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Abstract

In this supplementary document, we present additional details of the proof for the
two lemmas discussed in our main submission. These details were excluded from
the main submission due to space constraints. Additionally, we further include
more experimental results of our approach on the Human3.6M dataset in this
supplementary document.

In the main submission, we have presented a temporal continual learning (TCL) framework for human
motion prediction, in which we need to optimize the following objective:

− logP (Z1:k;θ) = − logP (Z1;θ)−
k∑

i=2

log(P (Zi|Ẑ1:i−1;θ) + αZ1:i−1→Zi
), (1)

where αZ1:i−1→Zi ∈ [0, 1 − P (Zi|Ẑ1:i−1;θ)] indicates the extent of forgotten knowledge when
utilizing prior knowledge from tasks Z1:i−1 to predict task Zi. However, directly optimizing the
objective is not easy. We have shown in the main submission that we can alternatively minimize its
upper bound to obtain a reasonable solution for the TCL model, which can be formulated as:

UB = − logP (Z1;θ) +

k∑
i=2

((1− αZ1:i−1→Zi)(− logP (Zi|Ẑ1:i−1;θ))

+ (1− αZ1:i−1→Zi) log(1− αZ1:i−1→Zi) + log(1 + αZ1:i−1→Zi)).

(2)

In the main submission, we have presented the following two Lemmas to show that the formulated
upper bound is reasonable.

Lemma 3.1. For 0 ≤ a ≤ 1− b and 0 < b ≤ 1, the inequality − log(a+ b) ≤ (1− a)(− log b) +
(1− a) log(1− a) + log(1 + a) holds. The equality holds if and only if a = 0.
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Lemma 3.2. The absolute difference between the target objective (Equation (1)) and upper bound
(Equation (2)) is not larger than log(3/2) ∗ (k − 1) when P (Zi|Ẑ1:i−1;θ) ≥ 1/2, i ∈ {2, 3, · · · , k}.
This bound is achieved when P (Zk|Ẑ1:k−1;θ) = 1/2 and αZ1:i−1→Zi

= 1/2, i ∈ {2, 3, · · · , k}.

In the following, we will provide detailed theoretical proof for the two lemmas.

A Theoretical Proof

A.1 Proof of Lemma 3.1.

According to Jensen’s inequality, for any real numbers x1 and x2 and non-negative weights w1 and
w2 satisfying w1 + w2 = 1, if H is a convex function, the following inequality holds:

H(w1x1 + w2x2) ≤ w1H(x1) + w2H(x2). (3)

The equality holds if and only if x1 = x2. Specifically, by setting x1 = x, x2 = y, w1 = 1/2,
w2 = 1/2 (x > 0 and y > 0) and H(u) = u log(u), we can obtain a special case of Jensen’s
inequality:

log
x+ y

2
≤ x

x+ y
log x+

y

x+ y
log y. (4)

Then, considering b ∈ (0, 1] and a ∈ [0, 1 − b] and substituting x = 1 − a and y = a + b into
Inequality (4), we can obtain the following inequality:

log(a+ b) ≥ (1− a− b) log(a+ b) + (1 + b) log
1 + b

2
− (1− a) log(1− a). (5)

We can rewrite the right side of Inequality (5) as follows:

(1− a− b) log(a+ b) + (1 + b) log
1 + b

2
− (1− a) log(1− a)

≥ (1− a) log b− b log(a+ b) + (1 + b) log
1 + b

2
− (1− a) log(1− a)

≥ (1− a) log b− (1− a) log(1− a)− log(1 + a) + (1 + b) log
1 + b

2

≥ (1− a) log b− (1− a) log(1− a)− log(1 + a) + log
1

2
.

(6)

Here, we will show that even discarding the constant term log(1/2), the inequality still holds. Let’s
consider the following function:

G(a) = log(a+ b)− (1− a) log b+ (1− a) log(1− a) + log(1 + a). (7)

By defining G1(a) = log(a+ b)− (1− a) log b and G2(a) = (1− a) log(1− a) + log(1 + a), we
can observe that G(a) = G1(a) +G2(a).

Considering the function G1(a), we can calculate its derivative and second derivative as follows:

Ġ1(a) =
1

a+ b
+ log b

G̈1(a) = − 1

(a+ b)2
.

(8)

We first consdier the case of b ≥ 1/e. Since G̈1(a) < 0 and 0 ≤ a ≤ 1 − b, we can obtain that
Ġ1(a) ≥ Ġ1(1− b) = 1 + log b ≥ 0. Therefore, G1(a) ≥ G1(0) = 0.

