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Abstract

We present a rigorous methodology for auditing differentially private machine
learning algorithms by adding multiple carefully designed examples called ca-
naries. We take a first principles approach based on three key components. First,
we introduce Lifted Differential Privacy (LiDP) which expands the definition of
differential privacy to handle randomized datasets. This gives us the freedom to de-
sign randomized canaries. Second, we audit LiDP by trying to distinguish between
the model trained with K canaries versus K − 1 canaries in the dataset, leaving
one canary out. By drawing the canaries i.i.d., LiDP can leverage the symmetry
in the design and reuse each privately trained model to run multiple statistical
tests, one for each canary. Third, we introduce novel confidence intervals that take
advantage of the multiple test statistics by adapting to the empirical higher-order
correlations. Together, this new recipe demonstrates significant improvements in
sample complexity, both theoretically and empirically, using synthetic and real data.
Further, recent advances in designing stronger canaries can be readily incorporated
into the new framework.

1 Introduction

Differential privacy (DP), introduced in [22], has gained widespread adoption by governments,
companies, and researchers by formally ensuring plausible deniability for participating individuals.
This is achieved by guaranteeing that a curious observer of the output of a query cannot be confident
in their answer to the following binary hypothesis test: did a particular individual participate in
the dataset or not? For example, introducing sufficient randomness when training a model on a
certain dataset ensures a desired level of differential privacy. This in turn ensures that an individual’s
sensitive information cannot be inferred from the trained model with high confidence. However,
calibrating the right amount of noise can be a challenging process. It is easy to make mistakes in
implementing a DP mechanism due to intricacies involving micro-batching, sensitivity analysis,
and privacy accounting. Even with correct implementation, there are several incidents of published
DP algorithms with miscalculated privacy guarantees that falsely report higher levels of privacy
[16, 34, 40, 47, 57, 58]. Data-driven approaches to auditing a mechanism for a violation of a claimed
privacy guarantee can significantly mitigate the danger of unintentionally leaking sensitive data.

Popular approaches for auditing privacy share three common components [e.g. 31–33, 45, 69].
Conceptually, these approaches are founded on the definition of DP and involve producing counterex-
amples that potentially violate the DP condition. Algorithmically, this leads to the standard recipe
of injecting a single carefully designed example, referred to as a canary, and running a statistical
hypothesis test for its presence from the outcome of the mechanism. Analytically, a high-confidence
bound on the DP condition is derived by calculating the confidence intervals of the corresponding
Bernoulli random variables from n independent trials of the mechanism.
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Recent advances adopt this standard approach and focus on designing stronger canaries to reduce
the number of trials required to successfully audit DP [e.g., 31–33, 39, 45, 69]. However, each
independent trial can be as costly as training a model from scratch; refuting a false claim of (ε, δ)-DP
with a minimal number of samples is of utmost importance. In practice, standard auditing can require
training on the range of thousands to hundreds of thousands of models [e.g., 60]. Unfortunately,
under the standard recipe, we are fundamentally limited by the 1/

√
n sample dependence of the

Bernoulli confidence intervals.

Contributions. We break this 1/
√
n barrier by rethinking auditing from first principles.

1. Lifted DP: We propose to audit an equivalent definition of DP, which we call Lifted DP in §3.1.
This gives an auditor the freedom to design a counter-example consisting of random datasets and
rejection sets. This enables adding random canaries, which is critical in the next step. Theorem 3
shows that violation of Lifted DP implies violation of DP, justifying our framework.

2. Auditing Lifted DP with Multiple Random Canaries: We propose adding K > 1 canaries
under the alternative hypothesis and comparing it against a dataset with K − 1 canaries, leaving
one canary out. If the canaries are deterministic, we need K separate null hypotheses; each
hypothesis leaves one canary out. Our new recipe overcomes this inefficiency in §3.2 by drawing
random canaries independently from the same distribution. This ensures the exchangeability of
the test statistics, allowing us to reuse each privately trained model to run multiple hypothesis
tests in a principled manner. This is critical in making the confidence interval sample efficient.

3. Adaptive Confidence Intervals: Due to the symmetry of our design, the test statistics follow a
special distribution that we call eXchangeable Bernoulli (XBern). Auditing privacy boils down
to computing confidence intervals on the average test statistic over the K canaries included
in the dataset. If the test statistics are independent, the resulting confidence interval scales as
1/
√
nK. However, in practice, the dependence is non-zero and unknown. We propose a new

and principled family of confidence intervals in §3.3 that adapts to the empirical higher-order
correlations between the test statistics. This gives significantly smaller confidence intervals when
the actual dependence is small, both theoretically (Proposition 4) and empirically.

4. Numerical Results: We audit an unknown Gaussian mechanism with black-box access and
demonstrate (up to) 16× improvement in the sample complexity. We also show how to seamlessly
lift recently proposed canary designs in our recipe to improve the sample complexity on real data.

2 Background

We describe the standard recipe to audit DP. Formally, we adopt the so-called add/remove definition
of differential privacy; our constructions also seamlessly extend to other choices of neighborhoods as
we explain in §B.2.
Definition 1 (Differential privacy). A pair of datasets, (D0, D1), is said to be neighboring if their
sizes differ by one and the datasets differ in one entry: |D1 \D0|+ |D0 \D1| = 1. A randomized
mechanismA : Z∗ → R is said to be (ε, δ)-Differentially Private (DP) for some ε ≥ 0 and δ ∈ [0, 1]
if it satisfies PA(A(D1) ∈ R) ≤ eε PA(A(D0) ∈ R) + δ, which is equivalent to

ε ≥ log (P(A(D1) ∈ R)− δ)− logP(A(D0) ∈ R) , (1)

for all pairs of neighboring datasets, (D0, D1), and all measurable sets, R ⊂ R, of the output space
R, where PA is over the randomness internal to the mechanism A. Here, Z∗ is a space of datasets.

For small ε and δ, one cannot infer from the output whether a particular individual is in the dataset
or not with a high success probability. For a formal connection, we refer to [35]. This naturally
leads to a standard procedure for auditing a mechanismA claiming (ε, δ)-DP: present (D0, D1, R) ∈
Z∗ ×Z∗ ×R that violates Eq. (1) as a piece of evidence. Such a counter-example confirms that an
adversary attempting to test the participation of an individual will succeed with sufficient probability,
thus removing the potential for plausible deniability for the participants.

Standard Recipe: Adding a Single Canary. When auditing DP model training (using e.g. DP-
SGD [1, 54]), the following recipe is now standard for designing a counter-example (D0, D1, R)
[31–33, 45, 69]. A training dataset D0 is assumed to be given. This ensures that the model under
scrutiny matches the use-case and is called a null hypothesis. Next, under a corresponding alternative
hypothesis, a neighboring datasetD1 = D0∪{c} is constructed by adding a single carefully-designed
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example c ∈ Z , known as a canary. Finally, Eq. (1) is evaluated with a choice of R called a rejection
set. For example, one can reject the null hypothesis (and claim the presence of the canary) if the loss
on the canary is smaller than a fixed threshold; R is a set of models satisfying this rejection rule.

Bernoulli Confidence Intervals. Once a counter-example (D0, D1, R) is selected, we are left to
evaluate the DP condition in Eq. (1). Since the two probabilities in the condition cannot be directly
evaluated, we rely on the samples of the output from the mechanism, e.g., models trained with
DP-SGD. This is equivalent to estimating the expectation, P(A(D) ∈ R) for D ∈ {D0, D1}, of
a Bernoulli random variable, I(A(D) ∈ R), from n i.i.d. samples. Providing high confidence
intervals for Bernoulli distributions is a well-studied problem with several off-the-shelf techniques,
such as Clopper-Pearson, Jeffreys, Bernstein, and Wilson intervals. Concretely, let P̂n(A(D) ∈ R)
denote the empirical probability of the model falling in the rejection set in n independent runs.
The standard intervals scale as |P(A(D0) ∈ R)− P̂n(A(D0) ∈ R)| ≤ C0n

−1/2 and |P(A(D1) ∈
R)−P̂n(A(D1) ∈ R)| ≤ C1n

−1/2 for constantsC0 andC1 independent of n. IfA satisfies a claimed
(ε, δ)-DP in Eq. (1), then the following finite-sample lower bound holds with high confidence:

ε ≥ ε̂n = log
(
P̂n(A(D1) ∈ R)− C1√

n
− δ
)
− log

(
P̂n(A(D0) ∈ R) + C0√

n

)
. (2)

Auditing(ε, δ)-DP amounts to testing the violation of this condition. This is fundamentally limited
by the n−1/2 dependence of the Bernoulli confidence intervals. Our goal is to break this barrier.

Notation. While the DP condition is symmetric in (D0, D1), we use D0, D1 to refer to specific
hypotheses. For symmetry, we need to check both conditions: Eq. (1) and its counterpart with D0, D1

interchanged. We omit this second condition for notational convenience. We use the shorthand
[k] := {1, 2, . . . , k}. We refer to random variables by boldfaced letters (e.g. D is a random dataset).

Related Work. We provide a detailed survey in Appendix A. A stronger canary (and its rejection set)
can increase the RHS of (1). The resulting hypothesis test can tolerate larger confidence intervals,
thus requiring fewer samples. This has been the focus of recent breakthroughs in privacy auditing
in [32, 39, 41, 45, 60]. They build upon membership inference attacks [e.g. 12, 53, 68] to measure
memorization. Our aim is not to innovate on this front. Instead, our framework can seamlessly adopt
recently designed canaries and inherit their strengths as demonstrated in §5 and §6.

Random canaries have been used in prior work, but for making the canary out-of-distribution in
a computationally efficient manner. No variance reduction is achieved by such random canaries.
Adding multiple (deterministic) canaries has been explored in literature but for different purposes.
[32, 39] include multiple copies of the same canary to make the canary easier to detect while paying
for group privacy since the paired datasets differ in multiple entries (see §3.2 for a detailed discussion).

[42, 69] propose adding multiple distinct canaries to reuse each trained model for multiple hypothesis
tests. However, each canary is no stronger than a single canary case, and the resulting auditing suffers
from group privacy. When computing the lower bound on ε, however, group privacy is ignored and the
test statistics are assumed to be independent without rigorous justification. [2] avoids group privacy
in the federated scenario where the adversary has the freedom to return a canary gradient update of
choice. The prescribed random gradient shows good empirical performance. The confidence interval
is not rigorously derived. Our recipe for injecting multiple canaries without a group privacy cost with
rigorous confidence intervals can be incorporated into these works to give provable lower bounds.

In an independent and concurrent work, Steinke et al. [56] also consider auditing with randomized
canaries that are Poisson-sampled, i.e., each canary is included or excluded independently with
equal probability. Their recipe involves computing an empirical lower bound by comparing the
accuracy (rather than the full confusion matrix as in our case) from the possibly dependent guesses
with the worst-case randomized response mechanism. This allows them to use multiple dependent
observations from a single trial to give a high probability lower bound on ε. Their confidence intervals,
unlike the ones we give here, are non-adaptive and worst-case.

3 A New Framework for Auditing DP Mechanisms with Multiple Canaries

We define Lifted DP, a new definition of privacy that is equivalent to DP (§3.1). This allows us to
define a new recipe for auditing with multiple random canaries, as opposed to a single deterministic
canary in the standard recipe, and reuse each trained model to run multiple correlated hypothesis tests
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in a principled manner (§3.2). The resulting test statistics form a vector of dependent but exchangeable
indicators (which we call an eXchangeable Bernoulli or XBern distribution), as opposed to a single
Bernoulli distribution. We leverage this exchangeability to give confidence intervals for the XBern
distribution that can potentially improve with the number of injected canaries (§3.3). The pseudocode
of our approach is provided in Algorithm 1.

