratically bounded estimator (Def. 5) for ∇f at wt

with constant parameters (a, b, w∗). Then,

E
[
f(w̄T )− inf

W
f
]
≤ γ

2

(
a

∥∥w0 − w∗
∥∥2

1− θT
+ b

)
.

where θ def
=

1

1 + aγ2
and w̄T def

=

∑T−1
t=0 θt+1wt∑T−1
t=0 θt+1

. Finally if γ =
√
2√
aT

and T ≥ 2 then

E
[
f(w̄T )

]
− inf f ≤

√
2a√
T
∥w0 − w∗∥2 + b√

2aT
. (15)

Thus, T = O(ϵ−2) iterations are sufficient to guarantee that E
[
f(w̄T )− inf f

]
≤ ϵ.
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Proof. Plugging in one step of the algorithm, we have that∥∥wt+1 − w∗∥∥2 =
∥∥projW(wt − γtgt)− projW(w∗)

∥∥2
≤
∥∥wt − w∗ − γtgt

∥∥2 ,
where we used that projections are non-expansive. Taking expectation conditioned on wt, and
expanding squares we have that

E
[∥∥wt+1 − w∗∥∥2 | wt

]
≤
∥∥wt − w∗∥∥2 − 2γt

〈
∇f(wt), wt − w∗〉+ γ2t E

[∥∥gt∥∥2 | wt
]

≤
∥∥wt − w∗∥∥2 − 2γt(f(w

t)− f(w∗)) + aγ2t ∥wt − w∗∥2 + bγ2t ,

where we used that gt is an unbiased estimator with bounded squared norm. Taking full expectation
and re-arranging gives

2γt E
[
f(wt)− f(w∗)

]
≤ (1 + aγ2t )E

[∥∥wt − w∗∥∥2]− E
[∥∥wt+1 − w∗∥∥2]+ bγ2t .

From now on we use a constant stepsize γt ≡ γ. Let C = (1 + aγ2). Next we would like to setup a
telescopic sum. To make this happen, we multiply through by αt+1 and impose that αt+1C = αt.
This holds with αt

def
= 1

Ct . Multiplying through by αt+1 and summing from t = 0, . . . , T − 1 we
have that

2γ

T−1∑
t=0

αt+1 E
[
f(wt)− f(w∗)

]
≤

T−1∑
t=0

(
αt+1C E

[∥∥wt − w∗∥∥2]− αt+1 E
[∥∥wt+1 − w∗∥∥2])+ T−1∑

t=0

αt+1bγ
2

=

T−1∑
t=0

(
αt E

[∥∥wt − w∗∥∥2]− αt+1 E
[∥∥wt+1 − w∗∥∥2])+ T−1∑

t=0

αt+1bγ
2

= α0

∥∥w0 − w∗∥∥2 − αT E
[∥∥wT − w∗∥∥2]+ T−1∑

t=0

αt+1bγ
2,

Using that α0 = 1, dropping the negative term −αT E
[∥∥wT − w∗

∥∥2], dividing through by

2γ
∑T−1

k=0 αk+1 and using Jensen’s inequality we have that

E
[
f(w̄t)− f(w∗)

]
≤
∑T−1

t=0 αt+1 E [f(wt)− f(w∗)]∑T−1
k=0 αk+1

≤
∥∥w0 − w∗

∥∥2
2γ
∑T−1

k=0 αk+1

+
bγ

2
.

Finally using that
T−1∑
k=0

αk+1 =

T−1∑
k=0

C−(k+1) =
1

C

T−1∑
k=0

C−k =
1

C

1− 1
CT

1− 1
C

=
1− 1

CT

C − 1
=

1− 1
(1+aγ2)T

aγ2
,

gives that

E
[
f(w̄t)− f(w∗)

]
≤ aγ2

1− 1
(1+aγ2)T

∥∥w0 − w∗
∥∥2

2γ
+
bγ

2

=
aγ

1− 1
(1+aγ2)T

∥∥w0 − w∗
∥∥2

2
+
bγ

2

=
γ

2

(
a
∥∥w0 − w∗

∥∥2
1− 1

(1+aγ2)T

+ b

)

=
γ

2

(
a
∥∥w0 − w∗

∥∥2
1− θT

+ b

)
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Finally we can apply Lemma 32 with where B = a, A =
√
2/B =

√
2/
√
a, θ = 1

1+aγ2 and

γ = A/
√
T =

√
2/(
√
a
√
T ) which gives

E
[
f(w̄T )

]
− inf f ≤ 1

2

A√
T

(
2a∥w0 − w∗∥2 + b

)
=

1√
2

1
√
a
√
T

(
2a∥w0 − w∗∥2 + b

)
= Ω

(
1√
T

)
.

