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Abstract

We propose a notion of common information that allows one to quantify and
separate the information that is shared between two random variables from the
information that is unique to each. Our notion of common information is defined
by an optimization problem over a family of functions and recovers the Gács-
Körner common information as a special case. Importantly, our notion can be
approximated empirically using samples from the underlying data distribution. We
then provide a method to partition and quantify the common and unique information
using a simple modification of a traditional variational auto-encoder. Empirically,
we demonstrate that our formulation allows us to learn semantically meaningful
common and unique factors of variation even on high-dimensional data such as
images and videos. Moreover, on datasets where ground-truth latent factors are
known, we show that we can accurately quantify the common information between
the random variables.2

1 Introduction

Data coming from different sensors often capture information related to common latent factors.
For example, many animals have two eyes that capture different but highly-correlated views of the
same objects in the scene. Similarly, sensors of different modalities, such as eyes and ears, capture
correlated information about the underlying scene, as do videos and other time series, where the
sensors are separated in time rather than in modality. Learning how information of one sensor maps to
information of another provides a self-supervised signal to disentangle the variability that is intrinsic
in a sensor from the latent causes (e.g., objects) that are shared between multiple sensors. Indeed,
there is evidence that infants spend a long time during development purposefully experiencing objects
through different senses at the same time [1].

Motivated by this, we propose to learn meaningful representations of multi-view data by quantifying
and exploiting such structure in a self-supervised fashion by using an information theoretic notion of
common information as the guiding signal to disentangle common shared information present in high
dimensional sensory data (Fig. 1).

However, defining a notion of common information is itself not trivial. The most natural and typical
way to quantify the “common part” between random variables would be by quantifying their mutual
information. But mutual information has no clear interpretation in terms of a decomposition of
random variables in unique and common components. In particular, [2] note that there is generally
no way to write two variables X and Y using a three part code (A,B,C) such that X = f(A,C),
Y = g(B,C) and where C encodes all and only the mutual information I(X;Y ). Discovering the
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Figure 1: High level schematic of approach. Red denotes shared latent factors (size, shape, floor,
background and object color) and black denotes unique latent (viewpoint). The aim is to extract
zc, which is a random variable that is a function of both inputs xi. We also allow for unique latent
variables zu to capture information that unique to each view. The latent representations are used to
reconstruct the inputs.

largest common factor C, which encodes what is known as the Gács-Körner common information,
from high dimensional data is then a distinct problem on its own [3, 4].

To the best of our knowledge, there are currently no approaches to compute or approximate the
Gács-Körner common information from high-dimensional samples [4]. In this work, we seek to learn
common representations that satisfy the constraint that they are (approximately) a function of each
input. A contribution in this paper is that we generalize the constraint that the representation needs to
be a deterministic function and allow it to be a stochastic map. As we later show, this is helpful for
quantifying and interpreting the latent representation, and allows us to parameterize the optimization
with deep neural networks.

We show that our objective can be optimized using a multi-view Variational Auto-Encoder (VAE).
Since in general each view can contain individual factors of variation that are not shared between the
views, we augment our model with a set of unique latent variables that can capture unexplained latent
factors of variation, and show that the common and unique component can be efficiently inferred
from data through standard training. While training the multi-view VAE, we simultaneously develop
a scalable approximation for the Gács-Körner common information, as we describe in Section 3.

To empirically evaluate the ability to separate the common and unique latent factors we introduce
two new datasets, which extend commonly used datasets for evaluating disentangled representations
learning: dSprites [5] and 3dShapes [6]. For each dataset, we generate a set of paired views (x1, x2)
such that they share a set of common factors. This allows us to quantitatively evaluate the ability to
separate the common and unique factors. We also compare our method to multi-view contrastive
learning [7] and show that thanks to our definition we avoid learning degenerate representations when
the views share little information.

We hypothesize that a key reason precluding the identification of latent generating factors from
observed data is that receiving a single sample of a scene is quite limiting. Indeed, classical
neuroscience experiments has shown that the ability to interact with an environment, as opposed
to passively observing sensory inputs, is critical for learning meaningful representations of the
environment [8].

2 Preliminaries and Related Work

The entropy H(x) of a random variable x is Ep(x)[log
1

p(x) ]. The mutual information I(x; z) =

H(z) − H(z|x). Another useful identity for mutual information that we use is I(x; z) =
Ep(x) [KL(p(z|x)||p(z))] where KL denotes the Kullback-Leibler divergence.

Gács-Körner Common Information. The Gács-Körner common information [2] is defined as

CGK(x1;x2) := max
z

H(z) s.t. z = f(x1) = g(x2), (1)

where f and g are deterministic functions. The Gács-Körner common information is thus defined
through a random variable z that is a deterministic function of both inputs x1 and x2. Among all
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such random variables, z is the random variable with maximum entropy. This has also been referred
to as the “zero error information” in applications to cryptography [3]. It is an attempt to formalize
and operationalize the idea of the common part between sources, which mutual information lacks. It
is also a lower bound to the mutual information [2, 3]. To the best of our knowledge, there are no
efficient techniques for computing the GK common information for high-dimensional x1, x2. We
elaborate on the difference between GK common information and mutual information in App. E.

Variational Autoencoders Variational Autoencdoers (VAEs) [9] are latent variable generative
models that are trained to maximize the likelihood of the data by maximizing the evidence lower
bound, or minimizing the loss:

LVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] +KL(qϕ(z|x) || p(z))]. (2)
The VAE loss can be motivated in an information theoretic manner as optimizing an Information
Bottleneck [10], where the reconstruction term encourages a sufficient representation and the KL
regularization term encourages a minimal representation [11, 12]. The addition of a parameter β to
modify how the KL regularization is penalized leads to the following loss (and corresponds to the
traditional VAE loss when β = 1):

Lβ-VAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + βKL(qϕ(z|x) || p(z))]. (3)
For larger values of β the representations become more disentangled, shown analytically in [13] and
empirically in [14], although reconstructions become worse.

