
ODE-based Recurrent Model-free Reinforcement
Learning for POMDPs

Xuanle Zhao1, 2, Duzhen Zhang1, 2, Liyuan Han1, 2, Tielin Zhang1, 2∗, Bo Xu1, 2, 3

1Institute of Automation, Chinese Academy of Sciences, Beijing, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

3Center for Excellence in Brain Science and Intelligence Technology,
Chinese Academy of Sciences, Shanghai, China

{zhaoxuanle2022, zhangduzhen2019, hanliyuan2019, tielin.zhang, xubo}@ia.ac.cn

Abstract

Neural ordinary differential equations (ODEs) are widely recognized as the standard
for modeling physical mechanisms, which help to perform approximate inference
in unknown physical or biological environments. In partially observable (PO)
environments, how to infer unseen information from raw observations puzzled
the agents. By using a recurrent policy with a compact context, context-based
reinforcement learning provides a flexible way to extract unobservable information
from historical transitions. To help the agent extract more dynamics-related infor-
mation, we present a novel ODE-based recurrent model combined with model-free
reinforcement learning (RL) framework to solve partially observable Markov de-
cision processes (POMDPs). We experimentally demonstrate the efficacy of our
methods across various PO continuous control and meta-RL tasks. Furthermore,
our experiments illustrate that our method is robust against irregular observations,
owing to the ability of ODEs to model irregularly-sampled time series.

1 Introduction

Conventional reinforcement learning (RL) is typically cast as a problem of solving fully observable
Markov decision process (MDP) tasks which are trained and tested on the same task. However,
most practical applications require the agents to handle some degree of partially observable and
irregular observations. Humans are always good at solving these kinds of tasks by extracting crucial
information from past observations and actions, while conventional RL agents do not have the ability
to extract information relevant to the tasks.

In recent works, several categories of methods have been proposed to solve PO problems. The most
straightforward one is to include all historical observations as input [Lee et al., 2020]. However, this
kind of method is impractical in application owing to the dimension increment of the observation
inputs. Another category is based on model-free methods which generally use recurrent neural
networks (RNNs) as memory units and function approximators to extract historical task-related
information to solve partial observable problems [Igl et al., 2018, Kapturowski et al., 2019, Han et al.,
2019, Jaderberg et al., 2019]. Recurrent neural networks are commonly employed to encode historical
state transitions into contextual representations, leveraging their capacity to process sequential
information. These representations are then used in conjunction with the current state to find the
optimal policy. This baseline is simple and efficient, as it obtains near-optimal results and only
requires changing the policy and value network into a recurrent version. The third category considers
using a model to estimate a belief state from historical transitions [Lee et al., 2020]. Agent receives
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belief states as observations that contain useful information to solve the tasks, this category is much
similar to the second one. However, almost all notable breakthroughs have been showcased in
discrete-time problems such as games and discrete control problems [Mnih et al., 2015, Silver et al.,
2016], whereas most physical and biological systems in the real world are inherently continuous in
time and follow differential equation dynamics.

Differential equations are commonly considered the benchmark for modeling physical mechanisms
[Schölkopf et al., 2021]. They permit people to forecast the future behaviors of physical systems
and the statistical interdependencies among variables. Moreover, they provide physical insights,
explain the system’s functioning, and justify reasons for their causal structure [Peters et al., 2022,
Zhang et al., 2023b]. A discretized control system will converge to an ODE as the time increment
approaches zero. However, there is no consensus on how to choose the right discretization stepsizes
and account for irregular observation times. In current paradigms, stepsizes are fixed in advance
and vary in environments. For example, in classic control tasks (such as CartPole and Pendulum),
observations are sampled by regularly discretized timesteps [Brockman et al., 2016].

In this study, similar to context-based RL, we developed an ODE-based recurrent model (GRU-ODE)
that encodes historical observations, actions, and rewards into a latent variable. Previous works
have shown that ODE-based recurrent models could simulate the physical dynamic system in an
auto-regressive fashion, such as Latent-ODE [Rubanova et al., 2019] and ODE-LSTM [Lechner and
Hasani, 2020]. The GRU-ODE is based on recurrent networks, which modify the GRU topology by
separating its memory cell into time-continuous states. At each time step, the model first iterates
using the conventional GRU equations and then computing the differentiation based on the ODEs
[Chen et al., 2018]. We then propose a method to solve PO tasks by training the GRU-ODE and
the actor-critic algorithm. We show owing to the differential process, our model could extract
more accurate unobservable information from partially observable environments. Our approach
outperforms baselines in several regular PO and Meta-RL control tasks and irregular PO tasks.

2 Preliminary and Related work

Typical POMDPs are used to describe decision or control problems in which the underlying states of
the environments cannot be directly observed. A POMDP is a tuple (S,A,O,T ,O ,R, γ). S is a set
of states, A is a set of actions, and T : S ×A is the state-transition probability function. Let O be the
observation set and let O : S ×A×O → [0, 1] be the observation probability. The reward function
R : S × A decides the reward during state transition and γ is the discount factor. The objective is

to learn a policy function to maximize expected discounted rewards E
[
T−1∑
t=0

γtrt+1

]
with a finite

horizon T .