10 Solving VI with stochastic optimization

10.1 Convergence of the algorithms

Corollary 12 (Prox-SGD for VI). Consider the VI problem where qw is a multivariate Gaussian
distribution (Eq. 2) with parameters w = (m,C) ∈ Rd × T d, and assume that this problem
admits a solution w∗. Suppose that log p(·, x) is M -smooth and concave (resp. µ-strongly concave).
Generate a sequence wt by using the Prox-SGD algorithm (Def. 6) applied to l and h (Eq. 16), using
genergy (5) as an estimator of∇l. Let the stepsizes γt be constant and equal to 1/(

√
aenergyT ) (resp.

be decaying as in Theorem 7 with aenergy = 2(d + 3)M2). Then, for a certain average w̄T of the
iterates, we have for T ≥ 2 that

E
[
f(w̄T )− inf f

]
= O(1/

√
T ) (resp. E

[
∥wT − w∗∥22

]
= O(1/T )).

Proof. Our assumption on the log target imply that l is smooth and convex (resp. µ-strongly convex)
according to Lemmas 18.1 and 19.1. Furthermore, since log p(·, x) is smooth, we know from
Theorem 30 that the gradient estimator genergy is quadratically bounded at every wt with respect to
constant parameters (a, b, w∗), with a = 2(d+ 3)M2. Then, because we work with triangular scale
parameters, we know from Lemma 19.3 that h is closed convex. Finally T ≥ max{M2/a, 2} = 2
since

M2

a
=

M2

2(d+ 3)M2
=

1

2(d+ 3)
≤ 1.

We have now verified the hypotheses of Theorem 8 (resp. Theorem 7), which gives us the desired
bounds.

Corollary 13 (Proj-SGD for VI). Consider the VI problem where qw is a multivariate Gaussian
distribution (Eq. 2) with parameters w = (m,C) ∈ Rd ×Sd, and assume that this problem admits a
solution w∗. Suppose that log p(·, x) is M -smooth and concave (resp. µ-strongly concave). Generate
a sequencewt by using the Proj-SGD algorithm (Def. 9) applied to the function f = l+h (Eq. 16) and
the constraintWM (Eq. 3), using gent (7) or gSTL (9) as an estimator of∇f . Let the stepsizes γt be
constant and equal to

√
2/(aT ) (resp. be decaying as in Theorem 10) with a = aent = 4(d+ 3)M2

or a = aSTL = 24(d+3)M2. Then, for a certain average w̄T of the iterates, we have for T ≥ 2 that

E
[
f(w̄T )− inf f

]
= O(1/

√
T ) (resp. E

[
∥wT − w∗∥22

]
= O(1/T )).

Proof. Our assumption on the log target imply that l is smooth and convex (resp. µ-strongly convex)
according to Lemmas 18.1 and 19.1. Regarding the entropy, since log p(·, x) is M -smooth, we know
from Lemma 18.3 that h is M -smooth onWM . We also know that h is closed convex, since we
consider symmetric scale parameters (see Lemma 19.2). Furthermore, the smoothness of log p(·, x)
implies that the gradient estimator gent is quadratically bounded at every wt ∈ WM , with respect
to constant parameters (a, b, w∗). This is stated in Theorem 30, where we can see that for gent we
can take aent = 4(d+ 3)M2, and for gSTL we can take aSTL = 2(d+ 3)(2K2 + (2M)2). Since we
know from Theorem 4 that K ≤ 2M , we can consider that aSTL ≤ 24(d+ 3)M2. Finally, we know
from Lemma 20 that the minimizers of f belong toWM , meaning that argmin(f) = argminWM

(f).
We have now verified the hypotheses of Theorem 11 (resp. Theorem 10), which gives us the desired
bounds.
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Corollary 14 (Proj-SGD for VI - Gaussian target). Consider the setting of Corollary 13, in the
scenario that log p(·, x) is µ–strongly concave, that we use the gSTL estimator, and that we take a
constant stepsize γt ≡ γ ∈

(
0,min{ µ

2aSTL
, 2
µ}
]
. Assume further that p(·|x) is Gaussian. Then,

E
[
∥wT − w∗∥22

]
≤
(
1− µγ

2

)T
∥w0 − w∗∥22.