Disentangled representations A guiding assumption for representation learning is that the observed
data x (i.e an image) can be generated from a (simpler) set of latent generating factors z. Assuming
the latent factors are independent, the idea of learning disentangled representations involves learning
these latent factors of variation in an unsupervised manner [15]. However, despite apparent empirical
progress in learning disentangled representations [14, 16, 17], there remains inherent issues in both
learning and defining disentangled representations [18]. In many cases, different independent latent
factors may lead to equivalent observed data, and without an inductive bias, disentanglement remains
ill-defined. For example, color can be decomposed into an RGB decomposition, or an equivalent
HSV decomposition.

In [18, Theorem 1] it is shown that without any inductive bias, one cannot uniquely identify the un-
derlying independent latent factors in a purely unsupervised manner from observed data. Empirically,
they also found that there was no clear correlation between training statistics and disentanglement
scores without supervision. Later, and related to our work, the authors examined the setting where
there is paired data and no explicit supervision (weak supervision), and found that such a setup was
helpful for learning disentangled representations [19]. The authors examined the setting in which the
set of shared latent factors changed for each example, which was necessary for their identifiability
proof. This also required using the same encoder for each view, and thus is a restricted setting that
does not easily scale to multi-modal data.

Here, we study the scenario where the set of generating factors is the same across examples, as in the
case of a pair of fixed sensors receiving correlated data. Additionally, our objective is motivated in an
information theoretic way and our method generalizes to the case where we have different sensory
modalities, which is relevant to neuroscience and multi-modal learning. Finally, our variational
objective is flexible and allows estimation of the common information in a principled way.

Approximating Mutual Information Estimating mutual information from samples is challenging
for high-dimensional random vectors [20]. The primary difficulty in estimating mutual information
is constructing high-dimensional probability distribution from samples, as the number of samples
required scales exponentially with dimensionality. This is impractical for realistic deep learning
tasks where the representations are high dimensional. To estimate mutual information, [21] used a
binning approach, discretizing the activations into a finite number of bins. While this approximation
is exact in the limit of infinitesimally small bins, in practice, the size of the bin affects the estimator
[22, 23]. In contrast to binning, other approaches to estimate mutual information include entropic-
based estimators (e.g., [23]) and a nearest neighbours approach [24]. Although mutual information is
difficult to estimate, it is an appealing quantity to summarily characterize neural network behavior
because of its invariance to smooth and invertible transformations. In this work, rather than estimate
the mutual information directly, we study the “usable information” in the network [25, 26], which
corresponds to a variational approximation of the mutual information [27, 28].
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Contrastive and Multi-View Approaches While (multi-view) contrastive learning aims to learn
a representation of only the common information between views [7, 29, 30], we aim to learn a
decomposition of the information in the views into common and unique components. Our work
naturally extends to multi-sensor data that have different amounts of common/unique information
(e.g., touch and vision). Moreover, contrastive approaches assume that the unique information is
nuisance variability, and discard this information. Similarly, [31] also seeks to identify common
information in both views, but also does not provide an objective to retain the unique information.
While the multi-view literature is broad, we are not aware of previous attempts to quantify the
common and unique information. Related to our approach, [32] aim to find shared and private
representations using VAEs, but it differs in how the alignment of shared information is specified
and the resulting objective, and they do not provide a way to quantify the information content of the
private and shared components. We discuss additional related work in Appendix C.

3 Method: Gács-Körner Variational Auto-Encoder

Our formulation involves generalizing the Gács-Körner common information in eq. (1) to the case
where f and g are stochastic functions so that the optimization problem becomes:

C̃GK(x1;x2) : = max
z

I(xi; z) (4)

s.t. z = fs(x1) = gs(x2), (5)

where fs and gs are stochastic functions. By the equality in eq. (5), we mean that p(z|x1) = p(z|x2)
for all (x1, x2) ∼ p(x1, x2). Note that when f and g are deterministic functions3 (which are a subset
of stochastic functions), then H(z|xi) = 0 and we recover the original definition since

I(xi; z) = H(z)−H(z|xi) = H(z). (6)

Our latter generalization (eq. 4-5) is more amenable to optimization and interpretable, as we will
later demonstrate. In eq. (4), we used xi as a placeholder since when p(z|x1) = p(z|x2) for all
(x1, x2) ∼ p(x1, x2, z) then I(z;x1) = I(z;x2) since

I(z;x1) = Ex1∼p(x1)[KL(p(z|x1)||p(z))]
= E(x1,x2)∼p(x1,x2)[KL(p(z|x1)||p(z))]
= E(x1,x2)∼p(x1,x2)[KL(p(z|x2)||p(z))]
= Ex2∼p(x2)[KL(p(z|x2)||p(z))]
= I(z;x2).

This means that another equivalent formulation to maximize is maxz
1
2

∑
i I(xi; z) = maxz I(xi; z),

for any i. To optimize the objective in eq. 4-5, we need to learn a set of latent factors z that maximize
I(xi; z), while satisying the constraint in eq. 5. We propose an optimization reminiscent of the
VAE objective. Define x = (x1, x2) as the concatenation of both views, and z = (z1u, zc, z

2
u) as a

decomposition of the representation into common and unique components, and zi = (ziu, zc). In
particular, we seek to learn latent encodings through an encoder qϕ(z|x), which maps x to z. To
optimize the objective, the representation z should maximize I(xi; z), and so we should also learn a
decoder pθ(x|z) that minimizes H(xi|z). This corresponds to the reconstruction term in a traditional
VAE, though note here we reconstruct both views.