Common PO tasks include scenarios of partially occluded states [Heess et al., 2015], randomly
dropped frames [Hausknecht and Stone, 2015], egocentric images [Zhu et al., 2017], and randomly
noised observations [Meng et al., 2021]. These kinds of problems are hard to solve because the
dimension of historical observations grows linearly with timesteps. Prior works consider learning
a belief state to encode underlying environments by extracting information from historical state
transitions [Zintgraf et al., 2019]. Some other methods use memory-based policy, which takes the
entire history states as inputs [Lee et al., 2020]. Recent works have widely used recurrent models to
equip relevant algorithms [Ni et al., 2022, Han et al., 2019]. These recurrent methods could be further
divided into model-free and model-based methods according to whether their training objectives
contain transition functions.

In the meta-RL setting, some indicator of the task is unobserved and methods are quite similar to that
of PO tasks. Prominent approaches utilize recurrent networks for fast adaption [Duan et al., 2016].
Recent studies demonstrate that the recurrent model-free algorithm serves as a robust baseline for
meta-RL [Ni et al., 2022]. This is accomplished by equipping the policy network with a recurrent
model, which aggregates past state and action transitions into an auxiliary context input [Zintgraf et al.,
2019]. Recent works also consider training non-recurrent models to encode the context [Mu et al.,
2022, Guo et al., 2022]. These approaches can be categorized into context-based meta-RL methods.
Another category uses policy gradients [Finn et al., 2017, Xu et al., 2018a] or hyperparameters [Xu
et al., 2018b] to learn from aggregated experience are defined as gradient-based methods.
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Neural ODEs have been widely used to tackle irregular time series [Chen et al., 2018]. Standard
RNN treats observations as a sequence of tokens and does not account for variable timestep between
observations. When facing irregular-sized data, another interpolation or generative adversarial
network is used to perform interpolation and imputation. However, these methods are not robust in
unseen environments. Chen et al. [2018] use residual neural networks with time-invariant dynamics
to solve the ODE initial-value problem (IVP). Recent works build continuous time models by adding
ODEs to the recurrent cells update process [De Brouwer et al., 2019, Kidger et al., 2020]. CT-LSTM
[Mei and Eisner, 2017] combines the LSTM architecture with the continuous-time neural Hawkes
process. ODE-LSTM [Lechner and Hasani, 2020] transforms the internal dynamical flow of LSTM
to a continuous-time model and demonstrates its efficacy in learning kinematics simulation. Liquid
time-constant networks (LTC) [Hasani et al., 2021, Lechner et al., 2020] represent dynamic systems
with liquid time constants coupled to their hidden states and compute outputs by numerical differential
equation solvers.

Recent studies in scientific machine learning have attempted to utilize dynamic encoding or physical
mechanisms within their respective fields, such as DeepONet [Lu et al., 2019] and PINNs [Cuomo
et al., 2022, Krishnapriyan et al., 2021]. Incorporating physical insights has been shown to enhance the
efficiency of neural networks and the ability of representation learning [Zhang et al., 2022, Yang et al.,
2021, Han et al., 2023, Zhang et al., 2023a]. Some previous works combine ODEs with model-based
RL. Du et al. [2020] use Latent-ODE to learn the transition model to solve semi-Markov decision
processes (SMDPs), which also shows variables encoded by Latent-ODE capture unobservable state
representations in PO environment. Yildiz et al. [2021] infer the unknown state evolution differentials
with Bayesian neural ODEs. Some other works use ODEs to learn the dynamic or transition functions
and apply them to continuous and irregular time interval tasks [Salehi et al., 2022, Ainsworth et al.,
2021].

3 Approach

This section first describes constructing ODE-based recurrent models to encode historical information
into context variables for model-free RL. Then, we describe the overall training objective and how to
use our model to optimize the policy network and value function.

In the typical POMDP setting, the reward and transition functions share some common structures
across the MDPs. Some embeddings must represent the detail of the task information, which could
not be accessed in advance. Context-based RL methods attempt to solve partial observable problems
by allowing the policy network to receive an auxiliary context variable which includes historical
information. The context variable at time step t is inferred from the agents’ experience up to the
current states,

τ:t = (o0, a0, r1, o1, a1, · · · , ot−1, at−1, rt, ot). (1)

There should be a superscript i to denote various episodes, we drop it for ease of notation. In POMDP
environments, observations are denoted as ot instead of st, as the underlying states are only partially
observable and must be inferred based on the available observations. Based on the above τ:t, it is
sufficient to encode historical information into a context variable zt, rather than modeling transition
and reward dynamics which consist of millions of parameters. Generally, the memory-based policy is
defined as π(at|τ:t), conditioning on the whole history.