Proof. We use the same arguments as in the proof of Corollary 13, but this time we use a constant
stepsize, which gives us the bound (13) from Theorem 10, where b = 4(d + 3)K2∥w∗ − ŵ∥2
according to Theorem 4. All we need to conclude is to verify that b = 0. This comes from the
assumption that the target is Gaussian, from which we deduce that K = 0 (see again Theorem 4).

10.2 Computations for the algorithms

Lemma 35 (Prox of the entropy for triangular matrices). Assume that V = T d, and let w =

(m,C) ∈ Rd × T d. Then proxγh(w) = (m, Ĉ), where

Ĉij =

{
1
2 (Cii +

√
C2

ii + 4γ) if i = j,

Cij if i ̸= j.

Proof. This is essentially proved in [13, Theorem 13]. We provide a proof here for the sake of
completeness, also because our entropy here enforces positive definiteness. So we need to compute

argmin
z∈Rd,X∈T d,X≻0

− log detX +
1

2γ
∥z −m∥2 + 1

2γ
∥X − C∥2F .

Because the objective here is separated in z and X , we can optimizae those variables separately. It is
clear that the optimal z will be z = m. For the matrix component, it remains to solve

argmin
X∈T d,X≻0

− log detX +
1

2γ
∥X − C∥2F .

Now remember that for a triangular matrix, being positive definite is equivalent to have positive
diagonal elements (Lemma 19.3). Because X is a lower triangular matrix, we have − log detX =∑d

i=1− logXii and Xij = 0 when i < j. So our problem becomes

argmin
X∈T d,Xii>0

d∑
i=1

(− logXii) +
∑
i≥j

1

2γ
(Xij − Cij)

2.

This is a gain a separated optimization problem with respect to the variables Xij . So we deduce that
when i ≥ j we must take Ĉij = Cij , and when i = j we need to take

Ĉii = argmin
x>0

− log x+
1

2γ
(x− Cii)

2. (41)

This is the proximal operator of − log, which can be classically computed [55, Example 6.9], and
gives the desired result.

Lemma 36 (Projection onto WM for symmetric matrices). Assume that V = Sd, and let w =
(m,C) ∈ Rd × Sd. Let C = UDU⊤ be the eigenvalue decomposition of C, with D diagonal and U
orthogonal. Then projWM

(w) = (m,UD̃U⊤), where D̃ is the diagonal matrix defined by

D̃ii = max{Dii,
1√
M
}.

Proof. Consider g = δWM
to be the indicator function ofWM , which is equal to 0 onWM and +∞

elsewhere. Then projWM
= proxg, and we can compute it with [55, Theorem 7.18]. For this, we

need to write g(C) = F (λ(C)), where λ(C) is the set of eigenvalues of C, and F is the indicator
function of K := {z ∈ Rd : zi ≥ 1/

√
M}. In that way, we see that g is a symmetric spectral

function in the sense of [55, Definition 7.12], and the conclusion follows.
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Lemma 37 (Adjoint of the distribution transformation). Let u ∈ Rd be fixed. Let T : Rd × V → Rd

be such that T (m,C) = Cu+m. Then T is a linear operator such that its adjoint T ∗ : Rd → Rd×V
verifies T ∗(z) = (z,projV (zu

⊤)).

Proof. The fact that T is linear is immediate. Let us consider now the extension T̄ : Rd×Md → Rd

such that T̄ (m,C) = Cu +m. If we define the canonical injection ι : Rd × V → Rd ×Md, we
clearly have T = T̄ ◦ ι. This means that T ∗ = ι∗ ◦ T̄ ∗ = projRd×V ◦ T̄ ∗. It remains to prove that
T̄ ∗(z) = (z, zu⊤). For this, it suffices to use the properties of the trace to write that

⟨(z, zu⊤), (m,C)⟩ = ⟨z,m⟩+ ⟨zu⊤, C⟩ = ⟨z,m⟩+ tr(uz⊤C)

= ⟨z,m⟩+ tr(z⊤Cu) = ⟨z,m⟩+ ⟨z, Cu⟩
= ⟨z, T (m,C)⟩.

