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Abstract

High-dimensional mediation analysis is often associated with a multiple testing
problem for detecting significant mediators. Assessing the uncertainty of this de-
tecting process via false discovery rate (FDR) has garnered great interest. To
control the FDR in multiple testing, two essential steps are involved: ranking and
selection. Existing approaches either construct p-values without calibration or dis-
regard the joint information across tests, leading to conservation in FDR control
or non-optimal ranking rules for multiple hypotheses. In this paper, we develop
an adaptive mediation detection procedure (referred to as "AMDP") to identify
relevant mediators while asymptotically controlling the FDR in high-dimensional
mediation analysis. AMDP produces the optimal rule for ranking hypotheses and
proposes a data-driven strategy to determine the threshold for mediator selection.
This novel method captures information from the proportions of composite null
hypotheses and the distribution of p-values, which turns the high dimensionality
into an advantage instead of a limitation. The numerical studies on synthetic and
real data sets illustrate the performances of AMDP compared with existing ap-
proaches.

1 Introduction

Mediation analysis is regarded as a prevalent tool to dissect a mediation relationship between expo-
sures and outcomes, and it has been widely applied in different fields, such as epidemiology [37],
public health [21], policy evaluation [1], social sciences [25], neuroscience [10], and many oth-
ers. Baron et al. [4] provided the basis for the advance of mediation analysis. They proposed a
conventional regression-based approach, commonly referred to as the causal steps method, to exam-
ine the logical relationships among exposure, mediator, and outcome variables linking in a causal
chain. While the causal steps method established necessary conditions for causal inference, it did
not provide a joint test of the indirect effect of exposure on the outcome through a mediator, as
recommended by MacKinnon et al. [32]. Thus, MacKinnon et al. [32] investigated the normality-
based Sobel’s test [38] as a means to detect mediation effects under the framework of the product-
coefficient method, the product of the exposure-mediator and mediator-outcome effects. However,
as highlighted by MacKinnon et al. [31], the distribution of product coefficients is not normally dis-
tributed, leading the Sobel’s test being overly conservative. Hence, MacKinnon et al. [32] proposed
the joint significance test (also name as the MaxP test) to alleviate this conservatism. Nonetheless,
the joint significance test still suffers from low statistical power, as it overlooks the impact of the
composite null structure in mediation analysis [33, 42].
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To address the aforementioned issues, Taylor et al. [42] recommended the utilization of the distri-
bution of the product method or bootstrapping as alternative procedures. These methods had been
shown to exhibit higher power while still maintaining reasonable control over the Type I error rate.
In the study of Kamukama et al. [27], a z-value based Sobel’s test was introduced to investigate the
mediation effect of competitive advantage on the relationship between intellectual capital and finan-
cial performance. Nuijten et al. [36] proposed an approach based on Bayesian models for testing
the presence of an indirect effect. More recently, Zhang [46] developed two data-adaptive tests that
outperform both Sobel’s test and joint significance tests.

Despite these advances, a further challenge is that the methods mentioned above typically assume
a low-dimensional mediator, whereas the development of high-throughput technologies promotes a
growing need for research dealing with high-dimensional data. The multiple testing problem arising
from high-dimension mediation analysis is aimed at identifying the relevant mediators that explain
the effect of exposure on an outcome. Differ from a single test, multiple testing approaches are
aimed to handle simultaneous testing, and often use the false discovery rate (FDR) to measure the
uncertainty of detecting process [7], that is,

FDP =
#
{
j : j ∈ ∆0, j ∈ ∆̂

}
#{j ∈ ∆̂} ∨ 1

, FDR = E[FDP], (1)

where j represents the index of mediator, ∆0 is the index set of the null mediators, ∆̂ is the index
set of selected mediators.

The control of FDR in multiple hypothesis testing consists of two primary steps: ranking and se-
lection. In the initial step, a ranking statistic is calculated to evaluate the significance of each test,
resulting in the ranking of hypotheses. The subsequent step is to maximize the selection set based on
the established ranking order from the first step, while simultaneously maintaining the FDR at the
target level. Although the p-value generated from the single hypothesis testing method can be con-
sidered as a ranking statistic and further combined with the BH procedure [7] for FDR control, there
are still some limitations inherent to this approach. Firstly, the single p-value without calibration
may be conservative and lead to excessive conservation in FDR control. Secondly, in the absence of
joint information across multiple hypotheses, the ranking statistics based on the p-value may not be
optimal.

To overcome these limitations, recent advancements in mediation analysis attempt to construct cali-
brated test statistics that account for the composite nature of the null hypothesis, and further achieve
FDR control in multiple testing. For example, Dai et al. [12] developed a JS-mixture procedure,
which utilizes the maxP statistics [32] as the ranking statistics and corrects the conservatism in
the joint significance test by estimating the mixture distribution of p-values. Although JS-mixture
sharply achieves FDR control, it is still underpowered for the reason that the maxP statistics does
not account for the distribution information of two-dimension p-values under different hypotheses.
Furthermore, Liu et al. [30] proposed a procedure called DACT focusing on constructing calibrated
p-values for each single test by combining information across large-scale tests. Specially, DACT
estimates the proportions of sub-null hypotheses and generates weighted p-values accordingly. How-
ever, DACT may suffer from underpowered performance in certain situations due to the following
reasons. Intuitively, it ignores the alternative hypothesis information in its weighting scheme. On
a deeper level, it does not fully consider the distributed information of two-dimensional p-values,
limiting its ability to leverage valuable insights for improved power.

In this paper, we propose an adaptive mediation detection procedure (AMDP) for identifying rele-
vant signals in high-dimensional mediation analysis. Our main contributions are summarized below:

• AMDP utilizes a two-dimensional p-value based local FDR as a test statistic, allowing for
the comprehensive utilization of structural information of large-scale tests. Additionally, it
determines the optimal rule for the order of selecting mediators.

• We establish theoretical results showing that AMDP enables asymptotic control of the FDR
for selected mediators using the estimated local FDR.

• We reveal the critical importance of information retention in the ranking step for achiev-
ing optimal statistical power by discussing the limitations of the ranking statistics used in
existing methods and conducting comparisons with AMDP.

• We empirically demonstrate the effectiveness of AMDP on synthetic and real data sets.
Simulation results confirm the validity of our approach, and an application to a prostate
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cancer dataset illustrates its satisfactory performance in identifying CpG methylation sites
that mediate between risk SNPs and gene expression.

The remainder of this paper is organized as follows: Section 2 formally introduces an optimal rank-
ing rule based on AMDP along with an estimator of local FDR. We theoretically prove the ability of
AMDP in controlling the FDR while mimicking the optimal power. Section 3 presents the simula-
tion studies to evaluate the performance of AMDP. In Section 4, we demonstrate the practical utility
of AMDP by applying it to the prostate cancer dataset in TCGA 2015. We conclude the paper in
Section 5. The technical proofs and additional discussion are postponed to Appendix.

2 AMDP: an optimal multiple testing procedure for FDR control

Let X be the exposure (independent variable), {M1, · · · ,MJ} be candidate mediators, and Y be the
outcome (dependent variable). In the context of mediation analysis in the genome-wide association
studies (GWASs), X often refers to the single nucleotide polymorphisms (SNPs), M corresponds to
DNA methylation, and Y pertains to gene expression or a risk of disease. As stated by Baron et al.
[4], the mediation relationship can be expressed by the following models:

E (Mj | X) = α0j + αjX,

E (Y | Mj , X) = β0j + βjMj + β1jX,
(2)

where αj denotes the effect of X on Mj , βj represents the effect of Mj on Y , totally the product of
αj and βj represents indirect effect of X on Y . β1j is the direct effect of X on Y with the Mj being
fixed. We assume that there are no unmeasured confounding variables, also known as the sequential
ignorability assumption [25, 43]. Any confounders can be adjusted by additional covariates [12],
and such an adjustment is omitted in model (2) for simplification.

Testing whether {M1, . . . ,MJ} plays an intermediary role in the causal path from X to Y in (2) can
be transformed into a multiple testing problem:

H0j : αjβj = 0 versus H1j : αjβj ̸= 0. (3)

The above composite hypothesis can be decomposed into four disjoint cases as follows:

Case 1, H00,j : αj = 0 and βj = 0,

Case 2, H01,j : αj = 0 and βj ̸= 0,

Case 3, H10,j : αj ̸= 0 and βj = 0,

Case 4, H11,j : αj ̸= 0 and βj ̸= 0,

where Case 1-3 represents the composite null hypothesis, and Case 4 is the alternative hypothesis.
A rejection of H0j indicates the presence of a mediation effect by Mj . In this paper, the p-values
for testing αj = 0 and βj = 0 are respectively denoted as p1j = 2{1 − Φ(| α̂j | /σ̂αj )} and
p2j = 2{1 − Φ(| β̂j |/σ̂βj )}, where α̂j , β̂j , σ̂αj and σ̂βj are the least squares estimators based on
the models (2). Under the sequential ignorability assumption for mediation analysis, p1j and p2j are
independent [30].

2.1 Optimal rejection region under the four-group model

To provide an optimal ranking guideline, we consider a pair of p-values pj = (p1j , p2j) under the
empirical null inference framework [17]. Let H00,j = 1 if Case 1 holds, H01,j = 1 if Case 2 holds,
H10,j = 1 if Case 3 holds, and H11,j = 1 otherwise. Assume the conditional density of pj follows

Hj =


H00,j ∼ Bernoulli {π00} ,
H01,j ∼ Bernoulli {π01} ,
H10,j ∼ Bernoulli {π10} ,
H11,j ∼ Bernoulli {π11} ,

pj | Hj ∼


f00 (p) if H00,j = 1,

f01 (p) if H01,j = 1,

f10 (p) if H10,j = 1,

f11 (p) if H11,j = 1.

(4)

with p =
(
p(1), p(2)

)
∈ R2. π00, π01, π10, and π11 represents the proportions of H00,j , H01,j , H10,j ,

and H11,j , respectively. It follows that π00 + π01 + π10 + π11 = 1 due to the disjoint nature of the
composite hypothesis.
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Then, the density function of pj follows the following four-group model, which can be considered
as a variant version of the random mixture model [17].

pj ∼ f(p) = π00f00(p) + π01f01(p) + π10f10(p) + π11f11(p). (5)

Under the four-group model (5), the local FDR [18, 19] is defined as

fdr(p) = P (H00,j ∪H01,j ∪H10,j = 1 | pj = p) =
π00f00(p) + π01f01(p) + π10f10(p)

f(p)
. (6)

It refers to the posterior probability that a hypothesis is null, given its corresponding p-value.

Before delving into the optimal ranking guidelines, we introduce several key definitions relevant to
this objective. For any rejection region S ∈ [0, 1]2, we define the global FDR as

gFDR(S) = P(H00 ∪H01 ∪H10 = 1 | pj ∈ S), (7)

where H00,H01, and H10 are composite null hypothesis. The power is defined as

Power(S) = P{pj ∈ S | H11 = 1}. (8)

In the ranking step, the primary objective is to establish an optimal ranking rule that accurately
reflects the significance order of the tests, while adhering to the optimality goal set in the selection
step. Under the Neyman-Pearson framework [35], this optimality goal entails maximizing power
while simultaneously controlling the global FDR at a targeted level of α. This process can be
formulated as a constrained optimization problem, i.e.

max
S

Power(S) subject to gFDR(S) ⩽ α. (9)

The optimal rule under the two-group model has been extensively studied in the literature. Re-
searchers have proposed various methods for optimal decision-making based on different frame-
works [5, 9]. Our optimality goal shares similarities with the work of Lei et al. [28]. They had
demonstrated that, under Bayes rule, the optimal rejection thresholds are the level surfaces of local
FDR. We extend this insight to p-values in two dimensions, and define the form of the rejection
region as S(ζ) = {p : fdr(p) ≤ ζ}. A detailed and comprehensive explanation of this concept is
provided in Theorem 1.
Theorem 1. Assume that

(i) f00(p), f01(p), f10(p), and f11(p) are continuous;

(ii) ν(p : fdr(p) = t) = 0 for any t ∈ (0, 1], where ν is a Lebesgue-Stieltjes measure on the
two-dimensional Borel space (R2,B2).

