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A Experimental Settings

Computational environment. The experiments are conducted on a computing cluster with NVIDIA®

V100 GPUs and Intel® Xeon® CPUs. We can produce/reproduce the main experiments using
PaddlePaddle (Ma et al., 2019) and PyTorch (Paszke et al., 2019).

Model: LeNet (LeCun et al., 1998), Fully Connected Networks (FCN), and ResNet18 (He et al.,
2016). Dataset: MNIST (LeCun, 1998), CIFAR-10/100 (Krizhevsky and Hinton, 2009), and
Avila (De Stefano et al., 2018). Avila is a non-image dataset.

A.1 Gradient History Matrices

In this paper, we compute the Gradient History Matrices and the covariance for multiple models on
multiple datasets. Then, we use the elements in Gradient History Matrices and the eigenvalues of the
covariance/second-moment to evaluate the goodness of fitting Gaussian distributions or power-law
distributions via χ2 tests and KS tests.

The Gradient History Matrix is an n× T matrix. For the experiment of LeNet and FCN, we compute
the gradients for T = 5000 iterations at a fixed randomly initialized position θ(0) or a pretrained
position θ⋆. Due to limit of memory capacity, for the experiment of ResNet18, we compute the
gradients for T = 200 iterations at θ(0) or θ⋆.

A Gradient History Matrix can be used to compute the covariance or the second moment of stochastic
gradients for a neural network. Note that a covariance matrix is an n× n matrix, which is extremely
large for modern neural networks. Thus, we mainly analyze the gradient structures of LeNet and
FCN at an affordable computational cost.

A.2 Models and Datasets

Models: LeNet (LeCun et al., 1998), Fully Connected Networks (FCN), and ResNet18 (He et al.,
2016). We mainly used two-layer FCN which has 70 neurons for each hidden layer, ReLu activations,
and BatchNorm layers, unless we specify otherwise.

Datasets: MNIST (LeCun, 1998) and CIFAR-10/100 (Krizhevsky and Hinton, 2009), and non-image
Avila (De Stefano et al., 2018).

Optimizers: SGD, SGD with Momentum, and Adam (Kingma and Ba, 2015).

A.3 Image classification on MNIST

We perform the common per-pixel zero-mean unit-variance normalization as data preprocessing for
MNIST.
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Pretraining Hyperparameter Settings: We train neural networks for 50 epochs on MNIST for
obtaining pretrained models. For the learning rate schedule, the learning rate is divided by 10 at
the epoch of 40% and 80%. We use η = 0.1 for SGD/Momentum and η = 0.001 for Adam. The
batch size is set to 128. The strength of weight decay defaults to λ = 0.0005 for pretrained models.
We set the momentum hyperparameter β1 = 0.9 for SGD Momentum. As for other optimizer
hyperparameters, we apply the default settings directly.

Hyperparameter Settings for G: We use η = 0.1 for SGD/Momentum and η = 0.001 for Adam.
The batch size is set to 1 and no weight decay is used, unless we specify them otherwise.

A.4 Image classification on CIFAR-10 and CIFAR-100

Data Preprocessing For CIFAR-10 and CIFAR-100: We perform the common per-pixel zero-mean
unit-variance normalization, horizontal random flip, and 32× 32 random crops after padding with 4
pixels on each side.

Pretraining Hyperparameter Settings: In the experiments on CIFAR-10 and CIFAR-100: η = 1
for Vanilla SGD; η = 0.1 for SGD (with Momentum); η = 0.001 for Adam. For the learning rate
schedule, the learning rate is divided by 10 at the epoch of {80, 160} for CIFAR-10 and {100, 150}
for CIFAR-100, respectively. The batch size is set to 128 for both CIFAR-10 and CIFAR-100. The
batch size is set to 128 for MNIST, unless we specify it otherwise. The strength of weight decay
defaults to λ = 0.0005 as the baseline for all optimizers unless we specify it otherwise. We set
the momentum hyperparameter β1 = 0.9 for SGD and adaptive gradient methods which involve in
Momentum. As for other optimizer hyperparameters, we apply the default settings directly.

Hyperparameter Settings for G: We use η = 1 for SGD, η = 0.1 for SGD with Momentum, and
η = 0.001 for Adam. The batch size is set to 1 and no weight decay is used, unless we specify them
otherwise.

A.5 Learning with noisy labels

We trained LeNet via SGD (with Momentum) on corrupted MNIST with various (asymmetric) label
noise. We followed the setting of Han et al. (2018) for generating noisy labels for MNIST. The
symmetric label noise is generated by flipping every label to other labels with uniform flip rates
{40%, 80%}. In this paper, we used symmetric label noise.