L1
CVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)]] (7)

Without any constraints, this could be achieved trivially by using an identity mapping. To ensure
that the latents encode only common information between the different views, we decompose the
encodings to ensure the following constraint corresponding to eq. (5):

D(qϕc1
, qϕc2

) = KL(qϕc1
(zc|x1) || qϕc2

(zc|x2)) = 0. (8)

Here qϕci
(zc|xi) maps xi to zci Rather than enforcing a hard constraint, in practice it is easier to

optimize the corresponding Lagrangian relaxation:

L2
CVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + λcD(qϕc1

, qϕc2
)]. (9)

3If the constraint in Eq. 5 is satisfied, the map to the mean of the posterior p(z|x1) (and p(z|x2)) for
observations (x1, x2) is a deterministic function and satisfies the constraint of Gács-Körner common information.
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After optimizing this objective, for a sufficiently large λ so that D(q1, q2) ≈ 0, the common
information would be:

C̃GK(x1;x2) = Ep(x)[KL(qϕci
(zc|xi) || q∗(z)) ], (10)

where q∗(z) is the marginal distribution induced by the encoder. However, estimating the true
marginal q∗(z) is difficult for high-dimensional problems. In practice, we follow [9] and learn an
approximate prior p(z) ≈ q∗(z), where both qϕ(z|x) and p(z) are taken from a given family of
distributions (such as multivariate Gaussians with diagonal covariance matrix). This will additionally
enable us to sample from the distribution, and interpret the latent factors. To learn p(z) we also add
the following regularization to our training objective:

Ep(x)[KL(qϕ(z|x) || p(z)) ]. (11)

Alternatively, we can also exploit the degree of freedom in learning qϕ(z|x) and fix p(z) to be
N (0, I). In both cases, our overall objective becomes:

LCVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + λcD(qϕc1
, qϕc2

) + βKL(qϕ(z|x) || p(z))]. (12)

Optimizing this objective alone could lead to unexplained components of information, for example
the unique components. Alternatively, unique information present in the individual views may be
encoded in the “common” latent variable if the reconstruction benefits outweighed the cost of the
divergence between the posteriors of the encoders (the term corresponding to the β).

In addition to these common latent components, we can learn unique latent components by optimizing
a traditional VAE objective (i.e. with λc = 0) for a subset of the latent variables. Importantly we also
need to ensure that the KL penalty for the unique component subset is greater than for the common
subset (so that it is beneficial to encode common information in the common latent components). Our
final objective becomes

LCVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + λcD(qϕc1
, qϕc2

)

+

2∑
i=1

βcKL(qϕci
(zc|xi) || p(zc)) + βuKL(qϕui

(zu|xi) || p(zu))], (13)

where βc and βu correspond to a multiplier enforcing the cost of encoding common and unique
information respectively. Importantly βu > βc > 0, resulting in a larger penalty on the unique
latent variables (otherwise all the information would be encoded in the “unique” components). The
summation in the bottom part of Eq. 13 corresponds to a summation over both encoders. p(zu) and
p(zc) are both sampled from N (0, I) of appropriate dimensionality.

We now show that, if the network architecture used for the VAE implements a generic enough class
of encoder/decoders our method will recover the GK common information.
Theorem 3.1 (GK VAE recovers the common information). Suppose our observations (x1, x2) have
GK common information defined through the random variable zc satisfying eq. 4-5 and that our
parametric function classes q(z|x) and p(x|z) optimized over can express any function. Then, our
optimization (with βc = 0, βu < 1 and decoder p(x|z) =

∑2
i=1 pi(xi|zi)) will recover latents

ẑ = (ẑ1u, ẑ
2
u, ẑc) where ẑc is the common random variable that maximizes the “stochastic” GK

common information in eq. 4-5, while ẑiu is the unique information of the i-th view, which maximizes
I(xi; z

i
u, ẑc).

We provide the proof in Appendix A. Note that while the previous theorem guarantees that we will be
able to separate the common and unique factors at the block level, we might not be able to disentangle
the individual common factors.

3.1 Quantifying the common information

Suppose D(qϕc1
, qϕc2

) = 0. The term corresponding to the rate Rc of the VAE

Rc = Iq(zc;x) = Ep(x)KL(qϕc
(zc|x) || p(zc)) (14)

is neither an upper nor lower bound on the true common information. It represents an upper bound
to the information encoded in the representation specified by qϕc

(zc|x), but does not bound the true
common information in the data, since qϕc

(zc|x) itself is a variational approximation.

5



0 1 2 3 4 5
factor

0

1

2

3

4

5

6

7

8

la
te

nt

0 1 2 3 4
factor

0

1

2

3

4

5

6

la
te

nt

Figure 2: Latent traversals and DCI plots show optimization results in separation of common
and unique information. (Left) 3dshapes: The top 3 rows shows the unique latents, the middle 3
the common (and the bottom 3 are the unique latents for the second view). The ground truth unique
generative factors are (0, 1, 2) corresponding to floor color, wall color, and object color. Our model
correctly recovers that those factors are unique (first three rows in the figure), and that the other
factors are common (middle three rows). (Right) dsprites: The top 2 rows shows the unique latent
variables, the middle 3 the common (and the bottom 2 are the unique latent variables for the second
view). The ground truth unique generative factors are (3, 4) corresponding to x-position, y-position
respectively. Our model correctly recovers that those factors are unique (first two rows in the figure),
and that the other factors are common (middle three rows).

To find a lower bound on the common information encoded in the dataset, we can use any mutual
information estimator Î that is a lower bound (see [28] for several). The approximate common
information can then be quantified by Î(zq, x), where zq ∼ qϕc(zc|x). We report both the rate Rc

and Î in the paper. We emphasize that Î can be any mutual information estimator. When the data
generating distribution is known, as in our synthetic examples, we employ the “Usable Information”
estimator, described in Sect. 4.2, which is a variational approximation [27].

3.2 Identifiability of the common and unique components

We now show the conditions under which our optimization will identify the common and unique
latent components. Usually we do not directly observe the latent factors z, but rather an observation
generated from them. We may then ask whether the common latent factors can still be reconstructed
from this observation. The following proposition shows that this is indeed the case, as long as the
function generating f the observation is invertible, i.e., we can recover the latent factors from the
observation itself.

