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Abstract

Artificial intelligence for scientific discovery has recently generated significant
interest within the machine learning and scientific communities, particularly in the
domains of chemistry, biology, and material discovery. For these scientific prob-
lems, molecules serve as the fundamental building blocks, and machine learning
has emerged as a highly effective and powerful tool for modeling their geometric
structures. Nevertheless, due to the rapidly evolving process of the field and the
knowledge gap between science (e.g., physics, chemistry, & biology) and machine
learning communities, a benchmarking study on geometrical representation for
such data has not been conducted. To address such an issue, in this paper, we
first provide a unified view of the current symmetry-informed geometric methods,
classifying them into three main categories: invariance, equivariance with spherical
frame basis, and equivariance with vector frame basis. Then we propose a platform,
coined Geom3D, which enables benchmarking the effectiveness of geometric strate-
gies. Geom3D contains 16 advanced symmetry-informed geometric representation
models and 14 geometric pretraining methods over 52 diverse tasks, including
small molecules, proteins, and crystalline materials. We hope that Geom3D can,
on the one hand, eliminate barriers for machine learning researchers interested
in exploring scientific problems; and, on the other hand, provide valuable guid-
ance for researchers in computational chemistry, structural biology, and materials
science, aiding in the informed selection of representation techniques for specific
applications. The source code is available on the GitHub repository.

1 Introduction
Artificial intelligence (AI) for molecule discovery has recently seen many developments, including
small molecular property prediction [13, 17, 23, 38, 66, 78, 101, 103, 104, 119, 130, 132, 135], small
molecule design and optimization [6, 54, 57, 85, 137], small molecule reaction and retrosynthesis [40,
111, 116], protein property prediction [27, 141], protein folding and inverse folding [48, 64, 92],
protein design [15, 41, 46, 88, 91], and crystalline material design [33, 125, 128]. One of the most
fundamental building blocks for these tasks is the geometric structure of molecules. Exploring
effective methods for robust representation learning to leverage such geometric information fully
remains an open challenge that interests both machine learning (ML) and science researchers.

To this end, symmetry-informed geometric representation [1] has emerged as a promising approach.
By leveraging physical principles (i.e., group theory for depicting symmetric particles) into spatial
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Figure 1: Pipeline for Geom3D, including dataset preprocessing, feature extraction, geometric preetraining
and representation, and target tasks. We additionally demonstrate the SE(3)-equivariant force prediction task.

representation, they facilitate a more robust representation of small molecules, proteins, and crystalline
materials. Nevertheless, pursuing geometric learning research is still challenging due to its evolving
nature and the knowledge gap between science (e.g., physics) and machine learning communities.
These factors contribute to a substantial barrier for machine learning researchers to investigate
scientific problems and hinder efforts to reproduce results consistently. To overcome this, we introduce
Geom3D, a benchmarking of the geometric representation with four advantages, as follows. 1

Figure 2: Three categories of geometric modules. (a)
Invariant models only consider type-0 features. Equivari-
ant models use either (b) spherical harmonics frames or
(c) vector frames by projecting the coordinate vectors.

(1) A unified and novel aspect in understand-
ing symmetry-informed geometric models.
The molecule geometry needs to satisfy certain
physical constraints regarding the 3D Euclidean
space. For instance, the molecules’ force needs
to be equivariant to translation and rotation (see
SE(3)-equivariance in Fig. 1). In this work,
we classify the geometric methods into three
categories: invariant model, SE(3)-equivariant
model with spherical frame basis and vector
frame basis. The invariant models only consider
features that are constant w.r.t. the SE(3) group,
while the two families of equivariant models can
be further unified using the frame basis to cap-
ture equivariant symmetry. An illustration of
three categories is in Fig. 2. Building equivari-
ant models on the frame basis provides a novel
and unified view of understanding geometric
models and paves the way for intriguing more
ML researchers to explore scientific problems.

(2) A unified platform for various scientific domains. There exist multiple platforms and tools for
molecule discovery, but they are (1) mainly focusing on molecule’s 2D graph representation [77, 102,
145]; (2) using 3D geometry with customized data structures or APIs [3, 105]; or (3) covering only a
few geometric models [76]. Thus, it is necessary to have a platform benchmarking the geometric
models, especially for researchers interested in solving scientific problems. In this work, we propose
Geom3D, a geometric modeling framework based on PyTorch Geometric (PyG) [31], one of the most
widely-used platforms for graph representation learning. Geom3D benchmarks 16 geometric models
on solving 52 scientific tasks, and these tasks include the three most fundamental molecule types:
small molecules, proteins, and crystalline materials. Each of them requires distinct domain-specific
preprocessing steps, e.g., crystalline materials molecules possess periodic structures and thus need
a particular periodic data augmentation. By leveraging such a unified framework, Geom3D serves
as a comprehensive benchmarking tool, facilitating effective and consistent analysis components to
interpret the existing geometric representation functions in a fair and convenient comparison setting.

(3) A framework for a wider range of ML tasks. The geometric models in Geom3D can serve as a
building block for exploring extensive ML tasks, including but not limited to studying the molecule dy-
namic simulation and scrutinizing the transfer learning effect on molecule geometry. For example, pre-

1In what follows, we may use “molecule” to refer to “small molecule” for brevity.
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(a) An example of small molecule structure. (b) An illustration of the potential energy surface.

(c) An example of protein sequence and structure. (d) An example of crystalline material.