For the case of 0 < b < 1/e, we can easily obtain that Ġ1(1 − b) = 1 + log b < 0 and Ġ1(0) =
1/b + log b > 0. Hence, by considering the monotonicity of Ġ1(a), we can conclude that there exists
an a0 ∈ (0, 1− b) such that Ġ1(a) ≥ 0 for a ∈ [0, a0] and Ġ1(a) < 0 for a ∈ (a0, 1− b]. As a result,
we can get G1(a) ≥ min(G1(0), G1(1− b)). Since G1(0) = 0 and G1(1− b) = −b log b ≥ 0, we
can finally have G1(a) ≥ 0, the equality holds if only if a = 0.
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Here, we show that G2(a) ≥ 0 holds. The first derivative Ġ2(a) and second derivative G̈2(a) are
given by:

Ġ2(a) = − log(1− a)− 1 +
1

1 + a

G̈2(a) =
1

1− a
− 1

(1 + a)2
.

(9)

Since G̈2(a) ≥ 0 for any a ∈ [0, 1− b], we can get Ġ2(a) ≥ Ġ2(0) = 0 and thus G2(a) ≥ G2(0) =
0.

With G1(a) ≥ 0 and G2(a) ≥ 0, we can obtain G(a) = G1(a) + G2(a) ≥ 0 and conclude that
− log(a+ b) ≤ (1− a)(− log b) + (1− a) log(1− a) + log(1 + a). Moreover, we can observe that
equality holds if and only if a = 0.

A.2 Proof of Lemma 3.2.

For simplicity, let’s denote αi = αZ1:i−1→Zi
and pi = P (Zi|Ẑ1:i−1;θ), where pi ∈ [1/2, 1], αi ∈

[0, 1− pi], i ∈ {2, 3, · · · , k}. Then the difference between the upper bound (Equation (2)) and the
target objective (Equation (1)) can be calculated as:

∆ = UB − (− logP (Z1:k;θ))

=

k∑
i=2

log(αi + pi) +

k∑
i=2

((1− αi)(− log pi) + (1− αi) log(1− αi) + log(1 + αi))

=

k∑
i=2

(log(αi + pi)− (1− αi) log pi + (1− αi) log(1− αi) + log(1 + αi))).

(10)

Note that each term in the summation of Equation (10) has the same form, we denote it as T (α),
where

T (α) = log(α+ p)− (1− α) log p+ (1− α) log(1− α) + log(1 + α). (11)

Then, we can turn to maximize T (α) in order to obtain the largest difference between the target
objective and its upper bound.

The first derivative of T (α) can be calculated as:

Ṫ (α) =
1

α+ p
+ log p− log(1− α)− 1 +

1

1 + α
. (12)

By defining T1(α) = 1/(α+p)+ log p and T2(α) = − log(1− α)− 1 + 1/(1+α), we can observe that
Ṫ (α) = T1(α) + T2(α). The first derivative of T2(α) is:

Ṫ2(α) =
1

1− α
− 1

(1 + α)2
. (13)

Since Ṫ2(α) ≥ 0 for any α ∈ [0, 1 − p], we get T2(α) ≥ T2(0) = 0. Furthermore, when p ≥ 1/2,
T1(α) > 0. Therefore, Ṫ (α) = T1(α) + T2(α) > 0, which means the maximum value of T (α) is:

T (1− p) = −p log p+ p log p+ (1− p) + log(2− p)

= log(2− p).
(14)

Since p ≥ 1/2 and log(2− p) decreases with p, T (1− p) will not larger than log(2− 1/2) = log(3/2).
Particularly, when p = 1/2 and α = 1− p = 1/2, this largest bound will be achieved. Hence, we can
conclude that T (α) ≤ log(3/2), and the equality holds when p = α = 1/2.

Thus, as ∆ =
∑k

i=2 T (αi) in Equation (10), we obtain ∆ ≤
∑k

i=2 log(
3/2) = log(3/2) ∗ (k − 1),

which means the absolute difference between Equation (2) and Equation (1) will not be greater than
log(3/2) ∗ (k − 1). The equality holds if and only if pi = αi = 1/2, i ∈ {2, 3, · · · , k}.
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B More Experimental Results

B.1 Detail experimental results

Table 1 displays the short-term prediction results for all action categories on the Human3.6M dataset.
Table 2 shows the results for long-term prediction. Smaller values indicate better performance. It
can be observed that our approach performs better than other competitors for the prediction of most
of the actions. The improvement in short-term prediction demonstrates the effectiveness of the
TCL framework in mitigating the constraint of long-term prediction on short-term prediction. The
enhancement in long-term prediction also indicates that exploiting prior information depicted in the
earlier stages with our proposed TCL framework is beneficial for long-term human motion prediction.
We also note that our method achieves comparable results with PGBIG for the long-term prediction
of a few action categories, such as “walking”. This is because the action “walking” involves some
repetitive motion patterns, which results in it being less important for mining prior motion information.

