Supplementary Material for Submission "Temporal Continual Learning with Prior Compensation for Human Motion Prediction"

Jianwei Tang
Sun Yat-sen University
tangjw7@mail2.sysu.edu.cn

Xiaotong Lin
Sun Yat-sen University
linxt29@mail2.sysu.edu.cn

Wei-Shi Zheng
Sun Yat-sen University
wszheng@ieee.org

Jiangxin Sun
Sun Yat-sen University
sunjx5@mail2.sysu.edu.cn

Lifang Zhang
Dongguan University of Technology
2017028@dgut.edu.cn

Jian-Fang Hu*
Sun Yat-sen University
hujf5@mail.sysu.edu.cn

Abstract

In this supplementary document, we present additional details of the proof for the two lemmas discussed in our main submission. These details were excluded from the main submission due to space constraints. Additionally, we further include more experimental results of our approach on the Human3.6M dataset in this supplementary document.

In the main submission, we have presented a temporal continual learning (TCL) framework for human motion prediction, in which we need to optimize the following objective:

$$
\begin{equation*}
-\log P\left(Z_{1: k} ; \boldsymbol{\theta}\right)=-\log P\left(Z_{1} ; \boldsymbol{\theta}\right)-\sum_{i=2}^{k} \log \left(P\left(Z_{i} \mid \hat{Z}_{1: i-1} ; \boldsymbol{\theta}\right)+\alpha_{Z_{1: i-1} \rightarrow Z_{i}}\right) \tag{1}
\end{equation*}
$$

where $\alpha_{Z_{1: i-1} \rightarrow Z_{i}} \in\left[0,1-P\left(Z_{i} \mid \hat{Z}_{1: i-1} ; \boldsymbol{\theta}\right)\right]$ indicates the extent of forgotten knowledge when utilizing prior knowledge from tasks $Z_{1: i-1}$ to predict task Z_{i}. However, directly optimizing the objective is not easy. We have shown in the main submission that we can alternatively minimize its upper bound to obtain a reasonable solution for the TCL model, which can be formulated as:

$$
\begin{align*}
U B & =-\log P\left(Z_{1} ; \boldsymbol{\theta}\right)+\sum_{i=2}^{k}\left(\left(1-\alpha_{Z_{1: i-1} \rightarrow Z_{i}}\right)\left(-\log P\left(Z_{i} \mid \hat{Z}_{1: i-1} ; \boldsymbol{\theta}\right)\right)\right. \tag{2}\\
& \left.+\left(1-\alpha_{Z_{1: i-1} \rightarrow Z_{i}}\right) \log \left(1-\alpha_{Z_{1: i-1} \rightarrow Z_{i}}\right)+\log \left(1+\alpha_{Z_{1: i-1} \rightarrow Z_{i}}\right)\right)
\end{align*}
$$

In the main submission, we have presented the following two Lemmas to show that the formulated upper bound is reasonable.

Lemma 3.1. For $0 \leq a \leq 1-b$ and $0<b \leq 1$, the inequality $-\log (a+b) \leq(1-a)(-\log b)+$ $(1-a) \log (1-a)+\log (1+a)$ holds. The equality holds if and only if $a=0$.

[^0]Lemma 3.2. The absolute difference between the target objective (Equation (1)) and upper bound (Equation 2 2) is not larger than $\log (3 / 2) *(k-1)$ when $P\left(Z_{i} \mid \hat{Z}_{1: i-1} ; \boldsymbol{\theta}\right) \geq 1 / 2, i \in\{2,3, \cdots, k\}$. This bound is achieved when $P\left(Z_{k} \mid \hat{Z}_{1: k-1} ; \boldsymbol{\theta}\right)=1 / 2$ and $\alpha_{Z_{1: i-1} \rightarrow Z_{i}}=1 / 2, i \in\{2,3, \cdots, k\}$.
In the following, we will provide detailed theoretical proof for the two lemmas.