Proposition 3.1. ([3], Ex. 1): Define

z1 = (zc, z
1
u), z2 = (zc, z

2
u)

where zc, z
1
u, and z2u are mutually independent. Then for any invertible transformation ti the random

variable zc encodes all the common information:

zc = argmax
ẑ

CGK(t1(z1), t2(z2))

We provide the proof in Appendix A. The above proposition shows that when a set of factors is
shared between views and when the unique factors are sampled independently, then the GK common
random variable corresponds to shared latent factors. In particular, if the observations xi are generated
through an invertible function xi = f(zc, z

i
u) where zc ∼ p(zc) corresponds to the shared factors,

the proposition shows that such factors can be recovered from the observations by maximizing the
GK common information. In our GK VAE optimization, we optimize the “stochastic” GK common
information and we also find in our experiments that we can (approximately) recover the latent factors
from observations xi generated from this process.
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FLOOR HUE (10) WALL HUE (10) OBJ. HUE (10) SCALE (8) SHAPE (4) ANGLE (15) KL TOTAL

COMMON -0.01 -0.02 -0.03 2.73 1.98 3.83 15.0
UNIQUE 3.31 3.31 3.31 0.19 0.37 0.19 12.7
TOTAL 3.31 3.31 3.31 2.69 1.98 3.82 27.7

Table 1: Usable Information (in bits) in representation for 3dShapes. The ground truth unique
generative factors are floor color, wall color, and object color, and the common generative factors
are scale, shape and angle. The common information is separated from the unique information.
The ground truth factors were almost perfectly encoded in the latents. The numbers in parenthesis
represents the number of discrete factors for each latent variable.

4 Experiments

We train our GK-VAE models with Adam using a learning rate of 0.001, unless otherwise stated.
When the number of ground truth latent factors is known, we set the size of the latent vector of the
VAE equal to the number of ground truth factors. This choice was not necessary, and we obtain
analogous results when the size of the latent vector of the VAE was larger than the number of
ground-truth factors (Fig. 12). To improve optimization, we use the idea of free bits [33] and we
set λfree-bits = 0.1. This was easier than using β scheduling [16], since it only involved tuning one
parameter. We set βu to be 10, βc to be 0.1 and λc = 0.1. We trained networks for 70 epochs, except
for the MNIST experiments, where we trained for 50 (details in the Appendix).

To ensure that the latents are shared to both encoders, during training we randomly sample z from
either encoder qϕi

(zc|xi) with p = 0.5. We opted to randomly sample the latents from each encoder,
as opposed to performing averaging, to ensure that the latent will always be a function of an individual
view xi. This is in addition to the soft constraint governed by λc in the loss.4

4.1 Evaluation Datasets

We primarily focus on the setting where the ground truth latent factors and generative model are
known, in order to quantitatively benchmark our approach. To do so, we constructed datasets with
ground truth latent factors so that some of the latent factors are shared between each views. That is,
the generative model for the data (x1, x2) is

x1 = f(z1u, zc), x2 = f(z2u, zc), (15)

where zc is shared between the views and ziu is the unique information encoded in the ith view and f
corresponds to a rendering function.

To construct such datasets, we modified the 3dshapes [6] and the dsprites dataset [5]. We select a
subset of the latent factors to be shared between the views, while the remaining factors are sampled
independently for each view. The 3dshapes dataset [6] contains six independent generating factors:
floor color, background color, shape color, size, shape, and viewpoint. Each latent factor can only
take one of a discrete number of values. The dsprites dataset [5] contains five independent generating
factors: shape, scale, rotation, x and y position. Each latent factor can only take one of a discrete
number of values. When we generate multi-view data following the generative model in eq. (15),
we refer to these datasets as Common-3dshapes and Common-dsprites respectively. We consider
additional variants in the Appendix.

We also examine the Rotated Mnist Dataset. where the two views are two random digits of the same
class to which a random rotation is applied. In particular, the class of the digit is common information
between the views whereas the rotation is unique. We also examine the synthetic video dataset Sprites
(not to be confused with dsprites) described in [34] and evaluate the common information in frames
separated t frames apart.

4.2 Metrics

DCI Disentanglement Matrix [35]. Let d be the dimension of the latent space and let t be the true
generating factors. The idea is to train a regressor fj(z) : Rd → R to predict the ground truth factors

4Our experiments can be reproduced in approximately 3 days on a single GPU (g4dn instance).
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Figure 3: Left. Traversals for Rotated Mnist. The unique components of the latent (rows 1,2) appear
to encode the “thickness" and rotation of the digit, whereas the common components appear to
represent the overall digit (rows 3-6); and also the output of view 1 does not depend on the latents
in rows 7,8 (these correspond to the unique components for view 2.) Middle. Corresponding DCI
matrix, where factor 0 corresponds to the label, while factor 1 corresponds to the rotation (discretized
into 10 bins). Right. Comparison against contrastive implementation from [7], where the contrastive
approach does not encode any usable information about the unique factor (the rotation).

tj for each j. This results in a matrix of coefficients that describe the importance of each latent for
predicting each ground truth factors. This can then be visualized as a matrix where the size of the
square reflects the coefficient. We use this metric to assess the partitioning of the learned common
and unique representations. We used the random forest regressor, similar to [18] to predict a discrete
number of latent classes.

Usable Information [25, 36, 26]. We use this to approximate the mutual information when H(x)
is known, as it is in the datasets previously described. It is a lower bound to mutual information. We
use this to lower bound the information contained in the representation z in the next section.

4.3 Results

Separation of Common and Unique Latent Variables. We first examine whether our formulation
can correctly separate the common and unique latent factors. After optimizing a network on our
Common-3dshapes dataset we examined how much information about the ground-truth latent factors
were encoded in the common latents zc and the unique latents zu (Table 1).