Then, for any given global FDR level α, there exists a unique value ζ⋆ such that S(ζ⋆) is the solution
of the constrained optimization problem in (9). And the local FDR involved in S(ζ⋆) corresponds to
the optimal ranking rule.
Remark 1. Genovese et al. [20] have shown that under weak conditions, gFDR = FDR+O( 1√

J
),

where J represents the number of mediators. Hence, controlling gFDR and FDR are asymptot-
ically equivalent as the number of mediators J tends to infinity. A similar result supporting this
equivalence was also obtained by Storey [40].

2.2 The estimator of local FDR

From Theorem 1, we have established that the optimal ranking rule under the Neyman-Pearson
framework is the local FDR. However, it is worth noting that the discussions in Section 2.1 are based
on the assumption that the distribution of p-values and proportions of the composite hypothesis are
known. In the following, we emphasize that our results still hold if the local FDR can be consistently
estimated. Assuming that f00 ≡ 1 (p-values follow uniform distribution in Case 1). The estimation
of fdr(p) can be divided into three parts: (i) The proportions of the composite null hypothesis
π00, π01, π10; (ii) The mixture density f(p); (iii) The densities of the composite null hypothesis
f01(p), f10(p).

Motivated from Storey et al. [41], π01, π10, and π00 can be estimated as follows:

π̂0·(λ) =

∑
I (p1j > λ)

J(1− λ)
, π̂·0(λ) =

∑
I (p2j > λ)

J(1− λ)
, π̂00(λ) =

∑
I (p1j > λ, p2j > λ)

J(1− λ)2
,

(10)
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where π̂0·(λ) denotes the estimator of the proportion of null p1j , π̂·0(λ) denotes the estimator of the
proportion of null p2j . I(·) is an indicator function, and λ ∈ [0, 1) is a tuning parameter. In practice,
there is a bias versus variance tradeoff for choosing a suitable λ. Further research on selecting an
appropriate value of λ is detailed in the Appendix A. Following that

π̂01(λ) = π̂0·(λ)− π̂00(λ), π̂10(λ) = π̂·0(λ)− π̂00(λ). (11)

Next, we turn to the estimation of f(p). For this purpose, we employed an adaptation of the beta
kernel function proposed by Chen [11]. This choice is made considering the fact that p = (p(1), p(2))
falls within [0, 1]2. The beta kernel function allows for a flexible and smooth estimation of f(p),
providing a suitable estimation approach for our analysis. Our beta kernel estimator is:

f̂(p) = f̂(p(1), p(2)) = J−2

 J∑
j=1

K⋆
p(1),b(p1j)

 J∑
j=1

K⋆
p(2),b(p2j)

 , (12)

where K⋆
p,b is a boundary beta kernel defined as

K⋆
p,b(t) =


Kp/b,(1−p)/b(t) if p ∈ (2b, 1− 2b),

Kρ(p,b),(1−p)/b(t) if p ∈ [0, 2b],

Kp/b,ρ(1−p)(t) if p ∈ [1− 2b, 1],

Ku,v be the density function of a Beta(u, v) random variable, b is a smoothing parameter, and
ρ(p, b) = 2p2 + 2.5−

√
4p4 + 6p2 + 2.25− p2 − p/b.

In the context of mediation analysis, the density of p-values follows a mixture distribution, as indi-
cated in (5). This mixture distribution involves three distinct types of null hypotheses: H01, H10,
and H00. Distinguishing between H01 and H10, as well as obtaining accurate estimators for f01(p)
(corresponding to H01) and f10(p) (corresponding to H10) is indeed a challenging task. Motivated
by the knockoff method [2], we consider leveraging the symmetry property of p-values under the
composite null hypothesis to tackle this issue. Before diving into the details of utilization of the
symmetry property for estimating f01(p) and f10(p), we introduce some essential notations and
assumptions.

Denote ∆00,∆01, and ∆10 as the index set of the null mediators under the composite null hypothesis
H00,H01, and H10, respectively. We define the region D as [0, 0.5)2, with its symmetric regions as
follows: D̃01 = [0.5, 1]× [0, 0.5), D̃10 = [0, 0.5)× [0.5, 1], and D̃00 = [0.5, 1]2. The assumptions
are given as follows.
Assumption 1. For j ∈ ∆00, the sampling distribution of pj is symmetric about p(1) = 0.5 and
p(2) = 0.5; For j ∈ ∆01, the sampling distribution of pj is symmetric about p(1) = 0.5; For
j ∈ ∆10, the sampling distribution of pj is symmetric about p(2) = 0.5.
Assumption 2. The symmetric regions of D satisfy: (i) For p ∈ D̃00, limn→∞ f11 (p) = 0,
limn→∞ f01 (p) = 0, limn→∞ f10 (p) = 0; (ii) For p ∈ D̃01, limn→∞ f11 (p) = 0 and
limn→∞ f10 (p) = 0; (iii) For p ∈ D̃10, limn→∞ f11 (p) = 0 and limn→∞ f01 (p) = 0.

Assumption 1 is only required for the null mediators. It indicates that at least one of p1j and p2j
follows a uniform distribution under the composite null hypothesis. Assumption 2 holds for any
reasonable p-value. Since a non-null p-value should fall within [0, 0.5), we can infer that as the
sample size n tends to infinity, the probability of p-values under alternatives falling within [0.5, 1]
approaches zero. Additional explanations on Assumptions 1-2 are detailed in the Appendix D.2.

Remarkably, under Assumption 1, we can decompose f10(p) and f01(p) as follows:

f10(p) = f1·(p
(1)) · f·0(p(2)) = f1·(p

(1)), f01(p) = f0·(p
(1)) · f·1(p(2)) = f·1(p

(2)), (13)

where f0·(p
(1)) = f·0(p

(2)) = 1. This decomposition allows us to transform the problem into
estimating f1·(p

(1)) and f·1(p
(2)), representing the marginal probability density of p1j and p2j under

alternatives, respectively. Assumption 2 provides the inspiration to utilize the symmetric regions
about D to address this estimation task, that is,

k1(p
(1)) =

π00 + π10f1·(p
(1))

π00 + π10
, k2(p

(2)) =
π00 + π01f·1(p

(2))

π00 + π01
, (14)
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where k1(p
(1)) denotes the density of p1j under H10 and H00, and k2(p

(2)) denotes the density of
p2j under H01 and H00.

We apply the beta kernel function to p1j in region D̃10 and D̃00, as well as to p2j in region D̃01 and
D̃00, to get the estimation of k1(p(1)) and k2(p

(2)) as

k̂1(p
(1)) = J−1

1

J1∑
j=1

K⋆
p(1),b (p1j) , k̂2(p

(2)) = J−1
2

J2∑
j=1

K⋆
p(2),b (p2j) , (15)

where J1 is the number of p-values in region D̃10 and D̃00, J2 is the number of p-values in region
D̃01 and D̃00. Combining the estimators in (10)-(11), (13)-(15), we obtain the estimation of f1·(p(1))
and f·1(p

(2)) as:

f̂1·(p
(1)) =

(π̂00 + π̂10)k̂1(p
(1))− π̂00

π̂10
, f̂·1(p

(2)) =
(π̂00 + π̂01)k̂2(p

(2))− π̂00

π̂01
. (16)

Therefore, the local FDR estimator is derived as:

f̂dr(p) =
π̂00f00(p) + π̂01f̂01(p) + π̂10f̂10(p)

f̂(p)
. (17)

2.3 Asymptotic FDR control

In this section, we present a selection strategy for the second step. The primary goal of our proposed
selection strategy is to maximize power while simultaneously controlling the FDR based on the
established ranking order from the first step, i.e., finding the optimal threshold ζ⋆ of the optimization
problem (9). However, determining such an optimal threshold ζ⋆ is a challenging task, as it involves
decision-making based on the estimation of global FDR. To address this challenge effectively, we
propose a data-driven strategy. Based on the notations in Section 2.2, the form of the FDP and FDR
are given by

FDP(ζ) =
#
{
j : j ∈ ∆00 ∪∆01 ∪∆10, j ∈ ∆̂

}
#{j : j ∈ ∆̂} ∨ 1

and FDR(ζ) = E(FDP(ζ)), (18)

where ∆̂ is the index set of selection in rejection region Ŝ(ζ) = {p : f̂dr(p) ≤ ζ}, i.e., j ∈ ∆̂ when
pj ∈ Ŝ(ζ), the denominator of FDP(ζ) represents the total number of rejections and the numerator
represents the number of false positives.

In mediation analysis, accurately estimating the number of false discoveries in (18) poses a chal-
lenge, since the rejection region Ŝ(ζ) comprises a mixture of four distinct types of hypotheses.
However, we can draw inspiration from Assumptions 1 and 2 to leverage the symmetry property of
p-values under the composite null hypothesis to estimate the number of false positives. We define
the symmetric regions of Ŝ as S̃01 = {(1 − p(1), p(2)) : f̂dr(p) ≤ ζ}, S̃10 = {(p(1), 1 − p(2)) :

f̂dr(p) ≤ ζ}, S̃00 = {(1−p(1), 1−p(2)) : f̂dr(p) ≤ ζ}. It’s noteworthy that the rejection region Ŝ is
a subset of the region D defined in Section 2.2, and its symmetric regions, S̃01 ⊆ D̃01, S̃10 ⊆ D̃10,
and S̃00 ⊆ D̃00. Indeed, Assumptions 1 and 2 provide us with an approximation of the number of
false positives in (18):

#
{
j ∈ ∆01 ∪∆00 :pj ∈ Ŝ(ζ)

}
≈ #

{
j ∈ ∆01 ∪∆00 :pj ∈ S̃01(ζ)

}
≈#

{
j :pj ∈ S̃01(ζ)

}
,

#
{
j ∈ ∆10 ∪∆00 :pj ∈ Ŝ(ζ)

}
≈ #

{
j ∈ ∆10 ∪∆00 :pj ∈ S̃10(ζ)

}
≈#

{
j :pj ∈ S̃10(ζ)

}
,

#
{
j ∈ ∆00 :pj ∈ Ŝ(ζ)

}
≈ #

{
j ∈ ∆00 :pj ∈ S̃00(ζ)

}
≈#

{
j :pj ∈ S̃00(ζ)

}
.

The number of the selection #
{
j : pj ∈ S̃01(ζ)

}
+#

{
j : pj ∈ S̃10(ζ)

}
−#

{
j : pj ∈ S̃00(ζ)

}
+1 can

be considered as an overestimation of #
{
j : j ∈ ∆00 ∪∆01 ∪∆10, j ∈ ∆̂

}
, and F̂DP(ζ) is given by

F̂DP(ζ) =
#
{
j : pj ∈ S̃01(ζ)

}
+#

{
j : pj ∈ S̃10(ζ)

}
−#

{
j : pj ∈ S̃00(ζ)

}
+ 1

#{j : pj ∈ Ŝ(ζ)} ∨ 1
. (19)
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Then the data-driven cutoff ζ⋆ can be determined as follows:

ζ⋆ = sup{ζ > 0 : F̂DP(ζ) ≤ α}, (20)

and the final selection is ∆̂ζ⋆ =
{
j : pj ∈ Ŝ(ζ⋆)

}
.

Finally, we summarize our proposed FDR control procedure in Algorithm 1.
Algorithm 1 A data-driven algorithm for FDR control.

