
Supplementary Material

In this supplementary material, we provide further information about our implementation details and
ablation studies.

1 Truncation Error

The update procedure of the Euler Equation

yi+1 = yi + hf(xi, yi), (1)

and the accurate update equation is

yi+1 = yi + hf(xi, y(xi)) +
h2

2
f ′′(ξi), ξi ∈ (xi, xi+1). (2)

The lost item h2

2 f
′′(ξi) is the local truncation error of the Euler method. The global truncation error

is defined as
ei+1 = y(xi+1)− y(i+ 1)

= (yi + hf(xi, y(xi)) +
h2

2
f ′′(ξi))− (yi + hf(xi, yi))

= ei + h(f(xi, y(xi))− f(xi, yi))−
h2

2
f ′′(ξi)

In Euler method f(x, y) satisfy the Lipschitz condition for y and denote Ti+1 = −h2

2 f
′′(ξi) is the

local truncation error and T = max
i

|Ti| = O(h2)

|ei+1| ≤ |ei|+ h|f(xi, y(xi))− f(xi, yi)|+ |Ti+1|
≤ |ei|+ h|y(xi)− yi|+ |Ti+1|
≤ |ei|(1 + hL) + T

≤ (1 + hL)i+1(|e0|+
T

hL
)

≤ e(i+1)hL(|e0|+
T

hL
)

= O(h)

where e0 = y(x− 0)− y0 = 0.

2 Enivronment Specification

We incorporate the occlusion benchmark proposed by VRM and replace the deprecated roboschool
with PyBullet, as the official GitHub repository suggests. We transform the original MDP task into
a POMDP version by removing all position/angle-related entries in the observation space for "-V"
environments and velocity-related entries for "-P" environments.

{Pendulum, CartPole, AntBLT, WalkerBLT, HopperBLT}-P. The "-P" denotes environments
that retain position-related observations by eliminating velocity-related observations.

{Pendulum, CartPole, AntBLT, WalkerBLT, HopperBLT}-V. The "-V" denotes environments
that retain velocity-related observations by eliminating position-related observations.

3 Implemnetaion Details

We use the PyTorch framework for our experiments. Some basic hyperparameters about the network
architectures are listed below

Also, there are some unique parameters in TD3 and SAC, we report them together
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Table 1: Environment information

Environment name dim(o) dim(a) Maximum step

Pendulum-P(position only) 1 1 200
Pendulum-V(velocity only) 1 1 200
CartPole-P(position only) 2 1 1000
CartPole-V(velocity only) 2 1 1000
AntBLT-P(position only) 17 8 1000
AntBLT-V(velocity only) 11 8 1000
WalkerBLT-P(position only) 13 6 1000
WalkerBLT-V(velocity only) 9 6 1000
HopperBLT-P(position only) 9 3 1000
HopperrBLT-V(velocity only) 6 3 1000
HalfCheetah-Dir 17 6 200

Table 2: Hyperparameters

Hyperparameters Description Value

γ Discount factor 0.99
lr Learning rate 0.0003
λ Balance weight between KL divergence and RL loss 0.5
τ Fraction of updating the target network each gradient step 0.005
dqn_layers MLP layer sizes of value function [256,256]
policy_layers MLP layer sizes of policy network [256,256]
sampled_seq_len The number of steps in a sampled sequence for each update 64
batch_size The number of sequences to sample for each update 64
buffer_size The number of saved transitions 1e6
action_embedding_size Embedding dimension of action 16
observ_embedding_size Embedding dimension of observation 32
reward_embedding_size Embedding dimension of reward 16
gru_hidden_size Hidden layer size of recurrent encoder 128

3.1 Encoding procedure of GRU-ODE

The input observations xt is the concatenation of observations, actions and rewards, as we mentioned
above. The time increment dt is set to a fixed value in regular observation environments. In this
paper, we set dt = 0.1 for all POMDP tasks.

3.2 Integrating with TD3

We use separate recurrent encoders for the actor and critic in order to improve the performance of our
method. Owing to the policy network of TD3 updating less frequently than the value function. We
modify the iteration equation of the policy network to:

L(ϕa, θ, ψ) = − E
o∼D

[qψ1(o, πθ(o, z), z)] + λaK(ϕa), (3)

Algorithm 1 The GRU-ODE algorithm.
Input: Observations and time difference between observations (xt, dt)t=1..T
h0 = 0
for t in 1, 2, . . . , T do
h̃t = GRUCell (ht−1, xt) {Update hidden state}
ht = ODESolve

(
fθ, h̃t, dt

)
{Solve ODE}

zt = MLP(ht) for all t = 1..T
Return: {zt}t=1..T ;ht
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Table 3: Hyperparameters of SAC and TD3

Method Hyperparameters Value

SAC entropy_alpha 0.2
SAC automatic_entropy_tuning True
SAC alpha_lr 0.0003

TD3 exploration_noise 0.1
TD3 target_noise 0.2
TD3 target_noise_clip 0.5

D denotes the replay buffer. The state s is replaced with observation o owing to the partially
observable environments.