Given the encoded representation specified by qϕ(z|x), we evaluated the usable information for the
two latent components (zc and zu), as well as by using the complete latent variable z. As done
in previous work [18], we directly use the mean of qϕ(z|x) as our representation z rather than
sampling. In Table 1, we see that the common and unique information was perfectly separated.
Note, that information values reported are a lower bound to the true information, as our variational
approximation is a lower bound to Iq(z;x) (which is itself a variational approximation). Our method
accurately encodes all common information between views (ground truth: 3.32 bits for floor, wall,
and background hue; 3 bits for scale; 2 bits for shape; 3.91 bits for orientation).

We also performed these analyses on the Common-dsprites dataset and found similar results (Table
2, Appendix). In particular, the unique latent factors corresponding to position are encoded in the
unique components of the latent representation, while the other factors are encoded in the common
latent representation. We emphasize that the generative model was not used at all during training, and
was only used for quantitative evaluation after training.

In Fig. 2, we show the DCI matrix [35] which visually reaffirm that the common and unique factors
are properly identified at the block-level for both the Common-3dshapes and Common-dsprites
datasets. We also include traversals of the prior shown in Fig. 2 to show qualitatively that the learned
factors of variation are meaningful and can be interpreted. Additional runs are in Appendix F.

Rotated Mnist and Comparison with Contrastive Learning. As described before, we generate a
dataset of paired views of digits of the same class, each rotated by an independent random amount. In
this manner, the unique information is about the rotation, whereas the common information is about
the class. In Fig. 3 we see that the unique components of the latent (rows 1, 2) appear to encode the
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Figure 4: Sprites [34] video experiment. (Left) Example views separated 2 frames apart. (Right)
Common information as a function of delay between frames. In general common information is
decreasing as the delay gets longer.

rotation and “thickness" of the digit, whereas the common components seem to represent the class of
the digit (rows 3-6). Also, as expected, the output of view 1 does not depend on the latents in rows 7,
8 which by construction correspond to the unique components of view 2.

This setup is reminiscent of contrastive learning, where the goal is to learn a representation which is
invariant to a random data augmentation of the input (such as a random rotation). By construction,
contrastive learning aims to encode the common information before and after data augmentation, but
may not encode any other information. This can lead to degraded performance on downstream tasks,
as the discarded unique information may still be important for the task [29, 37]. On the other hand,
our GK-VAE separates the unique and common information without discarding information.

To highlight this difference between approaches, we trained using a contrastive objective5 [7], and
found that indeed while we can decode the shared class label, we cannot decode the unique rotation
angle of view 1 (discretized into 10 bins; Fig. 3, right). On the other hand, using our method we
recover the common and unique information.

Common information across time in sequences from videos. The existence of common information
though time is another important learning signal. To study it, we perform an experiment on the
Sprites dataset described in [34]. This dataset consists of synthetic sequences all with 8 frames. We
optimized using the same architecture and hyperparameters except we set λc = 0.5. We examine
the common information between frames t frames apart, approximated using the KL divergence
term. In particular, the two views are two frames (x1, xt+1), where each pair belongs to a different
video sequences. In Fig. 4 we see that in general, as t increases the common information between
the frames decreases evidencing the fact that, due to the random temporal evolution of the video,
common information is lost as time progresses. We also note that the common information appears
to increase in the last frame; this could be that in many of the sequences the sprite returns close to the
initial state (see Fig. 3 in [34]).

5 Discussion

We show formally and empirically that we can partition the latent representation of multi-view data
into a common and unique component, and also provide a tractable approximation for the Gács-
Körner common information between high dimensional random variables, which has been a difficult
problem [4]. In many practical scenarios where high dimensional data comes from multiple sensors,
such as neuroscience and robotics, it is desirable to understand and quantify what is common and what
is unique between the observations. Motivated by the definition of common information proposed by
Gács and Körner [2], we propose a variational relaxation and show that it can be efficiently learned
from data by training a slighly modified VAE. Empirically, we demonstrate that our formulation
allows us to learn semantically meaningful common and unique factors of variation. Our formulation
is also a generative multi-view model that allows sampling and manipulation of the common and
unique factors.

5We used the code from: https://github.com/HobbitLong/CMC (BSD 2-Clause License)
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As the common information was motivated by an information theoretic coding problem [2], our work
naturally relates to compression schemes. Indeed, approximate forms of the common information,
discussed further in Appendix C, are scenarios for distributed compression, since the common
information needs to only be transmitted once [38, 4]. It may be interesting to combine our approach
with recent advances in practical compression algorithms that leverage VAEs [39].
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A Proofs

Theorem A.1 (GK VAE recovers the common information). Suppose our observations (x1, x2)
have GK common information defined through the random variable zc satisfying eq. 4-5 and that
our parametric function classes q(z|x) and p(x|z) optimized over can express any function. Then,
our optimization (with βc = 0, βu < 1 and decoder p(x|z) =

∑2
i=1 pi(xi|zi)) will recover latents

ẑ = (ẑ1u, ẑ
2
u, ẑc) where ẑc is the common random variable that maximizes the “stochastic” GK

common information in eq. 4-5, while ẑiu is the unique information of the i-th view, which maximizes
I(xi; z

i
u, ẑc).

Proof. We consider the hard-constrained optimization problem with an infinitely expressive function
class (i.e. so that the cross-entropy loss corresponds to the conditional entropy). Our VAE objective
corresponds to the optimization problem

min
zc,z1

u,z
2
u

H(x1|z1u, zc) + βuI(z
1
u;x) + βcI(zc;x)+

H(x2|z2u, zc) + βuI(z
2
u;x) + βcI(zc;x)

s.t. D(qϕ1
, qϕ2

) = 0

We consider a sequential optimization of finding ẑc and ẑiu, and then show that this solution minimizes
the joint objective above. We first consider the hard-constrained version of eq. (12).

min
zc

H(x1|zc) + βcI(zc;x1)+

H(x2|zc) + βcI(zc;x2)

s.t. D(qϕ1
, qϕ2

) = 0

Note that H(xi) = H(xi|zc) + I(zc;xi). We can rewrite the loss as:

L = H(x1|ẑc) +H(x2|ẑc) + βc(I(ẑc, x1) + I(ẑc, x2))

= H(x1) +H(x2) + (βc − 1)(I(ẑc, x1) + I(ẑc, x2))

This tells us that the optimal zc maximizes I(ẑc, x1)+I(ẑc, x2). This is exactly the definition that we
give of “stochastic” GK common information. Note we have previously shown I(zc;x1) = I(zc;x2).
Given ẑc found above, the remaining objective (eq. (13)) becomes:

min
z1
u,z

2
u

H(x1|z1u, ẑc) + βuI(z
1
u;x1)+

H(x2|z2u, ẑc) + βuI(z
2
u;x2).