Figure 3: Fig. 3(a) illustrates 2D topology and 3D conformation for molecule Glycine. Fig. 3(c) displays
the 3D structure of protein. Fig. 3(d) shows a simple cubic crystal of the element Po. Fig. 3(b) is a demo of PES.

training is an important strategy to quickly transfer knowledge to target tasks, and recent works explore
geometric pretraining on 3D conformations (including supervised and self-supervised) [59, 80, 136]
and multi-modality pretraining on 2D topology and 3D geometry [30, 79, 86]. Other transfer learning
venues include multi-task learning [82, 84] and out-of-distribution or domain adaptation [58, 133,
134], yet no geometry information has been utilized. All of these directions are promising for future ex-
ploration, and Geom3D serves as an auxiliary tool to accomplish them. For example, as will be shown
in Sec. 4, we leverage Geom3D to effectively evaluate 14 pretraining methods with benchmarks.

(4) A framework for exploring data preprocessing and optimization tricks. When comparing
different symmetry-informed geometric models, we find that in addition to the model architecture,
there are two important factors affecting the performance: the data preprocessing (e.g., energy
and force rescaling and shift) and optimization methods (e.g., learning rate, learning rate schedule,
number of epochs, random seeds). In this work, we explore the effect of four preprocessing tricks
and around 2-10 optimization hyperparameters for each model and task. In general, we observe that
each model may benefit differently in different tasks regarding the preprocessing and optimization
tricks. However, data normalization is found to help improve performance hugely in most cases. We
believe that Geom3D is an effective tool for exploring and understanding various engineering tricks.

2 Data Structures for Geometric Data

Small molecule 3D conformation. Molecules are sets of points in the 3D Euclidean space, and they
move in a dynamic motion, as known as the potential energy surface (PES). The region with the
lowest energy corresponds to the most stable state for molecules, and molecules at these positions are
called conformations, as illustrated in Fig. 3(b). For notation, we mark each 3D molecular graph as
g = (X,R), where X and R are for the atom types and positions, respectively.

Crystalline material with periodic structure. The crystalline materials or extended chemical
structures possess a characteristic known as periodicity: their atomic or molecular arrangement
repeats in a predictable and consistent pattern across all three spatial dimensions. This is the key
aspect that differentiates them from small molecules. In Fig. 3(d), we show an original unit cell
(marked in green) that can repeatedly compose the crystal structure along the lattice. To model
such a periodic structure, we adopt the data augmentation from CGCNN [129]: for each original
unit cell, we shift it along the lattice in three dimensions and connect edges within a cutoff value
(hyperparameter). For more details on the two augmentation variants, please check Appendix A.

Protein with backbone structure. Protein structures can be classified into four primary levels, and
the primary structure represents the linear arrangement of amino acids, and each amino acid is a
molecule consisting of atoms. Geometric methods mainly focus on the tertiary structure, i.e., the
3D geometry of each atom, encompassing the complete organization of a single protein. However,
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Figure 4: Pipelines for seven single-modal geometric pretraining methods. (a-c) conduct self-prediction. (d)
maximizes the MI between nodes and graphs. (e-g) are GeoSSL, maximizing the MI between views g1 and g2.

atom-level modeling for proteins is consuming due to the large volume of atoms and the GPU memory
limit. One solution is modeling each amino acid’s backbone structure. The backbone structure of
each amino acid is N − Cα − C, and the Cα is bonded to the side chain. 20 common types of side
chains corresponding to 20 amino acids, as illustrated in Fig. 3(c). Thus, modeling the backbone
structure can balance the computational efficiency and the key geometric information.

3 Symmetry-Informed Geometric Representation

3.1 Group Symmetry and Equivariance

Symmetry means the object remains invariant after certain transformations [127], and it is everywhere
on Earth, such as in animals, plants, and molecules. Formally, the set of all symmetric transformations
satisfies the axioms of a group. Therefore, the group theory and its representation theory are common
tools to depict such physical symmetry. Group is a set G equipped with a group product × satisfying:

(1) ∃e ∈ G, a×e = e×a,∀a ∈ G; (2) a×a−1 = a−1 ×a = e; (3) a× (b× c) = a× b× c. (1)

Group representation is a mapping from the group G to the group of linear transformations of a
vector space X with dimension d (see [138] for more rigorous definition):

ρX(·) : G → Rd×d s.t. ρ(e) = 1 ∧ ρX(a)ρX(b) = ρX(a× b), ∀a, b ∈ G. (2)

During modeling, the X space can be the input 3D Euclidean space, the equivariant vector space in
the intermediate layers, or the output force space. This enables the definition of equivariance as below.

Equivariance is the property for the geometric modeling function f : X → Y as:

f(ρX(a)x) = ρY (a)f(x), ∀a ∈ G,x ∈ X. (3)

As displayed in Fig. 1, for molecule geometric modeling, the property should be rotation-equivariant
and translation-equivariant (i.e., SE(3)-equivariant). More concretely, ρX(a) and ρY (a) are the
SE(3) group representations on the input (e.g., atom coordinates) and output space (e.g., force space),
respectively. SE(3)-equivariant modeling in Eq. (3) is essentially saying that the designed deep
learning model f is modeling the whole transformation trajectory on the molecule conformations,
and the output is the transformed ŷ accordingly. Further, we want to highlight that, in addition to
the network architecture or representation function, the input features can also be represented as an
equivariant feature mapping from the 3D mesh to Rd̃ [11], where d̃ depends on input data, e.g., d̃ = 1
(for atom type dimension) + 3 (for atom coordinate dimension) on small molecules. Such features
are called steerable features in [5, 11] when only considering the subgroup SO(3)-equivariance.