A Theoretical Proof

A. 1 Proof of Lemma 3.1.

According to Jensen's inequality, for any real numbers x_{1} and x_{2} and non-negative weights w_{1} and w_{2} satisfying $w_{1}+w_{2}=1$, if H is a convex function, the following inequality holds:

$$
\begin{equation*}
H\left(w_{1} x_{1}+w_{2} x_{2}\right) \leq w_{1} H\left(x_{1}\right)+w_{2} H\left(x_{2}\right) \tag{3}
\end{equation*}
$$

The equality holds if and only if $x_{1}=x_{2}$. Specifically, by setting $x_{1}=x, x_{2}=y, w_{1}=1 / 2$, $w_{2}=1 / 2(x>0$ and $y>0)$ and $H(u)=u \log (u)$, we can obtain a special case of Jensen's inequality:

$$
\begin{equation*}
\log \frac{x+y}{2} \leq \frac{x}{x+y} \log x+\frac{y}{x+y} \log y \tag{4}
\end{equation*}
$$

Then, considering $b \in(0,1]$ and $a \in[0,1-b]$ and substituting $x=1-a$ and $y=a+b$ into Inequality (4), we can obtain the following inequality:

$$
\begin{equation*}
\log (a+b) \geq(1-a-b) \log (a+b)+(1+b) \log \frac{1+b}{2}-(1-a) \log (1-a) \tag{5}
\end{equation*}
$$

We can rewrite the right side of Inequality (5) as follows:

$$
\begin{align*}
& (1-a-b) \log (a+b)+(1+b) \log \frac{1+b}{2}-(1-a) \log (1-a) \\
& \geq(1-a) \log b-b \log (a+b)+(1+b) \log \frac{1+b}{2}-(1-a) \log (1-a) \\
& \geq(1-a) \log b-(1-a) \log (1-a)-\log (1+a)+(1+b) \log \frac{1+b}{2} \tag{6}\\
& \geq(1-a) \log b-(1-a) \log (1-a)-\log (1+a)+\log \frac{1}{2}
\end{align*}
$$

Here, we will show that even discarding the constant term $\log (1 / 2)$, the inequality still holds. Let's consider the following function:

$$
\begin{equation*}
G(a)=\log (a+b)-(1-a) \log b+(1-a) \log (1-a)+\log (1+a) \tag{7}
\end{equation*}
$$

By defining $G_{1}(a)=\log (a+b)-(1-a) \log b$ and $G_{2}(a)=(1-a) \log (1-a)+\log (1+a)$, we can observe that $G(a)=G_{1}(a)+G_{2}(a)$.
Considering the function $G_{1}(a)$, we can calculate its derivative and second derivative as follows:

$$
\begin{align*}
\dot{G}_{1}(a) & =\frac{1}{a+b}+\log b \\
\ddot{G}_{1}(a) & =-\frac{1}{(a+b)^{2}} \tag{8}
\end{align*}
$$

We first consdier the case of $b \geq 1 / e$. Since $\ddot{G}_{1}(a)<0$ and $0 \leq a \leq 1-b$, we can obtain that $\dot{G}_{1}(a) \geq \dot{G}_{1}(1-b)=1+\log b \geq 0$. Therefore, $G_{1}(a) \geq G_{1}(0)=0$.
For the case of $0<b<1 / e$, we can easily obtain that $\dot{G}_{1}(1-b)=1+\log b<0$ and $\dot{G}_{1}(0)=$ $1 / b+\log b>0$. Hence, by considering the monotonicity of $\dot{G}_{1}(a)$, we can conclude that there exists an $a_{0} \in(0,1-b)$ such that $\dot{G}_{1}(a) \geq 0$ for $a \in\left[0, a_{0}\right]$ and $\dot{G}_{1}(a)<0$ for $a \in\left(a_{0}, 1-b\right]$. As a result, we can get $G_{1}(a) \geq \min \left(G_{1}(0), G_{1}(1-b)\right)$. Since $G_{1}(0)=0$ and $G_{1}(1-b)=-b \log b \geq 0$, we can finally have $G_{1}(a) \geq 0$, the equality holds if only if $a=0$.