1: Calculate a pair of p-values pj = (p1j , p2j) following model (2), where j = 1, . . . , J .
2: Estimate the proportions of the composite null hypothesis π̂00, π̂01, π̂10.
3: Estimate the null densities f̂01(p), f̂10(p) and the mixture density f̂(p) using the adaptation of

the beta kernel estimator.
4: Estimate the f̂dr(p) following (17).
5: For a nominal FDR level α ∈ (0, 1), select the mediators

{
j : pj ∈ Ŝ(ζ⋆)

}
where Ŝ(ζ) = {p :

f̂dr(p) ≤ ζ} and the cutoff ζ⋆ is

ζ⋆=sup{ζ > 0 : F̂DP(ζ) =
#
{
j :pj ∈ S̃01(ζ)

}
+#

{
j :pj ∈ S̃10(ζ)

}
−#

{
j :pj ∈ S̃00(ζ)

}
+ 1

#{j : pj ∈ Ŝ(ζ)} ∨ 1
≤ α}.

Remark 2. In a recent work of Deng et al. [13], a procedure called JM was introduced for de-
tecting simultaneous signals across multiple independent experiments. The core idea behind JM
is to partition the region of p-values into masked and unmasked areas, and then utilize p-values
from each of these regions to estimate FDR and local FDR, respectively. By leveraging the par-
tially revealed information from the unmasked area, JM updates the rejection region in the masked
area iteratively until it reaches the desired FDR level. In contrast to the stepwise updates in
the JM procedure, the AMDP does not require such iterative adjustment. By leveraging informa-
tion from large-scale testing, AMDP can accurately estimate the local FDR. Additionally, moti-
vated by the symmetric property of the composite null hypothesis, we proposed a data-driven al-
gorithm to determine the optimal rejection region. As shown in (19), the number of the selection
#

{
j : pj ∈ S̃01(ζ)

}
+ #

{
j : pj ∈ S̃10(ζ)

}
− #

{
j : pj ∈ S̃00(ζ)

}
+ 1, provides a less conservative estima-

tion of #
{
j : j ∈ ∆00 ∪ ∆01 ∪ ∆10, j ∈ ∆̂

}
than JM, which relies on conditional mirror conservation to

estimate FDP in masked region.

Theorem 2 below shows that for any nominal FDR level α ∈ (0, 1), both FDP(ζ⋆) and FDR(ζ⋆)
are under control using Algorithm 1, as the sample size n and the number of mediators J tend to
infinity.
Theorem 2. Assume that

(i) 1
J

∑J
j=1

∣∣∣f̂dr(pj)− fdr(pj)
∣∣∣ P−→ 0 as n, J → ∞;

(ii) For ζ ∈ (0, 1], P (fdr(pj) ≤ ζ | j ∈ ∆00 ∪∆01 ∪∆10) is continuous;

(iii) For any FDR level of α ∈ (0, 1), there exists a constant ζα ∈ (0, 1] such that
P (FDP (ζα) ≤ α) → 1 as J → ∞.

When Assumptions 1-2 holds, we have
FDP (ζ⋆) ≤ α+ op(1) and lim sup

n,J→∞
FDR(ζ⋆) ≤ α.

Proofs of Theorems 1-2 are given in Appendix E.
Remark 3. To demonstrate the effectiveness of our proposed method, we provide examples un-
der two scenarios that highlight how the loss of associated information across tests can result in
decreased power. We compare our method, AMDP, with the JS-mixture test[12] and the DACT
test[30], which provides further evidence for the utility of AMDP. Due to space limitations, this
section is postponed to the Appendix B.

3 Simulation Study

In this section, we conduct a thorough set of simulations to assess the performance of our proposed
method AMDP. For a comprehensive comparison, we evaluate two competing methods, the JS-
mixture [12] and the DACT [30]. The DACT method consists of two variants: DACT (Efron) and
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DACT (JC). The R implementations of JS-mixture and DACT can be found at https://github.
com/cran/HDMT and https://github.com/zhonghualiu/DACT, respectively. The exposure X
is simulated from Ber(0.5), then the mediator Mj and the outcome Yj are generated as follows:

Yj = βjMj + ϵj , ϵj ∼ N(0, 1),

Mj = αjX + ej , ej ∼ N(0, 1).

We respectively calculate the FDP and true discovery proportion (TDP) as follows:

FDP =
#
{
j : j ∈ ∆0, j ∈ ∆̂

}
#{j ∈ ∆̂} ∨ 1

, TDP =
#

{
j : j /∈ ∆0, j ∈ ∆̂

}
#{j /∈ ∆0} ∨ 1

. (21)

where ∆0 is the index set of the composite null mediators, ∆̂ is the index set of selected mediators.
The FDR and power are measured by averaging FDP and TDP over 200 replications, respectively.
Let τ be the mediation effect size parameter. We utilize the following six examples to conduct a
comprehensive comparison of the FDR and power for the four procedures.

Example 1. We fix (n, J) = (1000, 10000), (π00, π01, π10, π11) = (0.85, 0.05, 0.05, 0.05), and
vary τ from 0.6 to 1.2. Under H00, αj = 0 and βj = 0; under H01, αj = 0 and βj = 0.3τ ; under
H10, αj = 0.2τ and βj = 0; under H11, αj = 0.2τ and βj = 0.3τ ;

Example 2. We fix (n, J) = (1000, 10000), (π00, π01, π10, π11) = (0.4, 0.2, 0.2, 0.2), and vary τ
from 0.6 to 1.2. Under H00, αj = 0 and βj = 0; under H01, αj = 0 and βj = 0.3τ ; under H10,
αj = 0.2τ and βj = 0; under H11, αj = 0.2τ and βj = 0.3τ ;

Example 3. We fix (n, τ) = (1000, 1), (π00, π01, π10, π11) = (0.85, 0.05, 0.05, 0.05), and vary
J ∈ {5000, 8000, 10000, 20000}. Under H00, αj = 0 and βj = 0; under H01, αj = 0 and
βj = 0.3τ ; under H10, αj = 0.2τ and βj = 0; under H11, αj = 0.2τ and βj = 0.3τ ;

Example 4. We fix (n, τ) = (1000, 1), (π00, π01, π10, π11) = (0.4, 0.2, 0.2, 0.2), and vary J ∈
{5000, 8000, 10000, 20000}. Under H00, αj = 0 and βj = 0; under H01, αj = 0 and βj = 0.3τ ;
under H10, αj = 0.2τ and βj = 0; under H11, αj = 0.2τ and βj = 0.3τ ;

Example 5. We fix (J, τ) = (10000, 1), (π00, π01, π10, π11) = (0.85, 0.05, 0.05, 0.05), and vary
n ∈ {600, 800, 1000, 1200}. Under H00, αj = 0 and βj = 0; under H01, αj = 0 and βj = 0.3τ ;
under H10, αj = 0.2τ and βj = 0; under H11, αj = 0.2τ and βj = 0.3τ .

Example 6. We fix (J, τ) = (10000, 1), (π00, π01, π10, π11) = (0.4, 0.2, 0.2, 0.2), and vary n ∈
{600, 800, 1000, 1200}. Under H00, αj = 0 and βj = 0; under H01, αj = 0 and βj = 0.3τ ; under
H10, αj = 0.2τ and βj = 0; under H11, αj = 0.2τ and βj = 0.3τ .

Figure A1: The average FDR and power performance of four methods under Examples 1-2. The
sample size n is 1000 and the number of mediators J is 10000. The effect size parameter τ varies
from 0.6 to 1.2. The nominal FDR level is 0.1.
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To assess how the four methods are affected by effect size under sparse alternatives (π11 = 0.05)
and dense alternatives (π11 = 0.2), we apply the four methods in Examples 1-2. The effect size,
τ , is varied from 0.6 to 1.2 in both examples. The results of estimated FDR and power are summa-
rized in Figure A1. For sparse alternatives in Example 1, AMDP and JS-mixture maintain stable
FDR control at the nominal level across various effect sizes. DACT (Efron) consistently controls the
FDR but can be overly conservative, leading to potential under-identification of significant signals.
Moreover, the FDR level of DACT (JC) exhibits inflation under weak effects. In terms of power
analysis, AMDP emerges as the top performer, consistently outperforming the other three methods
in Example 1. JS-mixture ranks second when the effect is strong, while DACT (Efron) lags behind
due to its conservative behavior. For dense alternatives in Example 2, DACT (JC) fails to effec-
tively control the FDR, leading to substantially higher FDR than the nominal level. While DACT
(Efron) still exhibits overly conservative behavior. However, AMDP and JS-mixture maintain stable
FDR levels across different effect sizes in Example 2, highlighting their robustness in controlling
FDR. Regarding power analysis in Example 2, AMDP consistently outperforms the other methods,
demonstrating its ability to handle scenarios with a substantial proportion of H01 and H10 while still
achieving high power. JS-mixture ranks second in terms of power. It is noteworthy that in certain
settings of Example 2, DACT (JC) may exhibit higher power than AMDP. Nevertheless, this higher
power is often associated with severely inflated FDR levels. The conservation of DACT (Efron)
results in lower power compared to the other three methods.

(a) (b)

Figure A2: The average FDR and power performance of four methods under the targeted FDR
level of 0.1. (a) The comparison under Examples 3-4 for varying the number of mediators J ∈
{5000, 8000, 10000, 20000} with n = 1000, τ = 1; (b) The comparison under Examples 5-6 for
varying the sample size n ∈ {600, 800, 1000, 1200} with J = 10000, τ = 1.

Next, we move on to investigate whether the four methods are sensitive to changes in the large me-
diator size J under both sparse and dense alternative scenarios. Panel (a) of Figure A2 displays the
FDR and power performance of the four methods under Examples 3-4. In the sparse alternatives
scenario of Example 3, AMDP and JS-mixture demonstrate remarkable stability in controlling FDR
at the nominal level across different values of J . DACT (Efron) exhibits conservative FDR control.
While DACT (JC) is less conservative than DACT (Efron), it remains underpowered. In terms of
power analysis, AMDP and JS-mixture are the leading methods. DACT (JC) demonstrates higher
power when J is not very large, but its power decreases as J grows. DACT (Efron) consistently
displays lower power in all settings due to its conservative behavior. In the dense alternative sce-
nario of Example 4, DACT (JC) suffers from inflated FDR. In contrast, the FDRs of the other three
methods are under control with varying mediator sizes, though DACT (Efron) continues to be overly
conservative. Moreover, AMDP consistently delivers the highest power among all methods in the
dense alternative scenario. We note that JS-mixture performs competitively in terms of power. On
the other hand, the power of DACT (JC) decreases with the growth of J , which raises concerns
about its ability to detect true positives accurately in scenarios with larger mediator sizes. DACT
(Efron) consistently displays lower power in all settings.

In Examples 5-6, we explore the influence of sample size on FDR and power performance under
sparse and dense alternatives, respectively. The results of these analyses are presented in panel (b) of
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Figure A2. In Example 5, where a small proportion of alternative hypotheses is considered, AMDP
and JS-mixture stand out as more accurate and stable in controlling the FDR among all methods.
When the sample size is small, DACT (JC) exhibits a slightly higher FDR compared to AMDP and
JS-mixture. DACT (Efron) remains overly conservative. The power of the four approaches initially
decreases and then increases with the growth of n. Specially, for all four methods, the lowest power
is achieved at n = 800 among all the tested sample sizes. Moreover, AMDP consistently delivers
reasonably higher power compared to the other three methods. In the dense alternatives of Example
6, DACT (JC) encounters challenges in maintaining FDR control, particularly when n is small. In
contrast, AMDP, JS-mixture, and DACT (Efron) effectively control the FDR across different settings.
Regarding power performance, AMDP, JS-mixture, and DACT (Efron) demonstrate a consistent
increase in power as n grows. In some settings, DACT (JC) appears to perform better than AMDP.
Nevertheless, this seemingly higher power of DACT (JC) is a result of the severely inflated FDR
levels. We note that the consistent superiority of AMDP in both FDR control and power, as observed
in Examples 5 and 6, aligns with the theoretical results presented in Theorem 1.