3.1 Model definition

Following ODE-RNN [Rubanova et al., 2019], we extend hidden state transitions in RNNs to
continuous-time dynamics defined by Neural ODEs. As RNNs with exponentially-decayed hidden
state follow an implicit ODE of the form dh(t)

dt = −τh with h(t0) = h0, where τ is a parameter, the
hidden states could be modeled by Neural ODEs. Therefore, we propose our ODE-based recurrent
model.
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GRU-ODE. In our models, transformations of hidden states and transitions between latent states
are computed using recurrent cells and neural ODEs, respectively. The resulting model is

h̃t = GRUCell (ht−1, xt) ,

ht = ODESolve
(
fθ, h̃t, dt

)
,

zt = N (µht
, σht

) = o(ht),

(2)

where the context variable zt is defined as a Gaussian distribution parameterized by mean µht and
standard deviation σht

. xt is the concatenation of ot, at−1 and rt. The gate of the GRUCell is
controlled by the output of ODESolve ht, instead of its own output h̃t. The ODESolve are numerical
differential solvers implemented by neural networks

ODESolve (fθ, h(t), dt) = h(t) +

∫ t+dt

t

fθ(h(t))dt, (3)

where fθ computes the differential of h(t) which are implemented by neural networks. The time
increment dt in the numerical ODE solver is fixed for conventional control tasks and varied in irregular
observation tasks. The input of our model xt is the concatenation of observations ot, actions at−1 and
rewards rt. We found that the reward signals could help the agent learn unobservable information,
leading to improved agent performance in PO environments. As the reward function typically consists
of r(s, a) = d(s, s∗) + c||a||2, where the first term measures the distance between the current state
and the objective state and the latter term contains the penalty of the action magnitude. Therefore,
the unobservable state information could be inferred based on tuples of observations, actions, and
rewards. To verify the rationality of our proposed model, we simplify the classic control task. In
PO dynamic systems, the underlying physics of the task is always supposed to be second-order, the
observable states are expressed in terms of either position θ or angular velocity ω. As the state and
action space could be denoted as s(t) = [θ(t), ω(t)]T and a(t) respectively, the dynamic system with
explicit control is defined as follows:

dθ(t)

dt
= ω(t),

dω(t)

dt
= A(θ(t), ω(t), a(t)), (4)

where A(·) is referred to as acceleration field. Simplifying the update equation, this procedure could
be modeled as differential equations with explicit actions. The current state could be modeled using
ODESolve with initial state as s(t) = s(0) +

∫ t
0
fθ(s(τ), a(τ))dτ , which could be solved by neural

ODEs [Chen et al., 2018]. Previous neural ODE models were always used for time-series predictions,
which do not contain explicit actions. Chiappa et al. [2017] incorporate actions as auxiliary inputs
of recurrent cells to build recurrent simulators. We combine them to build our recurrent models. In
addition to states, actions and rewards can also be solved as initial value problems.

Proposition 1. The action a(t) is differential with time like the state s(t), as the action is controlled
by a deterministic policy function π(·). The derivative of a(t) with respect to time t could be expressed
as

da(t)

dt
=
dπ(s(t))

dt
=
dπ(s(t))

ds(t)

ds(t)

dt
. (5)

The policy function π(·) is implemented with neural networks, so dπ(s(t))/ds(t) is the differential
between the output and input of the policy network and could be computed by the chain rule.
Following the above formulation, the reward function is also differentiable as it is always the linear
combination of state s(t) and action a(t). Therefore, the update process of GRU-ODE input x(t),
the concatenation of state, action and reward, could be modeled as ODEs and solved by ODESolve.
As the latent context variable zt reflects the general dynamic across different episodes, we reckon
the update process of zt could be modeled in the same way with explicit input x(t). Our model
explicitly changes the discrete update into a continuous case, which represents latent variables more
precisely. Existing implementations of state transitions perform inaccurate numerical integration
routines, which results in rough estimation. For example, in the CartPole task crude numerical solver
lead approximations bifurcate near the pole hangs up positions [Yildiz et al., 2021]. The accuracy of
the approximation is dependent on the stepsize of the solver. Consequently, continuous methods tend
to provide a closer approximation to the true value.

4



𝐺𝑅𝑈𝐶𝑒𝑙𝑙
!ℎ! 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒

ℎ!
𝑀𝐿𝑃

GRU-ODE

𝑔!" 𝑧# 𝜏:#

GRU-ODE

𝜋#(𝑧$|𝑜$ , 𝑧$)

Actor
𝑞%(𝑄$|𝑜$ , 𝑎$ , 𝑧$)

Critic

𝜏#%&:# = 𝑜#, 𝑎#%&, 𝑟#

𝑜0

𝑟0
𝑎012

𝑔!' 𝑧# 𝜏:#

GRU-ODE𝑜0

𝑟0
𝑎012

𝑜0
𝑜0

𝑎0
𝑎0 𝑄0

Encoder for actor Encoder for critic

Policy network Value function

𝜏:$
Buffer

Figure 1: Network architecture. Trajectories of observations, actions, and rewards are sampled and
stored in the buffer. During the training procedure, τt−1:t is processed online using a GRUCell to
produce the embedding h̃t. Subsequently, h̃t is passed through an ODE solver and MLP to encode
the context variable zt. We use separate encoders for the actor and critic networks to improve the
performance.

Proposition 2. The global and local truncation errors of the Euler numerical solver are O(h) and
O(h2) respectively. As the stepsize h approaches zero, the truncation error tends to lim

h→0
|O(h)| = 0.