3.1 From DP to Lifted DP

To enlarge the design space of counter-examples, we introduce an equivalent definition of DP.
Definition 2 (Lifted differential privacy). Let P denote a joint probability distribution over
(D0,D1,R) where (D0,D1) ∈ Z∗ × Z∗ is a pair of random datasets that are neighboring (as in
the standard definition of neighborhood in Definition 1) with probability one and letR ⊂ R denote
a random rejection set. We say that a randomized mechanism A : Z∗ → R satisfies (ε, δ)-Lifted
Differential Privacy (LiDP) for some ε ≥ 0 and δ ∈ [0, 1] if, for all P independent of A, we have

PA,P(A(D1) ∈ R) ≤ eε PA,P(A(D0) ∈ R) + δ . (3)

In Appendix A.3, we discuss connections between Lifted DP and other existing extensions of DP,
such as Bayesian DP and Pufferfish, that also consider randomized datasets. The following theorem
shows that LiDP is equivalent to the standard DP, which justifies our framework of checking the
above condition; if a mechanism A violates the above condition then it violates (ε, δ)-DP.
Theorem 3. A randomized algorithm A is (ε, δ)-LiDP iff A is (ε, δ)-DP.

A proof is provided in Appendix B. In contrast to DP, LiDP involves probabilities over both the
internal randomness of the algorithm A and the distribution P over (D0,D1,R). This gives the
auditor greater freedom to search over a lifted space of joint distributions over the paired datasets and
a rejection set; hence the name Lifted DP. Auditing LiDP amounts to constructing a randomized (as
emphasized by the boldface letters) counter-example (D0,D1,R) that violates (3) as evidence.

3.2 From a Single Deterministic Canary to Multiple Random Canaries

Our strategy is to turn the LiDP condition in Eq. (3) into another condition in Eq. (4) below; this
allows the auditor to reuse samples, running multiple hypothesis tests on each sample. This derivation
critically relies on our carefully designed recipe that incorporates three crucial features: (a) binary
hypothesis tests between pairs of stochastically coupled datasets containing K canaries and K − 1
canaries, respectively, for some fixed integer K, (b) sampling those canaries i.i.d. from the same
distribution, and (c) choice of rejection sets, where each rejection set only depends on a single left-out
canary. We introduce the following recipe, also presented in Algorithm 1.

We fix a given training set D and a canary distribution Pcanary over Z . This ensures that the model
under scrutiny is close to the use case. Under the alternative hypothesis, we train a model on
a randomized training dataset D1 = D ∪ {c1, . . . , cK}, augmented with K random canaries
drawn i.i.d. from Pcanary. Conceptually, this is to be tested against K leave-one-out (LOO) null
hypotheses. Under the kth null hypothesis for each k ∈ [K], we construct a coupled dataset,
D0,k = D ∪ {c1, . . . , ck−1, ck+1, . . . cK}, with K − 1 canaries, leaving the kth canary out. This
coupling of K − 1 canaries ensures that (D0,k,D1) is neighboring with probability one. For each
left-out canary, the auditor runs a binary hypothesis test with a choice of a random rejection setRk.
We restrictRk to depend only on the canary ck that is being tested and not the index k. For example,
Rk can be the set of models achieving a loss on the canary ck below a predefined threshold τ .

The goal of this LOO construction is to reuse each trained private model to run multiple tests such that
the averaged test statistic has a smaller variance for a given number of models. Under the standard
definition of DP, one can still use the above LOO construction but with fixed and deterministic
canaries. This gives no variance gain because evaluating P(A(D0,k) ∈ Rk) in Eq. (1) or its averaged
counterpart (1/K)

∑K
k=1 P(A(D0,k) ∈ Rk) requires training one model to get one sample from the

test statistic I(A(D0,k) ∈ Rk). The key ingredient in reusing trained models is randomization.

We build upon the LiDP condition in Eq. (3) by noting that the test statistics are exchangeable for
i.i.d. canaries. Specifically, we have for any k ∈ [K] that P(A(D0,k) ∈ Rk) = P(A(D0,K) ∈
RK) = P(A(D0,K) ∈ R′j) for any canary c′j drawn i.i.d. from Pcanary and its corresponding
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Algorithm 1 Auditing Lifted DP

Input: Sample size n, number of canaries K, number of null tests m, DP mechanism A, training set
D, canary generating distribution Pcanary, threshold τ , failure probability β, privacy δ ∈ [0, 1].

1: for i = 1, . . . , n do
2: Randomly generate K +m canaries {c1, . . . , cK , c

′
1, . . . , c

′
m} i.i.d. from Pcanary.

3: D0 ← D ∪ {c1, . . . , cK−1},D1 ← D ∪ {c1, . . . , cK}
4: Train two models θ0 ← A(D0) and θ1 ← A(D1)

5: Record test statistics x(i) ←
(
I(fθ1(ck) < τ)

)K
k=1

and y(i) ←
(
I(fθ0(c′j) < τ)

)m
j=1

6: Set p
1
← XBernLower

(
{x(i)}i∈[n], β/2

)
and p0 ← XBernUpper

(
{y(i)}i∈[n], β/2

)

7: Return ε̂n ← log
(
(p

1
− δ)/p0

)
and a guarantee that P(ε < ε̂n) ≤ β.

rejection setR′j that are statistically independent ofD0,K . Therefore, we can rewrite the right side
of Eq. (3) using m i.i.d. test canaries c′1, . . . , c

′
m ∼ Pcanary and a single trained model A(D0,K) as

1
K

∑K
k=1 PA,P(A(D1) ∈ Rk) ≤ eε

m

∑m
j=1 PA,P(A(D0,K) ∈ R′j) + δ . (4)

Checking this condition is sufficient for auditing LiDP and, via Theorem 3, for auditing DP. For each
model trained onD1, we record the test statistics of K (correlated) binary hypothesis tests. This is
denoted by a random vector x = (I(A(D1) ∈ Rk))Kk=1 ∈ {0, 1}K , whereRk is a rejection set that
checks for the presence of the kth canary. Similar to the standard recipe, we train n models to obtain
n i.i.d. samples x(1), . . . ,x(n) ∈ {0, 1}K to estimate the left side of (4) using the empirical mean:

µ̂1 := 1
n

∑n
i=1

1
K

∑K
k=1 x

(i)
k ∈ [0, 1] , (5)

where the subscript one in µ̂1 denotes that this is the empirical first moment. Ideally, if the K tests
are independent, the corresponding confidence interval is smaller by a factor of

√
K. In practice, the

K tests are correlated and the size of the confidence interval depends on their correlation. We derive
principled confidence intervals that leverage the empirically measured correlations in §3.3. We can
define y ∈ {0, 1}m and its mean ν̂1 analogously for the null hypothesis. We provide pseudocode in
Algorithm 1 as an example guideline for applying our recipe to auditing DP training, where fθ(z) is
the loss evaluated on an example z for a model θ. XBernLower() and XBernUpper() respectively
return the lower and upper adaptive confidence intervals from §3.3. We instantiate Algorithm 1 with
concrete examples of canary design in §5.

Our Recipe vs. Multiple Deterministic Canaries. An alternative with deterministic canaries would
be to test between D0 with no canaries and D1 with K canaries such that we can get K samples from
a single trained model on D0, one for each of the K test statistics {I(A(D0) ∈ Rk)}Kk=1. However,
due to the fact that D1 and D0 are now at Hamming distance K, this suffers from group privacy;
we are required to audit for a much larger privacy leakage of (Kε, ((eKε − 1)/(eε − 1))δ)-DP.
Under the (deterministic) LOO construction, this translates into (1/K)

∑K
k=1 P(A(D1) ∈ Rk) ≤

eKε(1/K)
∑K
k=1 P(A(D0) ∈ Rk) + ((eKε − 1)/(eε − 1))δ, where if one canary violates the group

privacy condition then the average also violates it. We can reuse a single trained model to get K test
statistics in the above condition, but each canary is distinct and not any stronger than the one from
(ε, δ)-DP auditing. One cannot obtain stronger counterexamples without sacrificing the sample gain.
For example, we can repeat the same canary K times as proposed in [32]. This makes it easier to
detect the canary, making a stronger counter-example, but there is no sample gain as we only get
one test statistic per trained model. With deterministic canaries, there is no way to avoid this group
privacy cost while our recipe does not incur it.

3.3 From Bernoulli Intervals to Higher-Order Exchangeable Bernoulli (XBern) Intervals

The LiDP condition in Eq. (4) critically relies on the canaries being sampled i.i.d. and the rejection
set only depending on the corresponding canary. For such a symmetric design, auditing boils down to
deriving a Confidence Interval (CI) for a special family of distributions that we call Exchangeable
Bernoulli (XBern). We derive the CI for the alternate hypothesis, i.e., the left side of Eq. (4). The CI
under the null hypothesis is analogous.

5



z1

z2

z1 + z2

z1 + z2 + σξ

z1 + z2 + c+ σξ

Figure 1: Bias illustration: Consider the sum query
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Figure 2: Left: The Bernstein CI [µ,µ] can be found
by equating the two sides of Bernstein’s inequality in
Eq. (6). Right: The asymptotic Wilson CI is a tightening
of the Bernstein CI with a smaller 1/

√
n coefficient

(shown here) and no 1/n term.

Recall that xk := I(A(D1) ∈ Rk) denotes the test statistic for the kth canary. By the symmetry of
our design, x ∈ {0, 1}K is an exchangeable random vector that is distributed as an exponential family.
Further, the distribution of x is fully defined by a K-dimensional parameter (µ1, . . . , µK) where µ`
is the `th moment of x. We call this family XBern. Specifically, this implies permutation invariance
of the higher-order moments: E[xj1 · · ·xj` ] = E[xk1 · · ·xk` ] for any distinct sets of indices (jl)l∈[`]

and (kl)l∈[`] for any ` ≤ K. For example, µ1 := E[(1/K)
∑K
k=1 xk], which is the LHS of (4).

Using samples from this XBern, we aim to derive a CI on µ1 around the empirical mean µ̂1 in (5).
Bernstein’s inequality applied to our test statisticm1 := (1/K)

∑K
k=1 xk gives,

|µ̂1 − µ1| ≤
√

2 log(2/β)

n
Var(m1) +

2 log(2/β)

3n
, (6)

w.p. at least 1−β. Bounding Var(m1) ≤ µ1(1−µ1) sincem1 ∈ [0, 1] a.s. and numerically solving
the above inequality for µ1 gives a CI that scales as 1/

√
n — see Figure 2 (left). We call this the

1st-order Bernstein bound, as it depends only on the 1st moment µ1. Our strategy is to measure the
(higher-order) correlations between xk’s to derive a tighter CI that adapts to the given instance. This
idea applies to any standard CI. We derive and analyze the higher order Bernstein intervals here, and
experiments use Wilson intervals from Appendix C; see also Figure 2 (right).

Concretely, we can leverage the 2nd order correlation by expanding

Var(m1) = 1
K (µ1 − µ2) + (µ2 − µ2

1) where µ2 := 1
K(K−1)

∑
k1<k2∈[K] E [xk1xk2 ] .

Ideally, when the second order correlation µ2 − µ2
1 = E[x1x2] − E[x1]E[x2] equals 0, we have

Var(m1) = µ1(1− µ1)/K, a factor of K improvement over the worst-case. Our higher-order CIs
adapt to the actual level of correlation of x by further estimating the 2nd moment µ2 from samples.
Let µ2 be the first-order Bernstein upper bound on µ2 such that P(µ2 ≤ µ2) ≥ 1−β. On this event,

Var(m1) ≤ 1
K (µ1 − µ2) + (µ2 − µ2

1) . (7)

Combining this with (6) gives us the 2nd-order Bernstein bound on µ1, valid w.p. 1− 2β. Since
µ2 . µ̂2 + 1/

√
n where µ̂2 is the empirical estimate of µ2, the 2nd-order bound scales as

|µ1 − µ̂1| .