For obtaining datasets with random labels which have little knowledge behind the pairs of instances
and labels, we also randomly shuffle the labels of MNIST to produce Random MNIST.

B Goodness-of-Fit Tests

B.1 Kolmogorov-Smirnov Test

In this section, we introduce how to conduct the Kolmogorov-Smirnov Goodness-of-Fit Test.

We used Maximum Likelihood Estimation (MLE) (Myung, 2003; Clauset et al., 2009) for estimating
the parameter β of the fitted power-law distributions and the Kolmogorov-Smirnov Test (KS Test)
(Massey Jr, 1951; Goldstein et al., 2004) for statistically testing the goodness of fitting power-law
distributions. The KS test statistic is the KS distance dks between the hypothesized (fitted) distribution
and the empirical data, which measures the goodness of fit. It is defined as

dks = sup
λ

|F ⋆(λ)− F̂ (λ)|, (1)

where F ⋆(λ) is the hypothesized cumulative distribution function and F̂ (λ) is the empirical cumula-
tive distribution function based on the sampled data (Goldstein et al., 2004). The estimated power
exponent via MLE (Clauset et al., 2009) can be written as

β̂ = 1 +K

[
K∑
i=1

ln

(
λi

λmin

)]−1

, (2)

where K is the number of tested samples and we set λmin = λk. In this paper, we choose the top
K = 1000 data points for the power-law hypothesis tests, unless we specify it otherwise. We note
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that the Powerlaw library (Alstott et al., 2014) provides a convenient tool to compute the KS distance,
dks, and estimate the power exponent.

According to the practice of Kolmogorov-Smirnov Test (Massey Jr, 1951), we state the null hy-
pothesis that the tested spectrum is not power-law. We state the alternative hypothesis, called the
power-law hypothesis, that the tested spectrum is power-law. If dks is higher than the critical value
dc at the α = 0.05 significance level, we would accept the null hypothesis. In contrast, if dks is lower
than the critical value dc at the α = 0.05 significance level, we would reject the null hypothesis and
accept the power-law hypothesis.

For each KS test in this paper, we select top k = 1000 data points from dimension-wise gradients
and iteration-wise gradients and top k = 1000 covariance eigenvalues as the tested sets to measure
the goodness of power laws. We choose the largest data points for two reasons. First, focusing on
relatively large values is very reasonable and common in various fields’ power-law studies (Stringer
et al., 2019; Reuveni et al., 2008; Tang and Kaneko, 2020), as real-world distributions typically follow
power laws only after/large than some cutoff values (Clauset et al., 2009) for ensuring the convergence
of the probability distribution. Second, researchers are usually more interested in significantly large
eigenvalues due to the low-rank matrix approximation.

B.2 χ2 Test

In this section, we introduce how we conduct χ2 Test to evaluate the Gaussianity.

We directly used the χ2 Normal Test implemented by the classical Python-based scientific computing
package, Scipy (Virtanen et al., 2020), to evaluate the Gaussianity of empirical data. Note that we
need to normalize the empirical data via whitening (zero-mean and unit-variance) before the tests.

The Gaussianity test statistic, p-value, is returned by the squared sum of the statistics of Skewness
Test and Kurtosis Test (Cain et al., 2017). Skewness is a measure of symmetry. A distribution or
dataset is symmetric if it looks the same to the left and right of the center. Kurtosis is a measure of
whether the data are heavy-tailed or light-tailed relative to a normal distribution. Empirical data with
high kurtosis tend to have heavy tails. Empirical data with low kurtosis tend to have light tails. Thus,
χ2 Test can reflect both Gaussianity and heavy tails. In this paper, we randomly choose K = 100
data points for the Gaussian hypothesis tests, unless we specify it otherwise.

We may write the p-value return by χ2 Test as
p = z2S + z2K , (3)

where zS is the Skewness Test statistic and zK is the Kurtosis Test statistic. There are a number
of ways to compute zS and zK in practice. It is convenient to use the default two-sided setting in
Virtanen et al. (2020). Please refer to Virtanen et al. (2020) and the source code of stats.skewtest
and stats.kurtosistest for the detailed implementation.

For each χ2 test in this paper, we randomly select k = 100 data points from both dimension-wise
gradients and iteration-wise gradients as the tested set to measure the Gaussianity. The returned test
statistic, p-value, is a classical indicator of the relative goodness of Gaussianity for two types of
gradients.

C Statistical Test Results

We present the statistical test results of the eigengaps of the gradient covariances in Table 1 and the
visualized results in Figure 1.

Table 1: KS statistics of the covariance eigengaps of LeNet and FCN.