Assuming the increment dt in the ODEs equals the observation interval, the discretized system will
converge to the actual ODE as the time increment approaches zero.

Similar to relevant context-based methods, we use a recurrent ODE-based model to encode past
trajectories into a variable. Compared with ODE-based models with encoder-decoder structures,
models transformed from typical recurrent models could predict online at each time step. As opposed
to standard RNNs, ODE-based RNNs learn the dynamics between observations, rather than having
them pre-defined, which enables handling irregular data and modeling continuous sequences without
relying on pre-assumptions about the dynamics of the observation sequences [Rubanova et al., 2019].
Moreover, we found that owing to their underlying physical principles, ODEs are suitable for inferring
unknown physical information, which is significant in partially observable environments.

3.2 Training procedure

Now we have the GRU-ODE model to represent the context variable, we move on to the question of
identifying learning procedure and optimal policy. As mentioned above, with partial observations,
latent context zt is used to provide historically unknown information. Prior works have shown using
separate recurrent encoders for the actor and critic could achieve high rewards [Meng et al., 2021].
Ni et al. [2022] show the gradient norms of recurrent context encoders vary in the actor and critic
resulting in the gradient of critic loss dominating the actors’, which will impact the training process of
the actor’s context encoder. Therefore, we use separate GRU-ODE models for context representation
and implement them into Actor-Critic algorithms to improve the final performance.

Model implementation. The general training objective maximizes the discounted reward in an
episode. We implement our method based on TD3 Fujimoto et al. [2018] and SAC Haarnoja et al.
[2018], so the policy network and value function should be parameterized differently. Deep neural
networks are used to represent individual components. There are :

1. The recurrent context encoder GRU-ODE model gϕ(zt|τ:t), parameterised by ϕ. We use
superscripts a or c to denote the encoder and context variables used for the policy network
or the value function.

2. The conditioned policy network (actor) πθ(at|ot, gaϕ(zat |τ:t)) parameterized by θ with con-
text variable zat .

3. The conditioned value function (critic) qψ(Qt|ot, at, gcϕ(zct |τ:t)) parameterized by ϕ with
context variable zct .
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The network architecture is shown in Fig. 1. The context variable zt is regarded as a posterior and
represented by the distribution’s parameters, the details are discussed later. Compared to modeling
the transition or reward function directly using the network, learning distribution embeddings need
fewer parameters which makes inference easier.

Training objectives. The conventional training objective of the policy network πθ(·) is to maximize
the expected return

J (θ) = Eπθ

[
T∑
t=0

γtR(rt+1|st, at)

]
. (6)

After experimental analysis, it was discovered that utilizing J (θ) directly in conditioned policy
network and value function with recurrent encoders results in significant variation of the embedding
variable zt within an episode. This variation can lead to a degradation of the context encoder’s
representation ability in PO environments. Therefore, we adjust the original training objective with
an embedding constraint term to regularize zt. Now, the overall training objective is to maximize

L(ϕ, θ, ψ) = Eρ [J (ψ, ϕ, θ)− λK(ϕ)] , (7)

where ρ denotes the trajectory distribution induced by the sample policy. Expectations are approxi-
mated by Monte Carlo samples. Conditioned delayed policy update algorithms are implemented in
our method, thus J (ψ, ϕ, θ) are used to denote actor and critic networks with different parameters.
To regularize the context variable zt, we add the Kullback–Leibler (KL) divergence K(ϕ) between
posterior and prior distributions

K(ϕ) =

T∑
t=0

DKL (gϕ(zt|τ:t)||p(zt)) . (8)

We set the prior to our previous posterior, gϕ(zt−1|τ:t−1), with initial prior gϕ(z0) = N (0, I ). DKL
denotes the KL divergence, which could be optimized by the reparameterization trick. Since both
terms in K(ϕ) are parameterized by Gaussian distributions, the KL-divergence can be analytically
calculated as

DKL (gϕ(zt|τ:t)||p(zt)) = log
σϕ,t
σϕ,t−1

+
(µϕ,t − µϕ,t−1)

2 + σ2
ϕ,t

2σ2
ϕ,t−1

− 1

2
(9)

In this work, past trajectories are encoded by GRU-ODE. Eq. 7 is optimized end-to-end, and λ is the
balance weight that supervises the encoder learning objective against the RL objective J (ψ, ϕ, θ),
which is objective to find an optimal policy and accurate value function. To improve the efficiency of
the training process, we sample fixed-length truncated sequences as mini-batches for training our
model, rather than using the whole episodes.

Previous work mentioned that training the encoder and the policy network separately using data
from different buffers can prevent the gradients of opposing losses from interfering with each other.
Zintgraf et al. [2019] follow this setting to pre-train the encoder in advance before the policy network.
We found this setting is unnecessary in practice, the data buffer is shared in our method.

4 Experiments

We experimentally evaluate our models across several PO regular/irregular observation domains. In
regular observation domains, we consider conventional partially observable control and meta-RL
tasks by employing MuJoCo [Todorov et al., 2012] and PyBullet [Greff et al., 2022] environments.
In irregular observation domains, we consider modifying classical environments: Pendulum and
CartPole tasks[Brockman et al., 2016] into irregular time intervals with surrogate rewards.