Here, we show that $G_{2}(a) \geq 0$ holds. The first derivative $\dot{G}_{2}(a)$ and second derivative $\ddot{G}_{2}(a)$ are given by:

$$
\begin{align*}
\dot{G}_{2}(a) & =-\log (1-a)-1+\frac{1}{1+a} \\
\ddot{G}_{2}(a) & =\frac{1}{1-a}-\frac{1}{(1+a)^{2}} \tag{9}
\end{align*}
$$

Since $\ddot{G}_{2}(a) \geq 0$ for any $a \in[0,1-b]$, we can get $\dot{G}_{2}(a) \geq \dot{G}_{2}(0)=0$ and thus $G_{2}(a) \geq G_{2}(0)=$ 0.

With $G_{1}(a) \geq 0$ and $G_{2}(a) \geq 0$, we can obtain $G(a)=G_{1}(a)+G_{2}(a) \geq 0$ and conclude that $-\log (a+b) \leq(1-a)(-\log b)+(1-a) \log (1-a)+\log (1+a)$. Moreover, we can observe that equality holds if and only if $a=0$.

A. 2 Proof of Lemma 3.2.

For simplicity, let's denote $\alpha_{i}=\alpha_{Z_{1: i-1} \rightarrow Z_{i}}$ and $p_{i}=P\left(Z_{i} \mid \hat{Z}_{1: i-1} ; \boldsymbol{\theta}\right)$, where $p_{i} \in[1 / 2,1], \alpha_{i} \in$ $\left[0,1-p_{i}\right], i \in\{2,3, \cdots, k\}$. Then the difference between the upper bound (Equation (2)) and the target objective (Equation (1)) can be calculated as:

$$
\begin{align*}
\Delta & =U B-\left(-\log P\left(Z_{1: k} ; \boldsymbol{\theta}\right)\right) \\
& =\sum_{i=2}^{k} \log \left(\alpha_{i}+p_{i}\right)+\sum_{i=2}^{k}\left(\left(1-\alpha_{i}\right)\left(-\log p_{i}\right)+\left(1-\alpha_{i}\right) \log \left(1-\alpha_{i}\right)+\log \left(1+\alpha_{i}\right)\right) \tag{10}\\
& \left.=\sum_{i=2}^{k}\left(\log \left(\alpha_{i}+p_{i}\right)-\left(1-\alpha_{i}\right) \log p_{i}+\left(1-\alpha_{i}\right) \log \left(1-\alpha_{i}\right)+\log \left(1+\alpha_{i}\right)\right)\right)
\end{align*}
$$

Note that each term in the summation of Equation has the same form, we denote it as $T(\alpha)$, where

$$
\begin{equation*}
T(\alpha)=\log (\alpha+p)-(1-\alpha) \log p+(1-\alpha) \log (1-\alpha)+\log (1+\alpha) \tag{11}
\end{equation*}
$$

Then, we can turn to maximize $T(\alpha)$ in order to obtain the largest difference between the target objective and its upper bound.
The first derivative of $T(\alpha)$ can be calculated as:

$$
\begin{equation*}
\dot{T}(\alpha)=\frac{1}{\alpha+p}+\log p-\log (1-\alpha)-1+\frac{1}{1+\alpha} \tag{12}
\end{equation*}
$$

By defining $T_{1}(\alpha)=1 /(\alpha+p)+\log p$ and $T_{2}(\alpha)=-\log (1-\alpha)-1+1 /(1+\alpha)$, we can observe that $\dot{T}(\alpha)=T_{1}(\alpha)+T_{2}(\alpha)$. The first derivative of $T_{2}(\alpha)$ is:

$$
\begin{equation*}
\dot{T}_{2}(\alpha)=\frac{1}{1-\alpha}-\frac{1}{(1+\alpha)^{2}} \tag{13}
\end{equation*}
$$