4 Data Analysis

Prostate cancer is a prevalent disease among men, with a multifactorial etiology involving genetic,
environmental, and lifestyle factors. There is a growing recognition that DNA methylation plays an
important role in regulating gene expression [44]. Additionally, the number of GWASs-identified
risk SNP that influence DNA methylation levels in prostate cancer has reached a total of 167 [6].
Despite significant progress in understanding the role of DNA methylation in gene expression regu-
lation and identifying prostate cancer risk SNPs, further research is strongly encouraged to uncover
the specific CpG sites that contribute to the regulatory effects of risk SNPs on their target genes.

We apply our proposed AMDP, JS-mixture [12], and DACT [30], including DACT (Efron) and
DACT (JC), to analyze the TCGA prostate cancer dataset. The dataset is freely available at https:
//portal.gdc.cancer.gov. Our analysis focuses on 495 primary prostate tumor samples with
information on 147 prostate cancer risk SNPs, DNA methylation, and gene expression. In total,
we consider 69,602 CpG methylation probes (M ) as potential mediators. The risk SNPs are the
exposure variable (X), and gene expression is the outcome variable of interest (Y ). The primary
objective of our analysis is to explore the potential causal role of CpG methylation in the association
between prostate cancer risk SNPs and gene expression. We estimate the null proportions as π̂00 =
0.52, π̂10 = 0.03, and π̂01 = 0.42, respectively. Figure A2 of the Appendix C displays the number of
significant triplets (X −M −Y ) detected by AMDP, JS-mixture, DACT (Efron), and DACT (JC) at
different nominal FDR levels α ranging from 0.01 to 0.1. It can be seen that, in the majority of cases,
AMDP outperforms the other three methods by identifying more triplets at the same FDR level. On
average, the discoveries made by AMDP are approximately 20.2% higher than those of JS-mixture,
86.6% higher than those of DACT (Efron), and 42.6% higher than those of DACT (JC), across the
range of α values from 0.01 to 0.1. This substantial improvement in performance highlights the
effectiveness of AMDP in identifying non-zero mediation effects in the prostate cancer dataset.

Additional results of Section 4 are postponed to the Appendix C.

5 Discussion

In this paper, we develop a novel adaptive mediation detection procedure (AMDP) to identify signif-
icant mediators in high-dimensional mediation analysis. The novel approach determines the optimal
ranking for hypotheses, and then employs a data-driven strategy to select the threshold for mediator
identification. We demonstrate the effectiveness of our proposed method through theoretical analy-
sis and simulation results. There is a potential avenue for future research. We discuss the mediation
effect based on the marginal model in this paper, where the p-values are independent. How to further
study relevant mediators from two aspects of theory and application is an interesting topic.
Limitation Our approach effectively handles high-dimensional mediators but may not perform opti-
mally when confronted with low-dimensional mediators. This distinction is attributed to the nature
of our method, wherein the two-dimensional p-values linked to each exposure-mediator-outcome
relationship effectively serve as "samples" for the estimation of local FDR and FDP. Consequently,
the reduction in dimensionality can lead to less precise estimates of local FDR and FDP.
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AMDP: An Adaptive Detection Procedure
for False Discovery Rate Control in

High-Dimensional Mediation Analysis

Appendix
A Selection of an appropriate λ

In Section 2.2, we estimate π̂00(λ), π̂10(λ), and π̂01(λ) using the method proposed by Storey et al.
[41] with a fixed parameter λ. The estimators are calculated in (10)-(11). Theoretical considerations
suggest that as λ approaches 1, the estimators of the composite null hypothesis become more accu-
rate asymptotically. However, in finite samples scenarios, with a larger value of λ, the chance of
these null p-values falling within (λ, 1] gets smaller, resulting in less accurate estimates. Conversely,
when λ becomes smaller, the bias of the null estimators increases while the variance decreases [41].
Consequently, there exists an inherent bias-variance trade-off in the selection of λ.

To strike a reasonable balance between bias and variance, we aim to determine λ by minimizing
the mean-squared error (MSE) of the estimators. The MSE is defined as E[{π̂00(λ) − π00}2 +
{π̂10(λ) − π10}2 + {π̂01(λ) − π01}2]. For achieving this goal, we consider a range of cutpoints
for λ (e.g., λ = 0.1, 0.2, . . . , 0.9) and calculate the MSE for each value of λ. As highlighted by
Barfield et al. [3], a substantial proportion of null hypotheses may exhibit both α = 0 and β = 0 in
a genome-wide study involving high-dimensional mediation hypotheses. To investigate the choice
of λ in such scenarios, we consider the following settings, as shown in Table A1.

Table A1: The composite null proportions under different scenarios.
Hypothesis Configuration π00 π10 π01 π11

Scenario 1 0.2 0.3 0.3 0.2
Scenario 2 0.4 0.2 0.2 0.2
Scenario 3 0.5 0.2 0.2 0.1
Scenario 4 0.6 0.15 0.15 0.1
Scenario 5 0.75 0.1 0.1 0.05
Scenario 6 0.85 0.05 0.05 0.05

Table A2 shows means and MSE of the estimated null proportions under the six scenarios with
n=1000, J=10000, αj= 0.2, and βj=0.3. In each scenario, we identified the top three smallest
MSEs among the estimated null proportions. Notably, we observed that the optimal value of λ
varied across the different scenarios. However, it is noteworthy that λ = 0.5 consistently appeared
among the top three MSE values in all the simulated scenarios. As mentioned earlier, smaller values
of λ tend to result in larger biases of the null estimate, while excessively large values of λ may yield
inaccurate estimates in finite sample scenarios. Therefore, the consistent appearance of λ = 0.5
among the top-performing MSE values suggests that it provides a reasonable trade-off between bias
and variance, leading to accurate estimates across a wide range of scenarios. Considering its stability
and computational efficiency, we believe that λ = 0.5 is a suitable choice for estimating the null
proportions in high-dimensional mediation analysis.

B Comparison with existing methods

In this section, we demonstrate the loss of information during the ranking step can result in decreased
statistical power, despite controlling the FDR at the desired level.
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Table A2: The performance of the estimated proportions of the composite null hypothesis (mean
and MSE) under the six scenarios. The tuning parameter λ varies from 0.1 to 0.9.

Scenario 1 π̂00 π̂10 π̂01 MSE Scenario 2 π̂00 π̂10 π̂01 MSE
λ=0.1 0.222 0.278 0.314 1.17e-3 λ=0.1 0.415 0.185 0.215 6.41e-4
λ=0.2 0.211 0.289 0.308 3.10e-4 λ=0.2 0.408 0.192 0.208 1.88e-4
λ=0.3 0.207 0.293 0.306 1.20e-4 λ=0.3 0.406 0.194 0.205 9.14e-5
λ=0.4 0.205 0.295 0.305 6.69e-5 λ=0.4 0.404 0.196 0.204 4.61e-5
λ=0.5 0.203 0.296 0.303 3.03e-5 λ=0.5 0.402 0.196 0.203 2.56e-5
λ=0.6 0.203 0.296 0.303 3.25e-5 λ=0.6 0.403 0.197 0.202 2.46e-5
λ=0.7 0.202 0.297 0.302 1.96e-5 λ=0.7 0.406 0.194 0.198 7.62e-5
λ=0.8 0.201 0.299 0.302 5.94e-6 λ=0.8 0.405 0.195 0.199 5.96e-5
λ=0.9 0.206 0.295 0.296 8.54e-5 λ=0.9 0.405 0.192 0.198 8.69e-5

Scenario 3 π̂00 π̂10 π̂01 MSE Scenario 4 π̂00 π̂10 π̂01 MSE
λ=0.1 0.515 0.185 0.207 4.84e-4 λ=0.1 0.611 0.139 0.157 2.94e-4
λ=0.2 0.507 0.192 0.204 1.38e-4 λ=0.2 0.606 0.144 0.154 8.07e-5
λ=0.3 0.505 0.194 0.203 6.82e-5 λ=0.3 0.604 0.146 0.152 3.79e-5
λ=0.4 0.504 0.196 0.201 3.81e-5 λ=0.4 0.602 0.148 0.152 1.18e-5
λ=0.5 0.503 0.197 0.201 1.91e-5 λ=0.5 0.602 0.148 0.151 7.87e-6
λ=0.6 0.502 0.196 0.202 2.24e-5 λ=0.6 0.603 0.147 0.150 1.79e-5
λ=0.7 0.503 0.195 0.199 3.15e-5 λ=0.7 0.604 0.148 0.148 2.12e-5
λ=0.8 0.501 0.197 0.202 1.36e-5 λ=0.8 0.604 0.147 0.147 2.92e-5
λ=0.9 0.501 0.198 0.201 6.69e-6 λ=0.9 0.602 0.150 0.150 3.19e-6

Scenario 5 π̂00 π̂10 π̂01 MSE Scenario 6 π̂00 π̂10 π̂01 MSE
λ=0.1 0.757 0.093 0.104 1.22e-4 λ=0.1 0.854 0.046 0.053 4.12e-5
λ=0.2 0.754 0.096 0.103 3.69e-5 λ=0.2 0.853 0.048 0.052 1.25e-5
λ=0.3 0.753 0.097 0.102 2.22e-5 λ=0.3 0.853 0.048 0.050 1.19e-5
λ=0.4 0.751 0.099 0.102 6.94e-6 λ=0.4 0.852 0.049 0.050 3.79e-6
λ=0.5 0.752 0.099 0.101 3.38e-6 λ=0.5 0.850 0.049 0.051 9.69e-7
λ=0.6 0.754 0.097 0.099 2.35e-5 λ=0.6 0.851 0.050 0.051 1.40e-6
λ=0.7 0.755 0.096 0.098 4.53e-5 λ=0.7 0.849 0.052 0.052 1.16e-5
λ=0.8 0.751 0.098 0.101 5.44e-6 λ=0.8 0.848 0.054 0.056 6.07e-5
λ=0.9 0.765 0.091 0.090 4.09e-4 λ=0.9 0.857 0.056 0.055 1.11e-4
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To conduct this investigation, we consider three different approaches for comparison: our proposed
AMDP, along with two existing methods, the JS-mixture [12] and the DACT [30]. During the selec-
tion step, it is assumed that the information about the proportions of the composite null hypothesis
and the distributions of p-values under alternatives are known. This provided knowledge allows for
effectively controlling the FDR of all three procedures at the predefined level of α in the selection
step. With the FDR under control, we then proceed to investigate how different ranking strategies
impact the power performance of the three methods. To achieve this, we compare the rejection re-
gions of each method under various scenarios. Formally, the ranking statistic for each method is as
follows:

δJS−mixture = pmax,

δDACT = ω1p
(1) + ω2p

(2) + ω3pmax,

δAMDP = fdr(p),

where pmax = p(1) ∨ p(2), ∨ denotes the maximum of the two p-values. ω1, ω2 and ω3 are normal-
ized relative proportions of the composite null. We consider two scenarios to compare the ranking
statistic of the three methods:

Scenario 1 Balanced null proportions of H01 and H10:

f(p(1), p(2)) = 0.49 + 0.21× 0.6p(1)
−0.4

+ 0.21× 0.3p(2)
−0.7

+ 0.09× 0.18p(1)
−0.4

p(2)
−0.7

,

where the density functions of p-values under alternatives are f(p(1) | H10) ∼ Beta(0.6, 1) and
f(p(2) | H01) ∼ Beta(0.3, 1). The proportions of composite hypothesis are π00 = 0.49, π01 =
π10 = 0.21, and π11 = 0.09.