Dataset Model Training dks dc Power-Law ŝ

MNIST LeNet Pretrain 0.0205 0.043 Yes 5.111
MNIST LeNet Random 0.0221 0.043 Yes 2.232

MNIST FCN Pretrain 0.0219 0.043 Yes 1.668
MNIST FCN Random 0.0231 0.043 Yes 1.668

We present the statistical test results of dimension-wise gradients and iteration-wise gradients of
LeNet and ResNet18 on various datasets in Tables 2 and 3.
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Figure 1: The eigengaps of stochastic gradient covariances are also approximately power-laws.
Dataset: MNIST. Model: FCN. Left figure displays the eigengaps by original rank indices sorted by
eigenvalues. Right figure displays the eigengaps by rank indices re-sorted by eigengaps.

We conducted the KS Tests for all of our studied covariance spectra. We display the KS test statistics
and the estimated power exponents ŝ in the tables. For better visualization, we color accepting the
power-law hypothesis in blue and color accepting the null hypothesis (and the cause) in red. The KS
Test statistics of the covariance spectra are shown in Tables 4, 5, 6, 7, 8, and 9.

Table 2: The KS and χ2 statistics and the hypothesis acceptance rates of iteration-wise gradients with
respect to the batch size. Model: LeNet. Dataset: MNIST

Type Training Setting d̄ks dc Power-Law Rate p̄-value Gaussian Rate

Iteration Random B = 1 0.428 0.0430 0.067% 0.047 12.6%
Iteration Random B = 3 0.385 0.0430 0.17% 0.089 21.5%
Iteration Random B = 10 0.267 0.0430 0.25% 0.173 28.5%
Iteration Random B = 30 0.249 0.0430 0.16% 0.240 50.9%
Iteration Random B = 100 0.191 0.0430 0.079% 0.321 65.1%
Iteration Random B = 300 0.119 0.0430 0.033% 0.382 74.5%
Iteration Random B = 1000 0.120 0.0430 0.041% 0.388 75.5%

Dimension Random B = 1 0.0306 0.0430 90.6% 4.51× 10−5 0%
Dimension Random B = 3 0.0358 0.0430 74.5% 9.07× 10−5 0.02%
Dimension Random B = 10 0.0392 0.0430 65.3% 1.78× 10−4 0%
Dimension Random B = 30 0.0379 0.0430 68.9% 2.29× 10−4 0.14%
Dimension Random B = 100 0.0355 0.0430 76.6% 4.11× 10−4 0.18%
Dimension Random B = 300 0.0269 0.0430 97.5% 1.21× 10−3 0.48%
Dimension Random B = 1000 0.0309 0.0430 90.6% 1.43× 10−4 0%

Table 3: The KS and χ2 statistics and the hypothesis acceptance rates of the gradients over dimensions
and iterations, respectively. Model: ResNet18. Batch Size: 100. In the second column “random”
means randomly initialized models, while “pretrain” means pretrained models.

Dataset Training SG Type d̄ks dc Power-Law Rate p̄-value Gaussian Rate

CIFAR-10 Random Dimension 0.0924 0.0962 54.3% 1.73× 10−2 6.4%
CIFAR-10 Random Iteration 0.141 0.0962 1.32% 0.495 93.4%

CIFAR-10 Pretrain Dimension 0.0717 0.0962 82.6% 1.1× 10−2 3.2%
CIFAR-10 Pretrain Iteration 0.140 0.0962 1.38% 0.497 93.5%

CIFAR-100 Random Dimension 0.0631 0.0962 92.4% 8.55× 10−3 3%
CIFAR-100 Random Iteration 0.141 0.0962 1.36% 0.496 93.2%

CIFAR-100 Pretrain Dimension 0.0637 0.0962 88.5% 8.11× 10−3 3.4%
CIFAR-100 Pretrain Iteration 0.140 0.0962 1.37% 0.496 93.1%
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Table 4: The KS statistics of the second-moment spectra of dimension-wise gradients for LeNet on
MNIST.

Dataset Model Training Batch Sample size Setting dks dc Power-Law ŝ

MNIST LeNet Pretrain 1 1000 - 0.0206 0.0430 Yes 1.302
MNIST LeNet Pretrain 10 1000 - 0.0244 0.0430 Yes 1.313
MNIST LeNet Pretrain 100 1000 - 0.0171 0.0430 Yes 1.390
MNIST LeNet Pretrain 1000 1000 - 0.0173 0.0430 Yes 1.314
MNIST LeNet Pretrain 10000 1000 - 0.0204 0.0430 Yes 1.290
MNIST LeNet Pretrain 60000 1000 - 0.106 0.0430 No 0.206

MNIST LeNet Random 1 1000 - 0.0220 0.0430 Yes 1.428
MNIST LeNet Random 10 1000 - 0.0223 0.0430 Yes 1.334
MNIST LeNet Random 100 1000 - 0.0228 0.0430 Yes 1.313
MNIST LeNet Random 1000 1000 - 0.0198 0.0430 Yes 1.423
MNIST LeNet Random 10000 1000 - 0.0213 0.0430 Yes 1.284
MNIST LeNet Random 60000 1000 - 0.203 0.0430 No 0.271

Table 5: The KS statistics of the covariance spectra of dimension-wise gradients for LeNet on MNIST.