√
1

nK
+

√
1

n
|µ̂2 − µ̂2

1|+
1

n3/4
, (8)

where constants and log factors are omitted. Thus, our 2nd-order CI can be as small as 1/
√
nK +

1/n3/4 (when µ̂2
1 ≈ µ2) or as large as 1/

√
n (in the worst-case). With small enough correlations

of |µ̂2 − µ̂2
1| = O(1/K), this suggests a choice of K = O(

√
n) to get CI of 1/n3/4. In practice,

the correlation is controlled by the design of the canary. For the Gaussian mechanism with random
canaries, the correlation indeed empirically decays as 1/K, as we see in §4. Thus, the CI decreases
monotonically with K. This is also true for the CI under the null hypothesis with K replaced by m.

However, there is a qualitative difference between the null and alternate hypotheses. Estimation under
the alternate hypothesis incurs a larger bias as the number K of canaries increases — this is due
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Figure 3: Left: For Gaussian mechanisms, the proposed LiDP-based auditing with K canaries provides a
significant gain in the required number of trials to achieve a desired level of lower bound ε̂ on the privacy. Center:
Increasing the number of canaries trades off the bias and the variance, with our prescribed K =

√
n achieving a

good performance. Right: Increasing the dimension makes the canaries less correlated, thus achieving smaller
confidence intervals, and larger ε̂. We shade the standard error over 25 repetitions.

to the additional randomness from adding more canaries into the training process, as illustrated in
Figure 1. The optimal choice of K balances the bias and variance. On the other hand, estimation
under the null hypothesis incurs no bias and a larger number m of test canaries always helps. We
return to the bias-variance tradeoff in §4.

Higher-order intervals. We can recursively apply this method by expanding the variance of higher-
order statistics, and derive higher-order Bernstein bounds. The next recursion uses empirical 3rd and
4th moments µ̂3 and µ̂4 to get the 4th-order Bernstein bound which scales as

|µ1 − µ̂1| .
√

1

nK
+

√
1

n
|µ̂2 − µ̂2

1|+
1

n3/4
|µ̂4 − µ̂2

2|1/4 +
1

n7/8
. (9)

Ideally, when the 4th-order correlation is small enough, |µ̂4 − µ̂2
2| = O(1/K), (along with the

2nd-order correlation, µ̂2 − µ̂2
1) this 4th-order CI scales as 1/n7/8 with a choice of K = O(n3/4)

improving upon the 2nd-order CI of 1/n3/4. We can recursively derive even higher-order CIs, but
we find in §4 that the gains diminish rapidly. In general, the `th order Bernstein bounds achieve CIs
scaling as 1/n(2`−1)/2` with a choice of K = O(n(`−1)/`). This shows that the higher-order CI
decreases in the order ` of the correlations used; we refer to Appendix C for details.
Proposition 4. For any positive integer ` that is a power of two and K = dn(`−1)/`e, suppose we
have n samples from a K-dimensional XBern distribution with parameters (µ1, . . . , µK). If all
`′th-order correlations scale as 1/K, i.e., |µ2`′ − µ2

`′ | = O(1/K), for all `′ ≤ ` and `′ is a power of
two, then the `th-order Bernstein bound is |µ1 − µ̂1| = O(1/n(2`−1)/(2`)).

4 Simulations: Auditing the Gaussian Mechanism

Setup. We consider a simple sum query q(D) =
∑
z∈D z over the unit sphere Z = {z ∈ Rd :

‖z‖2 = 1}. We want to audit a Gaussian mechanism that returns q(D) + σξ with standard Gaussian
ξ ∼ N (0, Id) and σ calibrated to ensure (ε, δ)-DP. We assume black-box access, where we do not
know what mechanism we are auditing and we only access it through samples of the outcomes. A
white-box audit is discussed in §A.1. We apply our new recipe with canaries sampled uniformly
at random from Z . Following standard methods [e.g. 23], we declare that a canary ck is present
if c>k A(D) > τ for a threshold τ learned from separate samples. For more details and additional
results, see Appendix E. A broad range of values of K (between 32 and 256 in Figure 3 middle)
leads to good performance in auditing LiDP. We use K =

√
n (as suggested by our analysis in (8)),

m = K test canaries, and the 2nd-order Wilson estimator (as gains diminish rapidly afterward) as a
reliable default setting.

Sample Complexity Gains. In Figure 3 (left), the proposed approach of injecting K canaries with
the 2nd order Wilson interval (denoted “LiDP +2nd-Order Wilson”) reduces the number of trials, n,
needed to reach the same empirical lower bound, ε̂, by 4× to 16×, compared to the baseline of
injecting a single canary (denoted “DP+Wilson”). We achieve ε̂n = 0.85 with n = 4096 (while the
baseline requires n = 65536) and ε̂n = 0.67 with n = 1024 (while the baseline requires n = 4096).
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Figure 4: Left: Separating the effects of bias and variance in auditing LiDP; cf. definition (10). Center &
Right: The correlations between the test statistics of the canaries decrease with K and d, achieving smaller CIs.

Number of Canaries and Bias-Variance Tradeoffs. In Fig. 3 (middle), LiDP auditing with 2nd/4th-
order CIs improve with increasing canaries up to a point and then decreases. This is due to a
bias-variance tradeoff, which we investigate further in Figure 4 (left). Let ε̂(K, `) denote the
empirical privacy lower bound with K canaries using an `th order interval, e.g., the baseline is ε̂(1, 1).
Let the bias from injecting K canaries and the variance gain from `th-order interval respectively be

∆Bias(K) := ε̂(K, 1)− ε̂(1, 1) , and ∆Var(K, `) := ε̂(K, `)− ε̂(K, 1) . (10)

In Figure 4 (left), the gain ∆Bias(K) from bias is negative and gets worse with increasing K; when
testing for each canary, the K − 1 other canaries introduce more randomness that makes the test
more private and hence lowers the ε̂ (see also Figure 1. The gain ∆Var(K) in variance is positive
and increases with K before saturating. This improved “variance” of the estimate is a key benefit of
our framework. The net improvement ε̂(K, `)− ε̂(1, 1) is a sum of these two effects. This trade-off
between bias and variance explains the concave shape of ε̂ in K.

Next, we see from Figure 5 that a larger number m of test canaries always helps, i.e., it does not incur
a similar bias-variance tradeoff. Indeed, this is because larger m does not lead to any additional bias,
as discussed in §3.3. However, the gains quickly saturate, so m = K is a reliable default, especially
for K ≥ 16 or so; we refer to Appendix E for more plots and details.

Correlation between Canaries. Based on (8), this improvement in the variance can further be
examined by looking at the term |µ̂2 − µ̂2

1| that leads to a narrower 2nd-order Wilson interval. The
log-log plot of this term in Figure 4 (middle) is nearly parallel to the dotted 1/K line (slope =−0.93),
meaning that it decays roughly as 1/K (note that the log-log plot of y = cxa is a straight line with
slope a). This indicates that we get close to a 1/

√
nK confidence interval as desired. Similarly,

we get that |µ̂4 − µ̂2
2| decays roughly as 1/K (slope = −1.05). However, the 4th-order estimator

offers only marginal additional improvements in the small ε regime (see Appendix E). Thus, the gain
diminishes rapidly in the order of our estimators.
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Figure 5: Left: There is no bias-variance tradeoff with the number m of test canaries: larger m always gives a
better empirical ε̂ but the results saturate quickly. This experiment is for the Gaussian mechanism. Center &
Right: The proposed LiDP-based auditing procedure gives significant improvements similar to Figure 3 when
auditing the Laplace mechanism with canaries sampled randomly from the unit `1 ball.
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Effect of Dimension on the Bias and Variance. As the dimension d increases, the LiDP-based
lower bound becomes tighter monotonically as we show in Figure 3 (right). This is due to both
the bias gain, as in (10), improving (less negative) and the variance gain improving (more positive).
With increasing d, the variance of our estimate reduces because the canaries become less correlated.
Guided by Eq. (8,9), we measure the relevant correlation measures |µ̂2 − µ̂2

1| and |µ̂4 − µ̂2
2| in

Figure 4 (right). Both decay approximate as 1/d (slope = −1.06 and −1.00 respectively, ignoring
the outlier at d = 106). This suggests that, for Gaussian mechanisms, the corresponding XBern
distribution resulting from our recipe behaves favorably as d increases.

Auditing Other Mechanisms. The proposed LiDP-based auditing recipe is agnostic to the actual
privacy mechanism. We audit a Laplace mechanism with canaries drawn uniformly at random over the
unit `1 ball in Figure 4 (center and right). The results are qualitatively similar to those of the Gaussian
mechanism, leading to an eight-fold improvement in the sample complexity over the baseline.

5 Lifting Existing Canary Designs

Several prior works [e.g., 32, 41, 45, 60], focus on designing stronger canaries to improve the lower
bound on ε. We provide two concrete examples of how to lift these canary designs to be compatible
with our framework while inheriting their strengths. We refer to Appendix D for further details.

We impose two criteria on the distribution Pcanary over canaries for auditing LiDP. First, the injected
canaries are easy to detect, so that the probabilities on the left side of (4) are large and those on
the right side are small. Second, a canary c ∼ Pcanary, if included in the training of a model θ, is
unlikely to change the membership of θ ∈ Rc′ for an independent canary c′ ∼ Pcanary. Existing
canary designs already impose the first condition to audit DP using (1). The second condition ensures
that the canaries are uncorrelated, allowing our adaptive CIs to be smaller, as we discussed in §3.3.

Data Poisoning via Tail Singular Vectors. ClipBKD [32] adds as canaries the tail singular vector
of the input data (e.g., images). This ensures that the canary is out of distribution, allowing for easy
detection. We lift ClipBKD by defining the distribution Pcanary as the uniform distribution over the p
tail singular vectors of the input data. If p is small relative to the dimension d of the data, then they
are still out of distribution, and hence, easy to detect. For the second condition, the orthogonality of
the singular vectors ensures the interaction between canaries is minimal, as measured empirically.

Random Gradients. The approach of [2] samples random vectors (of the right norm) as canary
gradients, assuming a grey-box access where we can inject gradients. Since random vectors are nearly
orthogonal to any fixed vector in high dimensions, their presence is easy to detect with a dot product.
Similarly, any two i.i.d. canary gradients are roughly orthogonal, leading to minimal interactions.

6 Experiments

We compare the proposed LiDP auditing recipe relative to the standard one for DP training of machine
learning models. Our code is available online.1

Setup. We test with two classification tasks: FMNIST [65] is a 10-class grayscale image classification
dataset, while Purchase-100 is a sparse tabular dataset with 600 binary features and 100 classes [19,
53]. We train a linear model and a multi-layer perceptron (MLP) with 2 hidden layers using
DP-SGD [1] to achieve (ε, 10−5)-DP with varying values of ε. The training is performed using
cross-entropy for a fixed epoch budget and a batch size of 100. We refer to Appendix F for details.

Auditing. We audit the LiDP using the two types of canaries from §5: data poisoning and random
gradient canaries. We vary the number K of canaries and the number n of trials. We track the
empirical lower bound obtained from the Wilson family of confidence intervals. We compare this
with auditing DP, which coincides with auditing LiDP with K = 1 canary. We audit only the final
model in all the experiments.