Scenario 2 Unbalanced null proportions of H01 and H10:

f(p(1), p(2)) = 0.4 + 0.1× 0.4p(1)
−0.6

+ 0.4× 0.6p(2)
−0.4

+ 0.1× 0.24p(1)
−0.6

p(2)
−0.4

,

where the density functions of p-values under alternatives are f(p(1) | H10) ∼ Beta(0.4, 1) and
f(p(2) | H01) ∼ Beta(0.6, 1). The proportions of composite hypothesis are π00 = 0.4, π01 = 0.4,
π10 = 0.1, and π11 = 0.1.

(a) (b)

Figure A3: (a) The rejection regions of the three methods under Scenario 1; (b) The rejection regions
of the three methods under Scenario 2.

Theorem 1 has proved that the ranking statistic of AMDP is optimal among those methods that
effectively control the FDR at the nominal level. Therefore, we refer to the rejection region of
AMDP as the oracle rejection region in the sense that it achieves the highest power under FDR
control. In Scenarios 1-2, we compare the rejection regions of JS-mixture and DACT with the
oracle rejection region when the FDR level can be precisely controlled to the specified level. This
comparison provides deep insights into the impact of information loss during the ranking step on
power.
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Figure A3 visually presents the local FDR for the four-group model (5) in both Scenarios 1-2, as
well as the rejection region for the three procedures. The color intensity in the figure represents the
level of local FDR, with darker colors indicating lower local FDR, thus the corresponding hypothesis
is more likely to be rejected. While the rejection regions of all three methods are all located in areas
with lower local FDR, we emphasize that the AMDP is superior since it simultaneously considers
information about proportions of the composite null hypothesis and the distributions of p-values un-
der alternatives, leading to more accurate and reliable selection of mediators. In contrast, the other
two methods only take into account partial information during the ranking step, which results in
decreased power. The insensitivity of the JS-mixture method to changes in proportions and distribu-
tions is noteworthy. As described in panels (a)-(b), the shape of its rejection region remains square
regardless of the scenarios. On the other hand, the DACT method only considers partial information
about proportions of the null, since its rejection domain remains symmetrical under Scenario 1 (Bal-
anced proportion of H01 and H10), and shifts towards the larger distribution side under Scenario 2
(Unbalanced proportion of H01 and H10). In contrast, the AMDP method fully captures all relevant
information above, as the oracle rejection region is sensitive to the change in both proportions and
distributions. This allows the AMDP method to adapt and adjust its rejection region accordingly,
making it more effective in identifying significant signals.

C Additional results of Section 4

In this section, we demonstrate additional results related to the data analysis of the prostate cancer
dataset in Section 4, including Table A3 and Figures A4-A5.

Figure A4: The number of triplets discovered by four methods. The nominal FDR level α varies
from 0.01 to 0.1. The blue, green, orange, and pink bars represent the numbers of triplets identified
by JS-mixture, DACT (Efron), DACT (JC), and AMDP, respectively.

Figure A5 provides an overview observation of the prostate cancer dataset as well as the rejection
regions of JS-mixture, DACT (Efron), DACT (JC), and AMDP. Panel (a) shows the dispersion of
p-values. However, the high density of the p-values makes it difficult to observe carefully. Thus, we
depict the details of the TCGA dataset in different aspects in panels (b), (c), and (d), respectively,
for providing a clearer insight. In panels (e)-(h), and (i)-(l), we compare the rejection regions of
four methods: JS-mixture, DACT (Efron), DACT (JC), and AMDP at FDR levels of 0.05 and 0.1,
respectively.

From panels (b)-(d), it can be seen that the distribution of p-values is influenced by information
related to the composite null hypothesis. In panel (b), there is a slightly denser concentration of
p-values near the p(1) = 0 axis. This occurrence can be attributed to the presence of π̂10 = 0.03,
as mentioned earlier. On the other hand, panel (c) exhibits a notable concentration of p-values near
the p(2) = 0 axis. This pattern is influenced by the presence of a significant number of cases falling
under H01, which affects the distribution of p-values. As a result, we observe an accumulation of
p-values near the p(2) = 0 axis in the plot. Panel (d) demonstrates a seemingly uniform distribution
of p-values. This uniformity can be attributed to the theoretical expectation that only p-values under
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Figure A5: (a) An overview of p-values obtained from TCGA prostate cancer dataset; (b) The
dispersion of p-values in the region [0, 0.2] × [0.8, 1]; (c) The dispersion of p-values in the region
[0.8, 1]× [0, 0.2];(d) The dispersion of p-values in the region [0.8, 1]× [0.8, 1]; (e)-(h) The rejection
domains of JS-mixture, DACT (Efron), DACT (JC), and AMDP at the targeted FDR level 0.05,
respectively; (i)-(l) The rejection domains of JS-mixture, DACT (Efron), DACT (JC), and AMDP
at the targeted FDR level 0.1, respectively; The black dots represent the p-values of all triplets. The
blue, green, orange, and pink dots represent p-values of triplets identified by JS-mixture, DACT
(Efron), DACT (JC), and AMDP, respectively.

H00 exist in the region [0.8, 1] × [0.8, 1]. At the FDR level of 0.05, the rejection region of JS-
mixture in panel (e) corresponds to a square shape. However, this symmetric shape does not reflect
any information related to the distribution of p-values or the proportions of the composite null. In
contrast, DACT (Efron) considers the proportion of null hypotheses and demonstrates a preference
for rejecting fewer hypotheses with p-values close to p(2) = 0 to minimize false discoveries, as
shown in panel (f). However, the number of triplets identified by DACT (Efron) is the least among
all methods, resulting an overly conservative behavior. The conservatism observed in DACT (Efron)
is alleviated by DACT (JC), as panel (g) reveals that DACT (JC) identifies more significant triplets
compared to DACT (Efron). DACT (JC) offers a more efficient approach by adjusting the threshold
of the rejection region to achieve a higher sensitivity. In panel (h), we observe that the rejection
region of AMDP is adaptive. AMDP estimates the number of false discoveries based on symmetric
regions of the rejection region, allowing for more effective and accurate control of false discoveries,
and well-calibrated adjustments to the rejection region. AMDP strikes a better performance on
detecting significant triplets among all procedures. Next, we turn to investigate the rejection regions
of these four methods at the FDR level of 0.1. In panel (i), it is observed that the rejection region of
JS-mixture remains insensitive to changes in FDR levels, maintaining its square shape. As shown
in panels (j)-(k), both DACT (Efron) and DACT (JC) exhibit increased identification of triplets
compared to the FDR level of 0.05. Nevertheless, they still appear to be somewhat underpowered in
efficiently detecting significant triplets. In contrast, AMDP outperforms all the other methods at the
same FDR level, as demonstrated in panel (l). By leveraging information on the proportions of null
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and calibrating its rejection region dynamically, AMDP achieves better power to identify significant
triplets.

Table A3: Top ten triplets identified by AMDP at the FDR level 0.1.

SNP ID CpG Name Gene Chromosome p1 p2

rs12653946 cg00626856 IRX4 5 6.60e-56 2.66e-20
rs12653946 cg03587843 IRX4 5 1.95e-51 1.03e-19
rs12653946 cg06161964 IRX4 5 1.99e-53 2.02e-22
rs12653946 cg09672187 IRX4 5 4.01e-65 2.13e-33
rs12653946 cg11279838 IRX4 5 3.97e-64 3.61e-27
rs12653946 cg14051264 IRX4 5 7.62e-67 8.86e-26
rs12653946 cg26195178 IRX4 5 2.52e-61 2.43e-26
rs5945619 cg16065628 NUDT11 X 6.75e-32 2.79e-42
rs1933488 cg23651356 RGS17 6 7.25e-20 2.81e-16
rs12653946 cg14823763 IRX4 5 8.13e-47 1.27e-15

The top ten triplets identified by AMDP are summaried in Table A3. These ten triplets consist of ten
CpG sites and three genes. The CpG sites involved in these triplets are located in close proximity to
the transcription starting sites, and their DNA methylation level are closely related to the expression
of the corresponding genes [12]. Among the identified triplets, the three genes, IRX4, NUDT11,
and RGS17, have been shown to be associated with altered CpG methylation. IRX4 is a causative
gene of the prostate cancer susceptibility locus [45]. The corresponding SNP rs12653946, a variant
previously confirmed to be associated with prostate cancer, is significantly associated with IRX4
expression [6]. The increased expression of NUDT11 has been confirmed to be associated with the
risk variant rs5945619 [22, 29]. RGS17 is a commonly induced gene in prostate tumors, and has
been found crucial for the maintenance of the proliferative potential of tumor cells [8].

D Discussions on the parameter choice and assumptions

D.1 Parameter choice

In Figures 1-2 in Section 3, we assess how the four methods (JS-mixture, DACT (Efron), DACT (JC),
and AMDP) are influenced by effect size, the large mediator size and sample size. To ensure the
realism of our experiments, we carefully selected our simulation parameters. Motivated from several
real-world datasets including the TCGA lung cancer cohort dataset [47], the Multi-Ethnic Study of
Atherosclerosis [15], and the TCGA prostate cancer dataset [12], we adopt similar parameter settings
as those used in [12] to construct the simulation examples in Section 3.

Regarding the choice of nominal FDR level, we initially used an FDR level of 0.1, which is a widely
accepted standard in the field [12, 34]. Another common FDR level is 0.05 [23, 39]. To provide
a comprehensive analysis, we conducted experiments at the FDR threshold of 0.05 across a wide
range of sample sizes (200, 500, 1000, and 5000). We present the experimental results under sparse
alternatives scenario and dense alternatives scenario in Tables A4-A5. It’s noteworthy that the results
are similar with those obtained using the FDR level of 0.1 in Section 3.

D.2 Discussion on Assumptions 1-2

Our method extracts a pair (p(1), p(2)) for each exposure-mediator-outcome relationship and em-
ploys these pairs to estimate the FDP on a two-dimensional plane [0, 1] × [0, 1]. The theoretical
basis supporting FDP estimation is the assumption that p-values are uniformly distributed under the
null hypothesis, which is a widely recognized principle [7, 24]. Due to the presence of a composite
null hypothesis in the mediation effect, we elaborate on Assumptions 1-2 to illustrate the properties
of the p-value distribution under composite null hypothesis.

For Assumption 1, under H00, both p1j and p2j obey the uniform distribution, resulting in (p1j , p2j)
also following the uniform distribution on the two-dimensional plane [0, 1]×[0, 1]. Consequently, the
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Table A4: The FDR and power performance of the four methods with effect size αj=0.2, βj=0.3
under sparse alternatives scenario. The nominal FDR level is 0.05, and the number of mediators is
15000.

Method FDR Power

n=200

AMDP 0.0530 0.0474
JS-mixture 0.0284 0.0187

DACT (Efron) 0.0091 0.0055
DACT (JC) 0.0859 0.0960

n=500

AMDP 0.0454 0.4665
JS-mixture 0.0438 0.3714

DACT (Efron) 0.0140 0.2254
DACT (JC) 0.0793 0.4960

n=1000

AMDP 0.0488 0.8698
JS-mixture 0.0500 0.7931

DACT (Efron) 0.0114 0.6101
DACT (JC) 0.0299 0.7460

n=5000

AMDP 0.0498 0.9999
JS-mixture 0.0529 1

DACT (Efron) 8.00e-05 0.9986
DACT (JC) 0.0935 1

Table A5: The FDR and power performance of the four methods with effect size αj=0.2, βj = 0.3
under dense alternatives scenario. The nominal FDR level is 0.05, and the number of mediators is
15000.