4.1 Partially Observable Classic Control Tasks

The Pendulum and CartPole tasks are classic control tasks for evaluating RL algorithms. For the
Pendulum task, the goal is to learn a policy to swing the pendulum up and maintain it at the highest
position to obtain more rewards. For the CartPole task, the goal is to learn a policy to preclude
the pole from falling down and forestall the cart from running away by exerting force on the cart.
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Figure 2: Classic partial observable control tasks. The shaded region represents a standard deviation
of average evaluation over five runs and Curves are smoothed for visual clarity.

The observable information consists of the coordinates of the cart, the angle of the pole, and their
velocities.

These classic control tasks are relatively easy to solve in fully observable domains. Therefore,
these PO tasks can effectively underscore the problem of representation learning. Experiments are
performed in PO cases of these two control tasks, in which only velocities or positions could be
observed (we use the suffix -V/-P to name). The PO setting is more practically significant, as in many
real-world applications, agents may only be able to estimate partial state information.

We compare our method with SLAC, VRM, and SAC-LSTM. SLAC [Lee et al., 2020] combines
off-policy model-free RL with representation learning via a sequential stochastic state space model.
SLAC was developed for pixel observations, we follow the modifications in Han et al. [2019] to
compare it with our method. VRM [Han et al., 2019] is a recent, model-based POMDP algorithm,
which uses variational recurrent models to encode context variables and separate representation
learning from dynamic programming. In the SAC-LSTM, soft actor-critic algorithms with recurrent
networks are used as function approximators. We follow the settings in [Han et al., 2019] to construct
the above methods.

Figure 3: The visualization of the latent vari-
ables zt in one episode after dimension reduc-
tion. Points are colored according to (a) the
logarithm of the calculated angular velocity and
(b) the logarithm of the calculated angular posi-
tion (angle difference from the initial position).
Each figure consists of 201 points including the
initialized Gaussian z0, as the maximum step in
the Pendulum task is 200.

As expected, our method succeeds in learning to
solve all these tasks and performs better than VRM
which is the state-of-the-art method for solving
POMDP tasks. While SLAC performs well in the
CartPole tasks and less sample efficiency in Pen-
dulum tasks. SAC-LSTM needs more epochs for
training and fails to solve the Pendulum-V task.
We reckon these results are attributed to the abil-
ity of ODEs to model physical systems and infer
unknown information.

To assess the capability of our model to deduce un-
observable environmental information, we project
the latent variable zt in an episode to 2D using
UMAP [McInnes et al., 2018]. We estimate the
unobservable state information such as the angular
velocities in the Pendulum-P task through obser-
vations, actions, and rewards (as the rewards are
calculated based on state and actions, the unob-
servable state could be computed in reverse), and
scatter plot color based on the logarithmic scaling
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Figure 4: Learning curve of the partially observable PyBullet robotic control tasks, plotted in the same
way as in Fig. 2. The PyBullet environments are ported from deprecated Roboschool environments
which are harder than the MuJoCo Gym environments1.

of their values. Fig. 3 shows the clustering of latent variables corresponds closely to the unobservable
physical parameters, which demonstrates the efficacy of our GRU-ODE context encoder.

4.2 Partially Observable Robotic Control Tasks

We evaluate the performance of our proposed method in the PyBullet control environments [Greff
et al., 2022] which are more challenging than MuJoCo. The PyBullet environments contain several
continuous robotic control tasks and the state of fully observable environments includes the robot’s co-
ordinates, trigonometric functions of joint angles, and angular velocities. We modify the observations
into PO versions with the same criteria and compare them with the same methods as the PO classic
control tasks. As experimental results demonstrated our method obtains policy improvement in the
majority of PO robotic control tasks, especially in environments where only the position information
is observable. For tasks with only positions observable, our method outperforms the other three
methods and presumably shows efficiency in extracting useful information from historical position
observations. We reckon that velocity could be simply estimated by one-step differentiation in coordi-
nates and joint angles of the robot, which eases representation and policy learning. Environments
with only velocities that could be observed are much harder to solve. However, deducing the position
information solely from the given velocity is not practical. In environments where only velocity
can be observed, our method performs similarly to VRM. Additionally, our results indicate that the
learning processes of the SLAC method exhibited instability, where it intermittently achieved a nearly
optimal policy, but frequently converged to a suboptimal one. As a result, the average performance
of SLAC was generally less favorable than that of our approach across the majority of PO robotic
control tasks. SAC-LSTM fails to solve almost all these tasks.

We further compare our methods with two more baselines RMF (Recurrent Model-Free)[Ni et al.,
2022] and TD3-FPOW (TD3 with fixed previous observation window). The complete results are
shown in Table 6.