For βu < 1, the objective maximizes I(x1; z
1
u, ẑc), which was the definition of the unique information.

(For βu > 1, this corresponds to a β-VAE, and will have the corresponding trade-off between rate
and reconstruction [14, 11, 12].)

Finally, suppose z̃c did not contain all the common information as ẑc; i.e. I(z̃c;xi) < I(ẑc;xi).
Write the final equation as a maximization by noting that

H(xi|ziu, ẑc) = −I(xi; z
i
u, ẑc) +H(xi)

Then the final optimization (for any i) is equivalent to

max
zi
u

I(xi; z
i
u, ẑc)− βuI(z

i
u;xi)−H(xi) = max

zi
u

I(xi; ẑc) + I(xi; z
i
u|ẑc)− βuI(z

i
u;xi)−H(xi)

(16)

> max
zi
u

I(xi; z̃c) + I(xi; z
i
u|z̃c)− βuI(z

i
u;xi)−H(xi)

(17)

= max
zi
u

I(xi; z
i
u, z̃c)− βuI(z

i
u;xi)−H(xi) (18)

For any ziu, Eq. 16 is maximized with ẑc that encodes all the common information. Thus the GK
VAE optimization is minimized with ẑ = (ẑ1u, ẑ

2
u, ẑc).
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Proposition A.1. ([3], Ex. 1): Define
z1 = (zc, z

1
u), z2 = (zc, z

2
u)

where zc, z
1
u, and z2u are mutually independent. Then for any invertible transformation ti the random

variable z∗ that satisfies
argmax

ẑ
CGK(t1(z1), t2(z2))

is zc.

Proof. Note that if t is the identity transformation t(z) = z, then
argmax

ẑ
CGK(z1, z2)

is zc. In general, if ti are invertible transformations, suppose that f1 and f2 are the functions
satisfying ẑ = f1(z1) = f2(z2) corresponding to CGK(z1, z2). Then the functions corresponding to
CGK(t1(z1), t2(z2)) will be ẑ = f1 ◦ t−1

1 (t1(z1)) = f2 ◦ t−1
2 (t2(z2)) and the random variable ẑ is

equivalent.

B Experimental Details

We trained networks with Adam with a learning rate of 0.001, unless otherwise stated. When the
number of ground truth latent factors is known, we set the number of latents equal to the number
of ground truth factors. To improve optimization, we use the idea of free bits [33] and we set
λfree−bits = 0.1. This was easier than using β scheduling, since it only involved one parameter
λfree−bits. We set βu to be 10 and βc to be 0.1. We trained networks for 70 epochs, except for the
Mnist experiments, where we trained for 50 epochs. We used a batch size of 128 and we set λc = 0.1.
For all our experiments we used the same encoders and decoders as [16], which has been also used in
recent work [18]. We used Gaussian encoders and Bernoulli decoders, basing our implementation
off [40]. Our architecture is schematized in Fig. 1. Note that we optimized encoders and decoders
separately between the views (i.e weights were not shared).

To ensure that the latents are shared to both encoders, during training we randomly sample z from
either encoder qϕi

(zc|xi) with p = 0.5. We opted to randomly sample the latents from each encoder,
as opposed to performing averaging, to ensure that the latent will always be a function of an individual
view xi. This is in addition to the soft constraint governed by λc in the loss.

In our implementation, unless otherwise noted, we used two separate view-dependent decoders that
each processed all the latents z to reconstruct the observations. We also verified that view specific
decoders that processed only view-specific latents zi, as in Thm. 3.1, also led to a partitioning
of the common and unique information Fig. 5. This was the case both when the unique factors
were pairwise independent, as in generative model described in Sect. 4.1 used for the majority
of our experiments, and also if there were correlations between the unique components (Fig. 7)
and (Fig. 6), with the experiments described in Sect. F. Empirically, we found the separation
of the common and unique information was robust to the partitioning of the latents fed to the
decoder of our GK-VAE. We provide both decoder implementations in our repository available at
https://github.com/mjkleinman/common-vae.

To quantify the information contained in the representation, we calculate the usable information (in
bits), which is a lower bound to the information contained in the representation [25, 26]. To train our
decoder, we used the GradientBoostingClassifier from sklearn with default parameters. We
trained on 8000 samples and tested on 2000. We evaluated the information on a held-out test set, and
hence the negative values correspond to overfitting on the training set. In Table 1, the numbers in
parentheses correspond to the number of ground truth factors. We used the same setup for the rotated
Mnist experiments (Fig. 3). For the rotation angle, we discretized the angle of rotation (−45◦, 45◦)
into 10 bins of equal size, and predicted the discrete bin. We predicted the rotation angle applied to
the first view. When comparing with a constrastive learning approach (Fig. 3, right), we used the
same encoder backbone as our GK-VAE6. We pre-trained with a batch size of 256 for 60 epochs with
a learning rate of 0.001, and then trained the linear classifier for 10 epochs with an initial learning
rate of 0.03. We used a latent dimension of 20.