Sample Complexity Gain. Table 1 shows the reduction in the sample complexity from auditing
LiDP. For each canary type, auditing LiDP is better 11 out of the 12 settings considered. The average
improvement (i.e., the harmonic mean over the table) for data poisoning is 2.3×, while for random

1https://github.com/google-research/federated/tree/master/lidp_auditing
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Dataset / Model C.I./
(Wilson)

Data Poisoning Canary Random Gradient Canary

ε = 2 ε = 4 ε = 8 ε = 16 ε = 2 ε = 4 ε = 8 ε = 16

FMNIST / Linear 2nd-Ord. 0.68 3.31 2.55 4.38 2.69 3.34 5.98 5.06

4th-Ord. 0.42 2.68 2.29 3.76 2.66 2.70 7.75 4.19

FMNIST / MLP 2nd-Ord. 4.80 1.46 2.95 1.60 4.62 2.88 2.33 5.46

4th-Ord. 4.42 2.49 2.37 1.30 3.95 2.81 2.02 4.60

Purchase / MLP 2nd-Ord. 3.14 1.06 1.41 9.28 1.41 0.71 4.30 2.84

4th-Ord. 2.84 1.09 1.36 6.99 1.29 0.42 4.35 2.38

Table 1: The (multiplicative) improvement in the sample complexity from auditing LiDP with K = 16 canaries
compared to auditing DP with n = 1000 trials. We determine this factor by linearly interpolating/extrapolating
ε̂n; cf. Figure 6 (left) for a visual representation of these numbers. For instance, an improvement of 3.31 means
LiDP needs n ≈ 1000/3.31 ≈ 302 trials to reach the same empirical lower bound that DP reaches at n = 1000.
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Figure 6: Left two: LiDP-based auditing with K > 1 canaries achieves the same lower bound ε̂ on the privacy
loss with fewer trials. Right two: LiDP auditing is robust to K; the prescribed K =

√
n is a reliable default.

gradients, it is 3.0×. Since each trial is a full model training run, this improvement can be quite
significant in practice. This improvement can also be seen visually in Figure 6 (left two).

Number of Canaries. We see from Figure 6 (right two) that LiDP auditing on real data behaves
similarly to Figure 3 in §4. We also observe the bias-variance tradeoff in the case of data poisoning
(center right). The choice K =

√
n is competitive with the best value of K, validating our heuristic.

Overall, these results show that the insights from §4 hold even with the significantly more complicated
DP mechanism involved in training models privately.

Additional Comparisons. We show in §F.4 that our LiDP auditing with generally outperforms the
Bayesian auditing approach of Zanella-Béguelin et al. [69]. This also suggests an interesting future
research direction: adapt Bayesian credible intervals for LiDP auditing to get the best of both worlds.

7 Conclusion

We introduce a new framework for auditing differentially private learning. Diverging from the
standard practice of adding a single deterministic canary, we propose a new recipe of adding multiple
i.i.d. random canaries. This is made rigorous by an expanded definition of privacy that we call
LiDP. We provide novel higher-order confidence intervals that can automatically adapt to the level
of correlation in the data. We empirically demonstrate that there is a potentially significant gain in
sample dependence of the confidence intervals, achieving a favorable bias-variance tradeoff.

Although any rigorous statistical auditing approach can benefit from our framework, it is not yet
clear how other popular approaches [e.g. 12] for measuring memorization can be improved with
randomization. Bridging this gap is an important practical direction for future research. It is also
worth considering how our approach can be adapted to audit the diverse definitions of privacy in
machine learning [e.g. 28].

Broader Impact. Auditing private training involves a trade-off between the computational cost and
the tightness of the guarantee. This may not be appropriate for all practical settings. For deployment
in production, it is worth further studying approaches with minimal computational overhead [e.g.
2, 12].
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[12] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song. The Secret Sharer: Evaluating and
Testing Unintended Memorization in Neural Networks. In USENIX Security Symposium, volume
267, 2019.

[13] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. Brown,
D. Song, U. Erlingsson, A. Oprea, and C. Raffel. Extracting Training Data from Large Language
Models. In 30th USENIX Security Symposium (USENIX Security 2021), 2021.

[14] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer. Membership Inference Attacks
from First Principles. In IEEE Symposium on Security and Privacy (SP), pages 1519–1519, Los
Alamitos, CA, USA, May 2022. IEEE Computer Society. doi: 10.1109/SP46214.2022.00090.
URL https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00090.

[15] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, and C. Zhang. Quantifying Memorization
Across Neural Language Models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=TatRHT_1cK.

11

https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00090
https://openreview.net/forum?id=TatRHT_1cK


[16] Y. Chen and A. Machanavajjhala. On the privacy properties of variants on the sparse vector
technique. arXiv preprint arXiv:1508.07306, 2015.

[17] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer. Detecting violations of differential privacy.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 475–489, 2018.

[18] K. Dixit, M. Jha, S. Raskhodnikova, and A. Thakurta. Testing Lipschitz Property over Product
Distribution and its Applications to Statistical Data Privacy. In Theory of Cryptography
Conference, pages 418–436. Springer, 2013.

[19] W. C. DMDave, Todd B. Acquire valued shoppers challenge, 2014. URL https://kaggle.
com/competitions/acquire-valued-shoppers-challenge.

[20] R. M. Dudley. Uniform Central Limit Theorems, volume 142. Cambridge university press,
2014.

[21] C. Dwork and G. N. Rothblum. Concentrated Differential Privacy. arXiv preprint
arXiv:1603.01887, 2016.

[22] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating Noise to Sensitivity in Private
Data Analysis. In Proc. of the Third Conf. on Theory of Cryptography (TCC), pages 265–284,
2006. URL http://dx.doi.org/10.1007/11681878_14.

[23] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust Traceability from Trace
Amounts. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages
650–669. IEEE, 2015.

[24] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce. Linear Dependent Types for
Differential Privacy. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 357–370, 2013.

[25] A. C. Gilbert and A. McMillan. Property Testing for Differential Privacy. In 2018 56th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pages 249–258.
IEEE, 2018.

[26] C. Guo, B. Karrer, K. Chaudhuri, and L. van der Maaten. Bounding Training Data Recon-
struction in Private (Deep) Learning. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
8056–8071, 17–23 Jul 2022.

[27] Y. Han, J. Jiao, and T. Weissman. Minimax estimation of divergences between discrete
distributions. IEEE Journal on Selected Areas in Information Theory, 1(3):814–823, 2020.

[28] A. Hannun, C. Guo, and L. van der Maaten. Measuring Data Leakage in Machine-Learning
Models with Fisher Information. In UAI, pages 760–770, 2021.

[29] J. Hayes, S. Mahloujifar, and B. Balle. Bounding Training Data Reconstruction in DP-SGD,
2023.

[30] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A.
Stephan, S. F. Nelson, and D. W. Craig. Resolving individuals contributing trace amounts
of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS
genetics, 4(8):e1000167, 2008.

[31] S. L. Hyland and S. Tople. An Empirical Study on the Intrinsic Privacy of SGD. arXiv preprint
arXiv:1912.02919, 2019.

[32] M. Jagielski, J. Ullman, and A. Oprea. Auditing differentially private machine learning: How
private is private SGD? Advances in Neural Information Processing Systems, 33:22205–22216,
2020.

[33] B. Jayaraman and D. Evans. Evaluating Differentially Private Machine Learning in Practice. In
USENIX Security Symposium, pages 1895–1912, 2019.

12

https://kaggle.com/competitions/acquire-valued-shoppers-challenge
https://kaggle.com/competitions/acquire-valued-shoppers-challenge
http://dx.doi.org/10.1007/11681878_14


[34] M. Johnson. fix prng key reuse in differential privacy example. https://github.com/
google/jax/pull/3646, 2020.

[35] P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for differential privacy. In
International conference on machine learning, pages 1376–1385. PMLR, 2015.

[36] D. Kifer and A. Machanavajjhala. Pufferfish: A framework for mathematical privacy definitions.
ACM Transactions on Database Systems (TODS), 39(1):1–36, 2014.
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A Related Work

Prior to [17], privacy auditing required some access to the description of the mechanism. [5–
7, 24, 43, 50, 51, 62] provide platforms with a specific set of functions to be used to implement the
mechanism, where the end-to-end privacy of the source code can be automatically verified. Closest
to our setting is the work of [18], where statistical testing was first proposed for privacy auditing,
given access to an oracle that returns the exact probability measure of the mechanism. However, the
guarantee is only for a relaxed notion of DP from [8] and the run-time depends super-linearly on the
size of the output domain.

The pioneering work of [17] was the first to propose practical methods to audit privacy claims given
a black-box access to a mechanism. The focus was on simple queries that do not involve any training
of models. This is motivated by [16, 40], where even simple mechanisms falsely reported privacy
guarantees. For such mechanisms, sampling a large number, say 500, 000 in [17], of outputs is
computationally easy, and no effort was made in [17] to improve the statistical trade-off. However,
for private learning algorithms, training such a large number of models is computationally prohibitive.
The main focus of our framework is to improve this statistical trade-off for auditing privacy. We first
survey recent breakthroughs in designing stronger canaries, which is orthogonal to our main focus.

A.1 Auditing Private Machine Learning with Strong Canaries

Recent breakthroughs in auditing are accelerated by advances in privacy attacks, in particular member-
ship inference. An attacker performing membership inference would like to determine if a particular
data sample was part of the training set. Early work on membership inference [11, 23, 30, 52]
considered algorithms for statistical methods, and more recent work demonstrates black-box attacks
on ML algorithms [14, 33, 53, 67, 68]. [33] compares different notions of privacy by measuring
privacy empirically for the composition of differential privacy [35], concentrated differential privacy
[10, 21], and Rényi differential privacy [44]. This is motivated by [49], which compares different
DP mechanisms by measuring the success rates of membership inference attacks. [31] attempts to
measure the intrinsic privacy of stochastic gradient descent (without additional noise as in DP-SGD)
using canary designs from membership inference attacks. Membership inference attacks have been
shown to have higher success when the adversary can poison the training dataset [59].

A more devastating privacy attack is the extraction or reconstruction of the training data, which is
particularly relevant for generative models such as large language models (LLMs). Several papers
showed that LLMs tend to memorize their training data [13, 15], allowing an adversary to prompt
the generative models and extract samples of the training set. The connection between the ability
of an attacker to perform training data reconstruction and DP guarantees has been shown in recent
work [26, 29].

When performing privacy auditing, a stronger canary design increases the success of the adversary
in the distinguishing test and improves the empirical privacy bounds. The resulting hypothesis test
can tolerate larger confidence intervals and requires less number of samples. Recent advances in
privacy auditing have focused on designing such stronger canaries. [32] designs data poisoning
canaries, in the direction of the lowest variance of the training data. This makes the canary out of
distribution, making it easier to detect. [45] proposes attack surfaces of varying capabilities. For
example, a gradient attack canary returns a gradient of choice when accessed by DP-SGD. It is shown
that, with more powerful attacks, the canaries become stronger and the lower bounds become higher.
[60] proposes using an example from the baseline training dataset, after changing the label, and
introduces a search procedure to find a strong canary. More recently, [46] proposes a significantly
improved auditing scheme for DP-SGD under a white-box access model where (i) the auditor knows
that the underlying mechanism is DP-SGD with a spherical Gaussian noise with unknown variance,
and (ii) all intermediate models are revealed. Since each coordinate of the model update provides
an independent sample from the same Gaussian distribution, sample complexity is dramatically
improved. [41] proposes CANIFE, a novel canary design method that finds a strong data poisoning
canary adaptively under the federated learning scenario.

Prior work in this space shows that privacy auditing can be performed via privacy attacks, such as
membership inference or reconstruction, and strong canary design results in better empirical privacy
bounds. We emphasize that our aim is not to innovate on optimizing canary design for performing
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privacy auditing. Instead, our framework can seamlessly adopt recently designed canaries and inherit
their strengths as demonstrated in §5 and §6.

A.2 Improving Statistical Trade-offs in Auditing

Eq. (2) points to two orthogonal directions that can potentially improve the sample dependence:
designing stronger canaries and improving the sample dependence of the confidence intervals. The
former was addressed in the previous section. There is relatively less work in improving the statistical
dependence, which our framework focuses on.