Invariance is a special type of equivariance, defined as:

f(ρX(a)x) = f(x), ∀a ∈ G,x ∈ X, (4)

with ρY (a) as the identity ∀a ∈ G. The group representation helps define the equivariance condition
for f to follow. Then, the question boils down to how to design such an equivariant f . In the
following, we will discuss geometric modelings from a novel and unified perspective using the
frame. In the next sections, we will provide a novel and unified aspect of understanding the advanced
geometric representation and pretraining methods using the frame basis (details in Appendix H).
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3.2 Invariant Geometric Representation Learning

One simple way of achieving SE(3) group symmetry is invariant modeling. It means the geometric
model only considers the type-0 features [112], i.e., features that are invariant with respect to rotation
and translation. Existing works have been adopting the invariant features for modeling, including
pairwise distance (SchNet [109]), bond angles (DimeNet [68]), and torsion angles (SphereNet [89] and
GemNet [67]). Note that the torsion angles are angles between two planes defined by pairwise bonds.

3.3 Equivariant Geometric Representation Learning

Invariant modeling only captures the type-0 features. However, equivariant modeling of higher-order
particles may bring in extra expressiveness. For example, the elementary particles in high energy
physics [98] inherit higher order symmetries in the sense of SO(3) representation theory, which
makes the equivariant modeling necessary. Such higher-order particles include type-1 features like
coordinates and forces in molecular conformation. There are many approaches to design such
SE(3)-equivariant model satisfying Eq. (3). There are two main venues, as will be discussed below.

Spherical Frame Basis. This research line utilizes the irreducible representations [37] for building
SO(3)-equivariant representations, and the first work is TFN [112]. Its main idea is to project the 3D
Euclidean coordinates into the spherical harmonics space, which transforms equivariantly according
to the irreducible representations of SO(3), and the translation-equivariant can be trivially guaranteed
using the relative coordinates. Following this, there have been variants combining it with the attention
module (Equiformer [73]) or with more expressive network architectures (SEGNN [4], Allegro [95]).

Vector Frame Basis. An alternative philosophy of equivariant modeling utilizes the vector (in
physics) frame basis. It constructs three vectors bases, serving as a reference frame to help locate
the vectors in each corresponding local environment. Works along this line for molecule discovery
include DeePMD [140] for dynamics simulation, 3D-EMGP [59] and MoleculeSDE [79] for geomet-
ric pretraining, and ClofNet [20] for conformation generation. For macromolecules like protein, the
equivariant vector frame has been used for protein design (StructTrans [53]) and protein folding (Al-
phaFold2 [64]). We also want to highlight that, from a mathematical perspective, equivariance and in-
variance can be transformed to each other by the scalarization technique. Please check [49] for details.

The spherical frame basis can be easily extended to higher-order particles, yet it may suffer from the
high computational cost. On the other hand, the vector frame basis is specifically designed for the 3D
point clouds; thus, it is more efficient but cannot generalize to higher-order particles. Meanwhile, we
would like to acknowledge other equivariant modeling paradigms, including using orbital features [99]
and elevating 3D Euclidean space to SE(3) group [32, 52]. Please check Appendix F for details.

3.4 Geometric Pretraining

Recent studies have started to explore single-modal of geometric pretraining on molecules. The
GeoSSL paper [80] covers a wide range of geometric pretraining algorithms. The type prediction,
distance prediction, and angle prediction predict the masked atom type, pairwise distance, and bond
angle, respectively. The 3D InfoGraph predicts whether the node- and graph-level 3D representation
are for the same molecule. GeoSSL is a novel geometric pretraining paradigm that maximizes the
mutual information (MI) between the original conformation g1 and augmented conformation g2,
where g2 is obtained by adding small perturbations to g1. RR, InfoNCE, and EBM-NCE optimize the
objective in the latent representation space, either generative or contrastive. GeoSSL-DDM [80, 136]
optimizes the same objective function using denoising score matching. 3D-EMGP [60] has the same
strategy and utilizes an equivariant module to denoise the 3D noise directly. Another research line
is the multi-modal of topological and geometric pretraining. GraphMVP [86] first proposes one
contrastive objective (EBM-NCE) and one generative objective (VRR) to optimize the MI between the
2D topologies and 3D geometries in the representation space. 3D InfoMax [114] is a special case of
GraphMVP, with the contrastive part only. MoleculeSDE [79] extends GraphMVP by introducing two
SDE models for solving the 2D and 3D reconstruction. We illustrate these algorithms in Figs. 4 and 8.

3.5 Discussion: Reflection-antisymmetric in Geometric Learning

Till now, we have discussed the SE(3)-equivariance, i.e., the translation and rotation equivariance. As
highlighted in the recent work [61, 79], the molecules needlessly satisfy the reflection-equivariant,
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Table 1: Results of 26 models on 12 quantum mechanics prediction tasks in QM9, with 110K for training, 10K
for validation, and 11K for testing. The task unit is specified, and the evaluation is the mean absolute error (MAE).

Featurization Model α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
α3
0 meV meV meV D cal

mol·K meV meV α2
0 meV meV meV

1D FPs
MLP 2.231 196.72 131.27 164.94 0.526 0.919 2158.64 2358.23 68.621 2340.61 2314.77 155.921
RF 3.801 207.02 165.72 183.04 0.534 1.485 3391.79 3729.94 94.512 3705.75 3678.25 253.132
XGB 2.748 199.71 139.88 165.43 0.516 1.062 2563.93 2804.27 82.959 2786.28 2769.29 180.989

1D SMILES CNN 0.364 165.22 124.65 114.81 0.566 0.173 156.66 170.59 20.403 166.18 169.89 10.070
BERT 0.313 117.50 84.93 98.88 0.446 0.176 170.01 183.43 18.002 183.84 188.60 13.410

1D SELFIES CNN 0.345 157.04 115.51 113.00 0.499 0.168 136.42 146.56 20.080 143.00 140.01 10.149
BERT 0.348 123.11 91.15 90.80 0.461 0.203 168.20 187.50 19.125 204.93 195.98 17.328