Method FDR Power

n=200

AMDP 0.0471 0.0331
JS-mixture 0.0348 0.0206

DACT (Efron) 0.0449 0.0379
DACT (JC) 0.1156 0.1673

n=500

AMDP 0.0460 0.4768
JS-mixture 0.0504 0.4168

DACT (Efron) 0.0333 0.3488
DACT (JC) 0.1640 0.6839

n=1000

AMDP 0.0487 0.8734
JS-mixture 0.0541 0.8208

DACT (Efron) 0.0315 0.7636
DACT (JC) 0.0818 0.8674

n=5000

AMDP 0.0501 1
JS-mixture 0.0544 1

DACT (Efron) 0.0116 1
DACT (JC) 0.1085 1

sampling distribution of (p1j , p2j) is symmetrical around p(1) = 0.5 and p(2) = 0.5. Under H01, p1j
still obeys the uniform distribution, but p2j does not, leading to (p1j , p2j) being only symmetrical
about p(1) = 0.5 on [0, 1] × [0, 1]. Similarly, under H10, p2j obeys the uniform distribution, but
p1j does not, resulting in (p1j , p2j) being only symmetrical about p(2) = 0.5 on [0, 1]× [0, 1]. It is
essential to emphasize that Assumption 1 specifically applies to the null mediators.

For Assumption 2, a non-null p-value theoretically lies within [0, 0.5). Therefore, as the sample size
n tends to infinity, the probability of p-values under alternative hypotheses falling within [0.5, 1]
approaches zero. For example, as n goes to infinity, p-values under H11 and H10 are not expected
to fall within the region D̃01 = [0.5, 1] × [0, 0.5) because non-null p1j not lies within [0.5, 1]

theoretically, therefore the region D̃01 only contains p-values under H00 and H01. Similarly, the
region D̃10 theoretically only includes p-values under H00 and H10.
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E Proofs

E.1 Proof of Theorem 1

For any rejection region S ∈ [0, 1]2, the global FDR in mediation analysis is defined as follows
gFDR(S) = P(H00 ∪H01 ∪H10 = 1 | pj ∈ S)

=
π00P(pj ∈S |H00 = 1)+π01P(pj ∈S |H01 = 1)+π10P(pj ∈S |H10 = 1)

π00P(pj ∈S |H00 = 1)+π01P(pj ∈S |H01 = 1)+π10P(pj ∈S |H10 = 1)+π11P(pj ∈S |H11 = 1)

=
π00

∫
S
f00(p)dp+π01

∫
S
f01(p)dp+π10

∫
S
f10(p)dp

π00

∫
S
f00(p)dp+π01

∫
S
f01(p)dp+π10

∫
S
f10(p)dp+π11

∫
S
f11(p)dp

.

(A.1)
We introduce some notations

D00(S) =

∫
S

f00(p)dp, D01(S) =

∫
S

f01(p)dp, D10(S) =

∫
S

f10(p)dp, D11(S) =

∫
S

f11(p)dp.

Thus, gFDR(S) is transformed into

gFDR(S) =
π00D00(S) + π01D01(S) + π10D10(S)

π00D00(S) + π01D01(S) + π10D10(S) + π11D11(S)

=
1

1 + {D11(S)/(γ00D00(S) + γ01D01(S) + γ10D10(S))}
,

(A.2)

where γ00 =
π00

π11
, γ01 =

π01

π11
, γ10 =

π10

π11
. For any threshold ζ ∈ (0, 1], define the rejection region

S(ζ) as

S(ζ) =

{
p :

π00f00(p) + π01f01(p) + π10f10(p)

π00f00(p) + π01f01(p) + π10f10(p) + π11f11(p)
≤ ζ

}

=

{
p :

1

1 + {f11(p)/(γ00f00(p) + γ01f01(p) + γ10f10(p))}
≤ ζ

}
.

(A.3)

Here we prove that gFDR(S(ζ)) is a non-decreasing function of ζ. Suppose ζ2 > ζ1, considering two
cases:

Case 1 ν(S(ζ2)− S(ζ1)) = 0. We derive that gFDR(S(ζ1)) = gFDR(S(ζ2)).

Case 2 ν(S(ζ2)− S(ζ1)) > 0. We can prove that gFDR(S(ζ)) is a non-decreasing function of ζ if

D11(S(ζ2)− S(ζ1))

γ00D00(S(ζ2)− S(ζ1)) + γ01D01(S(ζ2)− S(ζ1)) + γ10D10(S(ζ2)− S(ζ1))

<
D11(S(ζ1))

γ00D00(S(ζ1)) + γ01D01(S(ζ1)) + γ10D10(S(ζ1))

(A.4)

holds, the reason is as follows. Let

m1 = sup

{
f11(p)

γ00f00(p) + γ01f01(p) + γ10f10(p)
: p ∈ S (ζ2)− S (ζ1)

}
,

m2 = inf

{
f11(p)

γ00f00(p) + γ01f01(p) + γ10f10(p)
: p ∈ S (ζ1)

}
.

By the definition of region S(ζ), we have m2 > m1 obviously. Therefore, we have
D11(S(ζ1))

γ00D00(S(ζ1)) + γ01D01(S(ζ1)) + γ10D10(S(ζ1))

≥ m2
γ00D00(S(ζ1)) + γ01D01(S(ζ1)) + γ10D10(S(ζ1))

γ00D00(S(ζ1)) + γ01D01(S(ζ1)) + γ10D10(S(ζ1))

> m1
γ00D00(S(ζ2)− S(ζ1)) + γ01D01(S(ζ2)− S(ζ1)) + γ10D10(S(ζ2)− S(ζ1))

γ00D00(S(ζ2)− S(ζ1)) + γ01D01(S(ζ2)− S(ζ1)) + γ10D10(S(ζ2)− S(ζ1))

≥ D11(S(ζ2)− S(ζ1))

γ00D00(S(ζ2)− S(ζ1)) + γ01D01(S(ζ2)− S(ζ1)) + γ10D10(S(ζ2)− S(ζ1))
.

(A.5)
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Furthermore, we decompose the region S(ζ2) as follows

D11(S(ζ2))

γ00D00(S(ζ2))+γ01D01(S(ζ2))+γ10D10(S(ζ2))

=
{
D11(S(ζ2)−S(ζ1))+D11(S(ζ1))

}/
γ00D00(S(ζ2)−S(ζ1))+γ01D01(S(ζ2)−S(ζ1))

+γ10D10(S(ζ2)−S(ζ1)) + γ00D00(S(ζ1))

+γ01D01(S(ζ1))+γ10D10(S(ζ1))

 .

(A.6)

Combined with (A.4), we obtain

D11(S(ζ1))

γ00D00(S(ζ1))+γ01D01(S(ζ1))+γ10D10(S(ζ1))
>

D11(S(ζ2))

γ00D00(S(ζ2))+γ01D01(S(ζ2))+γ10D10(S(ζ2))
.

(A.7)
Moreover, by the definition of gFDR(S), it holds that

gFDR(S(ζ1)) < gFDR(S(ζ2)).

Under the Assumption (ii) in Theorem 1, for a given α ∈ (0, 1), there exists a threshold ζ⋆ > 0, s.t.
gFDR(S(ζ⋆)) = α. For the ease of presentation, we denote S(ζ⋆) as S⋆. In the following, we will
prove that S⋆ is the optimal rejection region.

Considering any set T that satisfies D11(T ) > D11(S
⋆). Let RT = T − S⋆ and RS = S⋆ − T .

We can derive that
D11(T ) = D11(T ∩ S⋆) +D11(RT ),

D11(S) = D11(T ∩ S⋆) +D11(RS).
(A.8)

Then, we have D11(RT ) > D11(RS). By the definition of S⋆, we have

inf

{
γ00f00(p)+γ01f01(p)+γ10f10(p)

f11(p)
: p ∈ RT

}
> sup

{
γ00f00(p)+γ01f01(p)+γ10f10(p)

f11(p)
: p ∈ RS

}
.

(A.9)
Therefore,

γ00D00(RT )+γ01D01(RT )+γ10D10(RT )

D11(RT )
>

γ00D00(RS))+γ01D01(RS)+γ10D10(RS)

D11(RS)
. (A.10)

In a similar way, we can derive that

γ00D00(RT )+γ01D01(RT )+γ10D10(RT )

D11(RT )
>

γ00D00(T ∩ S⋆))+γ01D01((T ∩ S⋆)+γ10D10((T ∩ S⋆)

D11((T ∩ S⋆)
.

(A.11)
Finally, we have

γ00D00(T )+γ01D01(T )+γ10D10(T )

D11(T )

=
γ00D00(T ∩ S⋆)+γ01D01(T ∩ S⋆)+γ10D10(T ∩ S⋆)+γ00D00(RT )+γ01D01(RT )+γ10D10(RT )

D11(T ∩ S⋆)+D11(RT )

>
γ00D00(T ∩ S⋆)+γ01D01(T ∩ S⋆)+γ10D10(T ∩ S⋆)+γ00D00(RS)+γ01D01(RS)+γ10D10(RS)

D11(T ∩ S⋆)+D11(RS)

=
γ00D00(S

⋆)+γ01D01(S
⋆)+γ10D10(S

⋆)

D11(S⋆)
.

(A.12)
The second inequality holds because D11(RT ) > D11(RS), implying gFDR(T ) >

gFDR(S(ζ⋆)) = α. Therefore, we can conclude that the rejection region S (ζ⋆) is optimal.

E.2 Proof of Theorem 2

E.2.1 The consistent estimator of local FDR

To justify Assumption (i) for the corresponding local FDR estimator in Theorem 2, we first prove
the consistency of local FDR estimator under L∞ norm in Proposition 1.
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Proposition 1. Assume that the smoothing parameter b satisfies

lim
J→∞

b = 0 and lim
J→∞

Jb2 = +∞.

Then, we have
sup

pj∈[0,1]2

∣∣∣f̂dr(pj)− fdr(pj)
∣∣∣ P−→ 0 as n, J → ∞.

Let g be a probability density on [0, 1], and ĝ be the beta kernel estimator:

ĝ(p(i)) = J−1
J∑

j=1

K⋆
p(i),b(pij), i = 1, 2.

To prove the consistency of the beta kernel estimator ĝ, i.e

sup
p(i)∈[0,1]

∣∣∣ĝ(p(i))− g(p(i))
∣∣∣ P−→ 0 as J → ∞, (A.13)

we first need to establish the uniform convergence of its bias on the interval [0, 1].
Lemma 1. Let g be the probability density on [0, 1], and ĝ be the beta kernel estimator. We have

sup
p(i)∈[0,1]

∣∣∣E{
ĝ(p(i))

}
− g(p(i))

∣∣∣ → 0 as b → 0, i = 1, 2.

Proof of Lemma 1. Without loss of generality, we replace p(i), i = 1, 2 with p for simplifying the
proof steps, and discuss three cases in the following.

Case 1 p ∈ (2b, 1 − 2b) Denote µ1 and σ2
1 are mean and variance of P, a variable following

Beta(p/b, (1− p)/b). According to Johnson et al. [26], there exists a constant C such that

µ1 = p, (A.14)

σ2
1 = bp(1− p) +R2(p), (A.15)

where R2(p) ≤ Cb2. Because f is a probability density on [0, 1], for ε > 0, there exists a δ > 0
such that

|g(t)− g(p)| < ε for |p− t| < δ (A.16)

for all p ∈ (2b, 1− 2b); According to (A.14), we have

|µ1 − p| < δ/2 for all p ∈ (2b, 1− 2b). (A.17)

Therefore, we can derive that

|E {ĝ(p)} − g(p)| =

∣∣∣∣∣
∫ 1−2b

2b

{g(t)− g(p)}K
(
t,
p

b
,
1− p

b

)
dt

∣∣∣∣∣
≤
∫
|t−µ1|<δ/2

|g(t)− g(p)|K
(
t,
p

b
,
1− p

b

)
dt

+

∫
|t−µ1|>δ/2

|g(t)− g(p)|K
(
t,
p

b
,
1− p

b

)
dt

≤
∫
|t−µ1|<δ/2

|g(t)− g(p)|K
(
t,
p

b
,
1− p

b

)
dt

+ 2 sup
t∈(2b,1−2b)

|g(t)|
∫
|t−µ1|>δ/2

K

(
t,
p

b
,
1− p

b

)
dt

≡M1 +M2.