Dataset Model Training Batch Sample size Setting dks dc Power-Law ŝ

MNIST LeNet Random 1 1000 - 0.0226 0.0430 Yes 1.425
MNIST LeNet Random 10 1000 - 0.0227 0.0430 Yes 1.331
MNIST LeNet Random 100 1000 - 0.0230 0.0430 Yes 1.311
MNIST LeNet Random 1000 1000 - 0.0200 0.0430 Yes 1.423
MNIST LeNet Random 10000 1000 - 0.0287 0.0430 Yes 1.320

MNIST LeNet Pretrain 1 1000 - 0.0206 0.0430 Yes 1.299
MNIST LeNet Pretrain 10 1000 - 0.0247 0.0430 Yes 1.310
MNIST LeNet Pretrain 100 1000 - 0.0171 0.0430 Yes 1.386
MNIST LeNet Pretrain 1000 1000 - 0.0174 0.0430 Yes 1.312
MNIST LeNet Pretrain 10000 1000 - 0.0223 0.0430 Yes 1.331

MNIST LeNet Pretrain 1 1000 Label Noise 40% 0.0289 0.0430 Yes 1.453
MNIST LeNet Pretrain 1 1000 Label Noise 80% 0.0138 0.0430 Yes 11.442
MNIST LeNet Pretrain 1 1000 Random Label 0.0129 0.0430 Yes 1.374

MNIST LeNet Pretrain 1 1000 GradClip=1 0.0226 0.0430 Yes 1.323
MNIST LeNet Pretrain 1 1000 GradClip=0.1 0.0261 0.0430 Yes 1.343
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Table 6: The KS statistics of the second-moment spectra of dimension-wise gradients for FCN on
MNIST.

Dataset Model Training Batch Sample size Setting dks dc Power-Law ŝ

MNIST 2Layer-FCN Pretrain 10 1000 - 0.0415 0.0430 Yes 0.866

MNIST 2Layer-FCN Random 10 1000 - 0.0418 0.0430 Yes 0.864
MNIST 2Layer-FCN Random 10 1000 Noise 0.0427 0.0430 Yes 0.862

MNIST 2Layer-FCN Pretrain 10 1000 Width=70 0.0415 0.0430 Yes 0.866
MNIST 2Layer-FCN Pretrain 10 1000 Width=30 0.0425 0.0430 Yes 0.869
MNIST 2Layer-FCN Pretrain 10 1000 Width=10 0.0486 0.0430 No
MNIST 2Layer-FCN Random 10 1000 Width=70 0.0418 0.0430 Yes 0.864
MNIST 2Layer-FCN Random 10 1000 Width=30 0.0488 0.0430 No
MNIST 2Layer-FCN Random 10 1000 Width=10 0.0491 0.0430 No
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MNIST 4Layer-LNN Pretrain 10 1000 - 0.0445 0.0430 No 1.629
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Table 8: The KS statistics of the covariance spectra of dimension-wise gradients for LeNet on
CIFAR-10.

Dataset Model Training Batch Sample size Setting dks dc Power-Law ŝ

CIFAR-10 LeNet Pretrain 1 1000 - 0.0201 0.0430 Yes 1.257

CIFAR-10 LeNet Random 1 1000 - 0.0214 0.0430 Yes 1.300

CIFAR-10 LeNet Pretrain 1 1000 GradClip=0.1 0.0244 0.0430 Yes 1.348

CIFAR-10 LeNet Random 100 1000 SGD 0.00818 0.0430 Yes 1.305
CIFAR-10 LeNet Random 100 1000 Weight Decay 0.0107 0.0430 Yes 1.300
CIFAR-10 LeNet Random 100 1000 Momentum 0.00806 0.0430 Yes 1.262
CIFAR-10 LeNet Random 100 1000 Adam 0.0634 0.0430 No

Table 9: The KS statistics of the covariance spectra of LeNet on CIFAR-100.

Dataset Model Training Batch Sample size Setting dks dc Power-Law ŝ

CIFAR-100 LeNet Pretrain 1 1000 - 0.0287 0.0430 Yes 1.276

CIFAR-100 LeNet Random 1 1000 - 0.0307 0.0430 Yes 1.229

CIFAR-100 LeNet Pretrain 1 1000 - 0.0197 0.0430 Yes 1.076
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