10.3 Explicit implementation of the algorithms

Lemma 38 (Explicit computation of the estimators). Let u ∈ Rd, and let w = (m,C) ∈ Rd × V
where C ≻ 0. Define

π := −∇z log p(Cu+m,x).

Then

1. genergy(u) = (π,projV (πu
⊤)),

2. gent(u) = (π,projV (πu
⊤ − C−⊤)),

3. gSTL(u) = (π − C−⊤u,projV (πu
⊤ − C−⊤uu⊤)).

Proof. Let w = (m,C) and let T be the linear operator defined by T (m,C) = Cu + m, as in
Lemma 37. As a shorthand we will note px := p(·, x).

1. From its definition in (5), the energy estimator is equal to

genergy(u) = −∇w(log ◦ px ◦ T )(w).

Applying the chain rules, we obtain

genergy(u) = −T ∗∇z (log ◦ px) (Tw) = T ∗π.

The conclusion follows from the expression of T ∗ obtained in Lemma 37.

2. From its definition in (7), the entropy estimator gent(u) is equal to genergy(u) +∇h(w), where
(we use the fact that we assumed that w ∈ W) we know from Lemma 18.2 that ∇h(w) =
−(0,projV (C−⊤)). The conclusion follows from the previous item and the linearity of projV .

3. From its definition in (9), the STL estimator is equal to

gSTL(u) = genergy(u) +∇w(ϕ ◦ T )(w),

where ϕ(z) = log qv(z), with v being a copy of w. From the definition of a Gaussian density (17)
we have that

∇zϕ(z) = −(C−⊤C−1)(z −m),

so we deduce that

∇w(ϕ ◦ T )(w) = T ∗∇zϕ(Tw) = −T ∗(C−⊤C−1)(Tw −m) = −T ∗C−⊤u.

The conclusion follows after combining the first item with Lemma 37.

Lemma 39 (Pseudocode of the algorithms).
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1. Algorithm 1 is equivalent to the Prox-SGD algorithm (Def. 6) applied to l and h (Eq. 16), using
genergy (5) as an estimator of∇l and using lower triangular covariance factors.

2. Algorithm 2 is equivalent to the Proj-SGD algorithm (Def. 9) applied to the function f = l + h
(Eq. 16) and the constraintWM (Eq. 3), and using gent (7) as an estimator of ∇f .

3. Algorithm 3 is equivalent to the Proj-SGD algorithm (Def. 9) applied to the function f = l + h
(Eq. 16) and the constraintWM (Eq. 3), and using gSTL (9) as an estimator of∇f .

Proof. In this proof, we fix an iteration t ∈ N, consider ut ∼ N (0, I) and we note wt = (mt, Ct).

1. From (Def. 6) we know that wt+1 = proxγth(w
t− γtgenergy(ut)). According to Lemma 38, we

have
wt − γtgenergy(ut) = (mt, Ct)− γt(πt,projT d(πtu

⊤
t )),

where
πt = −∇z log p(Ctut +mt, x).

Moreover, we know from Lemma 35 what proxγth is:

proxγth(m,C) = (m,Rγt
(C)), whereRγt

(C)ij =

{
1
2 (Cii +

√
C2

ii + 4γt) if i = j,

Cij if i ̸= j.

First, we see that with respect to the m variable the proximal operator is the identity, meaning
that we indeed have

mt+1 = mt − γtπt.
Second, we see that with respect to the C variable we have

Ct+1 = Rγt
(Ct − γt projT d(πtu

⊤
t )).

It is immediate to see by induction that since we initialize with C0 ∈ T d, then Ct ∈ T d as well.
Therefore we can use the linearity of projT d to write that

Ct+1 = Rγt

(
projT d(Ct − γtπtu⊤t )

)
.

The conclusion follows after observing that

(Rγt ◦ projT d) (C)(i, j) =


C(i, j) if i > j,
1
2

(
C(i, i) +

√
C(i, i)2 + 4γt

)
if i = j,

0 if i < j.

2. From (Def. 9) we know that wt+1 = projWM
(wt − γtgent(ut)). According to Lemma 38, we

have
wt − γtgent(ut) = (mt, Ct)− γt(πt,projSd(πtu

⊤
t − C−⊤

t )).
Moreover, we know from Lemma 36 what projWM

is:

projWM
(m,C) = (m, R̃(C)),

where R̃(C) = UD̃U⊤, with UDU⊤ being a SVD decomposition of C, and D̃(i, i) =
max{D(i, i);M−1/2}. First, we see that with respect to the m variable the projection is the
identity, meaning that we indeed have

mt+1 = mt − γtπt.
Second, we see that with respect to the C variable we have

Ct+1 = R̃(Ct − γt projT d(πtu
⊤
t − C−⊤

t )).