According (A.16) and (A.17), we obtain

M1 ≤ ε. (A.18)
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Combining the Chebyshev’s inequality and (A.15), and there also exists bε such that

M2 ≤

{
8 sup
t∈(2b,1−2b)

|g(t)|σ2
1

}
/δ2 ≤

{
2 sup
t∈(2b,1−2b)

|g(t)|
(
b+ 4Cb2

)}
/δ2 ≤ ε for all b ≤ bε.

(A.19)

Thus, from (A.18) and (A.19), we conclude that

sup
p∈(2b,1−2b)

|E {ĝ(p)} − g(p)| < 2ε for all b ≤ bε.

Case 2 p ∈ [0, 2b] Based on the notations of Case 1, we have

µ2 = p+ ξ(p, b), (A.20)

σ2
2 = R2(p), (A.21)

where µ2 and σ2
2 are mean and variance of of P, a variable following Beta (ρ(p, b), (1 − p)/b),

ξ(p, b) = (1 − p){ρ(p, b) − p/b}/{1 + bρ(p, b) − p}, and R2(p) ≤ Cb2. For ε > 0, there exists a
δ > 0 such that

|g(t)− g(p)| < ε for |p− t| < δ (A.22)
for all p ∈ [0, 2b]; According to (A.20), since ξ(p, b) is a bounded function for p ∈ [0, 2b], there also
exists bδ such that

|µ2 − p| < δ/2 for b ≤ bδ for all p ∈ [0, 2b]. (A.23)
Therefore, we can derive that

|E {ĝ(p)} − g(p)| =

∣∣∣∣∣
∫ 2b

0

{g(t)− g(p)}K
(
t, ρ(p, b),

1− p

b

)
dt

∣∣∣∣∣
≤
∫
|t−µ2|<δ/2

|g(t)− g(p)|K
(
t, ρ(p, b),

1− p

b

)
dt

+

∫
|t−µ2|>δ/2

|g(t)− g(p)|K
(
t, ρ(p, b),

1− p

b

)
dt

≤
∫
|t−µ2|<δ/2

|g(t)− g(p)|K
(
t, ρ(p, b),

1− p

b

)
dt

+ 2 sup
t∈[0,2b]

|g(t)|
∫
|t−µ2|>δ/2

K

(
t, ρ(p, b),

1− p

b

)
dt

≡M1 +M2.

According to (A.22) and (A.23), there exists b(1)ε such that

M1 ≤ ε for all b ≤ b(1)ε . (A.24)

Combining the Chebyshev’s inequality and (A.21), and there also exists b(2)ε such that

M2 ≤

{
8 sup
t∈[0,2b]

|g(t)|σ2
2

}
/δ2 ≤

{
8 sup
t∈[0,2b]

|g(t)|Cb2

}
/δ2 ≤ ε for all b ≤ b(2)ε . (A.25)

Thus, from (A.24) and (A.25), we conclude that

sup
p∈[0,2b]

|E {ĝ(p)} − g(p)| < 2ε for all b ≤ min
(
b(1)ε , b(2)ε

)
.

Case 3 p ∈ [1− 2b, 1] Case 3 can be proven a similar procedure. We note that

µ3 = p− b · ξ(1− p, b), (A.26)

σ2
3 = R2(p), (A.27)

where µ3 and σ2
3 are mean and variance of P, a variable following Beta(p/b, ρ(1 − p, b)), and

R2(p) ≤ Cb2.

This completes the proof of Lemma 1.
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Proof of Proposition 1. To prove the consistency of the beta kernel estimator, we use the inequality:

sup
p∈[0,1]

|ĝ(p)− g(p)| ≤ sup
p∈[0,1]

|ĝ(p)− E {ĝ(p)}|+ sup
p∈[0,1]

|E {ĝ(p)} − g(p)| . (A.28)

From Lemma 1, the second term converges to zero. In the following, we prove that

sup
p∈[0,1]

|ĝ(p)− E {ĝ(p)}| P−→ 0 as J → ∞. (A.29)

We also consider three cases:

Case 1 p ∈ (2b, 1− 2b) The beta kernel estimator ĝ(p) is expressed as

ĝ(p) =

∫ 1−2b

2b

K

(
t,
p

b
,
1− p

b

)
dFn(t), (A.30)

where Fn is the empirical distribution. The expectation of the beta kernel estimator is

E {ĝ(p)} =

∫ 1−2b

2b

K

(
t,
p

b
,
1− p

b

)
dF (t). (A.31)

Thus, for p ∈ (2b, 1− 2b), we can derive that

|ĝ(p)− E {ĝ(p)}| =

∣∣∣∣∣
∫ 1−2b

2b

K

(
t,
p

b
,
1− p

b

)
d {Fn(t)− F (t)}

∣∣∣∣∣
≤ sup

t∈(b,1−2b)

|Fn(t)− F (t)|
∫ 1−2b

2b

∣∣∣∣dK (
t,
p

b
,
1− p

b

)∣∣∣∣ .
(A.32)

Note that the integral in (A.32) is bounded above by

1− b

b

∫ 1−2b

2b

∣∣∣∣K (
t,
p

b
− 1,

1− p

b

)
−K

(
t,
p

b
,
1− p

b
− 1

)∣∣∣∣ dt ≤ 2
1− b

b
. (A.33)

Therefore,

|ĝ(p)− E {ĝ(p)}| ≤ 2
1− b

b
sup

t∈(2b,1−2b)

|Fn(t)− F (t)| . (A.34)

From Dvoretzky et al. [16], we can obtain

P

[
sup

p∈(2b,1−2b)

|ĝ(p)− E {ĝ(p)}| ≥ ε

]
≤ P

{
sup

t∈(2b,1−2b)

|Fn(t)− F (t)| ≥ ε

2
· b

1− b

}

≤ 2 exp

{
−J

ε2

2

b2

(1− b)2

}
.

(A.35)

By utilizing the Borel-Cantelli Lemma, it is shown that under the beta kernel estimator is consistent.

Case 2 p ∈ [0, 2b] Case 2 can be proven a similar procedure of Case 1. Note that, for all p ∈ [0, 2b],

|ĝ(p)− E {ĝ(p)}| =

∣∣∣∣∣
∫ 2b

0

K

(
t, ρ(p, b),

1− p

b

)
d {Fn(t)− F (t)}

∣∣∣∣∣
≤ sup

t∈[0,2b]

|Fn(t)− F (t)|
∫ 2b

0

∣∣∣∣dK (
t, ρ(p, b),

1− p

b

)∣∣∣∣ .
(A.36)

Since ρ(p, b) is monotonic increasing in [0, 2b], ρ(0, b) = 1, ρ(2b, b) = 2. For p ∈ (0, 2b], the
integral in (A.36) is bounded above by 2 1+b

b . For p = 0, it is bounded above by

(ρ(p, b) +
1− p

b
− 1)

∫ 2b

0

∣∣∣∣K (
t, ρ(p, b),

1− p

b
− 1

)∣∣∣∣ dt = 1 + b

b
. (A.37)
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Thus, we can obtain

P

[
sup

p∈[0,2b]

|ĝ(p)− E {ĝ(p)}| ≥ ε

]
≤ P

{
sup

t∈[0,2b]

|Fn(t)− F (t)| ≥ ε

2
· b

1 + b

}

≤ 2 exp

{
−J

ε2

2

b2

(1 + b)2

}
,

(A.38)

which concludes the proof of the consistency of beta kernel estimator in Case 2.

Case 3 p ∈ [1 − 2b, 1] Case 3 can be proven a similar procedure of Case 1. Note that for all
p ∈ [1− 2b, 1],

|ĝ(p)− E {ĝ(p)}| =
∣∣∣∣∫ 1

1−2b

K
(
t,
p

b
, ρ(1− p, b)

)
d {Fn(t)− F (t)}

∣∣∣∣
≤ sup

t∈[1−2b,1]

|Fn(t)− F (t)|
∫ 1

1−2b

∣∣∣dK (
t,
p

b
, ρ(1− p, b)

)∣∣∣ . (A.39)

For p ∈ [1 − 2b, 1), the integral in (A.39) is bounded above by 2 1+b
b . And for p = 1, it is bounded

above by

(ρ(1− p, b) +
p

b
− 1)

∫ 1

1−2b

∣∣∣K (
t,
p

b
− 1, ρ(1− p, b)

)∣∣∣ dt = 1 + b

b
. (A.40)

Thus for all p ∈ [1− 2b, 1],

|ĝ(p)− E {ĝ(p)}| ≤ 2
1 + b

b
sup

t∈[1−2b,1]

|Fn(t)− F (t)| . (A.41)

Similarly, we obtain

P

[
sup

p∈[1−2b,1]

|ĝ(p)− E {ĝ(p)}| ≥ ε

]
≤ P

{
sup

t∈[1−2b,1]

|Fn(t)− F (t)| ≥ ε

2
· b

1 + b

}

≤ 2 exp

{
−J

ε2

2

b2

(1 + b)2

}
,

(A.42)

which concludes the proof of the consistency of beta kernel estimator in Case 3.

From Dai et al. [12], for a fixed J and λ, the biases of π̂00, π̂10, and π̂01 go to zero as n → ∞:

lim
n→∞

π̂00 = π00, lim
n→∞

π̂01 = π01, lim
n→∞

π̂10 = π10. (A.43)

And we can derive
f̂(p) = f̂(p(1), p(2)) = ĝ(p(1)) · ĝ(p(2)). (A.44)

By combining equations (A.13), (A.43), and (A.44), according to continuous mapping theorem [14],
we have

sup
p∈[0,1]

∣∣∣f̂dr(p)− fdr(p)
∣∣∣ P−→ 0 as n, J → ∞. (A.45)

According to equation (A.45), we can verify the rationality of Assumption (i) in Theorem 2:

1

J

J∑
j=1

∣∣∣f̂dr(pj)− fdr(pj)
∣∣∣ P−→ 0 as n, J → ∞. (A.46)
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E.2.2 Proof of Theorem 2

To begin with, we introduce some notations. For ζ ∈ (0, 1], denote

Ĝ00
J (ζ) =

1

J00

∑
j∈∆00

I
(
pj ∈ Ŝ(ζ)

)
, Ĝ01

J (ζ) =
1

J01

∑
j∈∆01

I
(
pj ∈ Ŝ(ζ)

)
,

Ĝ10
J (ζ) =

1

J10

∑
j∈∆10

I
(
pj ∈ Ŝ(ζ)

)
, Ĝ11

J (ζ) =
1

J11

∑
j∈∆11

I
(
pj ∈ Ŝζ)

)
,

G00
J (ζ) =

1

J00

∑
j∈∆00

P
(
pj ∈ Ŝ(ζ)

)
, G01

J (ζ) =
1

J01

∑
j∈∆01

P
(
pj ∈ Ŝ(ζ)

)
,

G10
J (ζ) =

1

J10

∑
j∈∆10

P
(
pj ∈ Ŝ(ζ)

)
,

V̂ 00
J (ζ) =

1

J00

∑
j∈∆00

I
(
pj ∈ S̃00(ζ)

)
, V̂ 01

J (ζ) =
1

J01 + J00

∑
j∈∆01∪∆00

I
(
pj ∈ S̃01(ζ)

)
,

V̂ 10
J (ζ) =

1

J10 + J00

∑
j∈∆10∪∆00

I
(
pj ∈ S̃10(ζ)

)
,

where J00 = |∆00|, J01 = |∆01|, J10 = |∆10|, J11 = |∆11|. Denote r00J = J00/J11, r
01
J =

J01/J11, r
10
J = J10/J11, vJ =

J11
J00 + J01 + J10

. And

K
0

J(ζ) = vJ{r00J G00
J (ζ) + r01J G01

J (ζ) + r10J G10
J (ζ)},

K0
J(ζ) = vJ{r00J Ĝ00

J (ζ) + r01J Ĝ01
J (ζ) + r10J Ĝ10

J (ζ)},

K̂0
J(ζ) = vJ{(r01J + r00J )V̂ 01

J (ζ) + (r10J + r00J )V̂ 10
J (ζ)− r00J V̂ 00

J (ζ)},

FDPJ(ζ) =
r00J Ĝ00

J (ζ) + r01J Ĝ01
J (ζ) + r10J Ĝ10

J (ζ)

r00J Ĝ00
J (ζ) + r01J Ĝ01

J (ζ) + r10J Ĝ10
J (ζ) + Ĝ11

J (ζ)
,

FDP†
J(ζ) =

K̂0
J(ζ)/vJ

r00J Ĝ00
J (ζ) + r01J Ĝ01

J (ζ) + r10J Ĝ10
J (ζ) + Ĝ11

J (ζ)
,

FDPJ(ζ) =
K

0

J(ζ)/vJ

r00J G00
J (ζ) + r01J G01

J (ζ) + r10J G10
J (ζ) + Ĝ11

J (ζ)
.