Table 1: Comparisons of short-term prediction on Human3.6M.

action walking eating smoking discussion
ms 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

R.S. 33.9 62.4 100.8 109.9 20.7 39.1 66.5 75.9 23.1 43.5 75.4 86.6 31.1 57.5 96.0 110.1
LTD 12.3 23.0 39.8 46.1 8.4 16.9 33.2 40.7 7.9 16.2 31.9 38.9 12.5 27.4 58.5 71.7

PGBIG 10.2 19.8 34.5 40.3 7.0 15.1 30.6 38.1 6.6 14.1 28.2 34.7 10.0 23.8 53.6 66.7
PGBIG+Ours 9.5 18.9 33.3 39.1 6.4 14.2 29.4 36.4 6.0 13.2 26.7 33.1 9.0 22.2 51.8 65.1

action directions greeting phoning posing
ms 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

R.S. 25.3 48.4 85.0 99.3 37.4 70.0 117.9 134.1 25.7 47.8 82.6 95.3 32.5 63.1 114.7 135.0
LTD 9.0 19.9 43.4 53.7 18.7 38.7 77.7 93.4 10.2 21.0 42.5 52.3 13.7 29.9 66.6 84.1

PGBIG 7.2 17.6 40.9 51.5 15.2 34.1 71.6 87.1 8.3 18.3 38.7 48.4 10.7 25.7 60.0 76.6
PGBIG+Ours 6.4 16.4 39.5 50.3 13.6 31.4 68.7 84.5 7.6 17.3 37.3 46.9 9.3 23.6 57.5 74.2

action purchases sitting sittingdown takingphoto
ms 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

R.S. 31.9 58.1 96.9 112.0 26.3 49.3 87.2 102.8 35.0 65.2 108.8 126.5 23.9 45.3 82.2 97.6
LTD 15.6 32.8 65.7 79.3 10.6 21.9 46.3 57.9 16.1 31.1 61.5 75.5 9.9 20.9 45.0 56.6

PGBIG 12.5 28.7 60.1 73.3 8.8 19.2 42.4 53.8 13.9 27.9 57.4 71.5 8.4 18.9 42.0 53.3
PGBIG+Ours 11.3 26.9 59.0 72.9 8.1 18.1 40.9 52.3 12.9 26.3 55.2 69.1 7.7 17.6 40.4 51.8

action waiting walkingdog walkingtogether average
ms 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

R.S. 29.4 55.1 96.7 112.6 43.9 78.1 121.0 135.9 27.9 52.1 86.4 96.4 29.9 55.7 94.5 108.7
LTD 11.4 24.0 50.1 61.5 23.4 46.2 83.5 96.0 10.5 21.0 38.5 45.2 12.7 26.1 52.3 63.5

PGBIG 8.9 20.1 43.6 54.3 18.8 39.9 73.7 86.4 8.7 18.6 34.4 41.0 10.3 22.7 47.4 58.5
PGBIG+Ours 7.9 18.4 41.0 51.6 17.3 37.1 72.2 85.5 8.2 17.7 33.0 39.2 9.4 21.3 45.7 56.8

Table 2: Comparisons of long-term prediction on Human3.6M.

action walking eating smoking discussion directions greeting phoning posing
ms 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000

R.S. 117.5 133.3 90.7 123.3 102.3 133.9 134.2 168.4 118.2 150.5 158.4 197.0 114.4 152.1 168.8 229.0
LTD 54.1 59.8 53.4 77.8 50.7 72.6 91.6 121.5 71.0 101.8 115.4 148.8 69.2 103.1 114.5 173.0

PGBIG 48.1 56.4 51.1 76.0 46.5 69.5 87.1 118.2 69.3 100.4 110.2 143.5 65.9 102.7 106.1 164.8
PGBIG+Ours 47.1 56.9 48.8 74.1 44.4 66.7 86.2 117.2 68.4 99.6 108.8 142.7 64.0 100.0 103.9 163.9

action purchases sitting sitdown. takeph. waiting walkdog. walkto. average
ms 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000

R.S. 136.2 172.9 129.0 176.9 159.8 209.5 124.4 175.7 134.9 173.0 159.3 198.8 107.0 126.5 130.1 168.0
LTD 102.0 143.5 78.3 119.7 100.0 150.2 77.4 119.8 79.4 108.1 111.9 148.9 55.0 65.6 81.6 114.3

PGBIG 95.3 133.3 74.4 116.1 96.7 147.8 74.3 118.6 72.2 103.4 104.7 139.8 51.9 64.3 76.9 110.3
PGBIG+Ours 95.5 134.9 72.6 113.8 94.3 146.1 72.5 114.6 70.0 102.7 104.8 139.0 49.0 59.8 75.4 108.8
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B.2 Zero-shot experiment

We also conduct a zero-shot experiment that trains the model on the Human3.6M dataset and tests on
the re-aligned AMASS dataset. The results are tabulated in Table 3. As shown, our approach can still
bring some benefits to the backbone model with a simple and direct implementation without a special
model design, enabling the backbone model to adapt to the zero-shot learning setting.

Table 3: Results of the zero-shot experiment that trained on Human3.6M and tested on AMASS. A
smaller value means a better result.

ms 80 160 320 400 560 1000
PGBIG 5.2 11.2 25.4 32.9 47.8 80.2

PGBIG+Ours 5.2 11.2 25.2 32.7 47.3 79.2

5


	Theoretical Proof
	Proof of Lemma 3.1.
	Proof of Lemma 3.2.

	More Experimental Results
	Detail experimental results
	Zero-shot experiment