2D Graph

GCN 1.338 145.82 96.21 106.66 0.434 0.526 1198.12 1291.57 37.585 1281.03 1303.39 85.103
ENN-S2S 1.401 270.59 129.18 132.84 0.577 0.760 1487.21 955.24 34.609 1800.79 1521.32 51.226
GraphSAGE 1.601 131.45 88.78 93.21 0.402 0.544 1473.42 1617.73 38.112 1553.01 1565.65 95.344
GAT 1.132 135.90 94.70 98.52 0.406 0.291 911.82 991.31 26.583 1161.29 592.67 55.061
GIN 1.165 175.82 90.66 110.74 0.539 0.691 848.24 1090.36 35.110 1498.23 1364.18 108.331
D-MPNN 0.568 118.42 85.01 86.20 0.441 0.241 423.14 458.39 24.816 470.01 445.91 29.291
PNA 0.681 148.88 88.72 97.31 0.361 0.409 664.98 692.74 23.855 616.70 694.92 57.217
Graphormer 2.836 79.27 54.24 52.42 0.330 0.080 2066.28 2546.01 131.158 2229.88 2525.51 144.595
AWARE 0.297 144.91 133.89 98.86 0.602 0.129 86.62 94.47 22.180 93.59 95.73 5.275
GraphGPS 0.209 75.98 54.75 54.53 0.288 0.089 528.50 693.19 12.488 296.00 411.16 49.888

3D Graph

SchNet 0.060 44.13 27.64 22.55 0.028 0.031 14.19 14.05 0.133 13.93 13.27 1.749
DimeNet++ 0.044 36.22 20.01 16.66 0.028 0.022 7.45 6.14 0.323 6.33 7.18 1.118
SE(3)-Trans 0.137 56.52 34.65 34.41 0.050 0.063 65.28 70.70 1.747 68.92 68.88 5.428
EGNN 0.062 49.56 30.08 24.98 0.029 0.030 10.01 9.14 0.089 9.28 9.08 1.519
PaiNN 0.049 42.73 24.46 20.16 0.016 0.025 8.43 7.88 0.169 8.18 7.63 1.419
GemNet-T 0.041 35.46 17.85 15.86 0.021 0.023 7.61 7.08 0.271 6.42 5.88 1.232
SphereNet 0.047 38.93 21.45 18.25 0.027 0.025 8.16 13.68 0.288 6.77 7.43 1.295
SEGNN 0.048 33.61 17.66 17.01 0.021 0.026 11.60 12.45 0.404 11.29 12.20 1.590
Allegro 0.097 102.44 61.86 63.17 0.176 0.032 42.08 44.96 1.977 44.64 44.43 2.949
NequIP 0.066 61.94 42.00 31.64 0.036 0.028 22.08 23.36 0.415 23.23 23.02 1.899
Equiformer 0.051 33.46 17.93 16.85 0.015 0.023 14.49 14.60 0.433 14.88 13.78 2.342

but instead, they should be reflection-antisymmetric [79]. One classic example is that the energy
of small molecules is reflection-antisymmetric in a binding system. Each of the two equivariant
categories discussed in Sec. 3.3 can solve this problem easily. The spherical frame basis can achieve
this by adding the reflection into the Wigner-D matrix [4], and the vector frame basis can accomplish
this using the cross-product during frame construction [79].

4 Geometric Datasets and Benchmarks

In Sec. 3, we introduce a novel aspect for understanding symmetry-informed geometric models. In
this section, we discuss utilizing Geom3D framework for benchmarking 16 geometric models over 52
tasks. For the detailed dataset acquisitions and task specifications (e.g., dataset size, splitting, and task
unit), please check Appendix B. Geom3D also covers 7 1D models and 10 2D graph neural networks
(GNNs) and benchmarks the 14 pretraining algorithms to learn a robust geometric representation.
Additionally, we want to highlight Geom3D enables exploration of important data preprocessing and
optimization tricks for performance improvement, as will be introduced next.

4.1 Small Molecules: QM9

QM9 [100] is a dataset consisting of 134K molecules, each with up to 9 heavy atoms. It includes 12
tasks that are related to the quantum properties. For example, U0 and U298 are the internal energies at
temperatures of 0K and 298.15K, respectively. On the QM9 dataset, we can easily get the 1D descrip-
tors (Fingerprints/FPs [106], SMILES [126], SELFIES [70]), 2D topology, and 3D conformation.
This enables us to build models on each of them respectively: (1) We benchmark 7 models on 1D de-
scriptors, including multi-layer perception (MLP), random forest (RF), XGBoost (SGB), convolution
neural networks (CNN), and BERT [18]. (2) We benchmark 10 2D GNN models on the molecu-
lar topology, including GCN [23, 66], ENN-S2S [38], GraphSAGE [43], GAT [119], GIN [130],
D-MPNN [132], PNA [13], Graphormer [135], AWARE [17], GraphGPS [101]. (3) We benchmark
11 3D geometric models on the molecular conformation, including SchNet [109], DimeNet++ [68],
SE(3)-Trans [35], EGNN [108], PaiNN [110], GemNet-T [67], SphereNet [89], SEGNN [4], Alle-
gro [95], NequIP [3], Equiformer [73]. The evaluation metric is the mean absolute error.