Before proceeding with the proof of Theorem 2, we prove Lemma 2 first.
Lemma 2. Under Assumption (i)-(ii) in Theorem 2, if J00 → ∞, J01 → ∞, J10 → ∞ as J → ∞,
and n → ∞, we have in probability,

sup
ζ∈(0,1]

∣∣∣Ĝ00
J (ζ)−G00

J (ζ)
∣∣∣ −→ 0, sup

ζ∈(0,1]

∣∣∣Ĝ01
J (ζ)−G01

J (ζ)
∣∣∣ −→ 0,

sup
ζ∈(0,1]

∣∣∣Ĝ10
J (ζ)−G10

J (ζ)
∣∣∣ −→ 0, sup

ζ∈(0,1]

∣∣∣K̂0
J(ζ)−K

0

J(ζ)
∣∣∣ −→ 0.

Proof of Lemma 2. We consider three cases under composite null hypothesis.

Case 1 Under H00: We can derive that

Ĝ00
J (ζ) =

1

J00

∑
j∈∆00

{
I
(
pj ∈ Ŝ(ζ)

)
− I

(
pj ∈ S(ζ)

)
+ I

(
pj ∈ S(ζ)

)}
,

G00
J (ζ) =

1

J00

∑
j∈∆00

{
P
(
pj ∈ Ŝ(ζ)

)
− P

(
pj ∈ S(ζ)

)
+ P

(
pj ∈ S(ζ)

)}
.

(A.47)
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Thus, we have

sup
ζ∈(0,1]

∣∣∣Ĝ00
J (ζ)−G00

J (ζ)
∣∣∣ ≤ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣I(pj ∈ Ŝ(ζ)
)
− I (pj ∈ S(ζ))

∣∣∣
+ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P(
pj ∈ Ŝ(ζ)

)
− P (pj ∈ S(ζ))

∣∣∣
+ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣I (pj ∈ S(ζ))− P (pj ∈ S(ζ))
∣∣∣.

(A.48)

To deal with the first term, we have
1

J00

∑
j∈∆00

∣∣∣I(pj ∈ Ŝ(ζ)
)
− I (pj ∈ S(ζ))

∣∣∣
=

1

J00

∑
j∈∆00

∣∣∣I{f̂dr (pj) ≤ ζ
}
− I {fdr (pj) ≤ ζ}

∣∣∣
=

1

J00

∑
j∈∆00

[
I
{
f̂dr (pj) ≤ ζ, fdr (pj) > ζ

}
+ I

{
fdr (pj) ≤ ζ, f̂dr (pj) > ζ

}]
=

1

J00

∑
j∈∆00

[
I
{
f̂dr (pj) ≤ ζ, ζ + ϵ ≥ fdr (pj) > ζ

}
+ I

{
ζ − ϵ < fdr (pj) ≤ ζ, f̂dr (pj) > ζ

}]
+

1

J00

∑
j∈∆00

[
I
{
f̂dr (pj) ≤ ζ, fdr (pj) > ζ + ϵ

}
+ I

{
fdr (pj) ≤ ζ − ϵ, f̂dr (pj) > ζ

}]
≤ 1

J00

∑
j∈∆00

I {ζ − ϵ < fdr (pj) ≤ ζ + ϵ}+ 1

J00ϵ

∑
j∈∆00

∣∣∣f̂dr (pj)− fdr (pj)
∣∣∣ .

(A.49)

Combine with the Glivenko-Cantelli theorem and Assumption (i), we can derive

Q := sup
ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣I{f̂dr (pj) ≤ ζ
}
− I {fdr (pj) ≤ ζ}

∣∣∣
≤ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

I {ζ − ϵ < fdr (pj) ≤ ζ + ϵ}+ 1

J00ϵ

∑
j∈∆00

∣∣∣f̂dr (pj)− fdr (pj)
∣∣∣

≤ sup
ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P(ζ − ϵ < fdr (pj) ≤ ζ + ϵ)
∣∣∣

+ 2 sup
ζ∈(0,1]

∣∣∣∣∣∣ 1

J00

∑
j∈∆00

I {fdr (pj) ≤ ζ} − 1

J00

∑
j∈∆00

P {fdr (pj) ≤ ζ}

∣∣∣∣∣∣
+

1

J00ϵ

∑
j∈∆00

∣∣∣f̂dr (pj)− fdr (pj)
∣∣∣

≤ sup
ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P(ζ − ϵ < fdr (pj) ≤ ζ + ϵ)
∣∣∣+ op(1).

Since ϵ can be arbitrarily small, supζ∈(0,1]
1

J00

∑
j∈∆00

|P(ζ − ϵ < fdr (pj) ≤ ζ + ϵ)| can be small
due to Assumption (ii). Consequently, we have Q = op(1) and thus the first term holds.

Before addressing the second term, we obtain that

P
(
f̂dr (pj) ≤ ζ

)
≤P

(
f̂dr (pj) ≤ ζ, fdr (pj) ≤ ζ + ϵ

)
+ P

(
f̂dr (pj) ≤ ζ, fdr (pj) > ζ + ϵ

)
≤P (fdr (pj) ≤ ζ + ϵ) + P

(∣∣∣f̂dr (pj)− fdr (pj)
∣∣∣ > ϵ

)
.

(A.50)
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Combine with Assumption (i), we can derive that P
(∣∣∣f̂dr (pj)− fdr (pj)

∣∣∣ > ϵ
)
→ 0.

Then, we have

sup
ζ∈(0,1]

∑
j∈∆00

∣∣∣P(
pj ∈ Ŝ(ζ)

)
− P (pj ∈ S(ζ))

∣∣∣
= sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P(
f̂dr (pj) ≤ ζ

)
− P (fdr (pj) ≤ ζ)

∣∣∣
≤ sup

ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P (fdr (pj) ≤ ζ + ϵ)− P (fdr (pj) ≤ ζ)
∣∣∣

= sup
ζ∈(0,1]

1

J00

∑
j∈∆00

∣∣∣P (ζ < fdr (pj) ≤ ζ + ϵ)
∣∣∣.

(A.51)

As ϵ can be arbitrarily small, supζ∈(0,1]

1

J00

∑
j∈∆00

|P (ζ < fdr (pj) ≤ ζ + ϵ)| → 0.

The third term can be proved using the Glivenko-Cantelli theorem. Thus, we have shown the proof
of the first claim in Lemma 2.

Cases 2-3 Under H01 and H10: Following the similar procedure in Case 1, we can conclude the
proof of the second and third claims in Lemma 2.

Case 4 According to the symmetric property of p-values pj for j ∈ ∆00 ∪∆01 ∪∆10, we follow
the similar steps in Case 1, thus, we have

sup
ζ∈(0,1]

∣∣∣K̂0
J(ζ)−K

0

J(ζ)
∣∣∣ −→ 0. (A.52)

This concludes the proof of the fourth claim.

Proof of Theorem 2. For any ϵ ∈ (0, α), suppose there exists ζα−ϵ > 0, then

P (FDP (ζα−ϵ) ≤ α− ϵ) → 1.

By Lemma 2, for any constant c > 0, we have

sup
0<ζ≤c

∣∣∣FDP†
J(ζ)− FDPJ(ζ)

∣∣∣ p→ 0. (A.53)

By the definition of ζ⋆, i.e., ζ⋆ = sup
{
ζ ∈ (0, 1] : FDP†

J(ζ) ≤ α
}

, we have

P (ζ⋆ ≥ ζα−ϵ) ≥ P
(
FDP†

J (ζα−ϵ) ≤ α
)

≥ P
(∣∣∣FDP†

J (ζα−ϵ)−FDPJ (ζα−ϵ)
∣∣∣ ≤ ϵ,FDP (ζα−ϵ) ≤ α−ϵ

)
= P (FDP (ζα−ϵ) ≤ α−ϵ)−P

(∣∣∣FDP†
J (ζα−ϵ)− FDPJ (ζα−ϵ)

∣∣∣ > ϵ,FDP (ζα−ϵ) ≤ α−ϵ
)

≥ P (FDP (ζα−ϵ) ≤ α−ϵ)−P
(∣∣∣FDP†

J (ζα−ϵ)− FDPJ (ζα−ϵ)
∣∣∣ > ϵ

)
≥ 1− ϵ,

(A.54)
for J large enough. Thus, we have

P (ζ⋆ ≥ ζα−ϵ) ≥ 1− ϵ. (A.55)

Conditioning on the event ζ⋆ ≥ ζα−ϵ, we have
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lim sup
n,J→∞

E [FDPJ (ζ⋆)] ≤ lim sup
n,J→∞

E [FDPJ (ζ⋆) | ζ⋆ ≥ ζα−ϵ]P (ζ⋆ ≥ ζα−ϵ) + ϵ

≤ lim sup
n,J→∞

E
[∣∣FDPJ (ζ⋆)− FDPJ (ζ⋆)

∣∣ | ζ⋆ ≥ ζα−ϵ

]
P (ζ⋆ ≥ ζα−ϵ)

+ lim sup
n,J→∞

E
[∣∣∣FDP†

J (ζ⋆)− FDPJ (ζ⋆)
∣∣∣ | ζ⋆ ≥ ζα−ϵ

]
P (ζ⋆ ≥ ζα−ϵ)

+ lim sup
n,J→∞

E
[
FDP†

J (ζ⋆) | ζ⋆ ≥ ζα−ϵ

]
P (ζ⋆ ≥ ζα−ϵ) + ϵ

≤ lim sup
n,J→∞

E

[
sup

ζ∈[ζα−ϵ,1]

∣∣FDPJ(ζ)− FDPJ(ζ)
∣∣]

+ lim sup
n,J→∞

E

[
sup

ζ∈[ζα−ϵ,1]

∣∣∣FDP†
J(ζ)− FDPJ(ζ)

∣∣∣]
+ lim sup

n,J→∞
E
[
FDP†

J (ζ⋆)
]
+ ϵ.

(A.56)
The first two terms are 0 based on Lemma 2 and the dominated convergence theorem. For the third
term, we have FDP†

J (ζ⋆) ≤ α by the definition of ζ⋆. This concludes the proof of Theorem 2.
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