Given a pair of neighboring datasets, (D0, D1), and for a query with discrete output in a finite space,
the statistical trade-off of estimating privacy parameters was studied in [25] where a plug-in estimator
is shown to achieve an error of O(

√
de2ε/n), where d is the size of the discrete output space. [38]

proposes a sub-linear sample complexity algorithm that achieves an error scaling as
√
deε/n log n,

based on polynomial approximation of a carefully chosen degree to optimally trade-off bias and
variance motivated by [27, 64]. Similarly, [37] provides a lower bound for auditing Rényi differential
privacy. [9] trains a classifier for the binary hypothesis test and uses the classifier to design rejection
sets. [3] proposes local search to find the rejection set efficiently. More recently, [69] proposes
numerical integration over a larger space of false positive rate and true positive rate to achieve better
sample complexity of the confidence region in the two-dimensional space. Our framework can be
potentially applied to this confidence region scenario, which is an important future research direction.

A.3 Connections to Other Notions of Differential Privacy

Similar to Lifted DP, a line of prior works [36, 55, 61, 66] generalizes DP to include a distributional
assumption over the dataset. However, unlike Lifted DP, they are motivated by the observation that
DP is not sufficient for preserving privacy when the samples are highly correlated. For example, upon
releasing the number of people infected with a highly contagious flu within a tight-knit community,
the usual Laplace mechanism (with sensitivity one) is not sufficient to conceal the likelihood of
one member getting infected when the private count is significantly high. One could apply group
differential privacy to hide the contagion of the entire population, but this will suffer from excessive
noise. Ideally, we want to add a noise proportional to the expected size of the infection. Pufferfish
privacy, introduced in [36], achieves this with a generalization of DP that takes into account prior
knowledge of a class of potential distributions over the dataset. A special case of ε-Pufferfish with
a specific choice of parameters recovers a special case of our Lifted DP in Eq. (3) with δ = 0 [36,
Section 3.2], where a special case of Theorem 3 has been proven for pure DP [36, Theorem 3.1].
However, we want to emphasize that our Lifted DP is motivated by a completely different problem of
auditing differential privacy and is critical to breaking the barriers in the sample complexity.

B Properties of Lifted DP and Further Details

B.1 Equivalence Between DP and LiDP

In contrast to the usual (ε, δ)-DP in Eq. (1), the probability in LiDP is over both the internal
randomness of the algorithmA and the distribution P over the triplet (D0,D1,R). Since we require
that the definition holds only for lifted distributions P that are independent of the algorithm A, it is
easy to show its equivalence to the usual notion of (ε, δ)-DP.
Theorem 3. A randomized algorithm A is (ε, δ)-LiDP iff A is (ε, δ)-DP.

Proof. Suppose A is (ε, δ)-LiDP. Fix a pair of neighboring datasets D0, D1 and an outcome R ⊂ R.
Define PD0,D1,R as the point mass on (D0, D1, R), i.e.,

dPD0,D1,R(D′0, D
′
1, R

′) = 1(D′0 = D0, D
′
1 = D1, R

′ = R) ,

so that PA,PD0,D1,R
(A(D0) ∈ R) = P(A(D0) ∈ R) and similarly for D1. Then, applying the

definition of (ε, δ)-LiDP w.r.t. the distribution PD0,D1,R gives

PA(A(D1) ∈ R) ≤ eε PA(A(D0) ∈ R) + δ .

Since this holds for any neighboring datasets D0, D1 and outcome set R, we get that A is (ε, δ)-DP.
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Conversely, suppose that A is (ε, δ)-DP. For any distribution P over pairs of neighboring datasets
D0,D1 and outcome setR, we have by integrating the DP definition

∫
P(A(D1) ∈ R) dP(D0, D1, R) ≤ eε

∫
P(A(D0) ∈ R) dP(D0, D1, R) + δ . (11)

Next, we use the law of iterated expectation to get

PA,P
(
A(D0) ∈ R)

)
= EA,P

[
I
(
A(D0) ∈ R

)]

= E(D0,D1,R)∼P
[
EA
[
I
(
A(D0) ∈ R

) ∣∣D0,R
]]

=

∫
EA
[
I
(
A(D0) ∈ R

) ∣∣D0 = D0,R = R
]

dP(D0, D1, R)

(∗)
=

∫
EA
[
I
(
A(D0) ∈ R

)]
dP(D0, D1, R)

=

∫
PA
(
A(D0) ∈ R

)
dP(D0, D1, R) ,

where (∗) followed from the independence of A and P . Plugging this and the analogous expression
for P(A(D1) ∈ R) into (11) gives us that A is (ε, δ)-LiDP.

B.2 Auditing LiDP with Different Notions of Neighborhood

We describe how to modify the recipe of §3 for other notions of neighborhoods of datasets. The
notion of the neighborhood in Definition 1 is also known as the “add-or-remove” neighborhood.

Replace-one Neighborhood. Two datasets D,D′ ∈ Z∗ are considered neighboring if |D| = |D′|
and |D \D′| = |D′ \D| = 1. Roughly speaking, this leads to privacy guarantees that are roughly
twice as strong as the add-or-remove notion of the neighborhood in Definition 1, as the worst-case
sensitivity of the operation is doubled. We refer to [48, 63] for more details. Just like Definition 1,
Definition 2 can also be adapted to this notion of neighborhood.

Auditing LiDP with Replace-one Neighborhood. The recipe of §3.2 can be slightly modified for
this notion of neighborhood. The main difference is that the null hypothesis must now use K canaries
as well, with one fresh canary.

The alternative hypothesis is the same — we train a model on a randomized training datasetD1 = D∪
{c1, . . . , cK} augmented withK random canaries drawn i.i.d. fromPcanary. Under the jth null hypoth-
esis for each j ∈ [K], we construct a coupled datasetD0,j = D ∪ {c1, . . . , cj−1, c

′
j , cj+1, . . . , cK},

where c′j is a fresh canary drawn i.i.d. from Pcanary. This coupling ensures that (D0,j ,D1) are
neighboring with probability one. We restrict the rejection regionRj to now depend only on cj and
not in the index j, e.g., we test for the present of cj .2

Note the symmetry of the setup. Testing for the presence of cj inD0,j is exactly identical to testing
for the presence of c′j inD1. Thus, we can again rewrite the LiDP condition as

1

K

K∑

k=1

P(A(D1) ∈ Rk) ≤ eε

m

m∑

j=1

P(A(D1) ∈ R′j) + δ . (12)

Note the subtle difference between (4) and (12): both sides depend only on A(D1) and we have
completely eliminated the need to train models on K − 1 canaries.

From here on, the rest of the recipe is identical to §3 and Algorithm 1; we construct XBern confidence
intervals for both sides of (12) and get a lower bound ε̂.

C Confidence Intervals for Exchangeable Bernoulli Means

We give a rigorous definition of the multivariate Exchangeable Bernoulli (XBern) distributions and
derive their confidence intervals. We also give proof of the correctness of the confidence intervals.

2Note that the test could have depended on c′j as well, but we do not need it here.
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Definition 5 (XBern Distributions). A random vector (x1, . . . ,xK) ∈ {0, 1}K is said to be dis-
tributed as XBernK(µ1, . . . , µK) if:

• x1, . . . ,xK is exchangeable, i.e., the vector (x1, . . . ,xK) is identical in distribution to
(xπ(1), . . . ,xπ(K)) for any permutation π : [K]→ [K], and,

• for each ` = 1, . . . ,K, we have E[m`] = µ`, where

m` :=
1(
K
`

)
∑

j1<···<j`∈[K]

xj1 · · ·xj` . (13)

We note that the XBernK distribution is fully determined by its K moments µ1, . . . , µK . For K = 1,
XBern1(µ1) = Bernoulli(µ1) is just the Bernoulli distribution.

The momentsm` satisfy a computationally efficient recurrence.
Proposition 6. Let x ∼ XBernK(µ1, . . . , µK). We have the following for all 1 ≤ ` ≤ Km1:

m` =

(
Km1

`

)
(
K
`

) and m`+1 = m`

(
Km1 − `
K − `

)
. (14)

Computing the first ` moments can thus be done in O(K + `) time rather than O(K`) by naively
computing the sum in (13).

Proof of Proposition 6. We show that this holds for any fixed vector (x1, . . . , xK) ∈ {0, 1}K and
their corresponding moments m1, . . . ,mK as defined in (13). Define the sums s1 :=

∑K
j=1 xj =

Km1 and

s` :=

(
K

`

) ∑

j1<···<j`

xj1 · · ·xj` . (15)

We can compute s` by a counting argument: each term in the sum is non-zero only if all ` of the
xj1 , . . . , xj` are non-zero. The number of non-zero terms is equal to number of ways of selecting `
items from a total of

∑K
j=1 xj = s1 items, i.e.,

s` =

(
s1

`

)
=

(
Km1

`

)
. (16)

Combining Equations (15) and (16) completes the proof.

Notation. In this section, we are interested in giving confidence intervals on the mean µ1 of a
XBernK(µ1, . . . , µK) random variable from n i.i.d. observations:

x(1), . . . ,x(n) i.i.d.∼ XBernK(µ1, . . . , µK) .

We will define the confidence intervals using the empirical mean

µ̂1 =
1

n

n∑

i=1

m
(i)
1 where m

(i)
1 =

1

K

K∑

j=1

x
(i)
j ,

as well as the higher-order moments for ` ∈ [K],

µ̂` =
1

n

n∑

i=1

m
(i)
` where m

(i)
` =

1(
K
`

)
∑

j1<···<j`∈[K]

x
(i)
j1
· · ·x(i)

j`
.

C.1 Non-Asymptotic Confidence Intervals

We start by giving non-asymptotic confidence intervals for the XBern distributions based on the
Bernstein bound, recalled below [e.g. 20, Thm. 1.3.2].
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Algorithm 2 First-Order Bernstein Intervals

Input: Random vectors x(1), . . . ,x(n) ∼ XBernK(µ1, . . . , µK) with unknown parameters, failure
probability β ∈ (0, 1).

Output: Confidence intervals [µ
1
,µ1] such that P(µ1 < µ1

) ≤ β and P(µ1 > µ1) ≤ β.
1: Set µ

1
as the unique solution of x ∈ [0, µ̂1] such that

µ̂1 − x−
√(

2

n
log

1

β

)
x(1− x) =

2

3n
log

1

β

if it exists, else set µ
1

= 0.
2: Set µ1 as the unique solution of x ∈ [µ̂1, 1] such that

x− µ̂1 −
√(

2

n
log

1

β

)
x(1− x) =

2

3n
log

1

β

if it exists, else set µ1 = 1.
3: return µ

1
,µ1.

Lemma 7 (Bernstein inequality). Let x1, . . . ,xn be independent random variables with E[xi] = 0,
Var(xi) ≤ σ2, and |xi| ≤ b almost surely. Let µ1 := (1/n)

∑n
i=1 xi. For any t > 0, we have

P(µ1 > t) ≤ exp

(
− nt2

2σ2 + 2bt/3

)
.

Equivalently, we have with probability at least 1− β that

µ1 ≤
√

2σ2

n
log

1

β
+

b2

9n2
log2 1

β
+

b

3n
log

1

β
≤
√

2σ2

n
log

1

β
+

2b

3n
log

1

β
.

The last simplification is obtained by using
√
a+ b ≤ √a+

√
b for scalars a, b ≥ 0.

C.1.1 First-Order Bernstein Intervals

The first-order Bernstein interval only depends on the empirical mean µ1 and is given in Algorithm 2.

Proposition 8. Consider Algorithm 2 with inputs n i.i.d. samples x(1), . . . ,x(n) i.i.d.∼
XBernK(µ1, . . . , µK) for some K ≥ 1. Then, its outputs µ

1
,µ1 satisfy P(µ1 ≤ µ

1
) ≥ 1 − β

and P(µ1 ≥ µ1) ≥ 1− β.