The results of these 28 models are in Table 1, and two important insights are observed: (1) There is
no one universally best geometric model, yet DimeNet++, PaiNN, GemNet, and Equiformer perform
well in most tasks. However, PaiNN takes less than 20 GPU hours, and the other three models take up
to 5 GPU days per task. (2) The geometric conformation is important for quantum property prediction.
The performance of 3D models is better than all the 1D and 2D models by orders of magnitudes.
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Table 2: Results on 6 energy ( kcal
mol

) and force ( kcal
mol·Å ) prediction tasks in MD17 and rMD17 (w/o normalization),

and the metric is the mean absolute error (MAE). The data split and complete results are in Appendices B and I.
Model Energy

/Force
MD17 rMD17

Aspirin ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Aspirin ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓

SchNet Energy 0.475 0.109 0.300 0.167 0.212 0.149 0.534 1.757 0.260 0.124 2.618 0.119
Force 1.203 0.386 0.794 0.587 0.826 0.568 1.243 0.449 0.862 0.587 0.878 0.574

DimeNet++ Energy 4.168 1.238 1.385 1.846 2.445 1.484 2.438 1.456 2.317 1.648 1.555 1.210
Force 7.212 0.753 1.842 8.515 1.752 1.037 2.009 1.213 7.029 0.629 0.934 0.921

EGNN Energy 17.892 0.436 0.896 12.177 6.964 4.051 17.35 0.402 0.534 12.164 7.794 15.021
Force 3.042 0.924 1.566 1.136 1.177 1.202 3.825 0.989 1.334 1.183 1.571 1.165

PaiNN Energy 27.626 0.063 0.102 0.622 0.371 0.165 30.156 1.17 0.070 5.297 5.219 0.045
Force 0.572 0.230 0.338 0.132 0.288 0.141 0.573 0.316 0.377 0.161 0.321 0.231

GemNet-T Energy 0.684 4.598 4.966 0.482 0.128 0.098 5.389 1.615 9.496 0.031 21.411 959.745
Force 0.558 0.219 0.433 0.212 0.326 0.174 0.555 0.233 0.337 0.154 0.371 0.400

SphereNet Energy 0.244 1.603 1.559 0.167 0.188 0.113 0.304 0.072 0.138 0.093 0.771 20.479
Force 0.546 0.168 0.667 0.315 0.479 0.194 0.622 0.217 0.500 0.279 2.088 0.254

SEGNN Energy 17.774 0.151 0.247 0.655 2.173 0.624 15.721 0.13 0.182 1.11 1.494 0.814
Force 9.003 0.893 1.249 0.895 2.220 1.138 8.549 0.846 1.185 0.926 2.056 1.241

NequIP Energy 8.333 0.971 2.293 1.032 2.952 1.303 9.618 0.936 2.313 2.089 3.302 1.306
Force 23.769 5.832 12.099 5.247 14.048 6.8 22.904 6.027 12.372 5.529 15.693 7.094

Allegro Energy 1.138 0.258 1.33 0.824 1.114 0.441 1.366 1.002 0.417 1.756 1.035 0.437
Force 3.405 1.412 4.191 3.743 4.934 1.968 3.186 2.799 2.125 3.815 4.781 2.048

Equiformer Energy 0.308 0.096 0.183 0.097 0.189 0.209 0.375 0.064 0.085 0.069 0.143 0.104
Force 0.286 0.142 0.230 0.068 0.200 0.080 0.305 0.162 0.240 0.070 0.218 0.077

SchNet EGNN PaiNN GemNet-T SphereNet SEGNN Allegro Equiformer

Task  Aspirin Task  Ethanol Task  Malonaldehyde Task  Naphthalene Task  Salicylic Task  Toluene

M
D

17
rM

D
17

Figure 5: Ablation study on the effect of data normalization. Here are visualizations on performance differences
on 6 tasks and 2 datasets, with MAE(force pred w/o normalization) - MAE(force pred w/ normalization).

4.2 Small Molecules: MD17 and rMD17

MD17 [8] is a dataset of molecular dynamics simulation. It has 8 tasks corresponding to eight organic
molecules, and each task includes the molecule positions along the PES (see Fig. 3(b)). The goal is
to predict each atom’s energy and interatomic forces for each molecule’s position. We follow the
literature [68, 89, 109, 110] of using 8 subtasks, 1K for training and 1K for validation, while the test
set (from 48K to 991K) is much larger. However, the MD17 dataset contains non-negligible numerical
noises [9], and it is corrected by the revised MD17 (rMD17) dataset [10]. 100K structures were
randomly chosen for each task/molecule in MD17, and the single-point force and energy calculations
were performed for each structure using the PBE/def2-SVP level of theory. The calculations were
conducted with tight SCF convergence and a dense DFT integration grid, significantly minimizing
the computational noises.

The results on MD17 and rMD17 are in Table 2. We select 12 tasks for illustration, and more
comprehensive results can be found in Appendix I. We can observe that, in general, PaiNN, GemNet
and Equiformer perform well on MD17 and rMD17 tasks. We also report ablation study on
data normalization. NequIP [3] and Allegro [95] introduce a normalization trick: multiplying the
predicted energy with the mean of ground-truth force (reproduced results in Appendix J). We plot the
performance gap, MAE(w/o normalization) - MAE(w/ normalization), in Fig. 5, and observe most of
the gaps are positive, meaning that adding data normalization can lead to generally better performance.

4.3 Small Molecules: COLL

Table 3: Results on energy and force prediction in
COLL. 120k for training, 10k for val, 9.48k for test.
The metric is the mean absolute error (MAE).

Model Energy (eV ) ↓ Force (eV/Å) ↓

SchNet 0.178 0.130
DimeNet++ 0.036 0.049
EGNN 1.808 0.234
PaiNN 0.030 0.052
GemNet-T 0.017 0.028
SphereNet 0.032 0.047
SEGNN 7.085 0.642
NequIP 0.120 0.113
Allegro 0.161 0.130
Equiformer 0.036 0.030

The COLL dataset [36] comprises energy and force
data for 140K random snapshots obtained from
molecular dynamics simulations of molecular colli-
sions. These simulations were conducted using the
semiempirical GFN2-xTB method. To obtain the
data, DFT calculations were performed utilizing the
revPBE functional and def2-TZVP basis set, which
also incorporated D3 dispersion corrections. The
task is to predict the energy and force for each atom
in the molecule, and we consider 10 advanced ge-
ometric models for benchmarking. The results are
in Table 3, and GemNet, SphereNet, and Equiformer
reach more optimal performance.
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Table 4: Results on 2 binding affinity prediction tasks. We select three evaluation metrics for LBA: the
root mean squared error (RMSD), the Pearson correlation (Rp) and the Spearman correlation (RS). LEP is a
binary classification task, and we use the area under the curve for receiver operating characteristics (ROC) and
precision-recall (PR) for evaluation. We run cross-validation with 5 seeds, and the mean and std are reported.