4.3 Meta-learning MuJoCo Control Tasks

We further show our method can also scale to other types of PO tasks, such as Meta-RL, by applying
our method to a diverse set of domains, such as point robot and MuJuCo locomotion tasks, which are
commonly used in meta-RL literature. Our tasks involve utilizing the semi-circle, which refers to a
point robot that navigates along a semi-circular path in search of a sparsely located reward, as well
as wind tasks, where a point robot navigates to a fixed goal amidst fluctuating wind conditions. For
MuJuCo locomotion tasks, we consider using the HalfCheetah-Dir environment where the agent has

1https://github.com/openai/roboschool#deprecated-please-use-pybullet-instead
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Figure 5: Learning curves with compared methods on meta-RL tasks. Unlike other methods, we
only plot the final return of Oracle and Pearl methods in the semi-circle and wind tasks. The learning
curve data of on-policy VariBAD, Oracle, and RL2 in the HalfCheetah-Dir task are copied from the
public GitHub repository of variBAD2.

to control two legs run either forward or backward. The MuJuCo-relevant tasks are much harder than
the prior point robot tasks.

We compare our method with various methods, such as VariBAD, RL2 [Duan et al., 2016], Pearl
[Rakelly et al., 2019], and Oracle policy. VariBAD utilizes a variational, model-based objective to
learn task embeddings explicitly. The originally proposed variBAD [Zintgraf et al., 2019] uses PPO
[Schulman et al., 2017], and the same method was implemented with SAC [Dorfman et al., 2020].
These two methods could be named on-policy variBAD and off-policy variBAD. An oracle policy
can access the POMDP hidden state to transform the POMDP into an MDP, thus this policy could be
treated as an upper bound on the performance of related methods. We follow the settings in Ni et al.
[2022] to construct the above methods.

Fig. 5 shows that our method outperforms off-policy variBAD and Pearl in the semi-circle and
wind environments, and on-policy variBAD and RL2 in the HalfCheetah-Dir environment, both
in terms of sample efficiency and asymptotic return. As our model is trained end-to-end, without
using pre-trained encoders to represent task contexts like off-policy variBAD, which do not suffer
out-of-date representation problems. On-policy variBAD uses autoencoder architecture to reconstruct
the state and reward, which are more advantageous to context representation. Our method shows
simple recurrent encoder could also stabilize representation learning and improve policy performance.

4.4 Temporally Irregular Observable Control Tasks

Figure 6: A comparison of PODMP methods
with uniformly irregular observations.

In standard RL frameworks such as OpenAI Gym,
the states/observations arrive at constant inter-
vals as ∆t = δ. To contrast the robustness of
our continuous-time method with other discrete
POMDP methods, we evaluate related methods
with irregularly sampled observations. We con-
sider using an irregular sampling scenario in which
observations arrive uniformly within a range ∆t ∼
U (0, 2δ]. We choose the mean time difference
δ = 0.05 for observation spacings, which is the
standard interval setting of the Gym Pendulum task.

Fig. 6 exhibits the final average returns with a
standard deviation of VRM, SLAC, and our method
in irregular Pendulum and CartPole tasks. The results show our ODE-based recurrent model is more
robust with stochastic time increments, which is reasonable as ODEs build discrete-time sequences
into continuous ones. This environment has more practical significance, as observation intervals are
usually disturbed in practical application.

2https://github.com/lmzintgraf/varibad
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5 Limitation

Although we have demonstrated that ODE-based encoders have advantages in robotic control tasks,
their efficiency in discrete game problems, such as Atari, is not promising. In Atari, the states of
the agents are not updated based on numerical differential equations, resulting in the inability to
represent the state and action as integration processes. Also, the reward function is typically sparse
and predefined. Implementing ODE-based encoders to model related processes does not make sense.

In addition, since the integration process is implemented by neural networks, the training procedure
of ODE-based encoders requires more computation resources, which results in increased training
time, especially for high-order numerical differential solvers. Although we find that using simple
numerical solvers is enough in the majority of tasks (see Appendix Section 10), accelerating the
integration process is still significant in solving differential equations and downstream tasks.

6 Conclusion and future works

We incorporate ODE-based recurrent neural networks with model-free reinforcement learning to solve
POMDP control tasks. Through our empirical assessment across several partially observable domains,
we showed that the policy network and value function conditioned on context variables encoded
by GRU-ODE help the agents infer unknown observations and maximize expected returns. We
experimentally demonstrate that our method is robust to environmental changes such as irregularity.

Reinforcement learning has been widely used in physical or biological systems to explain some of
the mechanisms. However, some mechanisms in the brain are still unknown, such as how the brain
arbitrates or allocates control over various sub-systems and the role of the prefrontal cortex and
striatum in controlling. The classic leaky integrate and fire (LIF) neuron model is quite similar to
ODEs if we ignore the firing process. We reckon combining ODEs with RL could help biologists
explore mechanisms in the human brain.
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Supplementary Material

In this supplementary material, we provide further information about our implementation details and
ablation studies.