Proof. Applying Bernstein’s inequality tom1 := (1/K)
∑K
j=1 xj , we have with probability 1− β

that

µ1 − µ̂1 ≤
√

2Var(m1)

n
log

1

β
+

2

3n
log

1

β
≤
√

2µ1(1− µ1)

n
log

1

β
+

2

3n
log

1

β
,

where we used that Var(m1) ≤ µ1(1 − µ1) since m1 ∈ [0, 1] a.s. We see from Figure 2 that µ1
is that largest value of µ1 that satisfies the above inequality, showing that it is an upper confidence
bound. Similarly, we get that µ

1
is a valid lower confidence bound.
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Algorithm 3 Second-Order Bernstein Intervals

Input: Random vectors x(1), . . . ,x(n) ∼ XBernK(µ1, . . . , µK) with unknown parameters, failure
probability β ∈ (0, 1).

Output: Confidence intervals [µ
1
,µ1] such that P(µ1 < µ1

) ≤ β and P(µ1 > µ1) ≤ β.

1: For each i ∈ [n], setm(i)
1 = (1/K)

∑K
j=1 x

(i)
j andm(i)

2 = m
(i)
1

(
Km

(i)
1 −1

K−1

)
.

2: Set µ̂` = (1/n)
∑n
i=1m

(i)
` for ` = 1, 2.

3: Set µ2 as the unique solution of x ∈ [µ̂2, 1] such that

x− µ̂2 −
√(

2

n
log

2

β

)
x(1− x) =

2

3n
log

2

β
.

if it exists, else set µ2 = 1.
4: Set µ

1
as the unique solution of x ∈ [0, µ̂1] such that

µ̂1 − x−
√(

2

n
log

2

β

) (
x

K
− x2 +

K − 1

K
µ2

)
=

2

3n
log

2

β

if it exists, else set µ
1

= 0.
5: Set µ1 as the unique solution of x ∈ [µ̂1, 1] such that

x− µ̂1 −
√(

2

n
log

2

β

) (
x

K
− x2 +

K − 1

K
µ2

)
=

2

3n
log

2

β

if it exists, else set µ1 = 1.
6: return µ

1
,µ1.

C.1.2 Second-Order Bernstein Intervals

The second-order Bernstein interval only depends on the first two empirical moments µ1 and µ2. It
is given in Algorithm 3. The algorithm is based on the calculation

Var(m1) = E[m2
1]− µ2

1

= E


 1

K2

K∑

j=1

x2
j +

2

K2

∑

j1<j2∈[K]

xj1xj2


− µ2

1

=
µ1

K
− µ2

1 +
K − 1

K
µ2 ,

(17)

where we used x2
j = xj since it is an indicator.

Proposition 9. Consider Algorithm 3 with inputs n i.i.d. samples x(1), . . . ,x(n) i.i.d.∼
XBernK(µ1, . . . , µK) for some K ≥ 2. Then, its outputs µ

1
,µ1 satisfy P(µ1 ≥ µ

1
) ≥ 1 − β

and P(µ1 ≤ µ1) ≥ 1− β and P(µ
1
≤ µ1 ≤ µ1) ≤ 1− 3β

2 .

Proof. Algorithm 3 computes the correct 2nd moment m(i)
2 due to Proposition 6. Applying Bern-

stein’s inequality tom2, we get P(µ2 ≤ µ2) ≥ 1− β/2 (see also the proof of Proposition 8). Next,
from Bernstein’s inequality applied to m1, we leverage (17) to say that with probability at least
1− β/2, we have

µ1 − µ̂1 ≤
2

3n
log

2

β
+

√
2

n
log

2

β

(
µ1

K
− µ2

1 +
K − 1

K
µ2

)
.

Together with the result on µ2, we have with probability at least 1− β that

µ1 − µ̂1 ≤
2

3n
log

2

β
+

√
2

n
log

2

β

(
µ1

K
− µ2

1 +
K − 1

K
µ2

)
.
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Algorithm 4 Fourth-Order Bernstein Intervals

Input: Random vectors x(1), . . . ,x(n) ∼ XBernK(µ1, . . . , µK) with unknown parameters, failure
probability β ∈ (0, 1).

Output: Confidence intervals [µ
1
,µ1] such that P(µ1 < µ1

) ≤ β and P(µ1 > µ1) ≤ β.

1: For each i ∈ [n], setm(i)
1 = (1/K)

∑K
j=1 x

(i)
j and for ` = 1, 2, 3: m(i)

`+1 = m
(i)
`

(
Km

(i)
1 −`

K−`

)
.

2: Set µ̂` = (1/n)
∑n
i=1m

(i)
` for ` = 1, 2, 3, 4.

3: For ` = 3, 4, set µ` as the unique solution of x ∈ [µ̂`, 1] such that

x− µ̂` −
√(

2

n
log

4

β

)
x(1− x) =

2

3n
log

4

β
.

if it exists, else set µ` = 1.
4: Set µ2 as the unique solution, if it exists, of x ∈ [µ̂2, 1] such that

x− µ̂2 −
√(

2

n
log

4

β

)
σ2

2 (x,µ3,µ4) =
2

3n
log

4

β

where σ2
2(·, ·, ·) is as defined in (18). Else set µ2 = 1.

5: Set µ
1

as the unique solution of x ∈ [0, µ̂1] such that

µ̂1 − x−
√(

2

n
log

4

β

) (
x

k
− x2 +

K − 1

K
µ2

)
=

2

3n
log

4

β

if it exists, else set µ
1

= 0.
6: Set µ1 as the unique solution of x ∈ [µ̂1, 1] such that

x− µ̂1 −
√(

2

n
log

4

β

) (
x

k
− x2 +

K − 1

K
µ2

)
=

2

3n
log

4

β

if it exists, else set µ1 = 1.
7: return µ

1
,µ1.

We can verify that the output µ1 is the largest value of µ1 ≤ 1 that satisfies the above inequality.
Similarly, µ

1
is obtained as a lower Bernstein bound onm1 with probability at least 1− β. By the

union bound, µ
1
≤ µ1 ≤ µ1 holds with probability at least 1−3β/2, since we have three invocations

of Bernstein’s inequality, each with a failure probability of β/2.

C.1.3 Fourth-Order Bernstein Intervals

The fourth-order Bernstein interval depends on the first four empirical moments µ1, . . . ,µ4. It is
given in Algorithm 4. The derivation of the interval is based on the calculation

Var(m2) = E[m2
2]− µ2

2

=
2µ2

K(K − 1)
− µ2

2 +
4(K − 2)

K(K − 1)
µ3 +

(K − 2)(K − 3)

K(K − 1)
µ4

=
2µ2(1− µ2)

K(K − 1)
+

4(K − 2)

K(K − 1)
(µ3 − µ2

2) +
(K − 2)(K − 3)

K(K − 1)
(µ4 − µ2

2)

=: σ2
2(µ2, µ3, µ4) .

(18)

Proposition 10. Consider Algorithm 4 with inputs n i.i.d. samples x(1), . . . ,x(n) i.i.d.∼
XBernK(µ1, . . . , µK) for some K ≥ 4. Then, its outputs µ

1
,µ1 satisfy P(µ1 ≥ µ

1
) ≥ 1 − β

and P(µ1 ≤ µ1) ≥ 1− β and P(µ
1
≤ µ1 ≤ µ1) ≤ 1− 5β

4 .
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Algorithm 5 First-Order Wilson Intervals

Input: Random vectors x(1), . . . ,x(n) ∼ XBernK(µ1, . . . , µK) with unknown parameters, failure
probability β ∈ (0, 1).

Output: Asymptotic confidence intervals [µ
1
,µ1] such that limn→∞ P(µ1 < µ

1
) ≤ β and

limn→∞ P(µ1 > µ1) ≤ β.
1: Set µ

1
< µ1 as the roots of the quadratic in x:

(n+ Z2
β)x2 − (2nµ̂1 + Z2

β)x+ nµ̂2
1 = 0 .

2: return µ
1
,µ1.

Algorithm 6 Second-Order Wilson Intervals

Input: Random vectors x(1), . . . ,x(n) ∼ XBernK(µ1, . . . , µK) with unknown parameters, failure
probability β ∈ (0, 1).

Output: Asymptotic confidence intervals [µ
1
,µ1] such that limn→∞ P(µ1 < µ

1
) ≤ β and

limn→∞ P(µ1 > µ1) ≤ β.

1: For each i ∈ [n], setm(i)
1 = (1/K)

∑K
j=1 x

(i)
j andm(i)

2 = m
(i)
1

(
Km

(i)
1 −1

K−1

)
.

2: Set µ̂` = (1/n)
∑n
i=1m

(i)
` for ` = 1, 2.

3: Let µ2 be the larger root of the quadratic in x:

(n+ Z2
β/2)x2 − (2nµ̂2 + Z2

β/2)x+ nµ̂2
2 = 0 .

4: Set µ
1
< µ1 as the roots of the quadratic in x:

(n+ Z2
β/2)x2 −

(
2nµ̂1 +

Z2
β/2

K

)
x+ nµ̂2

1 −
(
K − 1

K

)
Z2
β/2 µ2 = 0 .

5: return µ
1
,µ1.

Proof. Algorithm 4 computes the correct momentsm(i)
` for ` ≤ 4 due to Proposition 6. Applying

Bernstein’s inequality tom3 andm4, we get P(µ` ≤ µ`) ≥ 1− β/4 for ` = 3, 4 (see also the proof
of Proposition 8).

Next, from Bernstein’s inequality applied tom2, we have with probability at least 1− β/4 that

µ2 − µ̂2 ≤
2

3n
log

4

β
+

√
2σ2

2 (µ2, µ3, µ4)

n
log

4

β
.

Combining this with the results on µ3,µ4 with the union bound, we get with probability at least
1− 3β/4 that

µ2 − µ̂2 ≤
2

3n
log

4

β
+

√
2σ2

2 (µ2,µ3,µ4)

n
log

4

β
.

Finally, plugging this into a Bernstein bound onm1 using the variance calculation from (17) (also
see the proof of Proposition 9) completes the proof.

C.2 Asymptotic Confidence Intervals

We derive asymptotic versions of the Algorithms 2 to 4 using the Wilson confidence interval.

The Wilson confidence interval is a tightening of the constants for the Bernstein confidence interval

µ1 − µ̂1 ≤
√

2 log(1/β)

n
Var(m1) +

2

3n
log

1

β
to µ1 − µ̂1 ≤

√
Z2
β

n
Var(m1) ,

where Zβ is the (1− β)-quantile of the standard Gaussian. Essentially, this completely eliminates the
1/n term, while the coefficient of the 1/

√
n term improves from

√
2 log(1/β) to Zβ — see Figure 2.
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Algorithm 7 Fourth-Order Wilson Intervals

Input: Random vectors x(1), . . . ,x(n) ∼ XBernK(µ1, . . . , µK) with unknown parameters, failure
probability β ∈ (0, 1).

Output: Asymptotic confidence intervals [µ
1
,µ1] such that limn→∞ P(µ1 < µ

1
) ≤ β and

limn→∞ P(µ1 > µ1) ≤ β.

1: For each i ∈ [n], setm(i)
1 = (1/K)

∑K
j=1 x

(i)
j and for ` = 1, 2, 3: m(i)

`+1 = m
(i)
`

(
Km

(i)
1 −`

K−`

)
.

2: Set µ̂` = (1/n)
∑n
i=1m

(i)
` for ` = 1, 2, 3, 4.

3: For ` = 3, 4, let µ` be the larger root of the quadratic in x:

(n+ Z2
β/4)x2 − (2nµ̂` + Z2

β/4)x+ nµ̂2
` = 0 .

4: Let µ2 be the larger root of the quadratic in x:
(
n+

2Z2
β/4(2K − 3)

K(K − 1)

)
x2 −

(
2nµ̂2 +

2Z2
β/4

K(K − 1)

)
x+ nµ̂2

2 − cZ2
β/4 = 0 ,

where c =
(K − 2)(K − 3)

K(K − 1)
(µ4 − µ2

3) +
4(K − 2)

K(K − 1)
µ3

5: Set µ
1
< µ1 as the roots of the quadratic in x:

(n+ Z2
β/4)x2 −

(
2nµ̂1 +

Z2
β/4

K

)
x+ nµ̂2

1 −
(
K − 1

K

)
Z2
β/4 µ2 = 0 .