Model LBA LEP

RMSD ↓ RP ↑ RC ↑ ROC ↑ PR ↑
SchNet 1.521 ± 0.02 0.474 ± 0.01 0.452 ± 0.01 0.450 ± 0.03 0.379 ± 0.03
DimeNet++ 1.672 ± 0.09 0.550 ± 0.01 0.556 ± 0.01 0.590 ± 0.06 0.496 ± 0.05
EGNN 1.494 ± 0.04 0.503 ± 0.04 0.483 ± 0.05 0.657 ± 0.05 0.559 ± 0.05
PaiNN 1.434 ± 0.02 0.583 ± 0.02 0.580 ± 0.02 0.585 ± 0.02 0.432 ± 0.03
GemNet-T – – – 0.659 ± 0.05 0.506 ± 0.05
SphereNet 1.581 ± 0.02 0.538 ± 0.01 0.529 ± 0.01 0.523 ± 0.04 0.432 ± 0.05
SEGNN 1.416 ± 0.03 0.566 ± 0.02 0.550 ± 0.02 0.574 ± 0.03 0.485 ± 0.03
NequIP 1.606 ± 0.02 0.537 ± 0.01 0.520 ± 0.01 0.538 ± 0.12 0.481 ± 0.07
Allegro 1.567 ± 0.02 0.547 ± 0.00 0.534 ± 0.00 0.627 ± 0.04 0.525 ± 0.03
Equiformer 1.392 ± 0.03 0.598 ± 0.02 0.578 ± 0.02 0.618 ± 0.06 0.510 ± 0.05

Table 5: Results on 10 protein tasks from six datasets: ECSingle, ECMultiple, Fold (Fold, Sup., Fam.), GO
(MF, BP, CC), MSP, and PSR. The evaluation metrics are Accuracy (ACC, %), Fmax (definition in Appendix B),
ACC, Fmax, receiver operating characteristics (ROC), and Spearman’s ρ, respectively.

ECSingle ECMultiple Fold GO MSP PSR
Fold Sup. Fam. MF BP CC

ACC ↑ Fmax ↑ ACC ↑ ACC ↑ ACC ↑ Fmax ↑ Fmax ↑ Fmax ↑ ROC ↑ Global ρ ↑ Mean ρ ↑
IEConv – – 45.0 69.7 98.9 – – – – – –
GVP-GNN 65.5 0.712 34.8 52.7 95.0 0.476 0.312 0.389 0.574 0.744 0.302
GearNet 78.8 0.799 29.1 43.1 95.9 0.477 0.283 0.373 – – –
ProNet 86.4 0.823 52.7 70.3 99.3 0.559 0.367 0.414 0.634 0.818 0.462
CDConv 86.9 0.862 60.0 79.9 99.5 0.649 0.435 0.450 0.717 0.817 0.500

4.4 Small Molecules & Proteins Binding: LBA & LEP

The binding affinity measures the strength of the binding interaction between a small molecule
(ligand) to the target protein. In Geom3D, we consider modeling both the ligands and proteins with
their 3D structures. During binding, a cavity in a protein can potentially possess suitable properties
for binding a small molecule, and it is called a pocket [113]. Due to the large volume of protein,
Geom3D follows existing works [118] by only taking the binding pocket instead of the whole protein
structure. Specifically, Geom3D models up to 600 atoms for each ligand and protein pair. For the
benchmarking, we consider two binding affinity tasks. (1) The first task is ligand binding affinity
(LBA) [123]. It is gathered from [124], and the task is to predict the binding affinity strength between
a ligand and a protein pocket. (2) The second task is ligand efficacy prediction (LEP) [34]. The input
is a ligand and both the active and inactive conformers of a protein, and the goal is to classify whether
or not the ligand can activate the protein’s function. The results on two binding tasks are in Table 4,
and we can observe that PaiNN, SEGNN, and Equiformer are generally outstanding on the two tasks.

4.5 Proteins: ECSingle, ECMultiple, Fold, GO, MSP, and PSR

ECSingle is a classification task [45] that classifies 37K proteins into 384 four-level Enzyme Com-
mission (EC) types. This task aims to recognize the fundamental role of proteins as bio-catalysts
or enzymes, which are essential in facilitating biological reactions. The EC numbering system [63]
serves as a comprehensive numerical classification scheme, systematically organizing the varied
functionalities of enzymes and providing a structured approach to understanding their biological roles.

ECMultiple is a multi-label classification task proposed by Gligorijevic et al. [39], where 19K
proteins are associated with 538 distinct EC categories, including both three-level and four-level types
and a single protein can be concurrently labeled with several three-level or four-level EC numbers.

Fold is a task classifying 16K proteins into 1,195 fold patterns [47, 74]. It is an important biological
task in predicting the 3D structures from 1D amino acid sequences. We further consider three testsets
(Fold, Superfamily, and Family) based on the sequence and structure similarity [94].

GO (Gene Ontology) is a dataset [39] with 36K proteins for GO term classification, where the GO
term provides a consistent description of gene product attributes across species and databases [12].
Concretely, each protein contains up to three types of GO terms, corresponding to three types of clas-
sification tasks: (1) Molecular Function (MF) has 489 classes; (2) Biological Process (BP) has 1,943
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Table 6: Results on the 8 tasks from MatBench and 1 task from QMOF (with optimal DA). The data split and
task unit are in Appendix B, and the metric is the mean absolute error (MAE).