7 Truncation Error

The update procedure of the Euler Equation

yi+1 = yi + hf(xi, yi), (10)

and the accurate update equation is

yi+1 = yi + hf(xi, y(xi)) +
h2

2
f ′′(ξi), ξi ∈ (xi, xi+1). (11)

The lost item h2

2 f
′′(ξi) is the local truncation error of the Euler method. The global truncation error

is defined as
ei+1 = y(xi+1)− y(i+ 1)

= (yi + hf(xi, y(xi)) +
h2

2
f ′′(ξi))− (yi + hf(xi, yi))

= ei + h(f(xi, y(xi))− f(xi, yi))−
h2

2
f ′′(ξi)

In Euler method f(x, y) satisfy the Lipschitz condition for y and denote Ti+1 = −h2

2 f
′′(ξi) is the

local truncation error and T = max
i

|Ti| = O(h2)

|ei+1| ≤ |ei|+ h|f(xi, y(xi))− f(xi, yi)|+ |Ti+1|
≤ |ei|+ h|y(xi)− yi|+ |Ti+1|
≤ |ei|(1 + hL) + T

≤ (1 + hL)i+1(|e0|+
T

hL
)

≤ e(i+1)hL(|e0|+
T

hL
)

= O(h)

where e0 = y(x− 0)− y0 = 0.

8 Enivronment Specification

We incorporate the occlusion benchmark proposed by VRM and replace the deprecated roboschool
with PyBullet, as the official GitHub repository suggests. We transform the original MDP task into
a POMDP version by removing all position/angle-related entries in the observation space for "-V"
environments and velocity-related entries for "-P" environments.

{Pendulum, CartPole, AntBLT, WalkerBLT, HopperBLT}-P. The "-P" denotes environments
that retain position-related observations by eliminating velocity-related observations.

{Pendulum, CartPole, AntBLT, WalkerBLT, HopperBLT}-V. The "-V" denotes environments
that retain velocity-related observations by eliminating position-related observations.

9 Implemnetaion Details

We use the PyTorch framework for our experiments. Some basic hyperparameters about the network
architectures are listed below

Also, there are some unique parameters in TD3 and SAC, we report them together
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Table 1: Environment information

Environment name dim(o) dim(a) Maximum step

Pendulum-P(position only) 1 1 200
Pendulum-V(velocity only) 1 1 200
CartPole-P(position only) 2 1 1000
CartPole-V(velocity only) 2 1 1000
AntBLT-P(position only) 17 8 1000
AntBLT-V(velocity only) 11 8 1000
WalkerBLT-P(position only) 13 6 1000
WalkerBLT-V(velocity only) 9 6 1000
HopperBLT-P(position only) 9 3 1000
HopperrBLT-V(velocity only) 6 3 1000
HalfCheetah-Dir 17 6 200

Table 2: Hyperparameters

Hyperparameters Description Value

γ Discount factor 0.99
lr Learning rate 0.0003
λ Balance weight between KL divergence and RL loss 0.5
τ Fraction of updating the target network each gradient step 0.005
dqn_layers MLP layer sizes of value function [256,256]
policy_layers MLP layer sizes of policy network [256,256]
sampled_seq_len The number of steps in a sampled sequence for each update 64
batch_size The number of sequences to sample for each update 64
buffer_size The number of saved transitions 1e6
action_embedding_size Embedding dimension of action 16
observ_embedding_size Embedding dimension of observation 32
reward_embedding_size Embedding dimension of reward 16
gru_hidden_size Hidden layer size of recurrent encoder 128

9.1 Encoding procedure of GRU-ODE

The input observations xt is the concatenation of observations, actions and rewards, as we mentioned
above. The time increment dt is set to a fixed value in regular observation environments. In this
paper, we set dt = 0.1 for all POMDP tasks.

9.2 Integrating with TD3

We use separate recurrent encoders for the actor and critic in order to improve the performance of our
method. Owing to the policy network of TD3 updating less frequently than the value function. We
modify the iteration equation of the policy network to:

L(ϕa, θ, ψ) = − E
o∼D

[qψ1(o, πθ(o, z), z)] + λaK(ϕa), (12)

Algorithm 1 The GRU-ODE algorithm.
Input: Observations and time difference between observations (xt, dt)t=1..T
h0 = 0
for t in 1, 2, . . . , T do
h̃t = GRUCell (ht−1, xt) {Update hidden state}
ht = ODESolve

(
fθ, h̃t, dt

)
{Solve ODE}

zt = MLP(ht) for all t = 1..T
Return: {zt}t=1..T ;ht
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Table 3: Hyperparameters of SAC and TD3

Method Hyperparameters Value

SAC entropy_alpha 0.2
SAC automatic_entropy_tuning True
SAC alpha_lr 0.0003

TD3 exploration_noise 0.1
TD3 target_noise 0.2
TD3 target_noise_clip 0.5

D denotes the replay buffer. The state s is replaced with observation o owing to the partially
observable environments.

The update of the value function is modified to:

y(r, o′, z′) = r + γ min
i=1,2

Qψi,targ(o
′, πθ,targ(o

′), z′),

L(ψi) = E
(o,a,r,o′)∼D

[
(Qψi

(o, a, z)− y(r, o′, z′))2
]
,

L(ϕc, ψ) = L(ψ1) + L(ψ2) + λcK(ϕc),

(13)

where subscript 1, 2 denotes two different critic networks implemented in TD3 and targ denotes
the target network. The context variable is computed by gϕ(zt|τ;t) as the policy network and value
function update, we omit this procedure to simplify the equation.