The update of the value function is modified to:

y(r, o′, z′) = r + γ min
i=1,2

Qψi,targ(o
′, πθ,targ(o

′), z′),

L(ψi) = E
(o,a,r,o′)∼D

[
(Qψi

(o, a, z)− y(r, o′, z′))2
]
,

L(ϕc, ψ) = L(ψ1) + L(ψ2) + λcK(ϕc),

(4)

where subscript 1, 2 denotes two different critic networks implemented in TD3 and targ denotes
the target network. The context variable is computed by gϕ(zt|τ;t) as the policy network and value
function update, we omit this procedure to simplify the equation.

3.3 Integrating with SAC

Similar to TD3, we implement our GRU-ODE in SAC. The training loss of the policy network is
modified to

L(ϕa, θ, ψ) = − E
o∼D

[
min
j=1,2

qψj
(o, πθ(o, z), z)− αlogπθ(a|o)

]
+ λaK(ϕa), (5)

and the value function becomes

y(r, o′, z′) = r + γ min
j=1,2

(Qψj ,targ(o
′, πθ,targ(o

′), z′)− αlogπθ(ã|o′)), ã ∼ πθ(·|o′),

L(ψi) = E
(o,a,r,o′)∼D

[
(Qψi

(o, a, z)− y(r, o′, z′))2
]
,

L(ϕc, ψ) = L(ψ1) + L(ψ2) + λcK(ϕc),

(6)

where symbols have the same meaning as in Eq. 4. The parameter λ is set to 0.5 both in TD3 and
SAC algorithms.

4 ODE Solver Comparison

In this ablation study, we ask two questions in relation to numerical integration. (i) how different
numerical solvers influence the final performance of POMDP tasks, and (ii) the effect on the training
runtime hours. We experimentally evaluate using different numerical methods as ODESolve for
integrating h̃t in GRU-ODE. From Table 4, we find that there is no obvious relationship between the

Table 4: Final performance of different numerical integration methods

Ant-P Ant-V Walker-P Walker-V

Euler 1243± 43 998± 93 1487± 81 612± 27
RK4 1183± 67 1045± 112 1405± 64 683± 45
Heun 1123± 53 1023± 69 1457± 45 625± 41

complexity of the numerical solvers and the final performance of the PODMP tasks. However, the
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RK4 and Heun need much more time for training. We train these methods on a server with NVIDIA
TITAN Xp and Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz as GPU and CPU respectively. The
following are rough estimates of average run times for the AntBLT-P environments.

• Ours (with Euler) 12 hours

• Ours (with RK4) 20 hours

• Ours (with Heun) 17 hours

As the results show for context variable coding, the simplest numerical Euler method can work well
as ODESolve and save training time. We speculate that though the environment is complicated to
solve, the context variables always reflect the essential dynamic information of the environments
which are more refined than the observations. Thus, simple numerical solvers are enough.

5 Time Cost of various baselines

We evaluate the time costs of different baselines on Walker-P environments. From the results, we
find our method does not increase the computation a lot compared to other baselines. We analyze
that there are two reasons. (I). Within our implementation of ODESolve(), we employ the "Euler"
method for computation. This offers substantial reductions in computation time when contrasted with
the default "dopri5" approach (Runge-Kutta of order 5 of Dormand-Prince-Shampine) utilized in
ODE-RNN. We observe that employing complex ODESolve() methods does not notably enhance
performance. Instead, it increases computational time significantly. (II). We are working within the
context of RL tasks. When training RL algorithms, it’s not just the ODE-GRU that needs training,
other networks such as policy networks and value networks also require training. During the training
process, a significant amount of time is consumed by sampling transitions from the data buffer and
updating the data buffer. Therefore, in terms of the overall training time of our approach, it doesn’t
significantly exceed the time required by the previous method that used an RNN as an encoder.

Table 5: Time Cost of different methods

Methods Time Cost

Ours 12h
RMF 10h
VRM 18h

SAC-LSTM 6h
SLAC 3h

6 Further Performance Comparison

We add two baselines for performance comparison, the RMF (Recurrent Model-free) is a recent SOTA
method on POMDP problems and the TD3-FPOW (TD3 with fixed previous observation window) is
a modified version of TD3, which takes 3 concatenation frames as the input.

Table 6: Performance comparison

Environments SLAC VRM SAC-LSTM RMF TD3-FPOW Ours

Ant-P 950±129 1040±75 946±47 1048±74 974±43 1243±43
Ant-V 663±87 981±63 690±34 1021±165 903±54 998±93

Walker-P 277±121 1121±167 971±103 1123±176 1043±103 1487±81
Walker-V 138±25 551±30 491±38 586±52 482±32 612±27
Hopper-P 222±21 1851±61 1236±39 2133±326 1654±217 2455±87
Hopper-V 310±41 1652±67 890±43 1495 ± 38 1312±87 1545±104

The result shows that our method achieved the best performance in 4 out of 6 environments.
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7 Additional ablation study

We study the influence of the shared/separate encoders, and different concatenations of inputs as
the ablation study. Due to the time limitation, we conducted these experiments on the Walker-P and
Walker-V environments.

Table 7: Performance comparison about shared/separate encoders

Environments shared separate

Walker-P 1336 1487
Walker-V 584 612

The result shows that separate context encoders for the policy network and value function improve
the performance.

Table 8: Performance comparison different kinds of inputs

Environments o oa or oar

Walker-P 1276 1065 1396 1487

The result shows that taking the input xt as the concatenation of ot, rt and at−1 for the context
encoder (GRU-ODE) improves the performance.
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