6We used the code from: https://github.com/HobbitLong/CMC
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Figure 5: Latent traversals and DCI plots show optimization results in separation of common
and unique information when using partitioned decoder. Same conventions as Fig. 2. (Left)
3dshapes: The top 3 rows shows the unique latents, the middle 3 the common (and the bottom 3
are the unique latents for the second view). The ground truth unique generative factors are (0, 1, 2)
corresponding to floor color, wall color, and object color. Our model correctly recovers that those
factors are unique (first three rows in the figure), and that the other factors are common (middle
three rows). (Right) dsprites: The top 2 rows shows the unique latent variables, the middle 3 the
common (and the bottom 2 are the unique latent variables for the second view). The ground truth
unique generative factors are (3, 4) corresponding to x-position, y-position respectively. Our model
correctly recovers that those factors are unique (first two rows in the figure), and that the other factors
are common (middle three rows).

B.1 DCI Plots and Latent Traversals:

Let d be the dimension of the representation z and let t be the true generating factors. The idea
is to train a regressor fj(z) : Rd → R to predict the ground truth factors tj for each j from
the representation z. This results in a matrix of coefficients that describe the importance of each
component of the representation for predicting each ground truth factors. This matrix R is the
importance matrix that we visualize in the paper, where Rij reflects the relative importance of
of zi for predicting tj (where zi refer to the ith component of the representation). We used the
GradientBoostingClassifier from sklearn with default parameters, similar to [18] to predict
the ground truth factors.

We visualize the latent components by traversing one latent variable at a time, while keeping the others
fixed. We plot traversals of the prior p(z) and the posterior q(z|x) in different figures (traversals of
the prior are in Fig. 2, Fig. 3, and Fig. 5, while the others are posterior traversals). We obtain the
posterior traversals by encoding an observation through q(z|x) and traversing each component of the
representation.

C Other Related Work

A similar formulation has been used for multi-view learning [41], with two separate autoencoders,
with an constraint that each latent representation be similar, with the similarity measured by the canon-
ical correlation of the latent representations. They did not motivate it from an information-theoretic
perspective; and rather empirically found that such an optimization lead to good representations in
the multi-view setting.

Also related to our work is [4]. [4] defined the approximate Gács-Körner information in the following
manner:

max
z

I(x1; z)

s.t. H(z|x2) < δ

z ↔ x1 ↔ x2

(19)
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By showing that they could perform the optimization over deterministic functions f such that
z = f(x1), they formed a Lagrangian corresponding to:

max
f

H(f(x1))− λH(f(x1)|x2) (20)

They noted that the above optimization is difficult to perform and that future work should look into
avenues for computing this quantity; indeed it looks difficult to learn the function f from the above
optimization problem. They also suggested that this approximate form of the Gács-Körner common
information had potential applications in terms of compression, since the (approximate) common
information only needs to be represented once.

C.1 Relationship to redundant information in the Partial Information Decomposition

Our approach also relates to approaches that aim understand how the information that a set of sources
contain about a target variable is distributed among the sources. In particular, [42] proposed the
Partial Information Decomposition (PID), which decomposes the information that two sources X1

and X2 contain about a target variable Y into a the components that are unique, redundant, and
synergistic. A central quantity in this decomposition, the redundant information, reflects the shared
information about a target variable. The Gacs-Korner common information is equivalent to existing
definitions redundant information if the target is reconstructing the sources (i.e, Y = (X1, X2))
[43]. We note that computing the redundant information from high dimensional samples has been
challenging. Recently [44] proposed an approach that could be applied on high dimensional sources
but where the target was low dimensional. Here, our approximation of the common information
reflects a further step which can be applied on high dimensional samples (and targets).

C.2 Other multi-view representation learning approaches for partitioning common/unique
information

Our work relates to a growing body of multi-view representation learning approaches aiming to
disentangle common and unique information from grouped data. [45] examine the setting of extracting
a common content and variable style from a set of grouped images based on content. [46, 47, 48] are
also similar in spirit, aiming to disentangle the shared and unique component between paired data.

These existing methods appear to focus on qualitatively partitioning the information through the use of
different objectives, however these approaches lack a well-defined notion of common (and unique) in-
formation, making it difficult to prove theorectical guarantees for the recovery of the common/unique
component, or enable quantification of the information contained in the representation. In contrast,
our setup allows us to formalize the decomposition of information using a well-defined information
theoretic notion of common/unique information and we show both formally and empirically that we
can optimize the objective with a simple modification to a traditional VAE setup and that we can
quantify the amount of information contained in the representation.

D Limitations of our approach

To validate our approach, we focused on the simpler setting where we have paired data, however, we
could extend our formulation to find common information between n > 2 sources, as well as finding
common information between subsets of sources. While our approach can be naturally extended to
find the common information between n sources, future work could investigate a scalable approach
to identify common and unique information between arbitrary subsets of the sources. Additionally, to
validate our approach empirically, we focused on using a convolutional encoder on relatively small
images and video frames, but our formulation is general and the encoder could be interchanged
depending on the complexity and inductive biases of the task and data.

E Differences between GK Common Information and Mutual Information

The following examples highlight the difference between GK information and mutual information,
and suggest why using GK information may be desirable in practical settings.
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Case 1: Let X1 = C + N1 and X2 = C + N2, where C and Ni are independent variables, but
the noise N1 and N2 are correlated. Suppose C is discrete – for example, a 0 or 1 feature – and
the variance of the noise Ni is relatively small (∥Σ1∥ ≪ 1). In this case, since C can be recovered
deterministically from C +Ni (for example by thresholding its value) the GK common information
between X1 and X2 is 1 bit. On the other hand, the mutual information between X1 and X2 – which
is given by I(X1, X2) = 1 + 0.5 log(detΣ1 detΣ2

detΣ ) – can be made arbitrarily large by increasing the
correlation between N1 and N2, i.e., making detΣ → 0. Hence, the the value of MI is unrelated
to the actual semantic information shared between the two variables. In contrast, the GK common
information only identifies the common component C. In a sense, the GK is able to recover the
underlying “discrete” or “symbolic” information that is common between two different continuous
sources. This behavior is valuable in settings like neuroscience, where one wants to measure what is
robustly encoded by both representations and not just how much they are correlated (which could
be due to any amount of spurious factors). Additionally, with our relaxation of the problem we can
measure how much “almost” discrete information is encoded in both, which makes the method more
applicable to real-world cases.