Since $\dot{T}_{2}(\alpha) \geq 0$ for any $\alpha \in[0,1-p]$, we get $T_{2}(\alpha) \geq T_{2}(0)=0$. Furthermore, when $p \geq 1 / 2$, $T_{1}(\alpha)>0$. Therefore, $\dot{T}(\alpha)=T_{1}(\alpha)+T_{2}(\alpha)>0$, which means the maximum value of $T(\alpha)$ is:

$$
\begin{align*}
T(1-p) & =-p \log p+p \log p+(1-p)+\log (2-p) \tag{14}\\
& =\log (2-p)
\end{align*}
$$

Since $p \geq 1 / 2$ and $\log (2-p)$ decreases with $p, T(1-p)$ will not larger than $\log (2-1 / 2)=\log (3 / 2)$. Particularly, when $p=1 / 2$ and $\alpha=1-p=1 / 2$, this largest bound will be achieved. Hence, we can conclude that $T(\alpha) \leq \log (3 / 2)$, and the equality holds when $p=\alpha=1 / 2$.
Thus, as $\Delta=\sum_{i=2}^{k} T\left(\alpha_{i}\right)$ in Equation 10), we obtain $\Delta \leq \sum_{i=2}^{k} \log (3 / 2)=\log (3 / 2) *(k-1)$, which means the absolute difference between Equation (2) and Equation (1) will not be greater than $\log (3 / 2) *(k-1)$. The equality holds if and only if $p_{i}=\alpha_{i}=1 / 2, i \in\{2,3, \cdots, k\}$.

B More Experimental Results

B. 1 Detail experimental results

Table 1 displays the short-term prediction results for all action categories on the Human3.6M dataset. Table 2 shows the results for long-term prediction. Smaller values indicate better performance. It can be observed that our approach performs better than other competitors for the prediction of most of the actions. The improvement in short-term prediction demonstrates the effectiveness of the TCL framework in mitigating the constraint of long-term prediction on short-term prediction. The enhancement in long-term prediction also indicates that exploiting prior information depicted in the earlier stages with our proposed TCL framework is beneficial for long-term human motion prediction. We also note that our method achieves comparable results with PGBIG for the long-term prediction of a few action categories, such as "walking". This is because the action "walking" involves some repetitive motion patterns, which results in it being less important for mining prior motion information.

Table 1: Comparisons of short-term prediction on Human3.6M.

action	walking				eating				smoking				discussion			
ms	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
R.S.	33.9	62.4	100.8	109.9	20.7	39.1	66.5	75.9	23.1	43.5	75.4	86.6	31.1	57.5	96.0	110.1
LTD	12.3	23.0	39.8	46.1	8.4	16.9	33.2	40.7	7.9	16.2	31.9	38.9	12.5	27.4	58.5	71.7
PGBIG	10.2	19.8	34.5	40.3	7.0	15.1	30.6	38.1	6.6	14.1	28.2	34.7	10.0	23.8	53.6	66.7
PGBIG+Ours	9.5	18.9	33.3	39.1	6.4	14.2	29.4	36.4	6.0	13.2	26.7	33.1	9.0	22.2	51.8	65.1
action	directions				greeting				phoning				posing			
ms	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
R.S.	25.3	48.4	85.0	99.3	37.4	70.0	117.9	134.1	25.7	47.8	82.6	95.3	32.5	63.1	114.7	135.0
LTD	9.0	19.9	43.4	53.7	18.7	38.7	77.7	93.4	10.2	21.0	42.5	52.3	13.7	29.9	66.6	84.1
PGBIG	7.2	17.6	40.9	51.5	15.2	34.1	71.6	87.1	8.3	18.3	38.7	48.4	10.7	25.7	60.0	76.6
PGBIG+Ours	6.4	16.4	39.5	50.3	13.6	31.4	68.7	84.5	7.6	17.3	37.3	46.9	9.3	23.6	57.5	74.2
action	purchases				sitting				sittingdown				takingphoto			
ms	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
R.S.	31.9	58.1	96.9	112.0	26.3	49.3	87.2	102.8	35.0	65.2	108.8	126.5	23.9	45.3	82.2	97.6
LTD	15.6	32.8	65.7	79.3	10.6	21.9	46.3	57.9	16.1	31.1	61.5	75.5	9.9	20.9	45.0	56.6
PGBIG	12.5	28.7	60.1	73.3	8.8	19.2	42.4	53.8	13.9	27.9	57.4	71.5	8.4	18.9	42.0	53.3
PGBIG+Ours	11.3	26.9	59.0	72.9	8.1	18.1	40.9	52.3	12.9	26.3	55.2	69.1	7.7	17.6	40.4	51.8
action	waiting				walkingdog				walkingtogether				average			
ms	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
R.S.	29.4	55.1	96.7	112.6	43.9	78.1	121.0	135.9	27.9	52.1	86.4	96.4	29.9	55.7	94.5	108.7
LTD	11.4	24.0	50.1	61.5	23.4	46.2	83.5	96.0	10.5	21.0	38.5	45.2	12.7	26.1	52.3	63.5
PGBIG	8.9	20.1	43.6	54.3	18.8	39.9	73.7	86.4	8.7	18.6	34.4	41.0	10.3	22.7	47.4	58.5
PGBIG+Ours	7.9	18.4	41.0	51.6	17.3	37.1	72.2	85.5	8.2	17.7	33.0	39.2	9.4	21.3	45.7	56.8