It is immediate to see by induction that since we initialize with C0 ∈ Sd, then Ct ∈ Sd as well.
Therefore we can use the linearity of projSd to write that

Ct+1 = R̃
(
projSd(Ct − γt(πtu⊤t − C−⊤

t ))
)
.

The conclusion follows after setting Ĉt+1 = Ct − γt(πtu⊤t − C−⊤
t ), and using the fact that

projSd(C) = (C + C⊤)/2.

3. Use the same reasoning as in the previous item, with the appropriate computation for the STL
estimator from Lemma 38.
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Algorithm 1 Prox-SGD with energy estimator and triangular factors
Let m0 ∈ Rd, C0 ∈ T d such that C0 ≻ 0, (γt)t∈N ⊂ (0,+∞)
for t ∈ N do

Sample ut ∼ N (0, I)
Compute πt = −∇z log p(Ctut +mt, x)
Set mt+1 = mt − γtπt
Set Ĉt+1 = Ct − γtπtu⊤t

Set Ct+1 via Ct+1(i, j) =


Ĉt+1(i, j) if i > j

1
2

(
Ĉt+1(i, i) +

√
Ĉt+1(i, i)2 + 4γt

)
if i = j

0 if i < j

Algorithm 2 Proj-SGD with entropy estimator and symmetric factors
Let m0 ∈ Rd, C0 ∈ Sd such that C0 ≻ 0, (γt)t∈N ⊂ (0,+∞)
for t ∈ N do

Sample ut ∼ N (0, I)
Compute πt = −∇z log p(Ctut +mt, x)
Set mt+1 = mt − γtπt
Set Ĉt+1 = Ct − γt(πtu⊤t − C−1

t )

Compute Ut+1D̂t+1U
⊤
t+1 a singular value decomposition of (Ĉt+1 + Ĉ⊤

t+1)/2

Set Ct+1 = Ut+1Dt+1U
⊤
t+1, where Dt+1(i, i) = max{D̂t+1(i, i);M

−1/2}

Algorithm 3 Proj-SGD with STL estimator and symmetric factors
Let m0 ∈ Rd, C0 ∈ Sd such that C0 ≻ 0, (γt)t∈N ⊂ (0,+∞)
for t ∈ N do

Sample ut ∼ N (0, I)
Compute πt = −∇z log p(Ctut +mt, x)
Set mt+1 = mt − γt(πt − C−1

t ut)

Set Ĉt+1 = Ct − γt(πtu⊤t − C−1
t utu

⊤
t )

Compute Ut+1D̂t+1U
⊤
t+1 a singular value decomposition of (Ĉt+1 + Ĉ⊤

t+1)/2

Set Ct+1 = Ut+1Dt+1U
⊤
t+1, where Dt+1(i, i) = max{D̂t+1(i, i);M

−1/2}

39


	1 Introduction
	1.1 Related work

	2 Properties of Variational Inference (VI) problems
	2.1 Structural properties and assumptions
	2.2 Gradient estimators
	2.3 Challenges for optimization

	3 Stochastic Optimization with quadratically bounded estimators
	3.1 Stochastic Proximal Gradient Descent
	3.2 Stochastic Projected Gradient Descent

	4 Solving VI with provable guarantees
	5 Discussion
	6 Notations
	7 VI problems and their structural properties
	7.1 Modeling the VI problem
	7.2 Smoothness and convexity for VI problems
	7.3 A case study : linear models

	8 Estimators and variance bounds
	8.1 Variance bounds for the estimators
	8.2 Quadratically bounded estimators

	9 Optimization proofs
	9.1 Anytime Convergence Theorem for Strongly Convex
	9.2 Complexity Lemma for Convex
	9.3 Proximal gradient descent with strong convexity and smoothness
	9.4 Proximal gradient descent with convexity and smoothness
	9.5 Projected gradient descent with strong convexity
	9.6 Projected gradient descent with convexity

	10 Solving VI with stochastic optimization
	10.1 Convergence of the algorithms
	10.2 Computations for the algorithms
	10.3 Explicit implementation of the algorithms