Model
MatBench QMOF

Per. Eform ↓ Dielectric ↓ log10G ↓ log10K ↓ Eexfo ↓ Phonons ↓ Band Gap ↓ Eform ↓ Band Gap ↓
18,928 4,764 10,987 10,987 636 1,265 106,113 132,752 20,425

SchNet 0.040 0.334 0.081 0.060 65.201 42.586 0.327 0.026 0.236
DimeNet++ 0.037 0.357 0.081 0.058 68.685 38.339 0.208 0.025 0.234
EGNN 0.038 0.331 0.087 0.064 78.015 74.846 0.211 0.026 0.256
PaiNN 0.038 0.317 0.080 0.053 67.752 44.602 0.022 0.190 0.207
GemNet-T 0.042 0.325 0.088 0.061 68.425 48.986 0.186 0.026 0.207
SphereNet 0.043 0.388 0.087 0.061 72.987 36.300 0.217 0.029 0.251
SEGNN 0.046 0.360 0.087 0.059 65.052 43.638 0.330 0.047 0.330
Equiformer 0.046 0.280 0.087 0.057 62.977 37.381 0.202 0.027 0.234

classes; and (3) Cellular Component (CC) has 320 classes. Notice that each protein can be associated
with multiple GO terms in each GO term type, thus all three tasks are multi-label classifications.

MSP & PSR are two protein tasks from a collection of benchmark datasets for machine learning in
structural biology [118]. MSP (Mutation Stability Prediction) aims to predict whether the stability
of a protein increases after mutation. The dataset is a mutation dataset containing 4K proteins. It is
constructed by incorporating single-point mutations given in the SKEMPI database [56]. PSR (Protein
Structure Ranking) is a regression task based on the Critical Assessment of Structure Prediction
(CASP) [71]. In CASP, a protein structure is predicted and a quality score, the global distance test
(GDT_TS), is calculated between the predicted structure and experimentally determined structure.
This task aims to predict this score for 44K proteins.

The results of 5 models are in Table 5. CDConv [29] outperforms other models by a large margin on
almost all 10 tasks, while ProNet [122] performs second well in general, and reaches the best result
on the PSR task with global ρ metric. Notice that certain entries in the table are temporarily left blank
due to memory constraints encountered. More detailed dataset specifications are in Appendix B.

4.6 Crystalline Materials: MatBench and QMOF

MatBench [21] is explicitly created to evaluate the performance of machine learning models in
predicting properties of inorganic bulk materials covering mechanical, electronic, and thermodynamic
material properties [21]. Here we consider 8 regression tasks with crystal structures, including
predicting the formation energy (Perovskites, Eform), exfoliation energies (Eexfo), band gap, shear
and bulk modulus (log10G and log10K), etc. Please check Appendix B for more details.

Quantum MOF (QMOF) [107] is a dataset of over 20K metal-organic frameworks (MOFs) and
coordination polymers derived from DFT. The task is to predict the band gap, the energy gap between
the valence band and the conduction band. The results of 8 geometric models on 8 MatBench tasks
and 1 QMOF task are in Table 6, and we can observe that the performance of all the models is very
close, while DimeNet++, PaiNN, GemNet-T, and Equiformer are slightly better.
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Figure 6: Ablation study on the performance gap with data augmentation
(DA): MAE(expanded DA) - MAE(gathered DA).

We also conduct ablation
study on periodic data aug-
mentation on crystal materi-
als. We note that there are
two data augmentation (DA)
methods: gathered and ex-
panded. Gathered DA means
that we shift the original unit
cell along three dimensions,
and the translated unit cells
will have the same node in-
dices as the original unit cell,
i.e., a multi-edge graph. How-
ever, expanded DA will assume the translated unit cells have different node indices from the original
unit cell. (A visual demonstration is in Appendix A). We conduct an ablation study on the effect
of these two DAs, and we plot MAE(expanded DA) - MAE(gathered DA) on six tasks in Fig. 6. It
reveals that for most of the models (except EGNN), using gathered DA can lead to consistently better
performance, and thus it is preferred. For more qualitative analysis, please check Appendix J.
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Table 7: QM9 downstream results after pretraining, and the backbone model is SchNet. We take 110K for
training, 10K for validation, and 11K for testing. The evaluation metric is the mean absolute error (MAE).

Pretraining α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
– (random init) 0.060 44.13 27.64 22.55 0.028 0.031 14.19 14.05 0.133 13.93 13.27 1.749

Supervised 0.062 40.31 25.57 21.69 0.030 0.030 14.36 14.68 0.308 15.21 16.13 1.638

Type Prediction 0.073 45.38 28.76 24.83 0.036 0.032 16.66 16.28 0.275 15.56 14.66 2.094
Distance Prediction 0.065 45.87 27.61 23.34 0.031 0.033 14.83 15.81 0.248 15.07 15.01 1.837
Angle Prediction 0.066 48.45 29.02 24.40 0.034 0.031 14.13 13.77 0.214 13.50 13.47 1.861
3D InfoGraph 0.062 45.96 29.29 24.60 0.028 0.030 13.93 13.97 0.133 13.55 13.47 1.644
GeoSSL-RR 0.060 43.71 27.71 22.84 0.028 0.031 14.54 13.70 0.122 13.81 13.75 1.694
GeoSSL-InfoNCE 0.061 44.38 27.67 22.85 0.027 0.030 13.38 13.36 0.116 13.05 13.00 1.643
GeoSSL-EBM-NCE 0.057 43.75 27.05 22.75 0.028 0.030 12.87 12.65 0.123 13.44 12.64 1.652
3D InfoMax 0.057 42.09 25.90 21.60 0.028 0.030 13.73 13.62 0.141 13.81 13.30 1.670
GraphMVP 0.056 41.99 25.75 21.58 0.027 0.029 13.43 13.31 0.136 13.03 13.07 1.609
GeoSSL-DDM-1L 0.058 42.64 26.32 21.87 0.028 0.030 12.61 12.81 0.173 12.45 12.12 1.696
GeoSSL-DDM 0.056 42.29 25.61 21.88 0.027 0.029 11.54 11.14 0.168 11.06 10.96 1.660
MoleculeSDE (VE) 0.056 41.84 25.79 21.63 0.027 0.029 11.47 10.71 0.233 11.04 10.95 1.474
MoleculeSDE (VP) 0.054 41.77 25.74 21.41 0.026 0.028 13.07 12.05 0.151 12.54 12.04 1.587