Table 2: Comparisons of long-term prediction on Human3.6M.

action	walking	eating	sm	disc	dire	greeting	ph	posing
ms	5601000	5601000	5601000	$560 \quad 1000$	5601000	5601000	$560 \quad 1000$	560100
R.S.	117.5133 .3	90.7123 .3	02.3133 .9	134.2168.	118.2150 .5	158.4197.	114.4152	168.8229 .0
LTD	54.159 .8	53.477 .8	50.772 .6	91.6121 .5	71.0101 .8	115.4148 .8	69.2103.	114.5173 .0
PGBIG	48.156 .4	51.176	46.569 .5	87.1118 .2	69.3100 .4	110.2143 .5	65.9102 .7	106.1164 .8
BIG+O	47.156 .9	48.874 .1	44.466 .7	86.2117 .2	68.499 .6	108.8142 .7	64.0100.	03.9163
action	purchases	sitting	down.	takeph	waiting	walkdog.	valkto.	verage
ms	5601000	$560 \quad 1000$	$560 \quad 1000$	$560 \quad 1000$	$560 \quad 1000$	5601000	560100	560100
	2	129.0176.	159.8	124.4175 .7	134.9173	159.3198 .8	107.0126 .5	130.1168 .0
TD	102.0143 .5	78.3119 .7	100.0150 .2	77.4119 .8	79.4108 .1	111.9148 .9	55.065 .6	81.6114 .3
PGBIG	95.3133 .3	74.4116 .1	96.7147 .8	74.3118 .6	72.2103 .4	104.7139 .8	51.964 .3	76.9110 .3
GBIG+Our	95.5134.	72.6113 .8	94.3146 .1	72.5114 .6	70.0102 .7	104.8139 .0	49.059 .8	75.4108 .8

B. 2 Zero-shot experiment

We also conduct a zero-shot experiment that trains the model on the Human3.6M dataset and tests on the re-aligned AMASS dataset. The results are tabulated in Table 3 . As shown, our approach can still bring some benefits to the backbone model with a simple and direct implementation without a special model design, enabling the backbone model to adapt to the zero-shot learning setting.

Table 3: Results of the zero-shot experiment that trained on Human3.6M and tested on AMASS. A smaller value means a better result.

ms	80	160	320	400	560	1000
PGBIG	$\mathbf{5 . 2}$	$\mathbf{1 1 . 2}$	25.4	32.9	47.8	80.2
PGBIG+Ours	$\mathbf{5 . 2}$	$\mathbf{1 1 . 2}$	$\mathbf{2 5 . 2}$	$\mathbf{3 2 . 7}$	$\mathbf{4 7 . 3}$	$\mathbf{7 9 . 2}$

[^0]: *Jian-Fang Hu is the corresponding author. Hu is also with Guangdong Province Key Laboratory of Information Security Technology, Guangzhou, China and Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China.