Case 2: Let X1 = f1(C;U1) and X2 = f2(C;U2) where C and Ui are independent but U1 and
U2 are correlated. Suppose f1 is an invertible data generating function mapping latent factors to
observations (such as pixels). By maximizing mutual information between views, one implicitly
measures those correlations (based on a similar computation to above in Case 1), whereas in the GK
sense one cares about only the fully shared components between views. These different perspectives
can offer different utility depending on the use case.

We show in Fig. 6 and Fig. 7 that we can recover the partitioning of common and unique factors in
practice from the generative model in Case 2.

F Additional Experiments

In Table 2, we compute the information encoded in the common and unique latent components for the
common-dsprites experiment described in the main text, with corresponding DCI matrix and latent
traversals in Fig. 2. We also report additional runs for the common-dsprites and common-3dshapes
experiments in Fig. 8 and Fig. 9 respectively. These additional runs are consistent with what was
reported in the text, separating the common and unique factors.

To introduce correlations between the unique components (Case 2 in App. E) we modified the
generative model from Eq. 15 where the generative model for the data (x1, x2) was

x1 = f(z1u, zc), x2 = f(z2u, zc), (21)

where zc is shared between the views and ziu is the unique information encoded in the ith view and
f corresponds to a rendering function. To allow the unique components to be dependent (but not
the same as the common latent component zc), we modified the generative model so that z2u was
conditionally dependent on the value of z1u. We implemented this constraint component-wise for each
component of ziu by reducing the space of possible latent values of the corresponding components
of z2u (to half, floored if odd) depending on the component-wise values of z1u. We show in Fig. 6
and Fig. 7 that we can recover the partitioning of common and unique factors in practice from this
generative model.

In addition to the experiments described in the main text, we report variants of common-dsprites and
common-3dshapes. In particular, we change the set of ground-truth common and latent factors.

For the common-3dshapes, we specified that the viewpoint was the unique latent variable zu, whereas
the other latent variables (backgroud color, floor color, object color, shape, size) were common to
both views. We show the DCI matrix and the traversals in Fig 10. For the common-dsprites variant,
we set the unique components to be the size, scale, and orientation, and the common latent factors to
be the x and y position. We show the DCI matrix and latent traversals in Fig. 11. The common and
unique latent variables from our optimization separated these ground truth factors.
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Figure 6: Decoder from all latents partitions common and unique information even when unique
generating factors are dependent. We modified the generative model from Eq. 15 so that the
common and unique generating variables were independent but there were correlations between the
unique components. In particular, the latent factors for the second view were conditionally dependent
on the unique latent factors. We still observed a partitioning of the learned common and unique latent
variables, as in the paper. The top 3 rows shows the unique factors, the middle 3 the common (and
the bottom 3 are the unique factors for the second view). The ground truth unique generative factors
are (0, 1, 2) corresponding to floor color, wall color, and object color. Our model correctly recovers
that those factors are unique (first three rows in the figure), and that the other factors are common
(middle three rows).
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Figure 7: Decoder from partitioned latents also partitions common and unique information,
similar to when decoding from all latents in Fig. 6. The top 3 rows shows the unique factors, the
middle 3 the common (and the bottom 3 are the unique factors for the second view). The ground
truth unique generative factors are (0, 1, 2) corresponding to floor color, wall color, and object color.
Our model correctly recovers that those factors are unique (first three rows in the figure), and that the
other factors are common (middle three rows).
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Figure 8: Additional runs for the same experiment as Fig. 2 (right) for common-dsprites, with the
same conventions as Fig 2. These runs also show the same blockwise partitioning of common and
unique information, as in the paper.

SHAPE (3) SCALE (6) ANGLE (40) X-POS (32) Y-POS(32) KL TOTAL

COMMON 1.54 2.45 2.88 -0.33 -0.29 9.57
UNIQUE 0.08 0.03 -0.5 3.58 3.63 9
TOTAL 1.54 2.45 2.76 3.68 3.69 18.57

Table 2: Usable Information (in bits) in representation for a dsprite experiment. The common
information is separated from the unique information. The ground truth unique factors (x-position
and y position) were almost perfectly encoded in the corresponding latents latents, and the other
factors (shape, scale, and angle) were correctly encoded in the common latent variables. The numbers
in parenthesis represents the number of discrete factors for each latent variable.
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Figure 9: Additional runs for the same experiment as Fig. 2 (left) for common-3dshapes, with the
same conventions. These runs also show the same blockwise partitioning of common and unique
information, as in the paper.
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Figure 10: DCI matrix of common-3dshapes variant for different random seeds. The top row shows
the unique factor, the middle 5 the common (and the bottom row is the unique factors for the second
view). The ground truth unique generative factors are (5) corresponding to the viewpoint. Our model
generally correctly recovers that the factor is unique (first row in the figure), and that the other factors
are common (middle five rows).
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Figure 11: DCI Matrix of dsprites experiment variant for different random seeds. The top 3 rows
shows the unique latent variables, the middle 2 the common (and the bottom 3 are the unique latent
variables for the second view). The ground truth unique generative factors are (0, 1, 2) corresponding
to shape, scale, and viewpoint angle. Our model correctly recovers that those factors are unique (first
three rows in the figure), and that the other factors (x and y position) are common (middle two rows).

Figure 12: Effect of βu. Additional runs for Fig. 2 (right) for common-3dshapes with 5 unique and
5 common latents per view. For large βu (e.g. βu = 100, right), as in the paper, we see a similar
blockwise separation of the common and unique latents, even when the number of latents does not
match the ground-truth number of latents.

24