4.7 Geometric Pretraining on Small Molecules

We run 14 pretraining algorithms, including one supervised pretraining: the pretraining dataset
(e.g., PCQM4Mv2 [51]) possess the energy or energy gap label for each conformation, which can
be naturally adopted for pretraining. The benchmark results of using SchNet as the backbone
model pretrained on PCQM4Mv2 and fine-tuning on QM9 tasks are in Table 7. We observe that
MoleculeSDE and GeoSSL-DDM utilizing the geometric denoising diffusion models outperform other
pretraining methods in most cases. On the other hand, supervised pretraining (pretrained on energy
gap ∇E) reaches outstanding performance on ∇E downstream task, yet the generalization to other
tasks is modest. Please check Appendix I for more pretraining results with different backbone models.

5 Conclusion and Future Directions

Geom3D provides a unified view on the SE(3)-equivariant models, together with the implementations.
Indeed these can serve as the building blocks to various tasks, such as geometric pretraining (as
displayed in Sec. 4.7) and the conformation generation (ClofNet [20], MoleculeSDE [79]), paving
the way for building more foundational models and solving more challenging tasks.

Limitations on models and tasks. Geom3D includes 10 topological models, 16 geometric models,
14 geometric pretraining methods, and 52 diverse tasks. We would also like to acknowledge there exist
many more tasks (e.g., Atom3D [118], Molecule3D [131], OC20 [7]) and more geometric models
(e.g., OrbNet [99], MACE [2], Uni-Mol [144], and LieTransformer [52]). The continual updating may
necessitate the collective efforts of our entire community, exemplifying our collaborative endeavors.

Foundation model as future exploration. Recently, there have been certain explorations on building
the foundation models for molecule discovery, especially by incorporating textual data on the
molecule’s functionalities [25, 26, 83, 87, 88, 115, 139, 143]. However, existing works mainly focus
on the 1D sequence or 2D topology, while the 3D geometric structure of molecules is rarely considered.
We believe that Geom3D can offer essential support for future explorations along this direction.

Reproducibility and Tutorials

The codes of Geom3D have been released on this GitHub repository. Both the raw and preprocessed
datasets have been released on this HuggingFace link. The checkpoints of all models have been
released on this HuggingFace link. We further added four tutorials on using Geom3D on customized
data, energy prediction, force prediction, and geometric pretraining. These tutorials can sufficiently
demonstrate how users can inject new methods into Geom3D platform, showcasing its potential as a
fundamental building block for tackling a wide range of machine learning tasks.

10

https://github.com/chao1224/Geom3D
https://huggingface.co/datasets/chao1224/Geom3D_data
https://huggingface.co/chao1224/Geom3D_checkpoints
https://github.com/chao1224/Geom3D/blob/main/tutorials/tutorial_01_customized_your_own_data.ipynb
https://github.com/chao1224/Geom3D/blob/main/tutorials/tutorial_01_customized_your_own_data.ipynb
https://github.com/chao1224/Geom3D/blob/main/tutorials/tutorial_02_QM9_energy_prediction.ipynb
https://github.com/chao1224/Geom3D/blob/main/tutorials/tutorial_03_MD17_energy_force_prediction.ipynb
https://github.com/chao1224/Geom3D/blob/main/tutorials/tutorial_04_geometric_pretraining.ipynb


Acknowledgement

The authors would like to thank Zichao Rong, Chengpeng Wang, Jiarui Lu, Farzaneh Heidari, Zuobai
Zhang, Limei Wang, and Hanchen Wang for their helpful discussions. This project is supported
by the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant, the Canada
CIFAR AI Chair Program, collaboration grants between Microsoft Research and Mila, Samsung
Electronics Co., Ltd., Amazon Faculty Research Award, Tencent AI Lab Rhino-Bird Gift Fund, and
a National Research Council of Canada (NRC) Collaborative R&D Project. This project was also
partially funded by IVADO Fundamental Research Project grant PRF-2019-3583139727.

References
[1] Kenneth Atz, Francesca Grisoni, and Gisbert Schneider. Geometric deep learning on molecular represen-

tations. Nature Machine Intelligence, 3(12):1023–1032, 2021. 1

[2] Ilyes Batatia, Simon Batzner, Dávid Péter Kovács, Albert Musaelian, Gregor N. C. Simm, Ralf Drautz,
Christoph Ortner, Boris Kozinsky, and Gábor Csányi. The design space of e(3)-equivariant atom-centered
interatomic potentials, 2022. 10

[3] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for data-
efficient and accurate interatomic potentials. Nature communications, 13(1):1–11, 2022. 2, 6, 7, 34, 36,
45, 48, 51

[4] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik Bekkers, and Max Welling. Geometric and
physical quantities improve e(3) equivariant message passing. arXiv preprint arXiv:2110.02905, 2021. 5,
6, 34, 51

[5] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,
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