9.3 Integrating with SAC

Similar to TD3, we implement our GRU-ODE in SAC. The training loss of the policy network is
modified to

L(ϕa, θ, ψ) = − E
o∼D

[
min
j=1,2

qψj
(o, πθ(o, z), z)− αlogπθ(a|o)

]
+ λaK(ϕa), (14)

and the value function becomes

y(r, o′, z′) = r + γ min
j=1,2

(Qψj ,targ(o
′, πθ,targ(o

′), z′)− αlogπθ(ã|o′)), ã ∼ πθ(·|o′),

L(ψi) = E
(o,a,r,o′)∼D

[
(Qψi

(o, a, z)− y(r, o′, z′))2
]
,

L(ϕc, ψ) = L(ψ1) + L(ψ2) + λcK(ϕc),

(15)

where symbols have the same meaning as in Eq. 13. The parameter λ is set to 0.5 both in TD3 and
SAC algorithms.

10 ODE Solver Comparison

In this ablation study, we ask two questions in relation to numerical integration. (i) how different
numerical solvers influence the final performance of POMDP tasks, and (ii) the effect on the training
runtime hours. We experimentally evaluate using different numerical methods as ODESolve for
integrating h̃t in GRU-ODE. From Table 4, we find that there is no obvious relationship between the

Table 4: Final performance of different numerical integration methods

Ant-P Ant-V Walker-P Walker-V

Euler 1243± 43 998± 93 1487± 81 612± 27
RK4 1183± 67 1045± 112 1405± 64 683± 45
Heun 1123± 53 1023± 69 1457± 45 625± 41

complexity of the numerical solvers and the final performance of the PODMP tasks. However, the
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RK4 and Heun need much more time for training. We train these methods on a server with NVIDIA
TITAN Xp and Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz as GPU and CPU respectively. The
following are rough estimates of average run times for the AntBLT-P environments.

• Ours (with Euler) 12 hours

• Ours (with RK4) 20 hours

• Ours (with Heun) 17 hours

As the results show for context variable coding, the simplest numerical Euler method can work well
as ODESolve and save training time. We speculate that though the environment is complicated to
solve, the context variables always reflect the essential dynamic information of the environments
which are more refined than the observations. Thus, simple numerical solvers are enough.

11 Time Cost of various baselines

We evaluate the time costs of different baselines on Walker-P environments. From the results, we
find our method does not increase the computation a lot compared to other baselines. We analyze
that there are two reasons. (I). Within our implementation of ODESolve(), we employ the "Euler"
method for computation. This offers substantial reductions in computation time when contrasted with
the default "dopri5" approach (Runge-Kutta of order 5 of Dormand-Prince-Shampine) utilized in
ODE-RNN. We observe that employing complex ODESolve() methods does not notably enhance
performance. Instead, it increases computational time significantly. (II). We are working within the
context of RL tasks. When training RL algorithms, it’s not just the ODE-GRU that needs training,
other networks such as policy networks and value networks also require training. During the training
process, a significant amount of time is consumed by sampling transitions from the data buffer and
updating the data buffer. Therefore, in terms of the overall training time of our approach, it doesn’t
significantly exceed the time required by the previous method that used an RNN as an encoder.

Table 5: Time Cost of different methods

Methods Time Cost

Ours 12h
RMF 10h
VRM 18h

SAC-LSTM 6h
SLAC 3h

12 Further Performance Comparison

We add two baselines for performance comparison, the RMF (Recurrent Model-free) is a recent SOTA
method on POMDP problems and the TD3-FPOW (TD3 with fixed previous observation window) is
a modified version of TD3, which takes 3 concatenation frames as the input.

Table 6: Performance comparison

Environments SLAC VRM SAC-LSTM RMF TD3-FPOW Ours

Ant-P 950±129 1040±75 946±47 1048±74 974±43 1243±43
Ant-V 663±87 981±63 690±34 1021±165 903±54 998±93

Walker-P 277±121 1121±167 971±103 1123±176 1043±103 1487±81
Walker-V 138±25 551±30 491±38 586±52 482±32 612±27
Hopper-P 222±21 1851±61 1236±39 2133±326 1654±217 2455±87
Hopper-V 310±41 1652±67 890±43 1495 ± 38 1312±87 1545±104

The result shows that our method achieved the best performance in 4 out of 6 environments.
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13 Additional ablation study

We study the influence of the shared/separate encoders, and different concatenations of inputs as
the ablation study. Due to the time limitation, we conducted these experiments on the Walker-P and
Walker-V environments.

Table 7: Performance comparison about shared/separate encoders

Environments shared separate

Walker-P 1336 1487
Walker-V 584 612

The result shows that separate context encoders for the policy network and value function improve
the performance.

Table 8: Performance comparison different kinds of inputs

Environments o oa or oar

Walker-P 1276 1065 1396 1487

The result shows that taking the input xt as the concatenation of ot, rt and at−1 for the context
encoder (GRU-ODE) improves the performance.
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