6: return µ
1
,µ1.

The Wilson approximation holds under the assumption that (µ1 − µ̂1)/
√

Var(m1)/n
d≈ N (0, 1)

and using a Gaussian confidence interval. This can be formalized by the central limit theorem.
Lemma 11 (Lindeberg–Lévy Central Limit Theorem). Consider a sequence of independent random
variables y(1),y(2), . . . with finite moments E[y(i)] = µ <∞ and E(y(i)−µ)2 = σ2 <∞ for each
i. Then, the empirical mean µ̂(n)

1 = (1/n)
∑n
i=1 y

(i) based on n samples satisfies

lim
n→∞

P

(
µ̂

(n)
1 − µ
σ/
√
n

> t

)
= Pξ∼N (0,1) (ξ > t)

for all t ∈ R. Consequently, we have,

lim
n→∞

P
(
µ− µ̂(n)

1 > σZβ/
√
n
)
≥ 1− β and lim

n→∞
P
(
µ̂

(n)
1 − µ > σZβ/

√
n
)
≥ 1− β .

(19)

The finite moment requirement above is satisfied in our case because all our random variables are
bounded between 0 and 1. The asymptotic confidence interval implied by (19) is known as the
Wilson confidence interval. It states that

|µ− µ̂(n)
1 | ≤

σZβ/2√
n

.

w.p. 1− β as n→∞.

We give the Wilson-variants of Algorithms 2 to 4 respectively in Algorithms 5 to 7. Apart from the
fact that the Wilson intervals are tighter, we can also solve the equations associated with the Wilson
intervals in closed form as they are simply quadratic equations (i.e., without the need for numerical
root-finding). The following proposition shows their correctness.

Proposition 12. Consider n i.i.d. samples x(1), . . . ,x(n) i.i.d.∼ XBernK(µ1, . . . , µK) as inputs
to Algorithms 5 to 7. Then, their outputs µ

1
,µ1 satisfy limn→∞ P(µ1 ≤ µ

1
) ≥ 1 − β and

limn→∞ P(µ1 ≥ µ1) ≥ 1− β and limn→∞ P(µ
1
≤ µ1 ≤ µ1) ≤ 1− Cβ if
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(a) K ≥ 1 and C = 2 for Algorithm 5,

(b) K ≥ 2 and C = 3/2 for Algorithm 6, and

(c) K ≥ 4 and C = 5/4 for Algorithm 7.

We omit the proof as it is identical to those of Propositions 8 to 10 except that it uses the Wilson
interval from Lemma 11 rather than the Bernstein interval.

C.3 Scaling of Higher-Order Bernstein Bounds (Proposition 4)

We now re-state and prove Proposition 4.
Proposition 4. For any positive integer ` that is a power of two and K = dn(`−1)/`e, suppose we
have n samples from a K-dimensional XBern distribution with parameters (µ1, . . . , µK). If all
`′th-order correlations scale as 1/K, i.e., |µ2`′ − µ2

`′ | = O(1/K), for all `′ ≤ ` and `′ is a power of
two, then the `th-order Bernstein bound is |µ1 − µ̂1| = O(1/n(2`−1)/(2`)).

Proof. We are given n samples from an XBern distribution x ∈ {0, 1}K with parameters
(µ1, . . . , µK), where µ` := E[m`] with

m` :=
1

K(K − 1) · · · (K − `+ 1)

∑

j1<j2<...<j`∈[K]

xj1 · · ·xj` .

By exchangeability, it also holds that µ` = E[x1 · · ·x`]. Assuming a confidence level 1− β < 1 and
K = dn(`−1)/`e, the 1st-order Bernstein bound gives

|µ1 − µ̂1| = O

(√
σ2

1

n

)
, (20)

where σ2
` := Var(m`). Expanding σ2

` , it is easy to show that it is dominated by the 2`th-order
correlation |µ2` − µ2

` |:

σ2
` = O

(
1

K
+ |µ2` − µ2

` |
)

= O

(
1

K
+ |µ̂2` − µ̂2

` |+
√
σ2

2`

n

)
.

Note that our Bernstein confidence interval does not use the fact that the higher-order correlations
are small. We only use that assumption to bound the resulting size of the confidence interval in the
analysis. Applying the assumption that all the higher order correlations are bounded by 1/K, i.e.,
|µ2`′ − µ2

`′ | = O(1/K), we get that |µ̂2`′ − µ̂2
`′ | = O(1/K +

√
σ2

2`′/n). Applying this recursively
into (20), we get that

|µ1 − µ̂1| = O

(√
1

nK
+

σ
1/`
`

n(2`−1)/(2`)

)
,

for any ` that is a power of two. For an `th-order Bernstein bound, we only use moment estimates
up to ` and bound σ2

` ≤ 1. The choice of K = n(`−1)/` gives the desired bound: |µ1 − µ̂1| =

O(1/n(2`−1)/(2`)).

D Canary Design for Lifted DP: Details

The canary design employed in the auditing of the usual (ε, δ)-DP can be easily extended to create
distributions over canaries to audit LiDP. We give some examples for common classes of canaries.

Setup. We assume a supervised learning setting with a training dataset Dtrain = {(xi, yi)}Ni=1 and a
held-out dataset Dval = {(xi, yi)}N+N ′

i=N+1 of pairs of input xi ∈ X and output yi ∈ Y . We then aim
to minimize the average loss

F (θ) =
1

N

N∑

i=1

L((xi, yi), θ) , (21)
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where L(z, θ) is the loss incurred by model θ on input-output pair z = (x, y).

In the presence of canaries c1, . . . , ck, we instead aim to minimize the objective

Fcanary(θ; c1, . . . , ck) =
1

N




N∑

i=1

L((xi, yi), θ) +

k∑

j=1

Lcanary(cj , θ)


 , (22)

where Lcanary(c, θ) is the loss function for a canary c — this may or may not coincide with the usual
loss L.

Goals of Auditing DP. The usual practice is to set D0 = Dtrain and D1 = D0 ∪ {c} and R ≡ Rc for
a canary c. Recall from the definition of (ε, δ)-DP in (1), we have

ε ≥ sup
c∈C

log

(
P(A(D1) ∈ Rc)− δ
P(A(D0) ∈ Rc)

)
,

for some class C of canaries. The goal then is to find canaries c that approximate the sup over C.
Since this goal is hard, one usually resorts to finding canaries whose effect can be “easy to detect” in
some sense.

Goals of Auditing LiDP. Let Pcanary denote a probability distribution over a set C of allowed canaries.

We sample K canaries c1, . . . , cK
i.i.d.∼ Pcanary and set

D0 = Dtrain ∪ {c1, . . . , cK−1}, D1 = Dtrain ∪ {c1, . . . , cK}, R = RcK .

From the definition of (ε, δ)-LiDP in (3), we have

ε ≥ sup
Pcanary

log

(
P(A(D1) ∈ R)− δ
P(A(D0) ∈ R)

)
,

for some class C of canaries. The goal then is to approximate the distribution Pcanary for each choice
of the canary set C. Since this is hard, we will attempt to define a distribution over canaries that
are easy to detect (similar to the case of auditing DP). Following the discussion in §3.3, auditing
LiDP benefits the most when the canaries are uncorrelated. To this end, we will also impose the
restriction that a canary c ∼ Pcanary, if included in the training of a model θ, is unlikely to change the
membership of θ ∈ Rc′ for an i.i.d. canary c′ ∼ Pcanary that is independent of c.

We consider two choices of the canary set C (as well as the outcome set Rc and the loss Lcanary): data
poisoning, and random gradients.

D.1 Data Poisoning

We describe the data poisoning approach known as ClipBKD [32] that is based on using the tail
singular vectors of the input data matrix and its extension to auditing LiDP.

Let X = (x>1 ; · · · ;x>N ) ∈ RN×d denote the matrix with the datapoints xi ∈ Rd as rows. Let
X =

∑min{N,d}
i=1 σiuiv

>
i be the singular value decomposition of X with σ1 ≤ σ2 ≤ · · · be the

singular values arranged in ascending order. Let Y denote the set of allowed labels.

For this section, we take the set of allowed canaries C = {αv1, αv2, . . . , αvmin{N,d}} × Y as the set
of the right singular vector of X scaled by a given factor α > 0 together with any possible target
from Y . We take Lcanary(c, θ) = L(c, θ) to be the usual loss function, and the output set Rc to be the
loss-thresholded set

Rc := {θ ∈ R : L(c, θ) ≤ τ} , (23)

for some threshold τ .

Auditing DP. The ClipBKD approach [32] uses a canary with input αv1, the singular vector corre-
sponding to the smallest singular value, scaled by a parameter α > 0. The label is taken as y?(αv1),
where

y?(x) = arg max
y∈Y

L((x, y), θ?0)

is the target that has the highest loss on input x under the empirical risk minimizer θ?0 =
arg minθ∈R F (θ). Since a unique θ?0 is not guaranteed for deep nets nor can we find it exactly,
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Figure 7: Comparing the Binomial proportion confidence intervals. We sample m ∼ Binomial(n, p) for
p = 0.1 and n varying and find the 95% confidence interval [p

n
,pn]. We plot the widths p− p

n
and pn − p

versus n. We find that all confidence intervals are nearly equivalent once n is larger than ≈ 1/min{p, 1− p}2.

we train 100 models with different random seeds and pick the class y that yields the highest average
loss over these runs.

Auditing LiDP. We extend ClipBKD to define a probability distribution over a given number p of
canaries. We take

Pcanary = Uniform
(
{c1, . . . , cp}

)
with cj =

(
αvj , y

?(αvj)
)
, (24)

i.e., Pcanary is the uniform distribution over the p singular vectors corresponding to the smallest
singular values.

D.2 Random Gradients

The update poisoning approach of [2] relies of supplying gradients c ∼ Uniform(BR(0, r)) that are
uniform on the Euclidean ball of a given radius r. This is achieved by setting the loss of the canary as

Lcanary(c, θ) = 〈c, θ〉, so that ∇θLcanary(c, θ) = c ,

is the desired vector c.

The set Rc is a threshold of the dot product

Rc = {θ ∈ R : 〈c, θ〉 ≤ τ} (25)

for a given threshold τ . This set is analogous to the loss-based thresholding of (23) in that both can
be written as Lcanary(c, θ) ≤ τ .

Auditing DP and LiDP. The random gradient approach of [2] relies on defining a distribution
Pcanary ≡ Uniform(BR(0, r)) over canaries. It can be used directly to audit LiDP.

E Simulations with the Gaussian Mechanism: Details and More Results

Here, we give the full details and additional results of auditing the Gaussian mechanism with synthetic
data in §4.

E.1 Experiment Setup

Fix a dimension d and a failure probability β ∈ (0, 1). Suppose we have a randomized algorithm A
that returns a noisy sum of its inputs with the goal of simulating the Gaussian mechanism. Concretely,
the input space Z = {z ∈ Rd : ‖z‖2 ≤ 1} is the unit ball in Rd. Given a finite set D ∈ Z∗, we
sample a vector ξ ∼ N (0, σ2Id) of a given variance σ2 and return

A(D) = ξ +
∑

z∈D
z .
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Figure 8: Effect of the number n of trials on the empirical lower bound ε̂ from auditing the Gaussian
mechanism for DP and LiDP. The shaded are denotes the standard error over 25 random seeds.

To isolate the effect of the canaries, we set our original dataset D = {0d} as a singleton with the
vector of zeros in Rd. Since we are in the blackbox setting, we do not assume that this is known to
the auditor.

DP Upper Bound. The non-private version of our function computes the sum D 7→∑
z∈D z. where

each z ∈ D is a canary. Hence, the `2 sensitivity of the operation is ∆2 = maxx∈D ‖x‖2 = 1, as
stated in §4.

Since we add ξ ∼ N (0, σ2Id), it follows that the operation A(·) is
(
α, α/(2σ2)

)
-RDP for every

α > 1. Thus, A(·) is (εδ, δ)-DP where

εδ≤ inf
α>1

{
α

2σ2
+

1

α− 1
log

1

αδ
+ log

(
1− 1

α

)}
,

based on [4, Thm. 21]. This can be shown to be bounded above by 1
σ

√
2 log 1

δ + 1
2σ2 [44, Prop. 3].

By Theorem 3, it follows that the operation A(·) is also (εδ, δ)-LiDP.

Auditing LiDP. We follow the recipe of Algorithm 1. We set the rejection regionR = Rτ (cK) as a
function of the canary cK that differs betweenD0 andD1, where

Rτ (cj) :=
{
u ∈ Rd : 〈u, cj〉 ≥ τ

}
, (26)

and τ ∈ R is a tuned threshold.
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Figure 9: Effect of the number k of canaries on the empirical lower bound ε̂ from auditing the
Gaussian mechanism for DP and LiDP. The shaded are denotes the standard error over 25 random
seeds.

We evaluate empirical privacy auditing methods by how large the lower bound ε̂ is — the higher the
lower bound, the better the confidence interval.

Methods Compared. An empirical privacy auditing method is defined by the type of privacy auditing
(DP or LiDP) and the type of confidence intervals. We compare the following auditing methods:

• DP + Wilson: We audit the usual (ε, δ)-DP with K = 1 canary. This corresponds exactly
to auditing LiDP with K = 1. We use the 1st-Order Wilson confidence intervals for a fair
comparison with the other LiDP auditing methods. This performs quite similarly to the
other intervals used in the literature, cf. Figure 7.

• LiDP + 1st-Order Wilson: We audit LiDP with K canaries with the 1st-Order Wilson
confidence interval. This method cannot leverage the shrinking of the confidence intervals
from higher-order estimates.

• LiDP + 2nd/4th-Order Wilson: We audit LiDP withK > 1 canaries using the higher-order
Wilson confidence intervals. Unless stated otherwise, we use m = K test canaries.

Parameters of the Experiment. We vary the following parameters in the experiment:

• Number of trials n ∈ {28, 210, · · · , 216}.
• Number of canaries k ∈ {1, 2, 22, . . . , 210}.
• Dimension d ∈ {102, 103, . . . , 106}.
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Figure 10: Effect of the data dimension d on the empirical lower bound ε̂ from auditing the Gaussian
mechanism for DP and LiDP. The shaded area denotes the standard error over 25 random seeds.

• DP upper bound ε ∈ {1, 2, 4, 8}.

We fix the DP parameter δ = 10−5 and the failure probability β = 0.05.

Tuning the threshold τ . For each confidence interval scheme, we repeat the estimation of the lower
bound ε̂(τ) for a grid of thresholds τ ∈ Γ on a holdout set of n trials. We fix the best threshold
τ∗ = arg maxτ∈Γ ε̂(τ) that gives the largest lower bound ε̂(τ) from the grid Γ. We then fix the
threshold τ∗ and report numbers over a fresh set of n trials.

Randomness and Repetitions. We repeat each experiment 25 times (after fixing the threshold) with
different random seeds and report the mean and standard error.

E.2 Additional Experimental Results

Effect of the Numberm of Test Canaries. In Figure 13, we vary the numberm of test canaries while
keeping the number K of training canaries fixed. We see that the 2nd and 4th-order Wilson estimators
lead to monotonically improving lower bound ε̂ as m increases. However, these improvements soon
flatten out between m = 8 and m = 32 depending on other parameters. In particular, the default
value of m = K is nearly or equal to the best value of m for K ≥ 16.

We give additional experimental results, expanding on the plots shown in Figures 3 and 4:

• Figure 8 shows the effect of varying the number of trials n, similar to Figure 3 (left).
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Figure 11: Effect of the number k of canaries on the moment estimates employed by the higher-order
Wilson intervals in auditing LiDP.

• Figure 9 shows the effect of varying the number of canaries k, similar to Figure 3 (middle).

• Figure 10 shows the effect of varying the data dimension d, similar to Figure 3 (right).

• Figure 11 shows the effect of varying the number of canaries k on the moment estimates,
similar to Figure 4 (right).

• Figure 12 shows the effect of varying the data dimension d on the moment estimates, similar
to Figure 4 (right).

We observe that the insights discussed in §4 hold across a wide range of the parameter values. In
addition, we make the following observations.

The benefit of higher-order confidence estimators. We see from Figures 8 to 10 that the higher-
order Wilson estimators lead to larger relative improvements at smaller ε. On the other hand, they
perform similarly at large ε (e.g., ε = 8) to the lower-order estimators.

4th-Order Wilson vs. 2nd-Order Wilson. We note that the 4th-order Wilson interval outperforms
the 2nd-order Wilson interval at ε = 1, while the opposite is true at large ε = 8. At intermediate
values of ε, both behave very similarly. We suggest the 2nd-order Wilson interval as a default because
it is nearly as good as or better than the 4th-order variant across the board, but is easier to implement.
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Figure 12: Effect of the data dimension on the moment estimates employed by the higher-order
Wilson intervals in auditing LiDP.
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Figure 13: Effect of varying the number m of test canaries with the number K of canaries inserted in the
training being fixed.

F Experiments: Details and More Results

We describe the detailed experimental setup here.

F.1 Training Details: Datasets, Models

We consider two datasets, FMNIST and Purchase-100. Both are multiclass classification datasets
trained with the cross-entropy loss using stochastic gradient descent (without momentum) for a fixed
epoch budget.
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• FMNIST: FMNIST or FashionMNIST [65] is a classification of 28× 28 grayscale images
of various articles of clothing into 10 classes. It contains 60K train images and 10K test
images. The dataset is available under the MIT license. We experiment with two models: a
linear model and a multi-layer perceptron (MLP) with 2 hidden layers of dimension 256
each. We train each model for 30 epochs with a batch size of 100 and a fixed learning rate
of 0.02 for the linear model and 0.01 for the MLP.

• Purchase-100: The Purchase dataset is based on Kaggle’s “acquire valued shoppers” chal-
lenge [19] that records the shopping history of 200K customers. The dataset is available
publicly on Kaggle but the owners have not created a license as far as we could tell. We
use the preprocessed version of [53]3 where the input is a 600-dimensional binary vector
encoding the shopping history. The classes are obtained by grouping the records into 100
clusters using k-means. We use a fixed subsample of 20K training points and 5K test points.
The model is a MLP with 2 hidden layers of 256 units each. It is trained for 100 epochs with
a batch size of 100 and a fixed learning rate of 0.05.

F.2 DP and Auditing Setup

We train each dataset-model pair with DP-SGD [1]. The noise level is calibrated so that the entire
training algorithm satisfies (ε, δ)-differential privacy with ε varying and δ = 10−5 fixed across all
experiments. We tune the per-example gradient clip norm for each dataset, model, and DP parameter
ε so as to maximize the validation accuracy.

Auditing Setup. We follow the LiDP auditing setup described in Appendix B.2. Recall that
auditing LiDP with K = 1 canaries and corresponds exactly with auditing DP. We train n ∈
{125, 250, 500, 1000} trials, where each trial corresponds to a model trained with K canaries in each
run. We try two methods for canary design (as well as their corresponding rejection regions), as
discussed in Appendix D: data poisoning and random gradients.

With data poisoning for FMNIST, we define the canary distribution Pcanary as the uniform distribution
over the last p = 284 principal components (i.e., principal components 500 to 784). For Purchase-
100, we use the uniform distribution over the last p = 300 principal components (i.e., principal
components 300 to 600).

For both settings, we audit only the final model, assuming that we do not have access to the interme-
diate models. This corresponds to the blackbox auditing setting for data poisoning and a graybox
setting for random gradient canaries.

F.3 Miscellaneous Details

Hardware. We run each job on an internal compute cluster using only CPUs (i.e., no hardware
accelerators such as GPUs were used). Each job was run with 8 CPU cores and 16G memory.

F.4 Additional Experimental Results

F.4.1 Comparison to Bayesian Auditing of DP

We compare the proposed LiDP auditing approach with the Bayesian approach of Zanella-Béguelin
et al. [69]. This approach constructs a posterior distribution over the true and false positive rates by
updating the non-informative Jeffreys priors using empirical observations. They use Bayesian credible
intervals (as opposed to confidence intervals in our case) computed using numerical quadrature.

We compare the proposed LiDP auditing with K = m > 1 with the Bayesian approach of [69] with
K = m = 1 in Figure 14 using the code open-sourced by the authors.4 Owing to the increased
runtime in the numerical estimation of the ε of the Bayesian approach, we tune its threshold τ to
separate the null and alternate hypotheses (cf. line 5 of Algorithm 1) for the Clopper-Pearson interval.

We observe that the LiDP auditing approach generally provides improved estimates when compared
to this baseline. Note that the reason behind the improvement for the Bayesian approach of [69] is by
capture the joint distribution of the true and false positive rates, while the improvement behind LiDP

3https://github.com/privacytrustlab/datasets
4https://github.com/microsoft/responsible-ai-toolbox-privacy
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Figure 14: Comparing the proposed LiDP auditing approach to the Bayesian credible interval approach of
Zanella-Béguelin et al. [69].

20 21 22 23 24 25 26

Number of canaries K

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

E
m

pi
ri

ca
l

lo
w

er
b

ou
nd

ε̂

FMNIST-Linear ε = 1 / Data Canary

20 21 22 23 24 25 26

Number of canaries K

0.00

0.05

0.10

0.15

0.20

0.25

E
m

pi
ri

ca
l

lo
w

er
b

ou
nd

ε̂

FMNIST-MLP ε = 4 / Data Canary

20 21 22 23 24 25 26

Number of canaries K

0.00

0.05

0.10

0.15

0.20

0.25

E
m

pi
ri

ca
l

lo
w

er
b

ou
nd

ε̂

Purchase-100-MLP ε = 2 / Data Canary

21 23 25 27

Number of canaries K

0.4

0.6

0.8

1.0

1.2

E
m

pi
ri

ca
l

lo
w

er
b

ou
nd

ε̂

Purchase-100-MLP / ε = 16 / Grad. Canary

DP + Wilson DP + Bernstein LiDP + 2nd-Order Wilson LiDP + 2nd-Order Bernstein

Figure 15: Comparison of higher-order Bernstein and Wilson confidence intervals for LiDP auditing.

auditing is by a clever use of randomized tests. Both sources of improvements are orthogonal to each
other. This suggests an interesting future research direction: adapt Bayesian credible intervals for
LiDP auditing to get the best of both worlds.

F.4.2 Comparison of Asymptotic vs. Non-asymptotic Confidence Intervals

We compare the asymptotic Wilson intervals (used primarily in the experiments) to the non-asymptotic
Bernstein intervals (used primarily for the theory) in Figure 15. The results show that the Wilson
intervals give larger empirical lower bounds in general with all other parameters remaining the
same. This is as expected because the Wilson intervals are an asymptotic tightening of the Bernstein
intervals as shown in Figure 2.

F.4.3 Experiments Across Different Parameter Settings

We give the following plots to augment Table 1 and Figure 6:

• Figure 16: plot of the test accuracy upon adding K canaries to the training process.
• Figure 17: experimental results for FMNIST linear model.
• Figure 18: experimental results for FMNIST MLP model.
• Figure 19: experimental results for Purchase MLP model.
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Figure 16: Test accuracy versus the number of canaries K. We plot the mean over 1000 training runs (the
standard error in under 10−5). Adding multiple canaries to audit LiDP does not have any impact on the final test
accuracy of the model trained with DP.
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Figure 17: Experimental results for FMNIST linear model (top two: varying n, bottom two: varying K).
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Figure 18: Experimental results for FMNIST MLP model (top two: varying n, bottom two: varying K).
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Figure 19: Experimental results for Purchase-100 MLP model (top two: varying n, bottom two: varying K).
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